UCB1AMAF crit_plthres_coef: Dynamic playout threshold for node criticality
[pachi/peepo.git] / uct / policy / ucb1amaf.c
bloba38cb0f32f7475a765d064a088667e07afe7df19
1 #include <assert.h>
2 #include <limits.h>
3 #include <math.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
8 #include "board.h"
9 #include "debug.h"
10 #include "move.h"
11 #include "random.h"
12 #include "tactics/util.h"
13 #include "uct/internal.h"
14 #include "uct/tree.h"
15 #include "uct/policy/generic.h"
17 /* This implements the UCB1 policy with an extra AMAF heuristics. */
19 struct ucb1_policy_amaf {
20 /* This is what the Modification of UCT with Patterns in Monte Carlo Go
21 * paper calls 'p'. Original UCB has this on 2, but this seems to
22 * produce way too wide searches; reduce this to get deeper and
23 * narrower readouts - try 0.2. */
24 floating_t explore_p;
25 /* First Play Urgency - if set to less than infinity (the MoGo paper
26 * above reports 1.0 as the best), new branches are explored only
27 * if none of the existing ones has higher urgency than fpu. */
28 floating_t fpu;
29 unsigned int equiv_rave;
30 bool sylvain_rave;
31 /* Give more weight to moves played earlier. */
32 int distance_rave;
33 /* Coefficient of local tree values embedded in RAVE. */
34 floating_t ltree_rave;
35 /* Coefficient of criticality embedded in RAVE. */
36 floating_t crit_rave;
37 int crit_min_playouts;
38 floating_t crit_plthres_coef;
39 bool crit_negative;
40 bool crit_negflip;
41 bool crit_amaf;
42 bool crit_lvalue;
46 static inline floating_t fast_sqrt(unsigned int x)
48 static const floating_t table[] = {
49 0, 1, 1.41421356237309504880, 1.73205080756887729352,
50 2.00000000000000000000, 2.23606797749978969640,
51 2.44948974278317809819, 2.64575131106459059050,
52 2.82842712474619009760, 3.00000000000000000000,
53 3.16227766016837933199, 3.31662479035539984911,
54 3.46410161513775458705, 3.60555127546398929311,
55 3.74165738677394138558, 3.87298334620741688517,
56 4.00000000000000000000, 4.12310562561766054982,
57 4.24264068711928514640, 4.35889894354067355223,
58 4.47213595499957939281, 4.58257569495584000658,
59 4.69041575982342955456, 4.79583152331271954159,
60 4.89897948556635619639, 5.00000000000000000000,
61 5.09901951359278483002, 5.19615242270663188058,
62 5.29150262212918118100, 5.38516480713450403125,
63 5.47722557505166113456, 5.56776436283002192211,
64 5.65685424949238019520, 5.74456264653802865985,
65 5.83095189484530047087, 5.91607978309961604256,
66 6.00000000000000000000, 6.08276253029821968899,
67 6.16441400296897645025, 6.24499799839839820584,
68 6.32455532033675866399, 6.40312423743284868648,
69 6.48074069840786023096, 6.55743852430200065234,
70 6.63324958071079969822, 6.70820393249936908922,
71 6.78232998312526813906, 6.85565460040104412493,
72 6.92820323027550917410, 7.00000000000000000000,
73 7.07106781186547524400, 7.14142842854284999799,
74 7.21110255092797858623, 7.28010988928051827109,
75 7.34846922834953429459, 7.41619848709566294871,
76 7.48331477354788277116, 7.54983443527074969723,
77 7.61577310586390828566, 7.68114574786860817576,
78 7.74596669241483377035, 7.81024967590665439412,
79 7.87400787401181101968, 7.93725393319377177150,
81 if (x < sizeof(table) / sizeof(*table)) {
82 return table[x];
83 } else {
84 return sqrt(x);
88 #define URAVE_DEBUG if (0)
89 static floating_t inline
90 ucb1rave_evaluate(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity)
92 struct ucb1_policy_amaf *b = p->data;
93 struct tree_node *node = descent->node;
94 struct tree_node *lnode = descent->lnode;
96 struct move_stats n = node->u, r = node->amaf;
97 if (p->uct->amaf_prior) {
98 stats_merge(&r, &node->prior);
99 } else {
100 stats_merge(&n, &node->prior);
103 /* Local tree heuristics. */
104 assert(!lnode || lnode->parent);
105 if (p->uct->local_tree && b->ltree_rave > 0 && lnode
106 && (p->uct->local_tree_rootchoose || lnode->parent->parent)) {
107 struct move_stats l = lnode->u;
108 l.playouts = ((floating_t) l.playouts) * b->ltree_rave / LTREE_PLAYOUTS_MULTIPLIER;
109 URAVE_DEBUG fprintf(stderr, "[ltree] adding [%s] %f%%%d to [%s] RAVE %f%%%d\n",
110 coord2sstr(node_coord(lnode), tree->board), l.value, l.playouts,
111 coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
112 stats_merge(&r, &l);
115 /* Criticality heuristics. */
116 if (b->crit_rave > 0 && (b->crit_plthres_coef > 0
117 ? node->u.playouts > tree->root->u.playouts * b->crit_plthres_coef
118 : node->u.playouts > b->crit_min_playouts)) {
119 floating_t crit = tree_node_criticality(tree, node);
120 if (b->crit_negative || crit > 0) {
121 floating_t val = 1.0f;
122 if (b->crit_negflip && crit < 0) {
123 val = 0;
124 crit = -crit;
126 struct move_stats c = {
127 .value = tree_node_get_value(tree, parity, val),
128 .playouts = crit * r.playouts * b->crit_rave
130 URAVE_DEBUG fprintf(stderr, "[crit] adding %f%%%d to [%s] RAVE %f%%%d\n",
131 c.value, c.playouts,
132 coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
133 stats_merge(&r, &c);
138 floating_t value = 0;
139 if (n.playouts) {
140 if (r.playouts) {
141 /* At the beginning, beta is at 1 and RAVE is used.
