Do not resign if we're so short of time that evaluation of best move
[pachi/derm.git] / uct / uct.c
blobec2e26f15c986c0ccede128b1b1f820f925a5320
1 #include <assert.h>
2 #include <pthread.h>
3 #include <signal.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <time.h>
9 #define DEBUG
11 #include "debug.h"
12 #include "board.h"
13 #include "gtp.h"
14 #include "move.h"
15 #include "mq.h"
16 #include "playout.h"
17 #include "playout/elo.h"
18 #include "playout/moggy.h"
19 #include "playout/light.h"
20 #include "random.h"
21 #include "timeinfo.h"
22 #include "tactics.h"
23 #include "uct/internal.h"
24 #include "uct/prior.h"
25 #include "uct/tree.h"
26 #include "uct/uct.h"
27 #include "uct/walk.h"
29 struct uct_policy *policy_ucb1_init(struct uct *u, char *arg);
30 struct uct_policy *policy_ucb1amaf_init(struct uct *u, char *arg);
31 static void uct_pondering_stop(struct uct *u);
34 /* Default number of simulations to perform per move.
35 * Note that this is now in total over all threads! (Unless TM_ROOT.) */
36 #define MC_GAMES 80000
37 #define MC_GAMELEN MAX_GAMELEN
39 /* How big proportion of ownermap counts must be of one color to consider
40 * the point sure. */
41 #define GJ_THRES 0.8
42 /* How many games to consider at minimum before judging groups. */
43 #define GJ_MINGAMES 500
45 /* How often to inspect the tree from the main thread to check for playout
46 * stop, progress reports, etc. (in seconds) */
47 #define TREE_BUSYWAIT_INTERVAL 0.1 /* 100ms */
49 /* For safety, use at most 3 times the desired time on a single move
50 * in main time, and 1.1 times in byoyomi. */
51 #define MAX_MAIN_TIME_EXTENSION 3.0
52 #define MAX_BYOYOMI_TIME_EXTENSION 1.1
54 /* Once per how many simulations (per thread) to show a progress report line. */
55 #define TREE_SIMPROGRESS_INTERVAL 10000
58 static void
59 setup_state(struct uct *u, struct board *b, enum stone color)
61 u->t = tree_init(b, color);
62 if (u->force_seed)
63 fast_srandom(u->force_seed);
64 if (UDEBUGL(0))
65 fprintf(stderr, "Fresh board with random seed %lu\n", fast_getseed());
66 //board_print(b, stderr);
67 if (!u->no_book && b->moves == 0) {
68 assert(color == S_BLACK);
69 tree_load(u->t, b);
73 static void
74 reset_state(struct uct *u)
76 assert(u->t);
77 tree_done(u->t); u->t = NULL;
80 static void
81 prepare_move(struct engine *e, struct board *b, enum stone color)
83 struct uct *u = e->data;
85 if (u->t) {
86 /* Verify that we have sane state. */
87 assert(b->es == u);
88 assert(u->t && b->moves);
89 if (color != stone_other(u->t->root_color)) {
90 fprintf(stderr, "Fatal: Non-alternating play detected %d %d\n",
91 color, u->t->root_color);
92 exit(1);
95 } else {
96 /* We need fresh state. */
97 b->es = u;
98 setup_state(u, b, color);
101 if (u->dynkomi && u->dynkomi > b->moves && (color & u->dynkomi_mask))
102 u->t->extra_komi = uct_get_extra_komi(u, b);
104 u->ownermap.playouts = 0;
105 memset(u->ownermap.map, 0, board_size2(b) * sizeof(u->ownermap.map[0]));
108 static void
109 dead_group_list(struct uct *u, struct board *b, struct move_queue *mq)
111 struct group_judgement gj;
112 gj.thres = GJ_THRES;
113 gj.gs = alloca(board_size2(b) * sizeof(gj.gs[0]));
114 board_ownermap_judge_group(b, &u->ownermap, &gj);
115 groups_of_status(b, &gj, GS_DEAD, mq);
118 bool
119 uct_pass_is_safe(struct uct *u, struct board *b, enum stone color, bool pass_all_alive)
121 if (u->ownermap.playouts < GJ_MINGAMES)
122 return false;
124 struct move_queue mq = { .moves = 0 };
125 if (!pass_all_alive)
126 dead_group_list(u, b, &mq);
127 return pass_is_safe(b, color, &mq);
131 static void
132 uct_printhook_ownermap(struct board *board, coord_t c, FILE *f)
134 struct uct *u = board->es;
135 assert(u);
136 const char chr[] = ":XO,"; // dame, black, white, unclear
137 const char chm[] = ":xo,";
138 char ch = chr[board_ownermap_judge_point(&u->ownermap, c, GJ_THRES)];
139 if (ch == ',') { // less precise estimate then?
