uct_search_state: Introduce uct_search_games()
[pachi/json.git] / uct / uct.c
blob4676501fdc51e2113e3320012772c458bb8dbefb
1 #include <assert.h>
2 #include <math.h>
3 #include <pthread.h>
4 #include <signal.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <time.h>
10 #define DEBUG
12 #include "debug.h"
13 #include "board.h"
14 #include "gtp.h"
15 #include "move.h"
16 #include "mq.h"
17 #include "playout.h"
18 #include "playout/elo.h"
19 #include "playout/moggy.h"
20 #include "playout/light.h"
21 #include "random.h"
22 #include "tactics.h"
23 #include "timeinfo.h"
24 #include "distributed/distributed.h"
25 #include "uct/dynkomi.h"
26 #include "uct/internal.h"
27 #include "uct/prior.h"
28 #include "uct/slave.h"
29 #include "uct/tree.h"
30 #include "uct/uct.h"
31 #include "uct/walk.h"
33 struct uct_policy *policy_ucb1_init(struct uct *u, char *arg);
34 struct uct_policy *policy_ucb1amaf_init(struct uct *u, char *arg);
35 static void uct_pondering_stop(struct uct *u);
36 static void uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color);
38 /* Default number of simulations to perform per move.
39 * Note that this is now in total over all threads! (Unless TM_ROOT.) */
40 #define MC_GAMES 80000
41 #define MC_GAMELEN MAX_GAMELEN
42 static const struct time_info default_ti = {
43 .period = TT_MOVE,
44 .dim = TD_GAMES,
45 .len = { .games = MC_GAMES },
48 /* How big proportion of ownermap counts must be of one color to consider
49 * the point sure. */
50 #define GJ_THRES 0.8
51 /* How many games to consider at minimum before judging groups. */
52 #define GJ_MINGAMES 500
54 /* How often to inspect the tree from the main thread to check for playout
55 * stop, progress reports, etc. (in seconds) */
56 #define TREE_BUSYWAIT_INTERVAL 0.1 /* 100ms */
58 /* Once per how many simulations (per thread) to show a progress report line. */
59 #define TREE_SIMPROGRESS_INTERVAL 10000
61 /* How often to send stats updates for the distributed engine (in seconds). */
62 #define STATS_SEND_INTERVAL 0.5
64 /* When terminating uct_search() early, the safety margin to add to the
65 * remaining playout number estimate when deciding whether the result can
66 * still change. */
67 #define PLAYOUT_DELTA_SAFEMARGIN 1000
70 static void
71 setup_state(struct uct *u, struct board *b, enum stone color)
73 u->t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0, u->local_tree_aging);
74 if (u->force_seed)
75 fast_srandom(u->force_seed);
76 if (UDEBUGL(0))
77 fprintf(stderr, "Fresh board with random seed %lu\n", fast_getseed());
78 //board_print(b, stderr);
79 if (!u->no_book && b->moves == 0) {
80 assert(color == S_BLACK);
81 tree_load(u->t, b);
85 static void
86 reset_state(struct uct *u)
88 assert(u->t);
89 tree_done(u->t); u->t = NULL;
92 static void
93 setup_dynkomi(struct uct *u, struct board *b, enum stone to_play)
95 if (u->t->use_extra_komi && u->dynkomi->permove)
96 u->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, u->t);
99 void
100 uct_prepare_move(struct uct *u, struct board *b, enum stone color)
102 if (u->t) {
103 /* Verify that we have sane state. */
104 assert(b->es == u);
105 assert(u->t && b->moves);
106 if (color != stone_other(u->t->root_color)) {
107 fprintf(stderr, "Fatal: Non-alternating play detected %d %d\n",
108 color, u->t->root_color);
109 exit(1);
112 } else {
113 /* We need fresh state. */
114 b->es = u;
115 setup_state(u, b, color);
118 u->ownermap.playouts = 0;
119 memset(u->ownermap.map, 0, board_size2(b) * sizeof(u->ownermap.map[0]));
120 memset(u->stats, 0, board_size2(b) * sizeof(u->stats[0]));
121 u->played_own = u->played_all = 0;
124 static void
125 dead_group_list(struct uct *u, struct board *b, struct move_queue *mq)
127 struct group_judgement gj;
128 gj.thres = GJ_THRES;
129 gj.gs = alloca(board_size2(b) * sizeof(gj.gs[0]));
130 board_ownermap_judge_group(b, &u->ownermap, &gj);
131 groups_of_status(b, &gj, GS_DEAD, mq);
134 bool
135 uct_pass_is_safe(struct uct *u, struct board *b, enum stone color, bool pass_all_alive)
137 if (u->ownermap.playouts < GJ_MINGAMES)
138 return false;
140 struct move_queue mq = { .moves = 0 };
141 dead_group_list(u, b, &mq);
142 if (pass_all_alive && mq.moves > 0)
143 return false; // We need to remove some dead groups first.
144 return pass_is_safe(b, color, &mq);
147 /* This function is called only when running as slave in the distributed version. */
148 static enum parse_code
149 uct_notify(struct engine *e, struct board *b, int id, char *cmd, char *args, char **reply)
151 struct uct *u = e->data;
153 static bool board_resized = false;
154 board_resized |= is_gamestart(cmd);
156 /* Force resending the whole command history if we are out of sync
157 * but do it only once, not if already getting the history. */
158 if ((move_number(id) != b->moves || !board_resized)
159 && !reply_disabled(id) && !is_reset(cmd)) {
160 if (UDEBUGL(0))
161 fprintf(stderr, "Out of sync, id %d, move %d\n", id, b->moves);
162 static char buf[128];
163 snprintf(buf, sizeof(buf), "out of sync, move %d expected", b->moves);
164 *reply = buf;
165 return P_DONE_ERROR;
167 return reply_disabled(id) ? P_NOREPLY : P_OK;
170 static char *
171 uct_printhook_ownermap(struct board *board, coord_t c, char *s, char *end)
173 struct uct *u = board->es;
174 assert(u);
175 const char chr[] = ":XO,"; // dame, black, white, unclear
176 const char chm[] = ":xo,";
177 char ch = chr[board_ownermap_judge_point(&u->ownermap, c, GJ_THRES)];
178 if (ch == ',') { // less precise estimate then?
