UCT dynkomi: Also track value in resettable movestats
[pachi/derm.git] / uct / tree.c
blobc0080964f449e33b0ec42935cb56b4d5e039fe61
1 #include <assert.h>
2 #include <math.h>
3 #include <stddef.h>
4 #include <stdint.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
9 #define DEBUG
10 #include "board.h"
11 #include "debug.h"
12 #include "engine.h"
13 #include "move.h"
14 #include "playout.h"
15 #include "tactics.h"
16 #include "timeinfo.h"
17 #include "uct/internal.h"
18 #include "uct/prior.h"
19 #include "uct/tree.h"
22 /* Allocate one node in the fast_alloc mode. The returned node
23 * is _not_ initialized. Returns NULL if not enough memory.
24 * This function may be called by multiple threads in parallel. */
25 static struct tree_node *
26 tree_fast_alloc_node(struct tree *t)
28 assert(t->nodes != NULL);
29 struct tree_node *n = NULL;
30 unsigned long old_size =__sync_fetch_and_add(&t->nodes_size, sizeof(*n));
32 /* The test below works even if max_tree_size is not a
33 * multiple of the node size because tree_init() allocates
34 * space for an extra node. */
35 if (old_size < t->max_tree_size)
36 n = (struct tree_node *)(t->nodes + old_size);
37 return n;
40 /* Allocate and initialize a node. Returns NULL (fast_alloc mode)
41 * or exits the main program if not enough memory.
42 * This function may be called by multiple threads in parallel. */
43 static struct tree_node *
44 tree_init_node(struct tree *t, coord_t coord, int depth, bool fast_alloc)
46 struct tree_node *n;
47 if (fast_alloc) {
48 n = tree_fast_alloc_node(t);
49 if (!n) return n;
50 memset(n, 0, sizeof(*n));
51 } else {
52 n = calloc(1, sizeof(*n));
53 if (!n) {
54 fprintf(stderr, "tree_init_node(): OUT OF MEMORY\n");
55 exit(1);
57 __sync_fetch_and_add(&t->nodes_size, sizeof(*n));
59 n->coord = coord;
60 n->depth = depth;
61 volatile static long c = 1000000;
62 n->hash = __sync_fetch_and_add(&c, 1);
63 if (depth > t->max_depth)
64 t->max_depth = depth;
65 return n;
68 /* Create a tree structure. Pre-allocate all nodes if max_tree_size is > 0. */
69 struct tree *
70 tree_init(struct board *board, enum stone color, unsigned long max_tree_size, float ltree_aging)
72 struct tree *t = calloc(1, sizeof(*t));
73 t->board = board;
74 t->max_tree_size = max_tree_size;
75 if (max_tree_size != 0) {
76 /* Allocate one extra node, max_tree_size may not be multiple of node size. */
77 t->nodes = malloc(max_tree_size + sizeof(struct tree_node));
78 /* The nodes buffer doesn't need initialization. This is currently
79 * done by tree_init_node to spread the load. Doing a memset for the
80 * entire buffer here would be too slow for large trees (>10 GB). */
81 if (!t->nodes) {
82 fprintf(stderr, "tree_init(): OUT OF MEMORY\n");
83 exit(1);
86 /* The root PASS move is only virtual, we never play it. */
87 t->root = tree_init_node(t, pass, 0, t->nodes);
88 t->root_symmetry = board->symmetry;
89 t->root_color = stone_other(color); // to research black moves, root will be white
91 t->ltree_black = tree_init_node(t, pass, 0, false);
92 t->ltree_white = tree_init_node(t, pass, 0, false);
93 t->ltree_aging = ltree_aging;
94 return t;
98 /* This function may be called by multiple threads in parallel on the
99 * same tree, but not on node n. n may be detached from the tree but
100 * must have been created in this tree originally.
