UCT rave: suppress option check_nakade (no longer used)
[pachi/peepo.git] / uct / policy / ucb1amaf.c
blob28d42abf037f2e93d55e993acbe349cdd23cd01f
1 #include <assert.h>
2 #include <limits.h>
3 #include <math.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
8 #include "board.h"
9 #include "debug.h"
10 #include "move.h"
11 #include "random.h"
12 #include "tactics/util.h"
13 #include "uct/internal.h"
14 #include "uct/tree.h"
15 #include "uct/policy/generic.h"
17 /* This implements the UCB1 policy with an extra AMAF heuristics. */
19 struct ucb1_policy_amaf {
20 /* This is what the Modification of UCT with Patterns in Monte Carlo Go
21 * paper calls 'p'. Original UCB has this on 2, but this seems to
22 * produce way too wide searches; reduce this to get deeper and
23 * narrower readouts - try 0.2. */
24 floating_t explore_p;
25 /* First Play Urgency - if set to less than infinity (the MoGo paper
26 * above reports 1.0 as the best), new branches are explored only
27 * if none of the existing ones has higher urgency than fpu. */
28 floating_t fpu;
29 unsigned int equiv_rave;
30 bool sylvain_rave;
31 /* Coefficient of local tree values embedded in RAVE. */
32 floating_t ltree_rave;
33 /* Coefficient of criticality embedded in RAVE. */
34 floating_t crit_rave;
35 int crit_min_playouts;
36 bool crit_negative;
37 bool crit_negflip;
38 bool crit_amaf;
39 bool crit_lvalue;
43 static inline floating_t fast_sqrt(unsigned int x)
45 static const floating_t table[] = {
46 0, 1, 1.41421356237309504880, 1.73205080756887729352,
47 2.00000000000000000000, 2.23606797749978969640,
48 2.44948974278317809819, 2.64575131106459059050,
49 2.82842712474619009760, 3.00000000000000000000,
50 3.16227766016837933199, 3.31662479035539984911,
51 3.46410161513775458705, 3.60555127546398929311,
52 3.74165738677394138558, 3.87298334620741688517,
53 4.00000000000000000000, 4.12310562561766054982,
54 4.24264068711928514640, 4.35889894354067355223,
55 4.47213595499957939281, 4.58257569495584000658,
56 4.69041575982342955456, 4.79583152331271954159,
57 4.89897948556635619639, 5.00000000000000000000,
58 5.09901951359278483002, 5.19615242270663188058,
59 5.29150262212918118100, 5.38516480713450403125,
60 5.47722557505166113456, 5.56776436283002192211,
61 5.65685424949238019520, 5.74456264653802865985,
62 5.83095189484530047087, 5.91607978309961604256,
63 6.00000000000000000000, 6.08276253029821968899,
64 6.16441400296897645025, 6.24499799839839820584,
65 6.32455532033675866399, 6.40312423743284868648,
66 6.48074069840786023096, 6.55743852430200065234,
67 6.63324958071079969822, 6.70820393249936908922,
68 6.78232998312526813906, 6.85565460040104412493,
69 6.92820323027550917410, 7.00000000000000000000,
70 7.07106781186547524400, 7.14142842854284999799,
71 7.21110255092797858623, 7.28010988928051827109,
72 7.34846922834953429459, 7.41619848709566294871,
73 7.48331477354788277116, 7.54983443527074969723,
74 7.61577310586390828566, 7.68114574786860817576,
75 7.74596669241483377035, 7.81024967590665439412,
76 7.87400787401181101968, 7.93725393319377177150,
78 if (x < sizeof(table) / sizeof(*table)) {
79 return table[x];
80 } else {
81 return sqrt(x);
85 #define URAVE_DEBUG if (0)
86 static floating_t inline
87 ucb1rave_evaluate(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity)
89 struct ucb1_policy_amaf *b = p->data;
90 struct tree_node *node = descent->node;
91 struct tree_node *lnode = descent->lnode;
93 struct move_stats n = node->u, r = node->amaf;
94 if (p->uct->amaf_prior) {
95 stats_merge(&r, &node->prior);
96 } else {
97 stats_merge(&n, &node->prior);
100 /* Local tree heuristics. */
101 assert(!lnode || lnode->parent);
102 if (p->uct->local_tree && b->ltree_rave > 0 && lnode
103 && (p->uct->local_tree_rootchoose || lnode->parent->parent)) {
104 struct move_stats l = lnode->u;
105 l.playouts = ((floating_t) l.playouts) * b->ltree_rave / LTREE_PLAYOUTS_MULTIPLIER;
106 URAVE_DEBUG fprintf(stderr, "[ltree] adding [%s] %f%%%d to [%s] RAVE %f%%%d\n",
107 coord2sstr(node_coord(lnode), tree->board), l.value, l.playouts,
108 coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
109 stats_merge(&r, &l);
112 /* Criticality heuristics. */
113 if (b->crit_rave > 0 && node->u.playouts > b->crit_min_playouts) {
114 floating_t crit = tree_node_criticality(tree, node);
115 if (b->crit_negative || crit > 0) {
116 floating_t val = 1.0f;
117 if (b->crit_negflip && crit < 0) {
118 val = 0;
119 crit = -crit;
121 struct move_stats c = {
122 .value = tree_node_get_value(tree, parity, val),
123 .playouts = crit * r.playouts * b->crit_rave
125 URAVE_DEBUG fprintf(stderr, "[crit] adding %f%%%d to [%s] RAVE %f%%%d\n",
126 c.value, c.playouts,
127 coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
128 stats_merge(&r, &c);
133 floating_t value = 0;
134 if (n.playouts) {
135 if (r.playouts) {
136 /* At the beginning, beta is at 1 and RAVE is used.