179 ch = chm[board_ownermap_judge_point(&u->ownermap, c, 0.67)];
181 s += snprintf(s, end - s, "%c ", ch);
182 return s;
185 static char *
186 uct_notify_play(struct engine *e, struct board *b, struct move *m)
188 struct uct *u = e->data;
189 if (!u->t) {
190 /* No state, create one - this is probably game beginning
191 * and we need to load the opening book right now. */
192 uct_prepare_move(u, b, m->color);
193 assert(u->t);
196 /* Stop pondering, required by tree_promote_at() */
197 uct_pondering_stop(u);
198 if (UDEBUGL(2) && u->slave)
199 tree_dump(u->t, u->dumpthres);
201 if (is_resign(m->coord)) {
202 /* Reset state. */
203 reset_state(u);
204 return NULL;
207 /* Promote node of the appropriate move to the tree root. */
208 assert(u->t->root);
209 if (!tree_promote_at(u->t, b, m->coord)) {
210 if (UDEBUGL(0))
211 fprintf(stderr, "Warning: Cannot promote move node! Several play commands in row?\n");
212 reset_state(u);
213 return NULL;
216 /* If we are a slave in a distributed engine, start pondering once
217 * we know which move we actually played. See uct_genmove() about
218 * the check for pass. */
219 if (u->pondering_opt && u->slave && m->color == u->my_color && !is_pass(m->coord))
220 uct_pondering_start(u, b, u->t, stone_other(m->color));
222 return NULL;
225 static char *
226 uct_chat(struct engine *e, struct board *b, char *cmd)
228 struct uct *u = e->data;
229 static char reply[1024];
231 cmd += strspn(cmd, " \n\t");
232 if (!strncasecmp(cmd, "winrate", 7)) {
233 if (!u->t)
234 return "no game context (yet?)";
235 enum stone color = u->t->root_color;
236 struct tree_node *n = u->t->root;
237 snprintf(reply, 1024, "In %d playouts at %d threads, %s %s can win with %.2f%% probability",
238 n->u.playouts, u->threads, stone2str(color), coord2sstr(n->coord, b),
239 tree_node_get_value(u->t, -1, n->u.value) * 100);
240 if (u->t->use_extra_komi && abs(u->t->extra_komi) >= 0.5) {
241 sprintf(reply + strlen(reply), ", while self-imposing extra komi %.1f",
242 u->t->extra_komi);
244 strcat(reply, ".");
245 return reply;
247 return NULL;
250 static void
251 uct_dead_group_list(struct engine *e, struct board *b, struct move_queue *mq)
253 struct uct *u = e->data;
255 /* This means the game is probably over, no use pondering on. */
256 uct_pondering_stop(u);
258 if (u->pass_all_alive)
259 return; // no dead groups
261 bool mock_state = false;
263 if (!u->t) {
264 /* No state, but we cannot just back out - we might
265 * have passed earlier, only assuming some stones are
266 * dead, and then re-connected, only to lose counting
267 * when all stones are assumed alive. */
268 /* Mock up some state and seed the ownermap by few
269 * simulations. */
270 uct_prepare_move(u, b, S_BLACK); assert(u->t);
271 for (int i = 0; i < GJ_MINGAMES; i++)
272 uct_playout(u, b, S_BLACK, u->t);
273 mock_state = true;
276 dead_group_list(u, b, mq);
278 if (mock_state) {
279 /* Clean up the mock state in case we will receive
280 * a genmove; we could get a non-alternating-move
281 * error from uct_prepare_move() in that case otherwise. */
282 reset_state(u);
286 static void
287 playout_policy_done(struct playout_policy *p)
289 if (p->done) p->done(p);
290 if (p->data) free(p->data);
291 free(p);
294 static void
295 uct_done(struct engine *e)
297 /* This is called on engine reset, especially when clear_board
298 * is received and new game should begin. */
299 struct uct *u = e->data;
300 uct_pondering_stop(u);
301 if (u->t) reset_state(u);
302 free(u->ownermap.map);
303 free(u->stats);
305 free(u->policy);
306 free(u->random_policy);
307 playout_policy_done(u->playout);
308 uct_prior_done(u->prior);
312 /* Pachi threading structure (if uct_playouts_parallel() is used):
314 * main thread
315 * | main(), GTP communication, ...
316 * | starts and stops the search managed by thread_manager
318 * thread_manager
319 * | spawns and collects worker threads
321 * worker0
322 * worker1
323 * ...
324 * workerK
325 * uct_playouts() loop, doing descend-playout until uct_halt
327 * Another way to look at it is by functions (lines denote thread boundaries):
329 * | uct_genmove()
330 * | uct_search() (uct_search_start() .. uct_search_stop())
331 * | -----------------------
332 * | spawn_thread_manager()
333 * | -----------------------
334 * | spawn_worker()
335 * V uct_playouts() */
337 /* Set in thread manager in case the workers should stop. */
338 volatile sig_atomic_t uct_halt = 0;
339 /* ID of the running worker thread. */
340 __thread int thread_id = -1;
341 /* ID of the thread manager. */
342 static pthread_t thread_manager;
343 bool thread_manager_running;
345 static pthread_mutex_t finish_mutex = PTHREAD_MUTEX_INITIALIZER;
346 static pthread_cond_t finish_cond = PTHREAD_COND_INITIALIZER;
347 static volatile int finish_thread;
348 static pthread_mutex_t finish_serializer = PTHREAD_MUTEX_INITIALIZER;
350 struct spawn_ctx {
351 int tid;
352 struct uct *u;
353 struct board *b;
354 enum stone color;
355 struct tree *t;
356 unsigned long seed;
357 int games;
360 static void *
361 spawn_worker(void *ctx_)
363 struct spawn_ctx *ctx = ctx_;
364 /* Setup */
365 fast_srandom(ctx->seed);
366 thread_id = ctx->tid;
367 /* Run */
368 ctx->games = uct_playouts(ctx->u, ctx->b, ctx->color, ctx->t);
369 /* Finish */
370 pthread_mutex_lock(&finish_serializer);
371 pthread_mutex_lock(&finish_mutex);
372 finish_thread = ctx->tid;
373 pthread_cond_signal(&finish_cond);
374 pthread_mutex_unlock(&finish_mutex);
375 return ctx;
378 /* Thread manager, controlling worker threads. It must be called with
379 * finish_mutex lock held, but it will unlock it itself before exiting;
380 * this is necessary to be completely deadlock-free. */
381 /* The finish_cond can be signalled for it to stop; in that case,
382 * the caller should set finish_thread = -1. */
383 /* After it is started, it will update mctx->t to point at some tree
384 * used for the actual search (matters only for TM_ROOT), on return