101 * It returns the remaining size of the tree after n has been freed. */
102 static unsigned long
103 tree_done_node(struct tree *t, struct tree_node *n)
105 struct tree_node *ni = n->children;
106 while (ni) {
107 struct tree_node *nj = ni->sibling;
108 tree_done_node(t, ni);
109 ni = nj;
111 free(n);
112 unsigned long old_size = __sync_fetch_and_sub(&t->nodes_size, sizeof(*n));
113 return old_size - sizeof(*n);
116 struct subtree_ctx {
117 struct tree *t;
118 struct tree_node *n;
121 /* Worker thread for tree_done_node_detached(). Only for fast_alloc=false. */
122 static void *
123 tree_done_node_worker(void *ctx_)
125 struct subtree_ctx *ctx = ctx_;
126 char *str = coord2str(ctx->n->coord, ctx->t->board);
128 unsigned long tree_size = tree_done_node(ctx->t, ctx->n);
129 if (!tree_size)
130 free(ctx->t);
131 if (DEBUGL(2))
132 fprintf(stderr, "done freeing node at %s, tree size %lu\n", str, tree_size);
133 free(str);
134 free(ctx);
135 return NULL;
138 /* Asynchronously free the subtree of nodes rooted at n. If the tree becomes
139 * empty free the tree also. Only for fast_alloc=false. */
140 static void
141 tree_done_node_detached(struct tree *t, struct tree_node *n)
143 if (n->u.playouts < 1000) { // no thread for small tree
144 if (!tree_done_node(t, n))
145 free(t);
146 return;
148 pthread_attr_t attr;
149 pthread_attr_init(&attr);
150 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
152 pthread_t thread;
153 struct subtree_ctx *ctx = malloc(sizeof(struct subtree_ctx));
154 if (!ctx) {
155 fprintf(stderr, "tree_done_node_detached(): OUT OF MEMORY\n");
156 exit(1);
158 ctx->t = t;
159 ctx->n = n;
160 pthread_create(&thread, &attr, tree_done_node_worker, ctx);
161 pthread_attr_destroy(&attr);
164 void
165 tree_done(struct tree *t)
167 tree_done_node(t, t->ltree_black);
168 tree_done_node(t, t->ltree_white);
169 if (t->nodes) {
170 free(t->nodes);
171 free(t);
172 } else if (!tree_done_node(t, t->root)) {
173 free(t);
174 /* A tree_done_node_worker might still be running on this tree but
175 * it will free the tree later. It is also freeing nodes faster than
176 * we will create new ones. */
181 static void
182 tree_node_dump(struct tree *tree, struct tree_node *node, int l, int thres)
184 for (int i = 0; i < l; i++) fputc(' ', stderr);
185 int children = 0;
186 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
187 children++;
188 /* We use 1 as parity, since for all nodes we want to know the
189 * win probability of _us_, not the node color. */
190 fprintf(stderr, "[%s] %f %% %d [prior %f %% %d amaf %f %% %d]; hints %x; %d children <%"PRIhash">\n",
191 coord2sstr(node->coord, tree->board),
192 tree_node_get_value(tree, 1, node->u.value), node->u.playouts,
193 tree_node_get_value(tree, 1, node->prior.value), node->prior.playouts,
194 tree_node_get_value(tree, 1, node->amaf.value), node->amaf.playouts,
195 node->hints, children, node->hash);
197 /* Print nodes sorted by #playouts. */
199 struct tree_node *nbox[1000]; int nboxl = 0;
200 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
201 if (ni->u.playouts > thres)
202 nbox[nboxl++] = ni;
204 while (true) {
205 int best = -1;
206 for (int i = 0; i < nboxl; i++)
207 if (nbox[i] && (best < 0 || nbox[i]->u.playouts > nbox[best]->u.playouts))
208 best = i;
209 if (best < 0)
210 break;
211 tree_node_dump(tree, nbox[best], l + 1, /* node->u.value < 0.1 ? 0 : */ thres);
212 nbox[best] = NULL;
216 void
217 tree_dump(struct tree *tree, int thres)
219 if (thres && tree->root->u.playouts / thres > 100) {
220 /* Be a bit sensible about this; the opening book can create
221 * huge dumps at first. */
222 thres = tree->root->u.playouts / 100 * (thres < 1000 ? 1 : thres / 1000);
