17 #include "uct/internal.h"
18 #include "uct/prior.h"
22 /* Allocate one node in the fast_alloc mode. The returned node
23 * is _not_ initialized. Returns NULL if not enough memory.
24 * This function may be called by multiple threads in parallel. */
25 static struct tree_node
*
26 tree_fast_alloc_node(struct tree
*t
)
28 assert(t
->nodes
!= NULL
);
29 struct tree_node
*n
= NULL
;
30 unsigned long old_size
=__sync_fetch_and_add(&t
->nodes_size
, sizeof(*n
));
32 /* The test below works even if max_tree_size is not a
33 * multiple of the node size because tree_init() allocates
34 * space for an extra node. */
35 if (old_size
< t
->max_tree_size
)
36 n
= (struct tree_node
*)(t
->nodes
+ old_size
);
40 /* Allocate and initialize a node. Returns NULL (fast_alloc mode)
41 * or exits the main program if not enough memory.
42 * This function may be called by multiple threads in parallel. */
43 static struct tree_node
*
44 tree_init_node(struct tree
*t
, coord_t coord
, int depth
, bool fast_alloc
)
48 n
= tree_fast_alloc_node(t
);
50 memset(n
, 0, sizeof(*n
));
52 n
= calloc2(1, sizeof(*n
));
53 __sync_fetch_and_add(&t
->nodes_size
, sizeof(*n
));
57 volatile static long c
= 1000000;
58 n
->hash
= __sync_fetch_and_add(&c
, 1);
59 if (depth
> t
->max_depth
)
64 /* Create a tree structure. Pre-allocate all nodes if max_tree_size is > 0. */
66 tree_init(struct board
*board
, enum stone color
, unsigned long max_tree_size
, float ltree_aging
)
68 struct tree
*t
= calloc2(1, sizeof(*t
));
70 t
->max_tree_size
= max_tree_size
;
71 if (max_tree_size
!= 0) {
72 /* Allocate one extra node, max_tree_size may not be multiple of node size. */
73 t
->nodes
= malloc2(max_tree_size
+ sizeof(struct tree_node
));
74 /* The nodes buffer doesn't need initialization. This is currently
75 * done by tree_init_node to spread the load. Doing a memset for the
76 * entire buffer here would be too slow for large trees (>10 GB). */
78 /* The root PASS move is only virtual, we never play it. */
79 t
->root
= tree_init_node(t
, pass
, 0, t
->nodes
);
80 t
->root_symmetry
= board
->symmetry
;
81 t
->root_color
= stone_other(color
); // to research black moves, root will be white
83 t
->ltree_black
= tree_init_node(t
, pass
, 0, false);
84 t
->ltree_white
= tree_init_node(t
, pass
, 0, false);
85 t
->ltree_aging
= ltree_aging
;
90 /* This function may be called by multiple threads in parallel on the
91 * same tree, but not on node n. n may be detached from the tree but
92 * must have been created in this tree originally.