140 ch = chm[board_ownermap_judge_point(&u->ownermap, c, 0.67)];
142 fprintf(f, "%c ", ch);
145 static char *
146 uct_notify_play(struct engine *e, struct board *b, struct move *m)
148 struct uct *u = e->data;
149 if (!u->t) {
150 /* No state, create one - this is probably game beginning
151 * and we need to load the opening book right now. */
152 prepare_move(e, b, m->color);
153 assert(u->t);
156 /* Stop pondering. */
157 /* XXX: If we are about to receive multiple 'play' commands,
158 * e.g. in a rengo, we will not ponder during the rest of them. */
159 uct_pondering_stop(u);
161 if (is_resign(m->coord)) {
162 /* Reset state. */
163 reset_state(u);
164 return NULL;
167 /* Promote node of the appropriate move to the tree root. */
168 assert(u->t->root);
169 if (!tree_promote_at(u->t, b, m->coord)) {
170 if (UDEBUGL(0))
171 fprintf(stderr, "Warning: Cannot promote move node! Several play commands in row?\n");
172 reset_state(u);
173 return NULL;
176 return NULL;
179 static char *
180 uct_chat(struct engine *e, struct board *b, char *cmd)
182 struct uct *u = e->data;
183 static char reply[1024];
185 cmd += strspn(cmd, " \n\t");
186 if (!strncasecmp(cmd, "winrate", 7)) {
187 if (!u->t)
188 return "no game context (yet?)";
189 enum stone color = u->t->root_color;
190 struct tree_node *n = u->t->root;
191 snprintf(reply, 1024, "In %d playouts at %d threads, %s %s can win with %.2f%% probability",
192 n->u.playouts, u->threads, stone2str(color), coord2sstr(n->coord, b),
193 tree_node_get_value(u->t, -1, n->u.value) * 100);
194 if (abs(u->t->extra_komi) >= 0.5) {
195 sprintf(reply + strlen(reply), ", while self-imposing extra komi %.1f",
196 u->t->extra_komi);
198 strcat(reply, ".");
199 return reply;
201 return NULL;
204 static void
205 uct_dead_group_list(struct engine *e, struct board *b, struct move_queue *mq)
207 struct uct *u = e->data;
209 /* This means the game is probably over, no use pondering on. */
210 uct_pondering_stop(u);
212 if (u->pass_all_alive)
213 return; // no dead groups
215 bool mock_state = false;
217 if (!u->t) {
218 /* No state, but we cannot just back out - we might
219 * have passed earlier, only assuming some stones are
220 * dead, and then re-connected, only to lose counting
221 * when all stones are assumed alive. */
222 /* Mock up some state and seed the ownermap by few
223 * simulations. */
224 prepare_move(e, b, S_BLACK); assert(u->t);
225 for (int i = 0; i < GJ_MINGAMES; i++)
226 uct_playout(u, b, S_BLACK, u->t);
227 mock_state = true;
230 dead_group_list(u, b, mq);
232 if (mock_state) {
233 /* Clean up the mock state in case we will receive
234 * a genmove; we could get a non-alternating-move
235 * error from prepare_move() in that case otherwise. */
236 reset_state(u);
240 static void
241 playout_policy_done(struct playout_policy *p)
243 if (p->done) p->done(p);
244 if (p->data) free(p->data);
245 free(p);
248 static void
249 uct_done(struct engine *e)
251 /* This is called on engine reset, especially when clear_board
252 * is received and new game should begin. */
253 struct uct *u = e->data;
254 uct_pondering_stop(u);
255 if (u->t) reset_state(u);
256 free(u->ownermap.map);
258 free(u->policy);
259 free(u->random_policy);
260 playout_policy_done(u->playout);
261 uct_prior_done(u->prior);
265 /* Pachi threading structure (if uct_playouts_parallel() is used):
267 * main thread
268 * | main(), GTP communication, ...
269 * | starts and stops the search managed by thread_manager
271 * thread_manager
272 * | spawns and collects worker threads
274 * worker0
275 * worker1
276 * ...