224 fprintf(stderr, "(UCT tree; root %s; extra komi %f; avg score %f/%d)\n",
225 stone2str(tree->root_color), tree->extra_komi,
226 tree->score.value, tree->score.playouts);
227 tree_node_dump(tree, tree->root, 0, thres);
229 if (DEBUGL(3) && tree->ltree_black) {
230 fprintf(stderr, "B local tree:\n");
231 tree_node_dump(tree, tree->ltree_black, 0, thres);
232 fprintf(stderr, "W local tree:\n");
233 tree_node_dump(tree, tree->ltree_white, 0, thres);
238 static char *
239 tree_book_name(struct board *b)
241 static char buf[256];
242 if (b->handicap > 0) {
243 sprintf(buf, "uctbook-%d-%02.01f-h%d.pachitree", b->size - 2, b->komi, b->handicap);
244 } else {
245 sprintf(buf, "uctbook-%d-%02.01f.pachitree", b->size - 2, b->komi);
247 return buf;
250 static void
251 tree_node_save(FILE *f, struct tree_node *node, int thres)
253 bool save_children = node->u.playouts >= thres;
255 if (!save_children)
256 node->is_expanded = 0;
258 fputc(1, f);
259 fwrite(((void *) node) + offsetof(struct tree_node, depth),
260 sizeof(struct tree_node) - offsetof(struct tree_node, depth),
261 1, f);
263 if (save_children) {
264 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
265 tree_node_save(f, ni, thres);
266 } else {
267 if (node->children)
268 node->is_expanded = 1;
271 fputc(0, f);
274 void
275 tree_save(struct tree *tree, struct board *b, int thres)
277 char *filename = tree_book_name(b);
278 FILE *f = fopen(filename, "wb");
279 if (!f) {
280 perror("fopen");
281 return;
283 tree_node_save(f, tree->root, thres);
284 fputc(0, f);
285 fclose(f);
289 void
290 tree_node_load(FILE *f, struct tree_node *node, int *num)
292 (*num)++;
294 fread(((void *) node) + offsetof(struct tree_node, depth),
295 sizeof(struct tree_node) - offsetof(struct tree_node, depth),
296 1, f);
298 /* Keep values in sane scale, otherwise we start overflowing. */
299 #define MAX_PLAYOUTS 10000000
300 if (node->u.playouts > MAX_PLAYOUTS) {
301 node->u.playouts = MAX_PLAYOUTS;
303 if (node->amaf.playouts > MAX_PLAYOUTS) {
304 node->amaf.playouts = MAX_PLAYOUTS;
306 memcpy(&node->pamaf, &node->amaf, sizeof(node->amaf));
307 memcpy(&node->pu, &node->u, sizeof(node->u));
309 struct tree_node *ni = NULL, *ni_prev = NULL;
310 while (fgetc(f)) {
311 ni_prev = ni; ni = calloc(1, sizeof(*ni));
312 if (!node->children)
313 node->children = ni;
314 else
315 ni_prev->sibling = ni;
316 ni->parent = node;
317 tree_node_load(f, ni, num);
321 void
322 tree_load(struct tree *tree, struct board *b)
324 char *filename = tree_book_name(b);
325 FILE *f = fopen(filename, "rb");
326 if (!f)
327 return;
329 fprintf(stderr, "Loading opening book %s...\n", filename);
331 int num = 0;
332 if (fgetc(f))
333 tree_node_load(f, tree->root, &num);
334 fprintf(stderr, "Loaded %d nodes.\n", num);
336 fclose(f);
340 static struct tree_node *
341 tree_node_copy(struct tree_node *node)
343 struct tree_node *n2 = malloc(sizeof(*n2));
344 *n2 = *node;
345 if (!node->children)
346 return n2;
347 struct tree_node *ni = node->children;
348 struct tree_node *ni2 = tree_node_copy(ni);
349 n2->children = ni2; ni2->parent = n2;
350 while ((ni = ni->sibling)) {
351 ni2->sibling = tree_node_copy(ni);
352 ni2 = ni2->sibling; ni2->parent = n2;
354 return n2;
357 struct tree *
358 tree_copy(struct tree *tree)
360 assert(!tree->nodes);
361 struct tree *t2 = malloc(sizeof(*t2));
362 *t2 = *tree;
363 t2->root = tree_node_copy(tree->root);
364 return t2;
367 /* Copy the subtree rooted at node: all nodes at or below depth
368 * or with at least threshold playouts. Only for fast_alloc.
369 * The code is destructive on src. The relative order of children of
370 * a given node is preserved (assumed by tree_get_node in particular).