93 * It returns the remaining size of the tree after n has been freed. */
95 tree_done_node(struct tree
*t
, struct tree_node
*n
)
97 struct tree_node
*ni
= n
->children
;
99 struct tree_node
*nj
= ni
->sibling
;
100 tree_done_node(t
, ni
);
104 unsigned long old_size
= __sync_fetch_and_sub(&t
->nodes_size
, sizeof(*n
));
105 return old_size
- sizeof(*n
);
113 /* Worker thread for tree_done_node_detached(). Only for fast_alloc=false. */
115 tree_done_node_worker(void *ctx_
)
117 struct subtree_ctx
*ctx
= ctx_
;
118 char *str
= coord2str(ctx
->n
->coord
, ctx
->t
->board
);
120 unsigned long tree_size
= tree_done_node(ctx
->t
, ctx
->n
);
124 fprintf(stderr
, "done freeing node at %s, tree size %lu\n", str
, tree_size
);
130 /* Asynchronously free the subtree of nodes rooted at n. If the tree becomes
131 * empty free the tree also. Only for fast_alloc=false. */
133 tree_done_node_detached(struct tree
*t
, struct tree_node
*n
)
135 if (n
->u
.playouts
< 1000) { // no thread for small tree
136 if (!tree_done_node(t
, n
))
141 pthread_attr_init(&attr
);
142 pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
145 struct subtree_ctx
*ctx
= malloc2(sizeof(struct subtree_ctx
));
148 pthread_create(&thread
, &attr
, tree_done_node_worker
, ctx
);
149 pthread_attr_destroy(&attr
);
153 tree_done(struct tree
*t
)
155 tree_done_node(t
, t
->ltree_black
);
156 tree_done_node(t
, t
->ltree_white
);
160 } else if (!tree_done_node(t
, t
->root
)) {
162 /* A tree_done_node_worker might still be running on this tree but
163 * it will free the tree later. It is also freeing nodes faster than
164 * we will create new ones. */
170 tree_node_dump(struct tree
*tree
, struct tree_node
*node
, int l
, int thres
)
172 for (int i
= 0; i
< l
; i
++) fputc(' ', stderr
);
174 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
176 /* We use 1 as parity, since for all nodes we want to know the
177 * win probability of _us_, not the node color. */
178 fprintf(stderr
, "[%s] %f %% %d [prior %f %% %d amaf %f %% %d]; hints %x; %d children <%"PRIhash
">\n",
179 coord2sstr(node
->coord
, tree
->board
),
180 tree_node_get_value(tree
, 1, node
->u
.value
), node
->u
.playouts
,
181 tree_node_get_value(tree
, 1, node
->prior
.value
), node
->prior
.playouts
,
182 tree_node_get_value(tree
, 1, node
->amaf
.value
), node
->amaf
.playouts
,
183 node
->hints
, children
, node
->hash
);
185 /* Print nodes sorted by #playouts. */
187 struct tree_node
*nbox
[1000]; int nboxl
= 0;
188 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
189 if (ni
->u
.playouts
> thres
)
194 for (int i
= 0; i
< nboxl
; i
++)
195 if (nbox
[i
] && (best
< 0 || nbox
[i
]->u
.playouts
> nbox
[best
]->u
.playouts
))
199 tree_node_dump(tree
, nbox
[best
], l
+ 1, /* node->u.value < 0.1 ? 0 : */ thres
);
205 tree_dump(struct tree
*tree
, int thres
)
207 if (thres
&& tree
->root
->u
.playouts
/ thres
> 100) {
208 /* Be a bit sensible about this; the opening book can create
209 * huge dumps at first. */
210 thres
= tree
->root
->u
.playouts
/ 100 * (thres
< 1000 ? 1 : thres
/ 1000);
212 fprintf(stderr
, "(UCT tree; root %s; extra komi %f)\n",
213 stone2str(tree
->root_color
), tree
->extra_komi
);
214 tree_node_dump(tree
, tree
->root
, 0, thres
);
216 if (DEBUGL(3) && tree
->ltree_black
) {
217 fprintf(stderr
, "B local tree:\n");
218 tree_node_dump(tree
, tree
->ltree_black
, 0, thres
);
219 fprintf(stderr
, "W local tree:\n");
220 tree_node_dump(tree
, tree
->ltree_white
, 0, thres
);
226 tree_book_name(struct board
*b
)
228 static char buf
[256];
229 if (b
->handicap
> 0) {
230 sprintf(buf
, "uctbook-%d-%02.01f-h%d.pachitree", b
->size
- 2, b
->komi
, b
->handicap
);
232 sprintf(buf
, "uctbook-%d-%02.01f.pachitree", b
->size
- 2, b
->komi
);