137 * At b->equiv_rate, beta is at 1/3 and gets steeper on. */
138 floating_t beta;
139 if (b->sylvain_rave) {
140 beta = (floating_t) r.playouts / (r.playouts + n.playouts
141 + (floating_t) n.playouts * r.playouts / b->equiv_rave);
142 } else {
143 /* XXX: This can be cached in descend; but we don't use this by default. */
144 beta = sqrt(b->equiv_rave / (3 * node->parent->u.playouts + b->equiv_rave));
147 value = beta * r.value + (1.f - beta) * n.value;
148 URAVE_DEBUG fprintf(stderr, "\t%s value = %f * %f + (1 - %f) * %f (prior %f)\n",
149 coord2sstr(node_coord(node), tree->board), beta, r.value, beta, n.value, node->prior.value);
150 } else {
151 value = n.value;
152 URAVE_DEBUG fprintf(stderr, "\t%s value = %f (prior %f)\n",
153 coord2sstr(node_coord(node), tree->board), n.value, node->prior.value);
155 } else if (r.playouts) {
156 value = r.value;
157 URAVE_DEBUG fprintf(stderr, "\t%s value = rave %f (prior %f)\n",
158 coord2sstr(node_coord(node), tree->board), r.value, node->prior.value);
160 descent->value.playouts = r.playouts + n.playouts;
161 descent->value.value = value;
162 return tree_node_get_value(tree, parity, value);
165 void
166 ucb1rave_descend(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity, bool allow_pass)
168 struct ucb1_policy_amaf *b = p->data;
169 floating_t nconf = 1.f;
170 if (b->explore_p > 0)
171 nconf = sqrt(log(descent->node->u.playouts + descent->node->prior.playouts));
173 uctd_try_node_children(tree, descent, allow_pass, parity, p->uct->tenuki_d, di, urgency) {
174 struct tree_node *ni = di.node;
175 urgency = ucb1rave_evaluate(p, tree, &di, parity);
177 if (ni->u.playouts > 0 && b->explore_p > 0) {
178 urgency += b->explore_p * nconf / fast_sqrt(ni->u.playouts);
180 } else if (ni->u.playouts + ni->amaf.playouts + ni->prior.playouts == 0) {
181 /* assert(!u->even_eqex); */
182 urgency = b->fpu;
184 } uctd_set_best_child(di, urgency);
186 uctd_get_best_child(descent);
190 void
191 ucb1amaf_update(struct uct_policy *p, struct tree *tree, struct tree_node *node,
192 enum stone node_color, enum stone player_color,
193 struct playout_amafmap *map, struct board *final_board,
194 floating_t result)
196 struct ucb1_policy_amaf *b = p->data;
197 enum stone winner_color = result > 0.5 ? S_BLACK : S_WHITE;
199 /* Record of the random playout - for each intersection coord,
200 * first_move[coord] is the index map->game of the first move
201 * at this coordinate, or INT_MAX if the move was not played.
202 * The parity gives the color of this move.