385 * it will set mctx->games to the number of performed simulations. */
386 static void *
387 spawn_thread_manager(void *ctx_)
389 /* In thread_manager, we use only some of the ctx fields. */
390 struct spawn_ctx *mctx = ctx_;
391 struct uct *u = mctx->u;
392 struct tree *t = mctx->t;
393 bool shared_tree = u->parallel_tree;
394 fast_srandom(mctx->seed);
396 int played_games = 0;
397 pthread_t threads[u->threads];
398 int joined = 0;
400 uct_halt = 0;
402 /* Garbage collect the tree by preference when pondering. */
403 if (u->pondering && t->nodes && t->nodes_size > t->max_tree_size/2) {
404 unsigned long temp_size = (MIN_FREE_MEM_PERCENT * t->max_tree_size) / 100;
405 t->root = tree_garbage_collect(t, temp_size, t->root);
408 /* Spawn threads... */
409 for (int ti = 0; ti < u->threads; ti++) {
410 struct spawn_ctx *ctx = malloc2(sizeof(*ctx));
411 ctx->u = u; ctx->b = mctx->b; ctx->color = mctx->color;
412 mctx->t = ctx->t = shared_tree ? t : tree_copy(t);
413 ctx->tid = ti; ctx->seed = fast_random(65536) + ti;
414 pthread_create(&threads[ti], NULL, spawn_worker, ctx);
415 if (UDEBUGL(3))
416 fprintf(stderr, "Spawned worker %d\n", ti);
419 /* ...and collect them back: */
420 while (joined < u->threads) {
421 /* Wait for some thread to finish... */
422 pthread_cond_wait(&finish_cond, &finish_mutex);
423 if (finish_thread < 0) {
424 /* Stop-by-caller. Tell the workers to wrap up. */
425 uct_halt = 1;
426 continue;
428 /* ...and gather its remnants. */
429 struct spawn_ctx *ctx;
430 pthread_join(threads[finish_thread], (void **) &ctx);
431 played_games += ctx->games;
432 joined++;
433 if (!shared_tree) {
434 if (ctx->t == mctx->t) mctx->t = t;
435 tree_merge(t, ctx->t);
436 tree_done(ctx->t);
438 free(ctx);
439 if (UDEBUGL(3))
440 fprintf(stderr, "Joined worker %d\n", finish_thread);
441 pthread_mutex_unlock(&finish_serializer);
444 pthread_mutex_unlock(&finish_mutex);
446 if (!shared_tree)
447 tree_normalize(mctx->t, u->threads);
449 mctx->games = played_games;
450 return mctx;
454 /* Progress information of the on-going MCTS search - when did we
455 * last adjusted dynkomi, printed out stuff, etc. */
456 struct uct_search_state {
457 /* Number of games simulated for this simulation before
458 * we started the search. (We have simulated them earlier.) */
459 int base_playouts;
460 /* Number of last dynkomi adjustment. */
461 int last_dynkomi;
462 /* Number of last game with progress print. */
463 int last_print;
464 /* Number of simulations to wait before next print. */
465 int print_interval;
466 /* Printed notification about full memory? */
467 bool print_fullmem;
469 struct time_stop stop;
470 struct spawn_ctx *ctx;
473 static int
474 uct_search_games(struct uct_search_state *s)
476 return s->ctx->t->root->u.playouts;
479 static void
480 uct_search_start(struct uct *u, struct board *b, enum stone color,
481 struct tree *t, struct time_info *ti,
482 struct uct_search_state *s)
484 /* Set up search state. */
485 s->base_playouts = s->last_dynkomi = s->last_print = t->root->u.playouts;
486 s->print_interval = TREE_SIMPROGRESS_INTERVAL * (u->thread_model == TM_ROOT ? 1 : u->threads);
487 s->print_fullmem = false;
489 if (ti) {
490 if (ti->period == TT_NULL) *ti = default_ti;
491 time_stop_conditions(ti, b, u->fuseki_end, u->yose_start, &s->stop);
494 /* Fire up the tree search thread manager, which will in turn
495 * spawn the searching threads. */
496 assert(u->threads > 0);
497 assert(!thread_manager_running);
498 static struct spawn_ctx mctx;
499 mctx = (struct spawn_ctx) { .u = u, .b = b, .color = color, .t = t, .seed = fast_random(65536) };
500 s->ctx = &mctx;
501 pthread_mutex_lock(&finish_mutex);
502 pthread_create(&thread_manager, NULL, spawn_thread_manager, s->ctx);
503 thread_manager_running = true;
506 static struct spawn_ctx *
507 uct_search_stop(void)
509 assert(thread_manager_running);
511 /* Signal thread manager to stop the workers. */
512 pthread_mutex_lock(&finish_mutex);
513 finish_thread = -1;
514 pthread_cond_signal(&finish_cond);
515 pthread_mutex_unlock(&finish_mutex);
517 /* Collect the thread manager. */
518 struct spawn_ctx *pctx;
519 thread_manager_running = false;
520 pthread_join(thread_manager, (void **) &pctx);
521 return pctx;
525 static void
526 uct_search_progress(struct uct *u, struct board *b, enum stone color,
527 struct tree *t, struct time_info *ti,
528 struct uct_search_state *s, int i)
530 struct spawn_ctx *ctx = s->ctx;
532 /* Adjust dynkomi? */
533 if (ctx->t->use_extra_komi && u->dynkomi->permove
534 && u->dynkomi_interval
535 && i > s->last_dynkomi + u->dynkomi_interval) {
536 s->last_dynkomi += u->dynkomi_interval;
537 float old_dynkomi = ctx->t->extra_komi;
538 ctx->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, ctx->t);
539 if (UDEBUGL(3) && old_dynkomi != ctx->t->extra_komi)
540 fprintf(stderr, "dynkomi adjusted (%f -> %f)\n",
541 old_dynkomi, ctx->t->extra_komi);
544 /* Print progress? */
545 if (i - s->last_print > s->print_interval) {
546 s->last_print += s->print_interval; // keep the numbers tidy
547 uct_progress_status(u, ctx->t, color, s->last_print);
550 if (!s->print_fullmem && ctx->t->nodes_size > u->max_tree_size) {
551 if (UDEBUGL(2))
552 fprintf(stderr, "memory limit hit (%lu > %lu)\n",
553 ctx->t->nodes_size, u->max_tree_size);
554 s->print_fullmem = true;
558 /* Determine whether we should terminate the search early. */
559 static bool
560 uct_search_stop_early(struct uct *u, struct tree *t, struct board *b,
561 struct time_info *ti, struct time_stop *stop,
562 struct tree_node *best, struct tree_node *best2,
563 int played)
565 /* Always use at least half the desired time. It is silly
566 * to lose a won game because we played a bad move in 0.1s. */
567 double elapsed = 0;
568 if (ti->dim == TD_WALLTIME) {
569 elapsed = time_now() - ti->len.t.timer_start;
570 if (elapsed < 0.5 * stop->desired.time) return false;
573 /* Early break in won situation. */