238 tree_node_save(FILE *f
, struct tree_node
*node
, int thres
)
240 bool save_children
= node
->u
.playouts
>= thres
;
243 node
->is_expanded
= 0;
246 fwrite(((void *) node
) + offsetof(struct tree_node
, depth
),
247 sizeof(struct tree_node
) - offsetof(struct tree_node
, depth
),
251 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
252 tree_node_save(f
, ni
, thres
);
255 node
->is_expanded
= 1;
262 tree_save(struct tree
*tree
, struct board
*b
, int thres
)
264 char *filename
= tree_book_name(b
);
265 FILE *f
= fopen(filename
, "wb");
270 tree_node_save(f
, tree
->root
, thres
);
277 tree_node_load(FILE *f
, struct tree_node
*node
, int *num
)
281 fread(((void *) node
) + offsetof(struct tree_node
, depth
),
282 sizeof(struct tree_node
) - offsetof(struct tree_node
, depth
),
285 /* Keep values in sane scale, otherwise we start overflowing. */
286 #define MAX_PLAYOUTS 10000000
287 if (node
->u
.playouts
> MAX_PLAYOUTS
) {
288 node
->u
.playouts
= MAX_PLAYOUTS
;
290 if (node
->amaf
.playouts
> MAX_PLAYOUTS
) {
291 node
->amaf
.playouts
= MAX_PLAYOUTS
;
293 memcpy(&node
->pamaf
, &node
->amaf
, sizeof(node
->amaf
));
294 memcpy(&node
->pu
, &node
->u
, sizeof(node
->u
));
296 struct tree_node
*ni
= NULL
, *ni_prev
= NULL
;
298 ni_prev
= ni
; ni
= calloc2(1, sizeof(*ni
));
302 ni_prev
->sibling
= ni
;
304 tree_node_load(f
, ni
, num
);
309 tree_load(struct tree
*tree
, struct board
*b
)
311 char *filename
= tree_book_name(b
);
312 FILE *f
= fopen(filename
, "rb");
316 fprintf(stderr
, "Loading opening book %s...\n", filename
);
320 tree_node_load(f
, tree
->root
, &num
);
321 fprintf(stderr
, "Loaded %d nodes.\n", num
);
327 static struct tree_node
*
328 tree_node_copy(struct tree_node
*node
)
330 struct tree_node
*n2
= malloc2(sizeof(*n2
));
334 struct tree_node
*ni
= node
->children
;
335 struct tree_node
*ni2
= tree_node_copy(ni
);
336 n2
->children
= ni2
; ni2
->parent
= n2
;
337 while ((ni
= ni
->sibling
)) {
338 ni2
->sibling
= tree_node_copy(ni
);
339 ni2
= ni2
->sibling
; ni2
->parent
= n2
;
345 tree_copy(struct tree
*tree
)
347 assert(!tree
->nodes
);
348 struct tree
*t2
= malloc2(sizeof(*t2
));
350 t2
->root
= tree_node_copy(tree
->root
);
354 /* Copy the subtree rooted at node: all nodes at or below depth
355 * or with at least threshold playouts. Only for fast_alloc.
356 * The code is destructive on src. The relative order of children of
357 * a given node is preserved (assumed by tree_get_node in particular).
358 * Returns the copy of node in the destination tree, or NULL
359 * if we could not copy it. */
360 static struct tree_node
*
361 tree_prune(struct tree
*dest
, struct tree
*src
, struct tree_node
*node
,
362 int threshold
, int depth
)
364 assert(dest
->nodes
&& node
);
365 struct tree_node
*n2
= tree_fast_alloc_node(dest
);
369 if (n2
->depth
> dest
->max_depth
)
370 dest
->max_depth
= n2
->depth
;
372 n2
->is_expanded
= false;
374 if (node
->depth
>= depth
&& node
->u
.playouts
< threshold
)
376 /* For deep nodes with many playouts, we must copy all children,
377 * even those with zero playouts, because partially expanded
378 * nodes are not supported. Considering them as fully expanded
379 * would degrade the playing strength. The only exception is
380 * when dest becomes full, but this should never happen in practice
381 * if threshold is chosen to limit the number of nodes traversed. */
382 struct tree_node
*ni
= node
->children
;
385 struct tree_node
**prev2
= &(n2
->children
);
387 struct tree_node
*ni2
= tree_prune(dest
, src
, ni
, threshold
, depth
);
390 prev2
= &(ni2
->sibling
);
395 n2
->is_expanded
= true;
397 n2
->children
= NULL
; // avoid partially expanded nodes
402 /* The following constants are used for garbage collection of nodes.