371 * Returns the copy of node in the destination tree, or NULL
372 * if we could not copy it. */
373 static struct tree_node *
374 tree_prune(struct tree *dest, struct tree *src, struct tree_node *node,
375 int threshold, int depth)
377 assert(dest->nodes && node);
378 struct tree_node *n2 = tree_fast_alloc_node(dest);
379 if (!n2)
380 return NULL;
381 *n2 = *node;
382 if (n2->depth > dest->max_depth)
383 dest->max_depth = n2->depth;
384 n2->children = NULL;
385 n2->is_expanded = false;
387 if (node->depth >= depth && node->u.playouts < threshold)
388 return n2;
389 /* For deep nodes with many playouts, we must copy all children,
390 * even those with zero playouts, because partially expanded
391 * nodes are not supported. Considering them as fully expanded
392 * would degrade the playing strength. The only exception is
393 * when dest becomes full, but this should never happen in practice
394 * if threshold is chosen to limit the number of nodes traversed. */
395 struct tree_node *ni = node->children;
396 if (!ni)
397 return n2;
398 struct tree_node **prev2 = &(n2->children);
399 while (ni) {
400 struct tree_node *ni2 = tree_prune(dest, src, ni, threshold, depth);
401 if (!ni2) break;
402 *prev2 = ni2;
403 prev2 = &(ni2->sibling);
404 ni2->parent = n2;
405 ni = ni->sibling;
407 if (!ni) {
408 n2->is_expanded = true;
409 } else {
410 n2->children = NULL; // avoid partially expanded nodes
412 return n2;
415 /* The following constants are used for garbage collection of nodes.
416 * A tree is considered large if the top node has >= 40K playouts.
417 * For such trees, we copy deep nodes only if they have enough
418 * playouts, with a gradually increasing threshold up to 40.
419 * These constants define how much time we're willing to spend
420 * scanning the source tree when promoting a move. The chosen values
421 * make worst case pruning in about 3s for 20 GB ram, and this
422 * is only for long thinking time (>1M playouts). For fast games the
423 * trees don't grow large. For small ram or fast game we copy the
424 * entire tree. These values do not degrade playing strength and are
425 * necessary to avoid losing on time; increasing DEEP_PLAYOUTS_THRESHOLD
426 * or decreasing LARGE_TREE_PLAYOUTS will make the program faster but
427 * playing worse. */
428 #define LARGE_TREE_PLAYOUTS 40000LL
429 #define DEEP_PLAYOUTS_THRESHOLD 40
431 /* Garbage collect the tree early if the top node has < 5K playouts,
432 * to avoid having to do it later on a large subtree.
433 * This guarantees garbage collection in < 1s. */
434 #define SMALL_TREE_PLAYOUTS 5000
436 /* Free all the tree, keeping only the subtree rooted at node.
437 * Prune the subtree if necessary to fit in max_size bytes or
438 * to save time scanning the tree.
439 * Returns the moved node. Only for fast_alloc. */
440 struct tree_node *
441 tree_garbage_collect(struct tree *tree, unsigned long max_size, struct tree_node *node)
443 assert(tree->nodes && !node->parent && !node->sibling);
444 double start_time = time_now();
446 struct tree *temp_tree = tree_init(tree->board, tree->root_color, max_size, tree->ltree_aging);
447 temp_tree->nodes_size = 0; // We do not want the dummy pass node
448 struct tree_node *temp_node;
450 /* Find the maximum depth at which we can copy all nodes. */
451 int max_nodes = 1;
452 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
453 max_nodes++;
454 unsigned long nodes_size = max_nodes * sizeof(*node);
455 int max_depth = node->depth;
456 while (nodes_size < max_size && max_nodes > 1) {
457 max_nodes--;
458 nodes_size += max_nodes * nodes_size;
459 max_depth++;
462 /* Copy all nodes for small trees. For large trees, copy all nodes
463 * with depth <= max_depth, and all nodes with enough playouts.