574 if (best->u.playouts >= 2000 && tree_node_get_value(t, 1, best->u.value) >= u->loss_threshold)
575 return true;
576 /* Earlier break in super-won situation. */
577 if (best->u.playouts >= 500 && tree_node_get_value(t, 1, best->u.value) >= 0.95)
578 return true;
580 /* Break early if we estimate the second-best move cannot
581 * catch up in assigned time anymore. We use all our time
582 * if we are in byoyomi with single stone remaining in our
583 * period, however - it's better to pre-ponder. */
584 bool time_indulgent = (!ti->len.t.main_time && ti->len.t.byoyomi_stones == 1);
585 if (best2 && ti->dim == TD_WALLTIME && !time_indulgent) {
586 double remaining = stop->worst.time - elapsed;
587 double pps = ((double)played) / elapsed;
588 double estplayouts = remaining * pps + PLAYOUT_DELTA_SAFEMARGIN;
589 if (best->u.playouts > best2->u.playouts + estplayouts) {
590 if (UDEBUGL(2))
591 fprintf(stderr, "Early stop, result cannot change: "
592 "best %d, best2 %d, estimated %f simulations to go\n",
593 best->u.playouts, best2->u.playouts, estplayouts);
594 return true;
598 return false;
601 /* Determine whether we should terminate the search later than expected. */
602 static bool
603 uct_search_keep_looking(struct uct *u, struct tree *t, struct board *b,
604 struct time_info *ti, struct time_stop *stop,
605 struct tree_node *best, struct tree_node *best2,
606 struct tree_node *bestr, struct tree_node *winner, int i)
608 if (!best) {
609 if (UDEBUGL(2))
610 fprintf(stderr, "Did not find best move, still trying...\n");
611 return true;
614 /* Do not waste time if we are winning. Spend up to worst time if
615 * we are unsure, but only desired time if we are sure of winning. */
616 float beta = 2 * (tree_node_get_value(t, 1, best->u.value) - 0.5);
617 if (ti->dim == TD_WALLTIME && beta > 0) {
618 double good_enough = stop->desired.time * beta + stop->worst.time * (1 - beta);
619 double elapsed = time_now() - ti->len.t.timer_start;
620 if (elapsed > good_enough) return false;
623 if (u->best2_ratio > 0) {
624 /* Check best/best2 simulations ratio. If the
625 * two best moves give very similar results,
626 * keep simulating. */
627 if (best2 && best2->u.playouts
628 && (double)best->u.playouts / best2->u.playouts < u->best2_ratio) {
629 if (UDEBUGL(2))
630 fprintf(stderr, "Best2 ratio %f < threshold %f\n",
631 (double)best->u.playouts / best2->u.playouts,
632 u->best2_ratio);
633 return true;
637 if (u->bestr_ratio > 0) {
638 /* Check best, best_best value difference. If the best move
639 * and its best child do not give similar enough results,
640 * keep simulating. */
641 if (bestr && bestr->u.playouts
642 && fabs((double)best->u.value - bestr->u.value) > u->bestr_ratio) {
643 if (UDEBUGL(2))
644 fprintf(stderr, "Bestr delta %f > threshold %f\n",
645 fabs((double)best->u.value - bestr->u.value),
646 u->bestr_ratio);
647 return true;
651 if (winner && winner != best) {
652 /* Keep simulating if best explored
653 * does not have also highest value. */
654 if (UDEBUGL(2))
655 fprintf(stderr, "[%d] best %3s [%d] %f != winner %3s [%d] %f\n", i,
656 coord2sstr(best->coord, t->board),
657 best->u.playouts, tree_node_get_value(t, 1, best->u.value),
658 coord2sstr(winner->coord, t->board),
659 winner->u.playouts, tree_node_get_value(t, 1, winner->u.value));
660 return true;
663 /* No reason to keep simulating, bye. */
664 return false;
667 static bool
668 uct_search_check_stop(struct uct *u, struct board *b, enum stone color,
669 struct tree *t, struct time_info *ti,
670 struct uct_search_state *s, int i)
672 struct spawn_ctx *ctx = s->ctx;
674 /* Never consider stopping if we played too few simulations.
675 * Maybe we risk losing on time when playing in super-extreme
676 * time pressure but the tree is going to be just too messed
677 * up otherwise - we might even play invalid suicides or pass
678 * when we mustn't. */
679 if (i < GJ_MINGAMES)
680 return false;
682 struct tree_node *best = NULL;
683 struct tree_node *best2 = NULL; // Second-best move.
684 struct tree_node *bestr = NULL; // best's best child.
685 struct tree_node *winner = NULL;
687 best = u->policy->choose(u->policy, ctx->t->root, b, color, resign);
688 if (best) best2 = u->policy->choose(u->policy, ctx->t->root, b, color, best->coord);
690 /* Possibly stop search early if it's no use to try on. */
691 int played = u->played_all + i - s->base_playouts;
692 if (best && uct_search_stop_early(u, ctx->t, b, ti, &s->stop, best, best2, played))
693 return true;
695 /* Check against time settings. */
696 bool desired_done;
697 if (ti->dim == TD_WALLTIME) {
698 double elapsed = time_now() - ti->len.t.timer_start;
699 if (elapsed > s->stop.worst.time) return true;
700 desired_done = elapsed > s->stop.desired.time;
702 } else { assert(ti->dim == TD_GAMES);
703 if (i > s->stop.worst.playouts) return true;
704 desired_done = i > s->stop.desired.playouts;
707 /* We want to stop simulating, but are willing to keep trying
708 * if we aren't completely sure about the winner yet. */
709 if (desired_done) {
710 if (u->policy->winner && u->policy->evaluate) {
711 struct uct_descent descent = { .node = ctx->t->root };
712 u->policy->winner(u->policy, ctx->t, &descent);
713 winner = descent.node;
715 if (best)
716 bestr = u->policy->choose(u->policy, best, b, stone_other(color), resign);
717 if (!uct_search_keep_looking(u, ctx->t, b, ti, &s->stop, best, best2, bestr, winner, i))
718 return true;
721 /* TODO: Early break if best->variance goes under threshold
722 * and we already have enough playouts (possibly thanks to book
723 * or to pondering)? */
724 return false;
727 /* Run time-limited MCTS search. For a slave in the distributed
728 * engine, the search is done in background and will be stopped at
729 * the next uct_notify_play(); keep_looking is advice for the master. */
731 uct_search(struct uct *u, struct board *b, struct time_info *ti, enum stone color,
732 struct tree *t, bool *keep_looking)
734 *keep_looking = false;