403 * A tree is considered large if the top node has >= 40K playouts.
404 * For such trees, we copy deep nodes only if they have enough
405 * playouts, with a gradually increasing threshold up to 40.
406 * These constants define how much time we're willing to spend
407 * scanning the source tree when promoting a move. The chosen values
408 * make worst case pruning in about 3s for 20 GB ram, and this
409 * is only for long thinking time (>1M playouts). For fast games the
410 * trees don't grow large. For small ram or fast game we copy the
411 * entire tree. These values do not degrade playing strength and are
412 * necessary to avoid losing on time; increasing DEEP_PLAYOUTS_THRESHOLD
413 * or decreasing LARGE_TREE_PLAYOUTS will make the program faster but
415 #define LARGE_TREE_PLAYOUTS 40000LL
416 #define DEEP_PLAYOUTS_THRESHOLD 40
418 /* Garbage collect the tree early if the top node has < 5K playouts,
419 * to avoid having to do it later on a large subtree.
420 * This guarantees garbage collection in < 1s. */
421 #define SMALL_TREE_PLAYOUTS 5000
423 /* Free all the tree, keeping only the subtree rooted at node.
424 * Prune the subtree if necessary to fit in max_size bytes or
425 * to save time scanning the tree.
426 * Returns the moved node. Only for fast_alloc. */
428 tree_garbage_collect(struct tree
*tree
, unsigned long max_size
, struct tree_node
*node
)
430 assert(tree
->nodes
&& !node
->parent
&& !node
->sibling
);
431 double start_time
= time_now();
433 struct tree
*temp_tree
= tree_init(tree
->board
, tree
->root_color
, max_size
, tree
->ltree_aging
);
434 temp_tree
->nodes_size
= 0; // We do not want the dummy pass node
435 struct tree_node
*temp_node
;
437 /* Find the maximum depth at which we can copy all nodes. */
439 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
441 unsigned long nodes_size
= max_nodes
* sizeof(*node
);
442 int max_depth
= node
->depth
;
443 while (nodes_size
< max_size
&& max_nodes
> 1) {
445 nodes_size
+= max_nodes
* nodes_size
;
449 /* Copy all nodes for small trees. For large trees, copy all nodes
450 * with depth <= max_depth, and all nodes with enough playouts.
451 * Avoiding going too deep (except for nodes with many playouts) is mostly
452 * to save time scanning the source tree. It can take over 20s to traverse
453 * completely a large source tree (20 GB) even without copying because
454 * the traversal is not friendly at all with the memory cache. */
455 int threshold
= (node
->u
.playouts
- LARGE_TREE_PLAYOUTS
) * DEEP_PLAYOUTS_THRESHOLD
/ LARGE_TREE_PLAYOUTS
;
456 if (threshold
< 0) threshold
= 0;
457 if (threshold
> DEEP_PLAYOUTS_THRESHOLD
) threshold
= DEEP_PLAYOUTS_THRESHOLD
;
458 temp_node
= tree_prune(temp_tree
, tree
, node
, threshold
, max_depth
);
461 /* Now copy back to original tree. */
462 tree
->nodes_size
= 0;
464 struct tree_node
*new_node
= tree_prune(tree
, temp_tree
, temp_node
, 0, temp_tree
->max_depth
);
467 double now
= time_now();
468 static double prev_time
;
469 if (!prev_time
) prev_time
= start_time
;
471 "tree pruned in %0.6g s, prev %0.3g s ago, dest depth %d wanted %d,"
472 " max_size %lu, pruned size %lu, playouts %d\n",
473 now
- start_time
, start_time