464 * Avoiding going too deep (except for nodes with many playouts) is mostly
465 * to save time scanning the source tree. It can take over 20s to traverse
466 * completely a large source tree (20 GB) even without copying because
467 * the traversal is not friendly at all with the memory cache. */
468 int threshold = (node->u.playouts - LARGE_TREE_PLAYOUTS) * DEEP_PLAYOUTS_THRESHOLD / LARGE_TREE_PLAYOUTS;
469 if (threshold < 0) threshold = 0;
470 if (threshold > DEEP_PLAYOUTS_THRESHOLD) threshold = DEEP_PLAYOUTS_THRESHOLD;
471 temp_node = tree_prune(temp_tree, tree, node, threshold, max_depth);
472 assert(temp_node);
474 /* Now copy back to original tree. */
475 tree->nodes_size = 0;
476 tree->max_depth = 0;
477 struct tree_node *new_node = tree_prune(tree, temp_tree, temp_node, 0, temp_tree->max_depth);
479 if (DEBUGL(1)) {
480 double now = time_now();
481 static double prev_time;
482 if (!prev_time) prev_time = start_time;
483 fprintf(stderr,
484 "tree pruned in %0.6g s, prev %0.3g s ago, dest depth %d wanted %d,"
485 " max_size %lu, pruned size %lu, playouts %d\n",
486 now - start_time, start_time - prev_time, temp_tree->max_depth, max_depth,
487 max_size, temp_tree->nodes_size, new_node->u.playouts);
488 prev_time = start_time;
490 if (temp_tree->nodes_size >= temp_tree->max_tree_size) {
491 fprintf(stderr, "temp tree overflow, increase max_tree_size %lu or MIN_FREE_MEM_PERCENT %llu\n",
492 tree->max_tree_size, MIN_FREE_MEM_PERCENT);
493 } else {
494 assert(tree->nodes_size == temp_tree->nodes_size);
495 assert(tree->max_depth == temp_tree->max_depth);
497 tree_done(temp_tree);
498 return new_node;
502 static void
503 tree_node_merge(struct tree_node *dest, struct tree_node *src)
505 /* Do not merge nodes that weren't touched at all. */
506 assert(dest->pamaf.playouts == src->pamaf.playouts);
507 assert(dest->pu.playouts == src->pu.playouts);
508 if (src->amaf.playouts - src->pamaf.playouts == 0
509 && src->u.playouts - src->pu.playouts == 0) {
510 return;
513 dest->hints |= src->hints;
515 /* Merge the children, both are coord-sorted lists. */
516 struct tree_node *di = dest->children, **dref = &dest->children;
517 struct tree_node *si = src->children, **sref = &src->children;
518 while (di && si) {
519 if (di->coord != si->coord) {
520 /* src has some extra items or misses di */
521 struct tree_node *si2 = si->sibling;
522 while (si2 && di->coord != si2->coord) {
523 si2 = si2->sibling;
525 if (!si2)
526 goto next_di; /* src misses di, move on */
527 /* chain the extra [si,si2) items before di */
528 (*dref) = si;
529 while (si->sibling != si2) {
530 si->parent = dest;
531 si = si->sibling;
533 si->parent = dest;
534 si->sibling = di;
535 si = si2;
536 (*sref) = si;
538 /* Matching nodes - recurse... */
539 tree_node_merge(di, si);
540 /* ...and move on. */
541 sref = &si->sibling; si = si->sibling;
542 next_di:
543 dref = &di->sibling; di = di->sibling;
545 if (si) {
546 /* Some outstanding nodes are left on src side, rechain
547 * them to dst. */
548 (*dref) = si;
549 while (si) {
550 si->parent = dest;
551 si = si->sibling;
553 (*sref) = NULL;
556 /* Priors should be constant. */
557 assert(dest->prior.playouts == src->prior.playouts && dest->prior.value == src->prior.value);
559 stats_merge(&dest->amaf, &src->amaf);
560 stats_merge(&dest->u, &src->u);
563 /* Merge two trees built upon the same board. Note that the operation is
564 * destructive on src. */
565 void
566 tree_merge(struct tree *dest, struct tree *src)
568 if (src->max_depth > dest->max_depth)
569 dest->max_depth = src->max_depth;
570 tree_node_merge(dest->root, src->root);
574 static void
575 tree_node_normalize(struct tree_node *node, int factor)
577 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
578 tree_node_normalize(ni, factor);
580 #define normalize(s1, s2, t) node->s2.t = node->s1.t + (node->s2.t - node->s1.t) / factor;
581 normalize(pamaf, amaf, playouts);
582 memcpy(&node->pamaf, &node->amaf, sizeof(node->amaf));
584 normalize(pu, u, playouts);
585 memcpy(&node->pu, &node->u, sizeof(node->u));
