Playout: Turn relevant playout_setup elements to unsigned int
[pachi/peepo.git] / uct / policy / ucb1amaf.c
blob8ad70b4e3496eb7d0a4c43b0f227c2f3f56b2f29
1 #include <assert.h>
2 #include <math.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
7 #include "board.h"
8 #include "debug.h"
9 #include "move.h"
10 #include "random.h"
11 #include "uct/internal.h"
12 #include "uct/tree.h"
13 #include "uct/policy/generic.h"
15 /* This implements the UCB1 policy with an extra AMAF heuristics. */
17 struct ucb1_policy_amaf {
18 /* This is what the Modification of UCT with Patterns in Monte Carlo Go
19 * paper calls 'p'. Original UCB has this on 2, but this seems to
20 * produce way too wide searches; reduce this to get deeper and
21 * narrower readouts - try 0.2. */
22 float explore_p;
23 /* First Play Urgency - if set to less than infinity (the MoGo paper
24 * above reports 1.0 as the best), new branches are explored only
25 * if none of the existing ones has higher urgency than fpu. */
26 float fpu;
27 int equiv_rave;
28 bool both_colors;
29 bool check_nakade;
30 bool sylvain_rave;
31 /* Coefficient of local tree values embedded in RAVE. */
32 float ltree_rave;
36 static inline float fast_sqrt(int x)
38 static const float table[] = {
39 0, 1, 1.41421356237309504880, 1.73205080756887729352,
40 2.00000000000000000000, 2.23606797749978969640,
41 2.44948974278317809819, 2.64575131106459059050,
42 2.82842712474619009760, 3.00000000000000000000,
43 3.16227766016837933199, 3.31662479035539984911,
44 3.46410161513775458705, 3.60555127546398929311,
45 3.74165738677394138558, 3.87298334620741688517,
46 4.00000000000000000000, 4.12310562561766054982,
47 4.24264068711928514640, 4.35889894354067355223,
48 4.47213595499957939281, 4.58257569495584000658,
49 4.69041575982342955456, 4.79583152331271954159,
50 4.89897948556635619639, 5.00000000000000000000,
51 5.09901951359278483002, 5.19615242270663188058,
52 5.29150262212918118100, 5.38516480713450403125,
53 5.47722557505166113456, 5.56776436283002192211,
54 5.65685424949238019520, 5.74456264653802865985,
55 5.83095189484530047087, 5.91607978309961604256,
56 6.00000000000000000000, 6.08276253029821968899,
57 6.16441400296897645025, 6.24499799839839820584,
58 6.32455532033675866399, 6.40312423743284868648,
59 6.48074069840786023096, 6.55743852430200065234,
60 6.63324958071079969822, 6.70820393249936908922,
61 6.78232998312526813906, 6.85565460040104412493,
62 6.92820323027550917410, 7.00000000000000000000,
63 7.07106781186547524400, 7.14142842854284999799,
64 7.21110255092797858623, 7.28010988928051827109,
65 7.34846922834953429459, 7.41619848709566294871,
66 7.48331477354788277116, 7.54983443527074969723,
67 7.61577310586390828566, 7.68114574786860817576,
68 7.74596669241483377035, 7.81024967590665439412,
69 7.87400787401181101968, 7.93725393319377177150,
71 if (x < sizeof(table) / sizeof(*table)) {
72 return table[x];
73 } else {
74 return sqrt(x);
78 #define LTREE_DEBUG if (0)
79 static float inline
80 ucb1rave_evaluate(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity)
82 struct ucb1_policy_amaf *b = p->data;
83 struct tree_node *node = descent->node;
84 struct tree_node *lnode = descent->lnode;
86 struct move_stats n = node->u, r = node->amaf;
87 if (p->uct->amaf_prior) {
88 stats_merge(&r, &node->prior);
89 } else {
90 stats_merge(&n, &node->prior);
93 /* Local tree heuristics. */
94 if (p->uct->local_tree && b->ltree_rave > 0 && lnode) {
95 struct move_stats l = lnode->u;
96 l.playouts *= b->ltree_rave;
97 LTREE_DEBUG fprintf(stderr, "[ltree] adding [%s] %f%%%d to [%s] RAVE %f%%%d\n",
98 coord2sstr(lnode->coord, tree->board), l.value, l.playouts,
99 coord2sstr(node->coord, tree->board), r.value, r.playouts);
100 stats_merge(&r, &l);
103 float value = 0;
104 if (n.playouts) {
105 if (r.playouts) {
106 /* At the beginning, beta is at 1 and RAVE is used.