- prev_time
, temp_tree
->max_depth
, max_depth
,
474 max_size
, temp_tree
->nodes_size
, new_node
->u
.playouts
);
475 prev_time
= start_time
;
477 if (temp_tree
->nodes_size
>= temp_tree
->max_tree_size
) {
478 fprintf(stderr
, "temp tree overflow, increase max_tree_size %lu or MIN_FREE_MEM_PERCENT %llu\n",
479 tree
->max_tree_size
, MIN_FREE_MEM_PERCENT
);
481 assert(tree
->nodes_size
== temp_tree
->nodes_size
);
482 assert(tree
->max_depth
== temp_tree
->max_depth
);
484 tree_done(temp_tree
);
490 tree_node_merge(struct tree_node
*dest
, struct tree_node
*src
)
492 /* Do not merge nodes that weren't touched at all. */
493 assert(dest
->pamaf
.playouts
== src
->pamaf
.playouts
);
494 assert(dest
->pu
.playouts
== src
->pu
.playouts
);
495 if (src
->amaf
.playouts
- src
->pamaf
.playouts
== 0
496 && src
->u
.playouts
- src
->pu
.playouts
== 0) {
500 dest
->hints
|= src
->hints
;
502 /* Merge the children, both are coord-sorted lists. */
503 struct tree_node
*di
= dest
->children
, **dref
= &dest
->children
;
504 struct tree_node
*si
= src
->children
, **sref
= &src
->children
;
506 if (di
->coord
!= si
->coord
) {
507 /* src has some extra items or misses di */
508 struct tree_node
*si2
= si
->sibling
;
509 while (si2
&& di
->coord
!= si2
->coord
) {
513 goto next_di
; /* src misses di, move on */
514 /* chain the extra [si,si2) items before di */
516 while (si
->sibling
!= si2
) {
525 /* Matching nodes - recurse... */
526 tree_node_merge(di
, si
);
527 /* ...and move on. */
528 sref
= &si
->sibling
; si
= si
->sibling
;
530 dref
= &di
->sibling
; di
= di
->sibling
;
533 /* Some outstanding nodes are left on src side, rechain
543 /* Priors should be constant. */
544 assert(dest
->prior
.playouts
== src
->prior
.playouts
&& dest
->prior
.value
== src
->prior
.value
);
546 stats_merge(&dest
->amaf
, &src
->amaf
);
547 stats_merge(&dest
->u
, &src
->u
);
550 /* Merge two trees built upon the same board. Note that the operation is
551 * destructive on src. */
553 tree_merge(struct tree
*dest
, struct tree
*src
)
555 if (src
->max_depth
> dest
->max_depth
)
556 dest
->max_depth
= src
->max_depth
;
557 tree_node_merge(dest
->root
, src
->root
);
562 tree_node_normalize(struct tree_node
*node
, int factor
)
564 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
565 tree_node_normalize(ni
, factor
);
567 #define normalize(s1, s2, t) node->s2.t = node->s1.t + (node->s2.t - node->s1.t) / factor;
568 normalize(pamaf
, amaf
, playouts
);
569 memcpy(&node
->pamaf
, &node
->amaf
, sizeof(node
->amaf
));
571 normalize(pu
, u
, playouts
);
572 memcpy(&node
->pu
, &node
->u
, sizeof(node
->u
));
576 /* Normalize a tree, dividing the amaf and u values by given
577 * factor; otherwise, simulations run in independent threads
578 * two trees built upon the same board. To correctly handle
579 * results taken from previous simulation run, they are backed
582 tree_normalize(struct tree
*tree
, int factor
)
584 tree_node_normalize(tree
->root
, factor
);
588 /* Get a node of given coordinate from within parent, possibly creating it
589 * if necessary - in a very raw form (no .d, priors, ...). */
590 /* FIXME: Adjust for board symmetry. */
592 tree_get_node(struct tree