736 struct uct_search_state s;
737 if (!thread_manager_running) {
738 uct_search_start(u, b, color, t, ti, &s);
739 if (UDEBUGL(2) && s.base_playouts > 0)
740 fprintf(stderr, "<pre-simulated %d games>\n", s.base_playouts);
741 } else {
742 /* Keep the search running. */
743 assert(u->slave);
745 struct spawn_ctx *ctx = s.ctx;
747 /* The search tree is ctx->t. This is normally == t, but in case of
748 * TM_ROOT, it is one of the trees belonging to the independent
749 * workers. It is important to reference ctx->t directly since the
750 * thread manager will swap the tree pointer asynchronously. */
751 /* XXX: This means TM_ROOT support is suboptimal since single stalled
752 * thread can stall the others in case of limiting the search by game
753 * count. However, TM_ROOT just does not deserve any more extra code
754 * right now. */
756 /* Now, just periodically poll the search tree. */
757 while (1) {
758 time_sleep(TREE_BUSYWAIT_INTERVAL);
759 /* TREE_BUSYWAIT_INTERVAL should never be less than desired time, or the
760 * time control is broken. But if it happens to be less, we still search
761 * at least 100ms otherwise the move is completely random. */
763 int i = uct_search_games(&s);
764 /* Print notifications etc. */
765 uct_search_progress(u, b, color, t, ti, &s, i);
766 /* Check if we should stop the search. */
767 if (uct_search_check_stop(u, b, color, t, ti, &s, i))
768 break;
770 /* If running as slave in the distributed engine,
771 * let the search continue in background. */
772 if (u->slave) {
773 *keep_looking = true;
774 break;
778 int games;
779 if (!u->slave) {
780 ctx = uct_search_stop();
781 games = ctx->games;
782 if (UDEBUGL(2)) tree_dump(t, u->dumpthres);
783 } else {
784 /* We can only return an estimate here. */
785 games = uct_search_games(&s) - s.base_playouts;
787 if (UDEBUGL(2))
788 fprintf(stderr, "(avg score %f/%d value %f/%d)\n",
789 u->dynkomi->score.value, u->dynkomi->score.playouts,
790 u->dynkomi->value.value, u->dynkomi->value.playouts);
791 if (UDEBUGL(0))
792 uct_progress_status(u, t, color, games);
794 u->played_own += games;
795 return games;
799 /* Start pondering background with @color to play. */
800 static void
801 uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color)
803 if (UDEBUGL(1))
804 fprintf(stderr, "Starting to ponder with color %s\n", stone2str(stone_other(color)));
805 u->pondering = true;
807 /* We need a local board copy to ponder upon. */
808 struct board *b = malloc2(sizeof(*b)); board_copy(b, b0);
810 /* *b0 did not have the genmove'd move played yet. */
811 struct move m = { t->root->coord, t->root_color };
812 int res = board_play(b, &m);
813 assert(res >= 0);
814 setup_dynkomi(u, b, stone_other(m.color));
816 /* Start MCTS manager thread "headless". */
817 static struct uct_search_state s;
818 uct_search_start(u, b, color, t, NULL, &s);
821 /* uct_search_stop() frontend for the pondering (non-genmove) mode, and
822 * to stop the background search for a slave in the distributed engine. */
823 static void
824 uct_pondering_stop(struct uct *u)
826 if (!thread_manager_running)
827 return;
829 /* Stop the thread manager. */
830 struct spawn_ctx *ctx = uct_search_stop();
831 if (UDEBUGL(1)) {
832 if (u->pondering) fprintf(stderr, "(pondering) ");
833 uct_progress_status(u, ctx->t, ctx->color, ctx->games);
835 if (u->pondering) {
836 free(ctx->b);
837 u->pondering = false;
841 void
842 uct_search_setup(struct uct *u, struct board *b, enum stone color)
844 if (b->superko_violation) {
845 fprintf(stderr, "!!! WARNING: SUPERKO VIOLATION OCCURED BEFORE THIS MOVE\n");
846 fprintf(stderr, "Maybe you play with situational instead of positional superko?\n");
847 fprintf(stderr, "I'm going to ignore the violation, but note that I may miss\n");
848 fprintf(stderr, "some moves valid under this ruleset because of this.\n");
849 b->superko_violation = false;
852 uct_prepare_move(u, b, color);
854 assert(u->t);
855 u->my_color = color;
857 /* How to decide whether to use dynkomi in this game? Since we use
858 * pondering, it's not simple "who-to-play" matter. Decide based on
859 * the last genmove issued. */
860 u->t->use_extra_komi = !!(u->dynkomi_mask & color);
861 setup_dynkomi(u, b, color);
863 if (b->rules == RULES_JAPANESE)
864 u->territory_scoring = true;
866 /* Make pessimistic assumption about komi for Japanese rules to
867 * avoid losing by 0.5 when winning by 0.5 with Chinese rules.
868 * The rules usually give the same winner if the integer part of komi
869 * is odd so we adjust the komi only if it is even (for a board of
870 * odd size). We are not trying to get an exact evaluation for rare
871 * cases of seki. For details see http://home.snafu.de/jasiek/parity.html */
872 if (u->territory_scoring && (((int)floor(b->komi) + board_size(b)) & 1)) {
873 b->komi += (color == S_BLACK ? 1.0 : -1.0);
874 if (UDEBUGL(0))
875 fprintf(stderr, "Setting komi to %.1f assuming Japanese rules\n",
876 b->komi);
880 struct tree_node *
881 uct_search_best(struct uct *u, struct board *b, enum stone color,
882 bool pass_all_alive, int played_games, int base_playouts,
883 coord_t *best_coord)
885 /* Choose the best move from the tree. */
886 struct tree_node *best = u->policy->choose(u->policy, u->t->root, b, color, resign);
887 if (!best) {
888 *best_coord = pass;
889 return NULL;
891 *best_coord = best->coord;
892 if (UDEBUGL(1))
893 fprintf(stderr, "*** WINNER is %s (%d,%d) with score %1.4f (%d/%d:%d/%d games), extra komi %f\n",
894 coord2sstr(best->coord, b), coord_x(best->coord, b), coord_y(best->coord, b),
895 tree_node_get_value(u->t, 1, best->u.value), best->u.playouts,
896 u->t->root->u.playouts, u->t->root->u.playouts - base_playouts, played_games,
897 u->t->extra_komi);
899 /* Do not resign if we're so short of time that evaluation of best
900 * move is completely unreliable, we might be winning actually.
901 * In this case best is almost random but still better than resign.