107 * At b->equiv_rate, beta is at 1/3 and gets steeper on. */
108 float beta;
109 if (b->sylvain_rave) {
110 beta = (float) r.playouts / (r.playouts + n.playouts
111 + (float) n.playouts * r.playouts / b->equiv_rave);
112 } else {
113 /* XXX: This can be cached in descend; but we don't use this by default. */
114 beta = sqrt(b->equiv_rave / (3 * node->parent->u.playouts + b->equiv_rave));
117 value = beta * r.value + (1.f - beta) * n.value;
118 } else {
119 value = n.value;
121 } else if (r.playouts) {
122 value = r.value;
124 descent->value.playouts = r.playouts + n.playouts;
125 descent->value.value = value;
126 return tree_node_get_value(tree, parity, value);
129 void
130 ucb1rave_descend(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity, bool allow_pass)
132 struct ucb1_policy_amaf *b = p->data;
133 float nconf = 1.f;
134 if (b->explore_p > 0)
135 nconf = sqrt(log(descent->node->u.playouts + descent->node->prior.playouts));
137 uctd_try_node_children(tree, descent, allow_pass, parity, p->uct->tenuki_d, di, urgency) {
138 struct tree_node *ni = di.node;
139 urgency = ucb1rave_evaluate(p, tree, &di, parity);
141 if (ni->u.playouts > 0 && b->explore_p > 0) {
142 urgency += b->explore_p * nconf / fast_sqrt(ni->u.playouts);
144 } else if (ni->u.playouts + ni->amaf.playouts + ni->prior.playouts == 0) {
145 /* assert(!u->even_eqex); */
146 urgency = b->fpu;
148 } uctd_set_best_child(di, urgency);
150 uctd_get_best_child(descent);
154 void
155 ucb1amaf_update(struct uct_policy *p, struct tree *tree, struct tree_node *node,
156 enum stone node_color, enum stone player_color,
157 struct playout_amafmap *map, float result)
159 struct ucb1_policy_amaf *b = p->data;
160 enum stone child_color = stone_other(node_color);
162 #if 0
163 struct board bb; bb.size = 9+2;
164 for (struct tree_node *ni = node; ni; ni = ni->parent)
165 fprintf(stderr, "%s ", coord2sstr(ni->coord, &bb));
166 fprintf(stderr, "[color %d] update result %d (color %d)\n",
167 node_color, result, player_color);
168 #endif
170 while (node) {
171 if (node->parent == NULL)
172 assert(tree->root_color == stone_other(child_color));
174 stats_add_result(&node->u, result, 1);
175 if (amaf_nakade(map->map[node->coord]))
176 amaf_op(map->map[node->coord], -);
178 /* This loop ignores symmetry considerations, but they should
179 * matter only at a point when AMAF doesn't help much. */
180 for (struct tree_node *ni = node->children; ni; ni = ni->sibling) {
181 assert(map->map[ni->coord] != S_OFFBOARD);
182 if (map->map[ni->coord] == S_NONE)
183 continue;
184 assert(map->game_baselen >= 0);
185 enum stone amaf_color = map->map[ni->coord];
186 if (amaf_nakade(map->map[ni->coord])) {
187 if (!b->check_nakade)
188 continue;
189 /* We don't care to implement both_colors
190 * properly since it sucks anyway. */
191 unsigned int i;
192 for (i = map->game_baselen; i < map->gamelen; i++)
193 if (map->game[i].coord == ni->coord
194 && map->game[i].color == child_color)
195 break;
196 if (i == map->gamelen)
197 continue;
198 amaf_color = child_color;
201 float nres = result;
202 if (amaf_color != child_color) {
203 if (!b->both_colors)
204 continue;
205 nres = 1 - nres;
207 /* For child_color != player_color, we still want
208 * to record the result unmodified; in that case,
209 * we will correctly negate them at the descend phase. */
211 stats_add_result(&ni->amaf, nres, 1);
213 #if 0
214 struct board bb; bb.size = 9+2;
215 fprintf(stderr, "* %s<%"PRIhash"> -> %s<%"PRIhash"> [%d/%f => %d/%f]\n",
216 coord2sstr(node->coord, &bb), node->hash,
217 coord2sstr(ni->coord, &bb), ni->hash,
218 player_color, result, child_color, nres);
219 #endif
222 if (!is_pass(node->coord)) {
223 map->game_baselen--;
225 node = node->parent; child_color = stone_other(child_color);
230 struct uct_policy *
231 policy_ucb1amaf_init(struct uct *u, char *arg)
233 struct uct_policy *p = calloc2(1, sizeof(*p));
234 struct ucb1_policy_amaf *b = calloc2(1, sizeof(*b));
235 p->uct = u;
236 p->data = b;
237 p->choose = uctp_generic_choose;
238 p->winner = uctp_generic_winner;
239 p->evaluate = ucb1rave_evaluate;
240 p->descend = ucb1rave_descend;
241 p->update = ucb1amaf_update;
242 p->wants_amaf = true;
244 b->explore_p = 0; // 0.02 can be also good on 19x19 with prior=eqex=40
245 b->equiv_rave = 3000;
246 b->fpu = INFINITY;
247 b->check_nakade = true;
248 b->sylvain_rave = true;
249 b->ltree_rave = 1.0f;
251 if (arg) {
252 char *optspec, *next = arg;
253 while (*next) {
254 optspec = next;
255 next += strcspn(next, ":");
256 if (*next) { *next++ = 0; } else { *next = 0; }
258 char *optname = optspec;
259 char *optval = strchr(optspec, '=');
260 if (optval) *optval++ = 0;
262 if (!strcasecmp(optname, "explore_p")) {
263 b->explore_p = atof(optval);
264 } else if (!strcasecmp(optname, "fpu") && optval) {
265 b->fpu = atof(optval);
266 } else if (!strcasecmp(optname, "equiv_rave") && optval) {
267 b->equiv_rave = atof(optval);
268 } else if (!strcasecmp(optname, "both_colors")) {
269 b->both_colors = true;
270 } else if (!strcasecmp(optname, "sylvain_rave")) {
271 b->sylvain_rave = !optval || *optval == '1';
272 } else if (!strcasecmp(optname, "check_nakade")) {
273 b->check_nakade = !optval || *optval == '1';
274 } else if (!strcasecmp(optname, "ltree_rave") && optval) {
275 b->ltree_rave = atof(optval);
276 } else {
277 fprintf(stderr, "ucb1amaf: Invalid policy argument %s or missing value\n",
278 optname);
279 exit(1);
284 return p;