277 * workerK
278 * uct_playouts() loop, doing descend-playout until uct_halt
280 * Another way to look at it is by functions (lines denote thread boundaries):
282 * | uct_genmove()
283 * | uct_search() (uct_search_start() .. uct_search_stop())
284 * | -----------------------
285 * | spawn_thread_manager()
286 * | -----------------------
287 * | spawn_worker()
288 * V uct_playouts() */
290 /* Set in thread manager in case the workers should stop. */
291 volatile sig_atomic_t uct_halt = 0;
292 /* ID of the running worker thread. */
293 __thread int thread_id = -1;
294 /* ID of the thread manager. */
295 static pthread_t thread_manager;
296 static bool thread_manager_running;
298 static pthread_mutex_t finish_mutex = PTHREAD_MUTEX_INITIALIZER;
299 static pthread_cond_t finish_cond = PTHREAD_COND_INITIALIZER;
300 static volatile int finish_thread;
301 static pthread_mutex_t finish_serializer = PTHREAD_MUTEX_INITIALIZER;
303 struct spawn_ctx {
304 int tid;
305 struct uct *u;
306 struct board *b;
307 enum stone color;
308 struct tree *t;
309 unsigned long seed;
310 int games;
313 static void *
314 spawn_worker(void *ctx_)
316 struct spawn_ctx *ctx = ctx_;
317 /* Setup */
318 fast_srandom(ctx->seed);
319 thread_id = ctx->tid;
320 /* Run */
321 ctx->games = uct_playouts(ctx->u, ctx->b, ctx->color, ctx->t);
322 /* Finish */
323 pthread_mutex_lock(&finish_serializer);
324 pthread_mutex_lock(&finish_mutex);
325 finish_thread = ctx->tid;
326 pthread_cond_signal(&finish_cond);
327 pthread_mutex_unlock(&finish_mutex);
328 return ctx;
331 /* Thread manager, controlling worker threads. It must be called with
332 * finish_mutex lock held, but it will unlock it itself before exiting;
333 * this is necessary to be completely deadlock-free. */
334 /* The finish_cond can be signalled for it to stop; in that case,
335 * the caller should set finish_thread = -1. */
336 /* After it is started, it will update mctx->t to point at some tree
337 * used for the actual search (matters only for TM_ROOT), on return
338 * it will set mctx->games to the number of performed simulations. */
339 static void *
340 spawn_thread_manager(void *ctx_)
342 /* In thread_manager, we use only some of the ctx fields. */
343 struct spawn_ctx *mctx = ctx_;
344 struct uct *u = mctx->u;
345 struct tree *t = mctx->t;
346 bool shared_tree = u->parallel_tree;
347 fast_srandom(mctx->seed);
349 int played_games = 0;
350 pthread_t threads[u->threads];
351 int joined = 0;
353 uct_halt = 0;
355 /* Spawn threads... */
356 for (int ti = 0; ti < u->threads; ti++) {
357 struct spawn_ctx *ctx = malloc(sizeof(*ctx));
358 ctx->u = u; ctx->b = mctx->b; ctx->color = mctx->color;
359 mctx->t = ctx->t = shared_tree ? t : tree_copy(t);
360 ctx->tid = ti; ctx->seed = fast_random(65536) + ti;
361 pthread_create(&threads[ti], NULL, spawn_worker, ctx);
362 if (UDEBUGL(2))
363 fprintf(stderr, "Spawned worker %d\n", ti);
366 /* ...and collect them back: */
367 while (joined < u->threads) {
368 /* Wait for some thread to finish... */
369 pthread_cond_wait(&finish_cond, &finish_mutex);
370 if (finish_thread < 0) {
371 /* Stop-by-caller. Tell the workers to wrap up. */
372 uct_halt = 1;
373 continue;
375 /* ...and gather its remnants. */
376 struct spawn_ctx *ctx;
377 pthread_join(threads[finish_thread], (void **) &ctx);
378 played_games += ctx->games;
379 joined++;
380 if (!shared_tree) {
381 if (ctx->t == mctx->t) mctx->t = t;
382 tree_merge(t, ctx->t);
383 tree_done(ctx->t);
385 free(ctx);
386 if (UDEBUGL(2))
387 fprintf(stderr, "Joined worker %d\n", finish_thread);
388 pthread_mutex_unlock(&finish_serializer);
391 pthread_mutex_unlock(&finish_mutex);
393 if (!shared_tree)
394 tree_normalize(mctx->t, u->threads);
396 mctx->games = played_games;
397 return mctx;
400 static struct spawn_ctx *
401 uct_search_start(struct uct *u, struct board *b, enum stone color, struct tree *t)
403 assert(u->threads > 0);
404 assert(!thread_manager_running);
406 struct spawn_ctx ctx = { .u = u, .b = b, .color = color, .t = t, .seed = fast_random(65536) };
407 static struct spawn_ctx mctx; mctx = ctx;
408 pthread_mutex_lock(&finish_mutex);
409 pthread_create(&thread_manager, NULL, spawn_thread_manager, &mctx);
410 thread_manager_running = true;
411 return &mctx;
414 static struct spawn_ctx *
415 uct_search_stop(void)
417 assert(thread_manager_running);
419 /* Signal thread manager to stop the workers. */
420 pthread_mutex_lock(&finish_mutex);
421 finish_thread = -1;
422 pthread_cond_signal(&finish_cond);
423 pthread_mutex_unlock(&finish_mutex);
425 /* Collect the thread manager. */
426 struct spawn_ctx *pctx;
427 thread_manager_running = false;
428 pthread_join(thread_manager, (void **) &pctx);
429 return pctx;
433 /* Search stopping conditions */
434 union stop_conditions {
435 struct { // TD_WALLTIME
436 double desired_stop; /* stop at that time if possible */