*t
, struct tree_node
*parent
, coord_t c
, bool create
)
594 if (!parent
->children
|| parent
->children
->coord
>= c
) {
595 /* Special case: Insertion at the beginning. */
596 if (parent
->children
&& parent
->children
->coord
== c
)
597 return parent
->children
;
601 struct tree_node
*nn
= tree_init_node(t
, c
, parent
->depth
+ 1, false);
602 nn
->parent
= parent
; nn
->sibling
= parent
->children
;
603 parent
->children
= nn
;
607 /* No candidate at the beginning, look through all the children. */
609 struct tree_node
*ni
;
610 for (ni
= parent
->children
; ni
->sibling
; ni
= ni
->sibling
)
611 if (ni
->sibling
->coord
>= c
)
614 if (ni
->sibling
&& ni
->sibling
->coord
== c
)
616 assert(ni
->coord
< c
);
620 struct tree_node
*nn
= tree_init_node(t
, c
, parent
->depth
+ 1, false);
621 nn
->parent
= parent
; nn
->sibling
= ni
->sibling
; ni
->sibling
= nn
;
625 /* Get local tree node corresponding to given node, given local node child
626 * iterator @lni (which points either at the corresponding node, or at the
627 * nearest local tree node after @ni). */
629 tree_lnode_for_node(struct tree
*tree
, struct tree_node
*ni
, struct tree_node
*lni
, int tenuki_d
)
631 /* Now set up lnode, which is the actual local node
632 * corresponding to ni - either lni if it is an
633 * exact match and ni is not tenuki, <pass> local
634 * node if ni is tenuki, or NULL if there is no
635 * corresponding node available. */
637 if (is_pass(ni
->coord
)) {
638 /* Also, for sanity reasons we never use local
639 * tree for passes. (Maybe we could, but it's
640 * too hard to think about.) */
644 if (lni
->coord
== ni
->coord
) {
645 /* We don't consider tenuki a sequence play
646 * that we have in local tree even though
647 * ni->d is too high; this can happen if this
648 * occured in different board topology. */
652 if (ni
->d
>= tenuki_d
) {
653 /* Tenuki, pick a pass lsibling if available. */
654 assert(lni
->parent
&& lni
->parent
->children
);
655 if (is_pass(lni
->parent
->children
->coord
)) {
656 return lni
->parent
->children
;
662 /* No corresponding local node, lnode stays NULL. */
667 /* Tree symmetry: When possible, we will localize the tree to a single part
668 * of the board in tree_expand_node() and possibly flip along symmetry axes
669 * to another part of the board in tree_promote_at(). We follow b->symmetry
670 * guidelines here. */
673 /* This function must be thread safe, given that board b is only modified by the calling thread. */
675 tree_expand_node(struct tree
*t
, struct tree_node
*node
, struct board
*b
, enum stone color
, struct uct
*u
, int parity
)
677 /* Get a Common Fate Graph distance map from parent node. */
678 int distances
[board_size2(b
)];
679 if (!is_pass(b
->last_move
.coord
) && !is_resign(b
->last_move
.coord
)) {
680 cfg_distances(b
, node
->coord
, distances
, TREE_NODE_D_MAX
);
682 // Pass or resign - everything is too far.
683 foreach_point(b
) { distances
[c
] = TREE_NODE_D_MAX
+ 1; } foreach_point_end
;
686 /* Get a map of prior values to initialize the new nodes with. */
687 struct prior_map map
= {
690 .parity
= tree_parity(t
, parity
),
691 .distances
= distances
,
693 // Include pass in the prior map.