586 #undef normalize
589 /* Normalize a tree, dividing the amaf and u values by given
590 * factor; otherwise, simulations run in independent threads
591 * two trees built upon the same board. To correctly handle
592 * results taken from previous simulation run, they are backed
593 * up in tree. */
594 void
595 tree_normalize(struct tree *tree, int factor)
597 tree_node_normalize(tree->root, factor);
601 /* Get a node of given coordinate from within parent, possibly creating it
602 * if necessary - in a very raw form (no .d, priors, ...). */
603 /* FIXME: Adjust for board symmetry. */
604 struct tree_node *
605 tree_get_node(struct tree *t, struct tree_node *parent, coord_t c, bool create)
607 if (!parent->children || parent->children->coord >= c) {
608 /* Special case: Insertion at the beginning. */
609 if (parent->children && parent->children->coord == c)
610 return parent->children;
611 if (!create)
612 return NULL;
614 struct tree_node *nn = tree_init_node(t, c, parent->depth + 1, false);
615 nn->parent = parent; nn->sibling = parent->children;
616 parent->children = nn;
617 return nn;
620 /* No candidate at the beginning, look through all the children. */
622 struct tree_node *ni;
623 for (ni = parent->children; ni->sibling; ni = ni->sibling)
624 if (ni->sibling->coord >= c)
625 break;
627 if (ni->sibling && ni->sibling->coord == c)
628 return ni->sibling;
629 assert(ni->coord < c);
630 if (!create)
631 return NULL;
633 struct tree_node *nn = tree_init_node(t, c, parent->depth + 1, false);
634 nn->parent = parent; nn->sibling = ni->sibling; ni->sibling = nn;
635 return nn;
638 /* Get local tree node corresponding to given node, given local node child
639 * iterator @lni (which points either at the corresponding node, or at the
640 * nearest local tree node after @ni). */
641 struct tree_node *
642 tree_lnode_for_node(struct tree *tree, struct tree_node *ni, struct tree_node *lni, int tenuki_d)
644 /* Now set up lnode, which is the actual local node
645 * corresponding to ni - either lni if it is an
646 * exact match and ni is not tenuki, <pass> local
647 * node if ni is tenuki, or NULL if there is no
648 * corresponding node available. */
650 if (is_pass(ni->coord)) {
651 /* Also, for sanity reasons we never use local
652 * tree for passes. (Maybe we could, but it's
653 * too hard to think about.) */
654 return NULL;
657 if (lni->coord == ni->coord) {
658 /* We don't consider tenuki a sequence play
659 * that we have in local tree even though
660 * ni->d is too high; this can happen if this
661 * occured in different board topology. */
662 return lni;
665 if (ni->d >= tenuki_d) {
666 /* Tenuki, pick a pass lsibling if available. */
667 assert(lni->parent && lni->parent->children);
668 if (is_pass(lni->parent->children->coord)) {
669 return lni->parent->children;
670 } else {
671 return NULL;
675 /* No corresponding local node, lnode stays NULL. */
676 return NULL;
680 /* Tree symmetry: When possible, we will localize the tree to a single part
681 * of the board in tree_expand_node() and possibly flip along symmetry axes
682 * to another part of the board in tree_promote_at(). We follow b->symmetry
683 * guidelines here. */
686 /* This function must be thread safe, given that board b is only modified by the calling thread. */
687 void
688 tree_expand_node(struct tree *t, struct tree_node *node, struct board *b, enum stone color, struct uct *u, int parity)
690 /* Get a Common Fate Graph distance map from parent node. */
691 int distances[board_size2(b)];
692 if (!is_pass(b->last_move.coord) && !is_resign(b->last_move.coord)) {
693 cfg_distances(b, node->coord, distances, TREE_NODE_D_MAX);
694 } else {
695 // Pass or resign - everything is too far.
696 foreach_point(b) { distances[c] = TREE_NODE_D_MAX + 1; } foreach_point_end;
699 /* Get a map of prior values to initialize the new nodes with. */
700 struct prior_map map = {
701 .b = b,
702 .to_play = color,
703 .parity = tree_parity(t, parity),
704 .distances = distances,
706 // Include pass in the prior map.