437 double worst_stop; /* stop no later than this */
438 } t;
439 struct { // TD_GAMES
440 int desired_playouts;
441 int worst_playouts;
442 } p;
445 /* Pre-process time_info for search control and sets the desired stopping conditions. */
446 static void
447 time_prep(struct time_info *ti, struct uct *u, struct board *b, union stop_conditions *stop)
449 assert(ti->period != TT_TOTAL);
451 if (ti->period == TT_NULL) {
452 ti->period = TT_MOVE;
453 ti->dim = TD_GAMES;
454 ti->len.games = MC_GAMES;
456 if (ti->dim == TD_GAMES) {
457 stop->p.desired_playouts = ti->len.games;
458 stop->p.worst_playouts = ti->len.games * MAX_MAIN_TIME_EXTENSION;
459 } else {
460 double desired_time = ti->len.t.recommended_time;
461 double worst_time;
462 if (time_in_byoyomi(ti)) {
463 worst_time = desired_time * MAX_BYOYOMI_TIME_EXTENSION;
464 desired_time *= (2 - MAX_BYOYOMI_TIME_EXTENSION); // make average(desired, worst) == recommended
465 } else {
466 int bsize = (board_size(b)-2)*(board_size(b)-2);
467 int fuseki_end = u->fuseki_end * bsize / 100; // move nb at fuseki end
468 int yose_start = u->yose_start * bsize / 100; // move nb at yose start
470 int left_at_yose_start = (b->moves - yose_start) / 2 + board_estimated_moves_left(b);
471 /* /2 because we only consider the moves we have to play ourselves */
472 if (left_at_yose_start < MIN_MOVES_LEFT)
473 left_at_yose_start = MIN_MOVES_LEFT;
474 double longest_time = ti->len.t.max_time / left_at_yose_start;
475 if (longest_time < desired_time) {
476 // Should rarely happen, but keep desired_time anyway
477 } else if (b->moves < fuseki_end) {
478 desired_time += ((longest_time - desired_time) * b->moves) / fuseki_end;
479 /* In this branch fuseki_end can't be 0 */
480 } else if (b->moves < yose_start) {
481 desired_time = longest_time;
483 worst_time = desired_time * MAX_MAIN_TIME_EXTENSION;
485 if (worst_time > ti->len.t.max_time)
486 worst_time = ti->len.t.max_time;
487 if (desired_time > worst_time)
488 desired_time = worst_time;
490 stop->t.desired_stop = ti->len.t.timer_start + desired_time - ti->len.t.net_lag;
491 stop->t.worst_stop = ti->len.t.timer_start + worst_time - ti->len.t.net_lag;
492 // Both stop points may be in the past if too much lag.
494 if (UDEBUGL(2))
495 fprintf(stderr, "desired time %.02f, worst %.02f\n", desired_time, worst_time);
499 /* Run time-limited MCTS search on foreground. */
500 static int
501 uct_search(struct uct *u, struct board *b, struct time_info *ti, enum stone color, struct tree *t)
503 union stop_conditions stop;
504 time_prep(ti, u, b, &stop);
505 if (UDEBUGL(2) && u->t->root->u.playouts > 0)
506 fprintf(stderr, "<pre-simulated %d games skipped>\n", u->t->root->u.playouts);
508 /* Number of last game with progress print. */
509 int last_print = t->root->u.playouts;
510 /* Number of simulations to wait before next print. */
511 int print_interval = TREE_SIMPROGRESS_INTERVAL * (u->thread_model == TM_ROOT ? 1 : u->threads);
512 /* Printed notification about full memory? */
513 bool print_fullmem = false;
515 struct spawn_ctx *ctx = uct_search_start(u, b, color, t);
517 /* The search tree is ctx->t. This is normally == t, but in case of
518 * TM_ROOT, it is one of the trees belonging to the independent
519 * workers. It is important to reference ctx->t directly since the
520 * thread manager will swap the tree pointer asynchronously. */
521 /* XXX: This means TM_ROOT support is suboptimal since single stalled
522 * thread can stall the others in case of limiting the search by game
523 * count. However, TM_ROOT just does not deserve any more extra code
524 * right now. */
526 struct tree_node *best = NULL, *prev_best;
527 struct tree_node *winner = NULL, *prev_winner;
529 double busywait_interval = TREE_BUSYWAIT_INTERVAL;
531 /* Now, just periodically poll the search tree. */
532 while (1) {
533 time_sleep(busywait_interval);
534 /* busywait_interval should never be less than desired time, or the
535 * time control is broken. But if it happens to be less, we still search
536 * at least 100ms otherwise the move is completely random. */
538 int i = ctx->t->root->u.playouts;
540 /* Print progress? */
541 if (i - last_print > print_interval) {
542 last_print += print_interval; // keep the numbers tidy
543 uct_progress_status(u, ctx->t, color, last_print);
545 if (!print_fullmem && ctx->t->nodes_size > u->max_tree_size) {
546 if (UDEBUGL(2))
547 fprintf(stderr, "memory limit hit (%ld > %lu)\n", ctx->t->nodes_size, u->max_tree_size);
548 print_fullmem = true;
551 /* Check against time settings. */
552 bool desired_done = false;
553 if (ti->dim == TD_WALLTIME) {
554 double now = time_now();
555 if (now > stop.t.worst_stop) break;
556 desired_done = now > stop.t.desired_stop;
557 } else {
558 assert(ti->dim == TD_GAMES);
559 if (i > stop.p.worst_playouts) break;