902 * Also do not resign if we are getting bad results while actually
903 * giving away extra komi points (dynkomi). */
904 if (tree_node_get_value(u->t, 1, best->u.value) < u->resign_ratio
905 && !is_pass(best->coord) && best->u.playouts > GJ_MINGAMES
906 && u->t->extra_komi < 0.5 /* XXX we assume dynamic komi == we are black */) {
907 *best_coord = resign;
908 return NULL;
911 /* If the opponent just passed and we win counting, always
912 * pass as well. */
913 if (b->moves > 1 && is_pass(b->last_move.coord)) {
914 /* Make sure enough playouts are simulated. */
915 while (u->ownermap.playouts < GJ_MINGAMES)
916 uct_playout(u, b, color, u->t);
917 if (uct_pass_is_safe(u, b, color, u->pass_all_alive || pass_all_alive)) {
918 if (UDEBUGL(0))
919 fprintf(stderr, "<Will rather pass, looks safe enough; score %f>\n",
920 board_official_score(b, NULL) / 2);
921 *best_coord = pass;
922 return NULL;
926 return best;
929 static coord_t *
930 uct_genmove(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
932 double start_time = time_now();
933 struct uct *u = e->data;
934 uct_pondering_stop(u);
935 uct_search_setup(u, b, color);
937 /* Start the Monte Carlo Tree Search! */
938 bool keep_looking;
939 int base_playouts = u->t->root->u.playouts;
940 int played_games = uct_search(u, b, ti, color, u->t, &keep_looking);
942 coord_t best_coord;
943 struct tree_node *best;
944 best = uct_search_best(u, b, color, pass_all_alive, played_games, base_playouts, &best_coord);
946 if (UDEBUGL(2)) {
947 double time = time_now() - start_time + 0.000001; /* avoid divide by zero */
948 fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n",
949 time, (int)(played_games/time), (int)(played_games/time/u->threads));
952 if (!best) {
953 reset_state(u);
954 return coord_copy(best_coord);
956 tree_promote_node(u->t, &best);
958 /* After a pass, pondering is harmful for two reasons:
959 * (i) We might keep pondering even when the game is over.
960 * Of course this is the case for opponent resign as well.
961 * (ii) More importantly, the ownermap will get skewed since
962 * the UCT will start cutting off any playouts. */
963 if (u->pondering_opt && !is_pass(best->coord)) {
964 uct_pondering_start(u, b, u->t, stone_other(color));
966 return coord_copy(best_coord);
970 bool
971 uct_genbook(struct engine *e, struct board *b, struct time_info *ti, enum stone color)
973 struct uct *u = e->data;
974 if (!u->t) uct_prepare_move(u, b, color);
975 assert(u->t);
977 if (ti->dim == TD_GAMES) {
978 /* Don't count in games that already went into the book. */
979 ti->len.games += u->t->root->u.playouts;
981 bool keep_looking;
982 uct_search(u, b, ti, color, u->t, &keep_looking);
984 assert(ti->dim == TD_GAMES);
985 tree_save(u->t, b, ti->len.games / 100);
987 return true;
990 void
991 uct_dumpbook(struct engine *e, struct board *b, enum stone color)
993 struct uct *u = e->data;
994 struct tree *t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0, u->local_tree_aging);
995 tree_load(t, b);
996 tree_dump(t, 0);
997 tree_done(t);
1001 struct uct *
1002 uct_state_init(char *arg, struct board *b)
1004 struct uct *u = calloc2(1, sizeof(struct uct));
1005 bool using_elo = false;
1007 u->debug_level = debug_level;
1008 u->gamelen = MC_GAMELEN;
1009 u->mercymin = 0;
1010 u->expand_p = 2;
1011 u->dumpthres = 1000;
1012 u->playout_amaf = true;
1013 u->playout_amaf_nakade = false;
1014 u->amaf_prior = false;
1015 u->max_tree_size = 3072ULL * 1048576;
1017 u->dynkomi_mask = S_BLACK;
1019 u->threads = 1;
1020 u->thread_model = TM_TREEVL;
1021 u->parallel_tree = true;
1022 u->virtual_loss = true;
1024 u->fuseki_end = 20; // max time at 361*20% = 72 moves (our 36th move, still 99 to play)
1025 u->yose_start = 40; // (100-40-25)*361/100/2 = 63 moves still to play by us then
1026 u->bestr_ratio = 0.02;
1027 // 2.5 is clearly too much, but seems to compensate well for overly stern time allocations.
1028 // TODO: Further tuning and experiments with better time allocation schemes.
1029 u->best2_ratio = 2.5;
1031 u->val_scale = 0.04; u->val_points = 40;
1033 u->tenuki_d = 4;
1034 u->local_tree_aging = 2;
1036 if (arg) {
1037 char *optspec, *next = arg;
1038 while (*next) {
1039 optspec = next;
1040 next += strcspn(next, ",");
1041 if (*next) { *next++ = 0; } else { *next = 0; }
1043 char *optname = optspec;
1044 char *optval = strchr(optspec, '=');
1045 if (optval) *optval++ = 0;
1047 if (!strcasecmp(optname, "debug")) {
1048 if (optval)
1049 u->debug_level = atoi(optval);
1050 else
1051 u->debug_level++;
1052 } else if (!strcasecmp(optname, "mercy") && optval) {
1053 /* Minimal difference of black/white captures
1054 * to stop playout - "Mercy Rule". Speeds up
1055 * hopeless playouts at the expense of some
1056 * accuracy. */
1057 u->mercymin = atoi(optval);
1058 } else if (!strcasecmp(optname, "gamelen") && optval) {
1059 u->gamelen = atoi(optval);
1060 } else if (!strcasecmp(optname, "expand_p") && optval) {
1061 u->expand_p = atoi(optval);
1062 } else if (!strcasecmp(optname, "dumpthres") && optval) {
1063 u->dumpthres = atoi(optval);
1064 } else if (!strcasecmp(optname, "best2_ratio") && optval) {
1065 /* If set, prolong simulating while
1066 * first_best/second_best playouts ratio
1067 * is less than best2_ratio. */
1068 u->best2_ratio = atof(optval);
1069 } else if (!strcasecmp(optname, "bestr_ratio") && optval) {
1070 /* If set, prolong simulating while
1071 * best,best_best_child values delta
1072 * is more than bestr_ratio. */
1073 u->bestr_ratio = atof(optval);
1074 } else if (!strcasecmp(optname, "playout_amaf")) {
1075 /* Whether to include random playout moves in
1076 * AMAF as well. (Otherwise, only tree moves
1077 * are included in AMAF. Of course makes sense
1078 * only in connection with an AMAF policy.) */
1079 /* with-without: 55.5% (+-4.1) */
1080 if (optval && *optval == '0')
1081 u->playout_amaf = false;
1082 else
1083 u->playout_amaf = true;
1084 } else if (!strcasecmp(optname, "playout_amaf_nakade")) {
1085 /* Whether to include nakade moves from playouts
1086 * in the AMAF statistics; this tends to nullify
1087 * the playout_amaf effect by adding too much
1088 * noise. */