694 struct move_stats map_prior
[board_size2(b
) + 1]; map
.prior
= &map_prior
[1];
695 bool map_consider
[board_size2(b
) + 1]; map
.consider
= &map_consider
[1];
696 memset(map_prior
, 0, sizeof(map_prior
));
697 memset(map_consider
, 0, sizeof(map_consider
));
698 map
.consider
[pass
] = true;
700 if (board_at(b
, c
) != S_NONE
)
702 if (!board_is_valid_play(b
, color
, c
))
704 map
.consider
[c
] = true;
706 uct_prior(u
, node
, &map
);
708 /* Now, create the nodes. */
709 struct tree_node
*ni
= tree_init_node(t
, pass
, node
->depth
+ 1, t
->nodes
);
710 /* In fast_alloc mode we might temporarily run out of nodes but
711 * this should be rare if MIN_FREE_MEM_PERCENT is set correctly. */
713 node
->is_expanded
= false;
716 struct tree_node
*first_child
= ni
;
718 ni
->prior
= map
.prior
[pass
]; ni
->d
= TREE_NODE_D_MAX
+ 1;
720 /* The loop considers only the symmetry playground. */
722 fprintf(stderr
, "expanding %s within [%d,%d],[%d,%d] %d-%d\n",
723 coord2sstr(node
->coord
, b
),
724 b
->symmetry
.x1
, b
->symmetry
.y1
,
725 b
->symmetry
.x2
, b
->symmetry
.y2
,
726 b
->symmetry
.type
, b
->symmetry
.d
);
728 for (int j
= b
->symmetry
.y1
; j
<= b
->symmetry
.y2
; j
++) {
729 for (int i
= b
->symmetry
.x1
; i
<= b
->symmetry
.x2
; i
++) {
731 int x
= b
->symmetry
.type
== SYM_DIAG_DOWN
? board_size(b
) - 1 - i
: i
;
734 fprintf(stderr
, "drop %d,%d\n", i
, j
);
739 coord_t c
= coord_xy_otf(i
, j
, t
->board
);
740 if (!map
.consider
[c
]) // Filter out invalid moves
742 assert(c
!= node
->coord
); // I have spotted "C3 C3" in some sequence...
744 struct tree_node
*nj
= tree_init_node(t
, c
, node
->depth
+ 1, t
->nodes
);
746 node
->is_expanded
= false;
749 nj
->parent
= node
; ni
->sibling
= nj
; ni
= nj
;
751 ni
->prior
= map
.prior
[c
];
752 ni
->d
= distances
[c
];
755 node
->children
= first_child
; // must be done at the end to avoid race
760 flip_coord(struct board
*b
, coord_t c
,
761 bool flip_horiz
, bool flip_vert
, int flip_diag
)
763 int x
= coord_x(c
, b
), y
= coord_y(c
, b
);
765 int z
= x
; x
= y
; y
= z
;
768 x
= board_size(b
) - 1 - x
;
771 y
= board_size(b
) - 1 - y
;
773 return coord_xy_otf(x
, y
, b
);
777 tree_fix_node_symmetry(struct board
*b
, struct tree_node
*node
,
778 bool flip_horiz
, bool flip_vert
, int flip_diag
)
780 if (!is_pass(node
->coord
))
781 node
->coord
= flip_coord(b
, node
->coord
, flip_horiz
, flip_vert
, flip_diag
);
783 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
784 tree_fix_node_symmetry(b
, ni
, flip_horiz
, flip_vert
, flip_diag
);
788 tree_fix_symmetry(struct tree
*tree
, struct board
*b
, coord_t c
)
793 struct board_symmetry
*s
= &tree
->root_symmetry
;
794 int cx
= coord_x(c
, b
), cy
= coord_y(c
, b
);
796 /* playground X->h->v->d normalization
802 bool flip_horiz
= cx
< s
->x1
|| cx
> s
->x2
;
803 bool flip_vert
= cy
< s
->y1
|| cy
> s
->y2
;
807 bool dir
= (s
->type
== SYM_DIAG_DOWN
);
808 int x
= dir
^ flip_horiz
^ flip_vert
? board_size(b
) - 1 - cx
: cx
;
809 if (flip_vert
? x
< cy
: x
> cy
) {
815 fprintf(stderr
, "%s [%d,%d -> %d,%d;%d,%d] will flip %d %d %d -> %s, sym %d (%d) -> %d (%d)\n",
817 cx