142 * At b->equiv_rate, beta is at 1/3 and gets steeper on. */
143 floating_t beta;
144 if (b->sylvain_rave) {
145 beta = (floating_t) r.playouts / (r.playouts + n.playouts
146 + (floating_t) n.playouts * r.playouts / b->equiv_rave);
147 } else {
148 /* XXX: This can be cached in descend; but we don't use this by default. */
149 beta = sqrt(b->equiv_rave / (3 * node->parent->u.playouts + b->equiv_rave));
152 value = beta * r.value + (1.f - beta) * n.value;
153 URAVE_DEBUG fprintf(stderr, "\t%s value = %f * %f + (1 - %f) * %f (prior %f)\n",
154 coord2sstr(node_coord(node), tree->board), beta, r.value, beta, n.value, node->prior.value);
155 } else {
156 value = n.value;
157 URAVE_DEBUG fprintf(stderr, "\t%s value = %f (prior %f)\n",
158 coord2sstr(node_coord(node), tree->board), n.value, node->prior.value);
160 } else if (r.playouts) {
161 value = r.value;
162 URAVE_DEBUG fprintf(stderr, "\t%s value = rave %f (prior %f)\n",
163 coord2sstr(node_coord(node), tree->board), r.value, node->prior.value);
165 descent->value.playouts = r.playouts + n.playouts;
166 descent->value.value = value;
167 return tree_node_get_value(tree, parity, value);
170 void
171 ucb1rave_descend(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity, bool allow_pass)
173 struct ucb1_policy_amaf *b = p->data;
174 floating_t nconf = 1.f;
175 if (b->explore_p > 0)
176 nconf = sqrt(log(descent->node->u.playouts + descent->node->prior.playouts));
178 uctd_try_node_children(tree, descent, allow_pass, parity, p->uct->tenuki_d, di, urgency) {
179 struct tree_node *ni = di.node;
180 urgency = ucb1rave_evaluate(p, tree, &di, parity);
182 if (ni->u.playouts > 0 && b->explore_p > 0) {
183 urgency += b->explore_p * nconf / fast_sqrt(ni->u.playouts);
185 } else if (ni->u.playouts + ni->amaf.playouts + ni->prior.playouts == 0) {
186 /* assert(!u->even_eqex); */
187 urgency = b->fpu;
189 } uctd_set_best_child(di, urgency);
191 uctd_get_best_child(descent);
195 void
196 ucb1amaf_update(struct uct_policy *p, struct tree *tree, struct tree_node *node,
197 enum stone node_color, enum stone player_color,
198 struct playout_amafmap *map, struct board *final_board,
199 floating_t result)
201 struct ucb1_policy_amaf *b = p->data;
202 enum stone winner_color = result > 0.5 ? S_BLACK : S_WHITE;
204 /* Record of the random playout - for each intersection coord,
205 * first_move[coord] is the index map->game of the first move
206 * at this coordinate, or INT_MAX if the move was not played.
207 * The parity gives the color of this move.