707 struct move_stats map_prior[board_size2(b) + 1]; map.prior = &map_prior[1];
708 bool map_consider[board_size2(b) + 1]; map.consider = &map_consider[1];
709 memset(map_prior, 0, sizeof(map_prior));
710 memset(map_consider, 0, sizeof(map_consider));
711 map.consider[pass] = true;
712 foreach_point(b) {
713 if (board_at(b, c) != S_NONE)
714 continue;
715 if (!board_is_valid_play(b, color, c))
716 continue;
717 map.consider[c] = true;
718 } foreach_point_end;
719 uct_prior(u, node, &map);
721 /* Now, create the nodes. */
722 struct tree_node *ni = tree_init_node(t, pass, node->depth + 1, t->nodes);
723 /* In fast_alloc mode we might temporarily run out of nodes but
724 * this should be rare if MIN_FREE_MEM_PERCENT is set correctly. */
725 if (!ni) {
726 node->is_expanded = false;
727 return;
729 struct tree_node *first_child = ni;
730 ni->parent = node;
731 ni->prior = map.prior[pass]; ni->d = TREE_NODE_D_MAX + 1;
733 /* The loop considers only the symmetry playground. */
734 if (UDEBUGL(6)) {
735 fprintf(stderr, "expanding %s within [%d,%d],[%d,%d] %d-%d\n",
736 coord2sstr(node->coord, b),
737 b->symmetry.x1, b->symmetry.y1,
738 b->symmetry.x2, b->symmetry.y2,
739 b->symmetry.type, b->symmetry.d);
741 for (int j = b->symmetry.y1; j <= b->symmetry.y2; j++) {
742 for (int i = b->symmetry.x1; i <= b->symmetry.x2; i++) {
743 if (b->symmetry.d) {
744 int x = b->symmetry.type == SYM_DIAG_DOWN ? board_size(b) - 1 - i : i;
745 if (x > j) {
746 if (UDEBUGL(7))
747 fprintf(stderr, "drop %d,%d\n", i, j);
748 continue;
752 coord_t c = coord_xy_otf(i, j, t->board);
753 if (!map.consider[c]) // Filter out invalid moves
754 continue;
755 assert(c != node->coord); // I have spotted "C3 C3" in some sequence...
757 struct tree_node *nj = tree_init_node(t, c, node->depth + 1, t->nodes);
758 if (!nj) {
759 node->is_expanded = false;
760 return;
762 nj->parent = node; ni->sibling = nj; ni = nj;
764 ni->prior = map.prior[c];
765 ni->d = distances[c];
768 node->children = first_child; // must be done at the end to avoid race
772 static coord_t
773 flip_coord(struct board *b, coord_t c,
774 bool flip_horiz, bool flip_vert, int flip_diag)
776 int x = coord_x(c, b), y = coord_y(c, b);
777 if (flip_diag) {
778 int z = x; x = y; y = z;
780 if (flip_horiz) {
781 x = board_size(b) - 1 - x;
783 if (flip_vert) {
784 y = board_size(b) - 1 - y;
786 return coord_xy_otf(x, y, b);
789 static void
790 tree_fix_node_symmetry(struct board *b, struct tree_node *node,
791 bool flip_horiz, bool flip_vert, int flip_diag)
793 if (!is_pass(node->coord))
794 node->coord = flip_coord(b, node->coord, flip_horiz, flip_vert, flip_diag);
796 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
797 tree_fix_node_symmetry(b, ni, flip_horiz, flip_vert, flip_diag);
800 static void
801 tree_fix_symmetry(struct tree *tree, struct board *b, coord_t c)
803 if (is_pass(c))
804 return;
806 struct board_symmetry *s = &tree->root_symmetry;
807 int cx = coord_x(c, b), cy = coord_y(c, b);
809 /* playground X->h->v->d normalization
810 * :::.. .d...
811 * .::.. v....
812 * ..:.. .....