560 desired_done = i > stop.p.desired_playouts;
563 /* Early break in won situation. */
564 prev_best = best;
565 best = u->policy->choose(u->policy, ctx->t->root, b, color);
566 if (best && ((best->u.playouts >= 2000 && tree_node_get_value(ctx->t, 1, best->u.value) >= u->loss_threshold)
567 || (best->u.playouts >= 500 && tree_node_get_value(ctx->t, 1, best->u.value) >= 0.95)))
568 break;
570 if (desired_done) {
571 if (!u->policy->winner || !u->policy->evaluate)
572 break;
573 /* Stop only if best explored has also highest value: */
574 prev_winner = winner;
575 winner = u->policy->winner(u->policy, ctx->t, ctx->t->root);
576 if (best && best == winner)
577 break;
578 if (UDEBUGL(3) && (best != prev_best || winner != prev_winner)) {
579 fprintf(stderr, "[%d] best", i);
580 if (best)
581 fprintf(stderr, " %3s [%d] %f", coord2sstr(best->coord, ctx->t->board),
582 best->u.playouts, tree_node_get_value(ctx->t, 1, best->u.value));
583 fprintf(stderr, " != winner");
584 if (winner)
585 fprintf(stderr, " %3s [%d] %f ", coord2sstr(winner->coord, ctx->t->board),
586 winner->u.playouts, tree_node_get_value(ctx->t, 1, winner->u.value));
587 fprintf(stderr, "\n");
591 /* TODO: Early break if best->variance goes under threshold and we already
592 * have enough playouts (possibly thanks to book or to pondering). */
593 /* TODO: Early break if second best has no chance to catch up. */
596 ctx = uct_search_stop();
598 if (UDEBUGL(2))
599 tree_dump(t, u->dumpthres);
600 if (UDEBUGL(0))
601 uct_progress_status(u, t, color, ctx->games);
603 return ctx->games;
607 /* Start pondering background with @color to play. */
608 static void
609 uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color)
611 if (UDEBUGL(1))
612 fprintf(stderr, "Starting to ponder with color %s\n", stone2str(stone_other(color)));
614 /* We need a local board copy to ponder upon. */
615 struct board *b = malloc(sizeof(*b)); board_copy(b, b0);
617 /* *b0 did not have the genmove'd move played yet. */
618 struct move m = { t->root->coord, t->root_color };
619 int res = board_play(b, &m);
620 assert(res >= 0);
622 /* Start MCTS manager thread "headless". */
623 uct_search_start(u, b, color, t);
626 /* uct_search_stop() frontend for the pondering (non-genmove) mode. */
627 static void
628 uct_pondering_stop(struct uct *u)
630 if (!thread_manager_running)
631 return;
633 /* Stop the thread manager. */
634 struct spawn_ctx *ctx = uct_search_stop();
635 if (UDEBUGL(1)) {
636 fprintf(stderr, "(pondering) ");
637 uct_progress_status(u, ctx->t, ctx->color, ctx->games);
639 free(ctx->b);
643 static coord_t *
644 uct_genmove(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
646 double start_time = time_now();
647 struct uct *u = e->data;
649 if (b->superko_violation) {
650 fprintf(stderr, "!!! WARNING: SUPERKO VIOLATION OCCURED BEFORE THIS MOVE\n");
651 fprintf(stderr, "Maybe you play with situational instead of positional superko?\n");
652 fprintf(stderr, "I'm going to ignore the violation, but note that I may miss\n");
653 fprintf(stderr, "some moves valid under this ruleset because of this.\n");
654 b->superko_violation = false;
657 /* Seed the tree. */
658 uct_pondering_stop(u);
659 prepare_move(e, b, color);
660 assert(u->t);
662 /* Perform the Monte Carlo Tree Search! */
663 int played_games = uct_search(u, b, ti, color, u->t);
665 /* Choose the best move from the tree. */
666 struct tree_node *best = u->policy->choose(u->policy, u->t->root, b, color);
667 if (!best) {
668 reset_state(u);
669 return coord_copy(pass);
671 if (UDEBUGL(1))
672 fprintf(stderr, "*** WINNER is %s (%d,%d) with score %1.4f (%d/%d:%d games)\n",
673 coord2sstr(best->coord, b), coord_x(best->coord, b), coord_y(best->coord, b),
674 tree_node_get_value(u->t, 1, best->u.value),
675 best->u.playouts, u->t->root->u.playouts, played_games);
677 /* Do not resign if we're so short of time that evaluation of best move is completely
678 * unreliable, we might be winning actually. In this case best is almost random but
679 * still better than resign. */
680 if (tree_node_get_value(u->t, 1, best->u.value) < u->resign_ratio && !is_pass(best->coord)
681 && best->u.playouts > GJ_MINGAMES) {
682 reset_state(u);
683 return coord_copy(resign);
686 /* If the opponent just passed and we win counting, always
687 * pass as well. */
688 if (b->moves > 1 && is_pass(b->last_move.coord)) {
689 /* Make sure enough playouts are simulated. */
690 while (u->ownermap.playouts < GJ_MINGAMES)
691 uct_playout(u, b, color, u->t);
692 if (uct_pass_is_safe(u, b, color, u->pass_all_alive || pass_all_alive)) {
693 if (UDEBUGL(0))
694 fprintf(stderr, "<Will rather pass, looks safe enough.>\n");
695 best->coord = pass;
699 tree_promote_node(u->t, best);
700 /* After a pass, pondering is harmful for two reasons:
701 * (i) We might keep pondering even when the game is over.