209 int first_map[board_size2(final_board)+1];
210 int *first_move = &first_map[1]; // +1 for pass
212 #if 0
213 struct board bb; bb.size = 9+2;
214 for (struct tree_node *ni = node; ni; ni = ni->parent)
215 fprintf(stderr, "%s ", coord2sstr(node_coord(ni), &bb));
216 fprintf(stderr, "[color %d] update result %d (color %d)\n",
217 node_color, result, player_color);
218 #endif
220 /* Initialize first_move */
221 for (int i = pass; i < board_size2(final_board); i++) first_move[i] = INT_MAX;
222 int move;
223 assert(map->gamelen > 0);
224 for (move = map->gamelen - 1; move >= map->game_baselen; move--)
225 first_move[map->game[move]] = move;
227 while (node) {
228 if (!b->crit_amaf && !is_pass(node_coord(node))) {
229 stats_add_result(&node->winner_owner, board_local_value(b->crit_lvalue, final_board, node_coord(node), winner_color), 1);
230 stats_add_result(&node->black_owner, board_local_value(b->crit_lvalue, final_board, node_coord(node), S_BLACK), 1);
232 stats_add_result(&node->u, result, 1);
234 /* This loop ignores symmetry considerations, but they should
235 * matter only at a point when AMAF doesn't help much. */
236 assert(map->game_baselen >= 0);
237 for (struct tree_node *ni = node->children; ni; ni = ni->sibling) {
238 if (is_pass(node_coord(ni))) continue;
240 /* Use the child move only if it was first played by the same color. */
241 int first = first_move[node_coord(ni)];
242 if (first == INT_MAX) continue;
243 assert(first > move && first < map->gamelen);
244 int distance = first - (move + 1);
245 if (distance & 1) continue;
247 /* Give more weight to moves played earlier */
248 int weight = 1;
249 if (b->distance_rave != 0) {
250 weight += b->distance_rave * (map->gamelen - first) / (map->gamelen - move);
252 stats_add_result(&ni->amaf, result, weight);
254 if (b->crit_amaf) {
255 stats_add_result(&ni->winner_owner, board_local_value(b->crit_lvalue, final_board, node_coord(ni), winner_color), 1);
256 stats_add_result(&ni->black_owner, board_local_value(b->crit_lvalue, final_board, node_coord(ni), S_BLACK), 1);
258 #if 0
259 struct board bb; bb.size = 9+2;
260 fprintf(stderr, "* %s<%"PRIhash"> -> %s<%"PRIhash"> [%d/%f => %d/%f]\n",
261 coord2sstr(node_coord(node), &bb), node->hash,
262 coord2sstr(node_coord(ni), &bb), ni->hash,
263 player_color, result, move, res);
264 #endif
266 if (node->parent) {
267 assert(move >= 0 && map->game[move] == node_coord(node) && first_move[node_coord(node)] > move);
268 first_move[node_coord(node)] = move;
269 move--;
271 node = node->parent;
276 struct uct_policy *
277 policy_ucb1amaf_init(struct uct *u, char *arg)
279 struct uct_policy *p = calloc2(1, sizeof(*p));
280 struct ucb1_policy_amaf *b = calloc2(1, sizeof(*b));
281 p->uct = u;
282 p->data = b;
283 p->choose = uctp_generic_choose;
284 p->winner = uctp_generic_winner;
285 p->evaluate = ucb1rave_evaluate;
286 p->descend = ucb1rave_descend;
287 p->update = ucb1amaf_update;
288 p->wants_amaf = true;
290 b->explore_p = 0; // 0.02 can be also good on 19x19 with prior=eqex=40
291 b->equiv_rave = 3000;
292 b->fpu = INFINITY;
293 b->sylvain_rave = true;
294 b->ltree_rave = 0.75f;
296 b->crit_rave = 1.1f;
297 b->crit_min_playouts = 2000;
298 b->crit_negative = 1;
299 b->crit_amaf = 0;
301 if (arg) {
302 char *optspec, *next = arg;
303 while (*next) {
304 optspec = next;
305 next += strcspn(next, ":");
306 if (*next) { *next++ = 0; } else { *next = 0; }
308 char *optname = optspec;
309 char *optval = strchr(optspec, '=');
310 if (optval) *optval++ = 0;
312 if (!strcasecmp(optname, "explore_p")) {
313 b->explore_p = atof(optval);
314 } else if (!strcasecmp(optname, "fpu") && optval) {
315 b->fpu = atof(optval);
316 } else if (!strcasecmp(optname, "equiv_rave") && optval) {
317 b->equiv_rave = atof(optval);
318 } else if (!strcasecmp(optname, "sylvain_rave")) {
319 b->sylvain_rave = !optval || *optval == '1';
320 } else if (!strcasecmp(optname, "distance_rave") && optval) {
321 b->distance_rave = atoi(optval);
322 } else if (!strcasecmp(optname, "ltree_rave") && optval) {
323 b->ltree_rave = atof(optval);
324 } else if (!strcasecmp(optname, "crit_rave") && optval) {
325 b->crit_rave = atof(optval);
326 } else if (!strcasecmp(optname, "crit_min_playouts") && optval) {
327 b->crit_min_playouts = atoi(optval);
328 } else if (!strcasecmp(optname, "crit_plthres_coef") && optval) {
329 b->crit_plthres_coef = atof(optval);
330 } else if (!strcasecmp(optname, "crit_negative")) {
331 b->crit_negative = !optval || *optval == '1';
332 } else if (!strcasecmp(optname, "crit_negflip")) {
333 b->crit_negflip = !optval || *optval == '1';
334 } else if (!strcasecmp(optname, "crit_amaf")) {
335 b->crit_amaf = !optval || *optval == '1';
336 } else if (!strcasecmp(optname, "crit_lvalue")) {
337 b->crit_lvalue = !optval || *optval == '1';
338 } else {
339 fprintf(stderr, "ucb1amaf: Invalid policy argument %s or missing value\n",
340 optname);
341 exit(1);
346 return p;