813 * ..... h...X
814 * ..... ..... */
815 bool flip_horiz = cx < s->x1 || cx > s->x2;
816 bool flip_vert = cy < s->y1 || cy > s->y2;
818 bool flip_diag = 0;
819 if (s->d) {
820 bool dir = (s->type == SYM_DIAG_DOWN);
821 int x = dir ^ flip_horiz ^ flip_vert ? board_size(b) - 1 - cx : cx;
822 if (flip_vert ? x < cy : x > cy) {
823 flip_diag = 1;
827 if (DEBUGL(4)) {
828 fprintf(stderr, "%s [%d,%d -> %d,%d;%d,%d] will flip %d %d %d -> %s, sym %d (%d) -> %d (%d)\n",
829 coord2sstr(c, b),
830 cx, cy, s->x1, s->y1, s->x2, s->y2,
831 flip_horiz, flip_vert, flip_diag,
832 coord2sstr(flip_coord(b, c, flip_horiz, flip_vert, flip_diag), b),
833 s->type, s->d, b->symmetry.type, b->symmetry.d);
835 if (flip_horiz || flip_vert || flip_diag)
836 tree_fix_node_symmetry(b, tree->root, flip_horiz, flip_vert, flip_diag);
840 static void
841 tree_unlink_node(struct tree_node *node)
843 struct tree_node *ni = node->parent;
844 if (ni->children == node) {
845 ni->children = node->sibling;
846 } else {
847 ni = ni->children;
848 while (ni->sibling != node)
849 ni = ni->sibling;
850 ni->sibling = node->sibling;
852 node->sibling = NULL;
853 node->parent = NULL;
856 /* Reduce weight of statistics on promotion. Remove nodes that
857 * get reduced to zero playouts; returns next node to consider
858 * in the children list (@node may get deleted). */
859 static struct tree_node *
860 tree_age_node(struct tree *tree, struct tree_node *node)
862 node->u.playouts /= tree->ltree_aging;
863 if (node->parent && !node->u.playouts) {
864 struct tree_node *sibling = node->sibling;
865 /* Delete node, no playouts. */
866 tree_unlink_node(node);
867 tree_done_node(tree, node);
868 return sibling;
871 struct tree_node *ni = node->children;
872 while (ni) ni = tree_age_node(tree, ni);
873 return node->sibling;
876 /* Promotes the given node as the root of the tree. In the fast_alloc
877 * mode, the node may be moved and some of its subtree may be pruned. */
878 void
879 tree_promote_node(struct tree *tree, struct tree_node **node)
881 assert((*node)->parent == tree->root);
882 tree_unlink_node(*node);
883 if (!tree->nodes) {
884 /* Freeing the rest of the tree can take several seconds on large
885 * trees, so we must do it asynchronously: */
886 tree_done_node_detached(tree, tree->root);
887 } else {
888 /* Garbage collect if we run out of memory, or it is cheap to do so now: */
889 unsigned long min_free_size = (MIN_FREE_MEM_PERCENT * tree->max_tree_size) / 100;
890 if (tree->nodes_size >= tree->max_tree_size - min_free_size
891 || (tree->nodes_size >= min_free_size && (*node)->u.playouts < SMALL_TREE_PLAYOUTS))
892 *node = tree_garbage_collect(tree, min_free_size, *node);
894 tree->root = *node;
895 tree->root_color = stone_other(tree->root_color);
897 board_symmetry_update(tree->board, &tree->root_symmetry, (*node)->coord);
898 /* See tree.score description for explanation on why don't we zero
899 * score on node promotion. */
900 // tree->score.playouts = 0;
902 /* If the tree deepest node was under node, or if we called tree_garbage_collect,
903 * tree->max_depth is correct. Otherwise we could traverse the tree
904 * to recompute max_depth but it's not worth it: it's just for debugging
905 * and soon the tree will grow and max_depth will become correct again. */
907 if (tree->ltree_aging != 1.0f) { // XXX: != should work here even with the float
908 tree_age_node(tree, tree->ltree_black);
909 tree_age_node(tree, tree->ltree_white);
913 bool
914 tree_promote_at(struct tree *tree, struct board *b, coord_t c)
916 tree_fix_symmetry(tree, b, c);
918 for (struct tree_node *ni = tree->root->children; ni; ni = ni->sibling) {
919 if (ni->coord == c) {
920 tree_promote_node(tree, &ni);
921 return true;
924 return false;