204 int first_map[board_size2(final_board)+1];
205 int *first_move = &first_map[1]; // +1 for pass
207 #if 0
208 struct board bb; bb.size = 9+2;
209 for (struct tree_node *ni = node; ni; ni = ni->parent)
210 fprintf(stderr, "%s ", coord2sstr(node_coord(ni), &bb));
211 fprintf(stderr, "[color %d] update result %d (color %d)\n",
212 node_color, result, player_color);
213 #endif
215 /* Initialize first_move */
216 for (int i = pass; i < board_size2(final_board); i++) first_move[i] = INT_MAX;
217 int move;
218 assert(map->gamelen > 0);
219 for (move = map->gamelen - 1; move >= map->game_baselen; move--)
220 first_move[map->game[move]] = move;
222 while (node) {
223 if (!b->crit_amaf && !is_pass(node_coord(node))) {
224 stats_add_result(&node->winner_owner, board_local_value(b->crit_lvalue, final_board, node_coord(node), winner_color), 1);
225 stats_add_result(&node->black_owner, board_local_value(b->crit_lvalue, final_board, node_coord(node), S_BLACK), 1);
227 stats_add_result(&node->u, result, 1);
229 /* This loop ignores symmetry considerations, but they should
230 * matter only at a point when AMAF doesn't help much. */
231 assert(map->game_baselen >= 0);
232 for (struct tree_node *ni = node->children; ni; ni = ni->sibling) {
233 /* Use the child move only if it was first played by the same color. */
234 int first = first_move[node_coord(ni)];
235 if (first == INT_MAX || (first & 1) == (move & 1))
236 continue;
238 if (b->crit_amaf && !is_pass(node_coord(node))) {
239 stats_add_result(&ni->winner_owner, board_local_value(b->crit_lvalue, final_board, node_coord(ni), winner_color), 1);
240 stats_add_result(&ni->black_owner, board_local_value(b->crit_lvalue, final_board, node_coord(ni), S_BLACK), 1);
242 stats_add_result(&ni->amaf, result, 1);
243 #if 0
244 struct board bb; bb.size = 9+2;
245 fprintf(stderr, "* %s<%"PRIhash"> -> %s<%"PRIhash"> [%d/%f => %d/%f]\n",
246 coord2sstr(node_coord(node), &bb), node->hash,
247 coord2sstr(node_coord(ni), &bb), ni->hash,
248 player_color, result, move, result);
249 #endif
251 if (node->parent) {
252 assert(move >= 0 && map->game[move] == node_coord(node));
253 first_move[node_coord(node)] = move;
254 move--;
256 node = node->parent;
261 struct uct_policy *
262 policy_ucb1amaf_init(struct uct *u, char *arg)
264 struct uct_policy *p = calloc2(1, sizeof(*p));
265 struct ucb1_policy_amaf *b = calloc2(1, sizeof(*b));
266 p->uct = u;
267 p->data = b;
268 p->choose = uctp_generic_choose;
269 p->winner = uctp_generic_winner;
270 p->evaluate = ucb1rave_evaluate;
271 p->descend = ucb1rave_descend;
272 p->update = ucb1amaf_update;
273 p->wants_amaf = true;
275 b->explore_p = 0; // 0.02 can be also good on 19x19 with prior=eqex=40
276 b->equiv_rave = 3000;
277 b->fpu = INFINITY;
278 b->sylvain_rave = true;
279 b->ltree_rave = 0.75f;
281 b->crit_rave = 1.0f;
282 b->crit_min_playouts = 2000;
283 b->crit_negative = 1;
284 b->crit_amaf = 0;
286 if (arg) {
287 char *optspec, *next = arg;
288 while (*next) {
289 optspec = next;
290 next += strcspn(next, ":");
291 if (*next) { *next++ = 0; } else { *next = 0; }
293 char *optname = optspec;
294 char *optval = strchr(optspec, '=');
295 if (optval) *optval++ = 0;
297 if (!strcasecmp(optname, "explore_p")) {
298 b->explore_p = atof(optval);
299 } else if (!strcasecmp(optname, "fpu") && optval) {
300 b->fpu = atof(optval);
301 } else if (!strcasecmp(optname, "equiv_rave") && optval) {
302 b->equiv_rave = atof(optval);
303 } else if (!strcasecmp(optname, "sylvain_rave")) {
304 b->sylvain_rave = !optval || *optval == '1';
305 } else if (!strcasecmp(optname, "ltree_rave") && optval) {
306 b->ltree_rave = atof(optval);
307 } else if (!strcasecmp(optname, "crit_rave") && optval) {
308 b->crit_rave = atof(optval);
309 } else if (!strcasecmp(optname, "crit_min_playouts") && optval) {
310 b->crit_min_playouts = atoi(optval);
311 } else if (!strcasecmp(optname, "crit_negative")) {
312 b->crit_negative = !optval || *optval == '1';
313 } else if (!strcasecmp(optname, "crit_negflip")) {
314 b->crit_negflip = !optval || *optval == '1';
315 } else if (!strcasecmp(optname, "crit_amaf")) {
316 b->crit_amaf = !optval || *optval == '1';
317 } else if (!strcasecmp(optname, "crit_lvalue")) {
318 b->crit_lvalue = !optval || *optval == '1';
319 } else {
320 fprintf(stderr, "ucb1amaf: Invalid policy argument %s or missing value\n",
321 optname);
322 exit(1);
327 return p;