702 * Of course this is the case for opponent resign as well.
703 * (ii) More importantly, the ownermap will get skewed since
704 * the UCT will start cutting off any playouts. */
705 if (u->pondering && !is_pass(best->coord)) {
706 uct_pondering_start(u, b, u->t, stone_other(color));
708 if (UDEBUGL(2)) {
709 double time = time_now() - start_time + 0.000001; /* avoid divide by zero */
710 fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n",
711 time, (int)(played_games/time), (int)(played_games/time/u->threads));
713 return coord_copy(best->coord);
717 bool
718 uct_genbook(struct engine *e, struct board *b, struct time_info *ti, enum stone color)
720 struct uct *u = e->data;
721 if (!u->t) prepare_move(e, b, color);
722 assert(u->t);
724 if (ti->dim == TD_GAMES) {
725 /* Don't count in games that already went into the book. */
726 ti->len.games += u->t->root->u.playouts;
728 uct_search(u, b, ti, color, u->t);
730 assert(ti->dim == TD_GAMES);
731 tree_save(u->t, b, ti->len.games / 100);
733 return true;
736 void
737 uct_dumpbook(struct engine *e, struct board *b, enum stone color)
739 struct tree *t = tree_init(b, color);
740 tree_load(t, b);
741 tree_dump(t, 0);
742 tree_done(t);
746 struct uct *
747 uct_state_init(char *arg, struct board *b)
749 struct uct *u = calloc(1, sizeof(struct uct));
751 u->debug_level = 1;
752 u->gamelen = MC_GAMELEN;
753 u->mercymin = 0;
754 u->expand_p = 2;
755 u->dumpthres = 1000;
756 u->playout_amaf = true;
757 u->playout_amaf_nakade = false;
758 u->amaf_prior = false;
759 u->max_tree_size = 3072ULL * 1048576;
761 if (board_size(b) - 2 >= 19)
762 u->dynkomi = 200;
763 u->dynkomi_mask = S_BLACK;
765 u->threads = 1;
766 u->thread_model = TM_TREEVL;
767 u->parallel_tree = true;
768 u->virtual_loss = true;
769 u->fuseki_end = 20; // max time at 361*20% = 72 moves (our 36th move, still 99 to play)
770 u->yose_start = 40; // (100-40-25)*361/100/2 = 63 moves still to play by us then
772 u->val_scale = 0.02; u->val_points = 20;
774 if (arg) {
775 char *optspec, *next = arg;
776 while (*next) {
777 optspec = next;
778 next += strcspn(next, ",");
779 if (*next) { *next++ = 0; } else { *next = 0; }
781 char *optname = optspec;
782 char *optval = strchr(optspec, '=');
783 if (optval) *optval++ = 0;
785 if (!strcasecmp(optname, "debug")) {
786 if (optval)
787 u->debug_level = atoi(optval);
788 else
789 u->debug_level++;
790 } else if (!strcasecmp(optname, "mercy") && optval) {
791 /* Minimal difference of black/white captures
792 * to stop playout - "Mercy Rule". Speeds up
793 * hopeless playouts at the expense of some
794 * accuracy. */
795 u->mercymin = atoi(optval);
796 } else if (!strcasecmp(optname, "gamelen") && optval) {
797 u->gamelen = atoi(optval);
798 } else if (!strcasecmp(optname, "expand_p") && optval) {
799 u->expand_p = atoi(optval);
800 } else if (!strcasecmp(optname, "dumpthres") && optval) {
801 u->dumpthres = atoi(optval);
802 } else if (!strcasecmp(optname, "playout_amaf")) {
803 /* Whether to include random playout moves in
804 * AMAF as well. (Otherwise, only tree moves
805 * are included in AMAF. Of course makes sense
806 * only in connection with an AMAF policy.) */
807 /* with-without: 55.5% (+-4.1) */
808 if (optval && *optval == '0')
809 u->playout_amaf = false;
810 else
811 u->playout_amaf = true;
812 } else if (!strcasecmp(optname, "playout_amaf_nakade")) {
813 /* Whether to include nakade moves from playouts
814 * in the AMAF statistics; this tends to nullify