1089 if (optval && *optval == '0')
1090 u->playout_amaf_nakade = false;
1091 else
1092 u->playout_amaf_nakade = true;
1093 } else if (!strcasecmp(optname, "playout_amaf_cutoff") && optval) {
1094 /* Keep only first N% of playout stage AMAF
1095 * information. */
1096 u->playout_amaf_cutoff = atoi(optval);
1097 } else if ((!strcasecmp(optname, "policy") || !strcasecmp(optname, "random_policy")) && optval) {
1098 char *policyarg = strchr(optval, ':');
1099 struct uct_policy **p = !strcasecmp(optname, "policy") ? &u->policy : &u->random_policy;
1100 if (policyarg)
1101 *policyarg++ = 0;
1102 if (!strcasecmp(optval, "ucb1")) {
1103 *p = policy_ucb1_init(u, policyarg);
1104 } else if (!strcasecmp(optval, "ucb1amaf")) {
1105 *p = policy_ucb1amaf_init(u, policyarg);
1106 } else {
1107 fprintf(stderr, "UCT: Invalid tree policy %s\n", optval);
1108 exit(1);
1110 } else if (!strcasecmp(optname, "playout") && optval) {
1111 char *playoutarg = strchr(optval, ':');
1112 if (playoutarg)
1113 *playoutarg++ = 0;
1114 if (!strcasecmp(optval, "moggy")) {
1115 u->playout = playout_moggy_init(playoutarg, b);
1116 } else if (!strcasecmp(optval, "light")) {
1117 u->playout = playout_light_init(playoutarg, b);
1118 } else if (!strcasecmp(optval, "elo")) {
1119 u->playout = playout_elo_init(playoutarg, b);
1120 using_elo = true;
1121 } else {
1122 fprintf(stderr, "UCT: Invalid playout policy %s\n", optval);
1123 exit(1);
1125 } else if (!strcasecmp(optname, "prior") && optval) {
1126 u->prior = uct_prior_init(optval, b);
1127 } else if (!strcasecmp(optname, "amaf_prior") && optval) {
1128 u->amaf_prior = atoi(optval);
1129 } else if (!strcasecmp(optname, "threads") && optval) {
1130 /* By default, Pachi will run with only single
1131 * tree search thread! */
1132 u->threads = atoi(optval);
1133 } else if (!strcasecmp(optname, "thread_model") && optval) {
1134 if (!strcasecmp(optval, "root")) {
1135 /* Root parallelization - each thread
1136 * does independent search, trees are
1137 * merged at the end. */
1138 u->thread_model = TM_ROOT;
1139 u->parallel_tree = false;
1140 u->virtual_loss = false;
1141 } else if (!strcasecmp(optval, "tree")) {
1142 /* Tree parallelization - all threads
1143 * grind on the same tree. */
1144 u->thread_model = TM_TREE;
1145 u->parallel_tree = true;
1146 u->virtual_loss = false;
1147 } else if (!strcasecmp(optval, "treevl")) {
1148 /* Tree parallelization, but also
1149 * with virtual losses - this discou-
1150 * rages most threads choosing the
1151 * same tree branches to read. */
1152 u->thread_model = TM_TREEVL;
1153 u->parallel_tree = true;
1154 u->virtual_loss = true;
1155 } else {
1156 fprintf(stderr, "UCT: Invalid thread model %s\n", optval);
1157 exit(1);
1159 } else if (!strcasecmp(optname, "pondering")) {
1160 /* Keep searching even during opponent's turn. */
1161 u->pondering_opt = !optval || atoi(optval);
1162 } else if (!strcasecmp(optname, "fuseki_end") && optval) {
1163 /* At the very beginning it's not worth thinking
1164 * too long because the playout evaluations are
1165 * very noisy. So gradually increase the thinking
1166 * time up to maximum when fuseki_end percent
1167 * of the board has been played.
1168 * This only applies if we are not in byoyomi. */
1169 u->fuseki_end = atoi(optval);
1170 } else if (!strcasecmp(optname, "yose_start") && optval) {
1171 /* When yose_start percent of the board has been
1172 * played, or if we are in byoyomi, stop spending
1173 * more time and spread the remaining time
1174 * uniformly.
1175 * Between fuseki_end and yose_start, we spend
1176 * a constant proportion of the remaining time
1177 * on each move. (yose_start should actually
1178 * be much earlier than when real yose start,
1179 * but "yose" is a good short name to convey
1180 * the idea.) */
1181 u->yose_start = atoi(optval);
1182 } else if (!strcasecmp(optname, "force_seed") && optval) {
1183 u->force_seed = atoi(optval);
1184 } else if (!strcasecmp(optname, "no_book")) {
1185 u->no_book = true;
1186 } else if (!strcasecmp(optname, "dynkomi") && optval) {
1187 /* Dynamic komi approach; there are multiple
1188 * ways to adjust komi dynamically throughout
1189 * play. We currently support two: */
1190 char *dynkomiarg = strchr(optval, ':');
1191 if (dynkomiarg)
1192 *dynkomiarg++ = 0;
1193 if (!strcasecmp(optval, "none")) {
1194 u->dynkomi = uct_dynkomi_init_none(u, dynkomiarg, b);
1195 } else if (!strcasecmp(optval, "linear")) {
1196 u->dynkomi = uct_dynkomi_init_linear(u, dynkomiarg, b);
1197 } else if (!strcasecmp(optval, "adaptive")) {
1198 u->dynkomi = uct_dynkomi_init_adaptive(u, dynkomiarg, b);
1199 } else {
1200 fprintf(stderr, "UCT: Invalid dynkomi mode %s\n", optval);
1201 exit(1);
1203 } else if (!strcasecmp(optname, "dynkomi_mask") && optval) {
1204 /* Bitmask of colors the player must be
1205 * for dynkomi be applied; you may want
1206 * to use dynkomi_mask=3 to allow dynkomi
1207 * even in games where Pachi is white. */
1208 u->dynkomi_mask = atoi(optval);
1209 } else if (!strcasecmp(optname, "dynkomi_interval") && optval) {
1210 /* If non-zero, re-adjust dynamic komi
1211 * throughout a single genmove reading,
1212 * roughly every N simulations. */
1213 /* XXX: Does not work with tree
1214 * parallelization. */
1215 u->dynkomi_interval = atoi(optval);
1216 } else if (!strcasecmp(optname, "val_scale") && optval) {
1217 /* How much of the game result value should be
1218 * influenced by win size. Zero means it isn't. */
1219 u->val_scale = atof(optval);
1220 } else if (!strcasecmp(optname, "val_points") && optval) {
1221 /* Maximum size of win to be scaled into game
1222 * result value. Zero means boardsize^2. */
1223 u->val_points = atoi(optval) * 2; // result values are doubled
1224 } else if (!strcasecmp(optname, "val_extra")) {
1225 /* If false, the score coefficient will be simply
1226 * added to the value, instead of scaling the result
1227 * coefficient because of it. */
1228 u->val_extra = !optval || atoi(optval);
1229 } else if (!strcasecmp(optname, "local_tree") && optval) {
1230 /* Whether to bias exploration by local tree values
1231 * (must be supported by the used policy).
1232 * 0: Don't.
1233 * 1: Do, value = result.