, cy
, s
->x1
, s
->y1
, s
->x2
, s
->y2
,
818 flip_horiz
, flip_vert
, flip_diag
,
819 coord2sstr(flip_coord(b
, c
, flip_horiz
, flip_vert
, flip_diag
), b
),
820 s
->type
, s
->d
, b
->symmetry
.type
, b
->symmetry
.d
);
822 if (flip_horiz
|| flip_vert
|| flip_diag
)
823 tree_fix_node_symmetry(b
, tree
->root
, flip_horiz
, flip_vert
, flip_diag
);
828 tree_unlink_node(struct tree_node
*node
)
830 struct tree_node
*ni
= node
->parent
;
831 if (ni
->children
== node
) {
832 ni
->children
= node
->sibling
;
835 while (ni
->sibling
!= node
)
837 ni
->sibling
= node
->sibling
;
839 node
->sibling
= NULL
;
843 /* Reduce weight of statistics on promotion. Remove nodes that
844 * get reduced to zero playouts; returns next node to consider
845 * in the children list (@node may get deleted). */
846 static struct tree_node
*
847 tree_age_node(struct tree
*tree
, struct tree_node
*node
)
849 node
->u
.playouts
/= tree
->ltree_aging
;
850 if (node
->parent
&& !node
->u
.playouts
) {
851 struct tree_node
*sibling
= node
->sibling
;
852 /* Delete node, no playouts. */
853 tree_unlink_node(node
);
854 tree_done_node(tree
, node
);
858 struct tree_node
*ni
= node
->children
;
859 while (ni
) ni
= tree_age_node(tree
, ni
);
860 return node
->sibling
;
863 /* Promotes the given node as the root of the tree. In the fast_alloc
864 * mode, the node may be moved and some of its subtree may be pruned. */
866 tree_promote_node(struct tree
*tree
, struct tree_node
**node
)
868 assert((*node
)->parent
== tree
->root
);
869 tree_unlink_node(*node
);
871 /* Freeing the rest of the tree can take several seconds on large
872 * trees, so we must do it asynchronously: */
873 tree_done_node_detached(tree
, tree
->root
);
875 /* Garbage collect if we run out of memory, or it is cheap to do so now: */
876 unsigned long min_free_size
= (MIN_FREE_MEM_PERCENT
* tree
->max_tree_size
) / 100;
877 if (tree
->nodes_size
>= tree
->max_tree_size
- min_free_size
878 || (tree
->nodes_size
>= min_free_size
&& (*node
)->u
.playouts
< SMALL_TREE_PLAYOUTS
))
879 *node
= tree_garbage_collect(tree
, min_free_size
, *node
);
882 tree
->root_color
= stone_other(tree
->root_color
);
884 board_symmetry_update(tree
->board
, &tree
->root_symmetry
, (*node
)->coord
);
885 /* See tree.score description for explanation on why don't we zero
886 * score on node promotion. */
887 // tree->score.playouts = 0;
889 /* If the tree deepest node was under node, or if we called tree_garbage_collect,
890 * tree->max_depth is correct. Otherwise we could traverse the tree
891 * to recompute max_depth but it's not worth it: it's just for debugging
892 * and soon the tree will grow and max_depth will become correct again. */
894 if (tree
->ltree_aging
!= 1.0f
) { // XXX: != should work here even with the float
895 tree_age_node(tree
, tree
->ltree_black
);
896 tree_age_node(tree
, tree
->ltree_white
);
901 tree_promote_at(struct tree
*tree
, struct board
*b
, coord_t c
)
903 tree_fix_symmetry(tree
, b
, c
);
905 for (struct tree_node
*ni
= tree
->root
->children
; ni
; ni
= ni
->sibling
) {
906 if (ni
->coord
== c
) {
907 tree_promote_node(tree
, &ni
);