815 * the playout_amaf effect by adding too much
816 * noise. */
817 if (optval && *optval == '0')
818 u->playout_amaf_nakade = false;
819 else
820 u->playout_amaf_nakade = true;
821 } else if (!strcasecmp(optname, "playout_amaf_cutoff") && optval) {
822 /* Keep only first N% of playout stage AMAF
823 * information. */
824 u->playout_amaf_cutoff = atoi(optval);
825 } else if ((!strcasecmp(optname, "policy") || !strcasecmp(optname, "random_policy")) && optval) {
826 char *policyarg = strchr(optval, ':');
827 struct uct_policy **p = !strcasecmp(optname, "policy") ? &u->policy : &u->random_policy;
828 if (policyarg)
829 *policyarg++ = 0;
830 if (!strcasecmp(optval, "ucb1")) {
831 *p = policy_ucb1_init(u, policyarg);
832 } else if (!strcasecmp(optval, "ucb1amaf")) {
833 *p = policy_ucb1amaf_init(u, policyarg);
834 } else {
835 fprintf(stderr, "UCT: Invalid tree policy %s\n", optval);
836 exit(1);
838 } else if (!strcasecmp(optname, "playout") && optval) {
839 char *playoutarg = strchr(optval, ':');
840 if (playoutarg)
841 *playoutarg++ = 0;
842 if (!strcasecmp(optval, "moggy")) {
843 u->playout = playout_moggy_init(playoutarg);
844 } else if (!strcasecmp(optval, "light")) {
845 u->playout = playout_light_init(playoutarg);
846 } else if (!strcasecmp(optval, "elo")) {
847 u->playout = playout_elo_init(playoutarg);
848 } else {
849 fprintf(stderr, "UCT: Invalid playout policy %s\n", optval);
850 exit(1);
852 } else if (!strcasecmp(optname, "prior") && optval) {
853 u->prior = uct_prior_init(optval, b);
854 } else if (!strcasecmp(optname, "amaf_prior") && optval) {
855 u->amaf_prior = atoi(optval);
856 } else if (!strcasecmp(optname, "threads") && optval) {
857 /* By default, Pachi will run with only single
858 * tree search thread! */
859 u->threads = atoi(optval);
860 } else if (!strcasecmp(optname, "thread_model") && optval) {
861 if (!strcasecmp(optval, "root")) {
862 /* Root parallelization - each thread
863 * does independent search, trees are
864 * merged at the end. */
865 u->thread_model = TM_ROOT;
866 u->parallel_tree = false;
867 u->virtual_loss = false;
868 } else if (!strcasecmp(optval, "tree")) {
869 /* Tree parallelization - all threads
870 * grind on the same tree. */
871 u->thread_model = TM_TREE;
872 u->parallel_tree = true;
873 u->virtual_loss = false;
874 } else if (!strcasecmp(optval, "treevl")) {
875 /* Tree parallelization, but also
876 * with virtual losses - this discou-
877 * rages most threads choosing the
878 * same tree branches to read. */
879 u->thread_model = TM_TREEVL;
880 u->parallel_tree = true;
881 u->virtual_loss = true;
882 } else {
883 fprintf(stderr, "UCT: Invalid thread model %s\n", optval);
884 exit(1);
886 } else if (!strcasecmp(optname, "pondering")) {
887 /* Keep searching even during opponent's turn. */
888 u->pondering = !optval || atoi(optval);
889 } else if (!strcasecmp(optname, "fuseki_end") && optval) {
890 /* At the very beginning it's not worth thinking too long because the
891 * playout evaluations are very noisy. So gradually increase the thinking
892 * time up to maximum when fuseki_end percent of the board has been played.
893 * This only applies if we are not in byoyomi. */
894 u->fuseki_end = atoi(optval);
895 } else if (!strcasecmp(optname, "yose_start") && optval) {
896 /* When yose_start percent of the board has been played, or if we are in
897 * byoyomi, stop spending more time and spread the remaining time uniformly.