1234 * Try to temper the result:
1235 * 2: Do, value = 0.5+(result-expected)/2.
1236 * 3: Do, value = 0.5+bzz((result-expected)^2).
1237 * 4: Do, value = 0.5+sqrt(result-expected)/2. */
1238 u->local_tree = atoi(optval);
1239 } else if (!strcasecmp(optname, "tenuki_d") && optval) {
1240 /* Tenuki distance at which to break the local tree. */
1241 u->tenuki_d = atoi(optval);
1242 if (u->tenuki_d > TREE_NODE_D_MAX + 1) {
1243 fprintf(stderr, "uct: tenuki_d must not be larger than TREE_NODE_D_MAX+1 %d\n", TREE_NODE_D_MAX + 1);
1244 exit(1);
1246 } else if (!strcasecmp(optname, "local_tree_aging") && optval) {
1247 /* How much to reduce local tree values between moves. */
1248 u->local_tree_aging = atof(optval);
1249 } else if (!strcasecmp(optname, "local_tree_allseq")) {
1250 /* By default, only complete sequences are stored
1251 * in the local tree. If this is on, also
1252 * subsequences starting at each move are stored. */
1253 u->local_tree_allseq = !optval || atoi(optval);
1254 } else if (!strcasecmp(optname, "local_tree_playout")) {
1255 /* Whether to adjust ELO playout probability
1256 * distributions according to matched localtree
1257 * information. */
1258 u->local_tree_playout = !optval || atoi(optval);
1259 } else if (!strcasecmp(optname, "local_tree_pseqroot")) {
1260 /* By default, when we have no sequence move
1261 * to suggest in-playout, we give up. If this
1262 * is on, we make probability distribution from
1263 * sequences first moves instead. */
1264 u->local_tree_pseqroot = !optval || atoi(optval);
1265 } else if (!strcasecmp(optname, "pass_all_alive")) {
1266 /* Whether to consider passing only after all
1267 * dead groups were removed from the board;
1268 * this is like all genmoves are in fact
1269 * kgs-genmove_cleanup. */
1270 u->pass_all_alive = !optval || atoi(optval);
1271 } else if (!strcasecmp(optname, "territory_scoring")) {
1272 /* Use territory scoring (default is area scoring).
1273 * An explicit kgs-rules command overrides this. */
1274 u->territory_scoring = !optval || atoi(optval);
1275 } else if (!strcasecmp(optname, "random_policy_chance") && optval) {
1276 /* If specified (N), with probability 1/N, random_policy policy
1277 * descend is used instead of main policy descend; useful
1278 * if specified policy (e.g. UCB1AMAF) can make unduly biased
1279 * choices sometimes, you can fall back to e.g.
1280 * random_policy=UCB1. */
1281 u->random_policy_chance = atoi(optval);
1282 } else if (!strcasecmp(optname, "max_tree_size") && optval) {
1283 /* Maximum amount of memory [MiB] consumed by the move tree.
1284 * For fast_alloc it includes the temp tree used for pruning.
1285 * Default is 3072 (3 GiB). Note that if you use TM_ROOT,
1286 * this limits size of only one of the trees, not all of them
1287 * together. */
1288 u->max_tree_size = atol(optval) * 1048576;
1289 } else if (!strcasecmp(optname, "fast_alloc")) {
1290 u->fast_alloc = !optval || atoi(optval);
1291 } else if (!strcasecmp(optname, "slave")) {
1292 /* Act as slave for the distributed engine. */
1293 u->slave = !optval || atoi(optval);
1294 } else if (!strcasecmp(optname, "banner") && optval) {
1295 /* Additional banner string. This must come as the
1296 * last engine parameter. */
1297 if (*next) *--next = ',';
1298 u->banner = strdup(optval);
1299 break;
1300 } else {
1301 fprintf(stderr, "uct: Invalid engine argument %s or missing value\n", optname);
1302 exit(1);
1307 u->resign_ratio = 0.2; /* Resign when most games are lost. */
1308 u->loss_threshold = 0.85; /* Stop reading if after at least 2000 playouts this is best value. */
1309 if (!u->policy)
1310 u->policy = policy_ucb1amaf_init(u, NULL);
1312 if (!!u->random_policy_chance ^ !!u->random_policy) {
1313 fprintf(stderr, "uct: Only one of random_policy and random_policy_chance is set\n");
1314 exit(1);
1317 if (!u->local_tree) {
1318 /* No ltree aging. */
1319 u->local_tree_aging = 1.0f;
1321 if (!using_elo)
1322 u->local_tree_playout = false;
1324 if (u->fast_alloc && !u->parallel_tree) {
1325 fprintf(stderr, "fast_alloc not supported with root parallelization.\n");
1326 exit(1);
1328 if (u->fast_alloc)
1329 u->max_tree_size = (100ULL * u->max_tree_size) / (100 + MIN_FREE_MEM_PERCENT);
1331 if (!u->prior)
1332 u->prior = uct_prior_init(NULL, b);
1334 if (!u->playout)
1335 u->playout = playout_moggy_init(NULL, b);
1336 u->playout->debug_level = u->debug_level;
1338 u->ownermap.map = malloc2(board_size2(b) * sizeof(u->ownermap.map[0]));
1339 u->stats = malloc2(board_size2(b) * sizeof(u->stats[0]));
1341 if (!u->dynkomi)
1342 u->dynkomi = uct_dynkomi_init_linear(u, NULL, b);
1344 /* Some things remain uninitialized for now - the opening book
1345 * is not loaded and the tree not set up. */
1346 /* This will be initialized in setup_state() at the first move
1347 * received/requested. This is because right now we are not aware
1348 * about any komi or handicap setup and such. */
1350 return u;
1353 struct engine *
1354 engine_uct_init(char *arg, struct board *b)
1356 struct uct *u = uct_state_init(arg, b);
1357 struct engine *e = calloc2(1, sizeof(struct engine));
1358 e->name = "UCT Engine";
1359 e->printhook = uct_printhook_ownermap;
1360 e->notify_play = uct_notify_play;
1361 e->chat = uct_chat;
1362 e->genmove = uct_genmove;
1363 e->genmoves = uct_genmoves;
1364 e->dead_group_list = uct_dead_group_list;
1365 e->done = uct_done;
1366 e->data = u;
1367 if (u->slave)
1368 e->notify = uct_notify;
1370 const char banner[] = "I'm playing UCT. When I'm losing, I will resign, "
1371 "if I think I win, I play until you pass. "
1372 "Anyone can send me 'winrate' in private chat to get my assessment of the position.";
1373 if (!u->banner) u->banner = "";
1374 e->comment = malloc2(sizeof(banner) + strlen(u->banner) + 1);
1375 sprintf(e->comment, "%s %s", banner, u->banner);
1377 return e;