898 * Between fuseki_end and yose_start, we spend on each move a constant
899 * proportion of the remaining time. (yose_start should actually be much
900 * earlier than when real yose start, but "yose" is a good short name to
901 * convey the idea.) */
902 u->yose_start = atoi(optval);
903 } else if (!strcasecmp(optname, "force_seed") && optval) {
904 u->force_seed = atoi(optval);
905 } else if (!strcasecmp(optname, "no_book")) {
906 u->no_book = true;
907 } else if (!strcasecmp(optname, "dynkomi")) {
908 /* Dynamic komi in handicap game; linearly
909 * decreases to basic settings until move
910 * #optval. */
911 u->dynkomi = optval ? atoi(optval) : 150;
912 } else if (!strcasecmp(optname, "dynkomi_mask") && optval) {
913 /* Bitmask of colors the player must be
914 * for dynkomi be applied; you may want
915 * to use dynkomi_mask=3 to allow dynkomi
916 * even in games where Pachi is white. */
917 u->dynkomi_mask = atoi(optval);
918 } else if (!strcasecmp(optname, "val_scale") && optval) {
919 /* How much of the game result value should be
920 * influenced by win size. Zero means it isn't. */
921 u->val_scale = atof(optval);
922 } else if (!strcasecmp(optname, "val_points") && optval) {
923 /* Maximum size of win to be scaled into game
924 * result value. Zero means boardsize^2. */
925 u->val_points = atoi(optval) * 2; // result values are doubled
926 } else if (!strcasecmp(optname, "val_extra")) {
927 /* If false, the score coefficient will be simply
928 * added to the value, instead of scaling the result
929 * coefficient because of it. */
930 u->val_extra = !optval || atoi(optval);
931 } else if (!strcasecmp(optname, "root_heuristic") && optval) {
932 /* Whether to bias exploration by root node values
933 * (must be supported by the used policy).
934 * 0: Don't.
935 * 1: Do, value = result.
936 * Try to temper the result:
937 * 2: Do, value = 0.5+(result-expected)/2.
938 * 3: Do, value = 0.5+bzz((result-expected)^2). */
939 u->root_heuristic = atoi(optval);
940 } else if (!strcasecmp(optname, "pass_all_alive")) {
941 /* Whether to consider all stones alive at the game
942 * end instead of marking dead groupd. */
943 u->pass_all_alive = !optval || atoi(optval);
944 } else if (!strcasecmp(optname, "random_policy_chance") && optval) {
945 /* If specified (N), with probability 1/N, random_policy policy
946 * descend is used instead of main policy descend; useful
947 * if specified policy (e.g. UCB1AMAF) can make unduly biased
948 * choices sometimes, you can fall back to e.g.
949 * random_policy=UCB1. */
950 u->random_policy_chance = atoi(optval);
951 } else if (!strcasecmp(optname, "max_tree_size") && optval) {
952 /* Maximum amount of memory [MiB] consumed by the move tree.
953 * Default is 3072 (3 GiB). Note that if you use TM_ROOT,
954 * this limits size of only one of the trees, not all of them
955 * together. */
956 u->max_tree_size = atol(optval) * 1048576;
957 } else if (!strcasecmp(optname, "banner") && optval) {
958 /* Additional banner string. This must come as the
959 * last engine parameter. */
960 if (*next) *--next = ',';
961 u->banner = strdup(optval);
962 break;
963 } else {
964 fprintf(stderr, "uct: Invalid engine argument %s or missing value\n", optname);
965 exit(1);
970 u->resign_ratio = 0.2; /* Resign when most games are lost. */
971 u->loss_threshold = 0.85; /* Stop reading if after at least 5000 playouts this is best value. */
972 if (!u->policy)
973 u->policy = policy_ucb1amaf_init(u, NULL);
975 if (!!u->random_policy_chance ^ !!u->random_policy) {
976 fprintf(stderr, "uct: Only one of random_policy and random_policy_chance is set\n");
977 exit(1);
980 if (!u->prior)
981 u->prior = uct_prior_init(NULL, b);
983 if (!u->playout)
984 u->playout = playout_moggy_init(NULL);
985 u->playout->debug_level = u->debug_level;
987 u->ownermap.map = malloc(board_size2(b) * sizeof(u->ownermap.map[0]));
989 /* Some things remain uninitialized for now - the opening book
990 * is not loaded and the tree not set up. */
991 /* This will be initialized in setup_state() at the first move
992 * received/requested. This is because right now we are not aware
993 * about any komi or handicap setup and such. */
995 return u;
998 struct engine *
999 engine_uct_init(char *arg, struct board *b)
1001 struct uct *u = uct_state_init(arg, b);
1002 struct engine *e = calloc(1, sizeof(struct engine));
1003 e->name = "UCT Engine";
1004 e->printhook = uct_printhook_ownermap;
1005 e->notify_play = uct_notify_play;
1006 e->chat = uct_chat;
1007 e->genmove = uct_genmove;
1008 e->dead_group_list = uct_dead_group_list;
1009 e->done = uct_done;
1010 e->data = u;
1012 const char banner[] = "I'm playing UCT. When I'm losing, I will resign, "
1013 "if I think I win, I play until you pass. "
1014 "Anyone can send me 'winrate' in private chat to get my assessment of the position.";
1015 if (!u->banner) u->banner = "";
1016 e->comment = malloc(sizeof(banner) + strlen(u->banner) + 1);
1017 sprintf(e->comment, "%s %s", banner, u->banner);
1019 return e;