14 /* Max net lag in seconds. TODO: estimate dynamically. */
15 #define MAX_NET_LAG 2.0
16 /* Minimal thinking time; in case reserved time gets smaller than MAX_NET_LAG,
17 * this makes sure we play minimally sensible moves even in massive time
18 * pressure; we still keep MAX_NET_LAG-MIN_THINK_WITH_LAG safety margin.
19 * Note that this affects only lag adjustmnet - if reserved time *before*
20 * lag adjustment gets too small, we still respect it and don't apply
21 * MIN_THINK_WITH_LAG. */
22 #define MIN_THINK_WITH_LAG (MAX_NET_LAG / 2)
23 /* Reserve 15% of byoyomi time as safety margin if risk of losing on time */
24 #define RESERVED_BYOYOMI_PERCENT 15
26 /* For safety, use at most 3 times the desired time on a single move
27 * in main time, and 1.1 times in byoyomi. */
28 #define MAX_MAIN_TIME_EXTENSION 3.0
29 #define MAX_BYOYOMI_TIME_EXTENSION 1.1
32 time_parse(struct time_info
*ti
, char *s
)
35 case '_': ti
->period
= TT_TOTAL
; s
++; break;
36 default: ti
->period
= TT_MOVE
; break;
41 ti
->len
.games
= atoi(++s
);
46 ti
->dim
= TD_WALLTIME
;
47 ti
->len
.t
.timer_start
= 0;
48 if (ti
->period
== TT_TOTAL
) {
49 ti
->len
.t
.main_time
= atof(s
);
50 ti
->len
.t
.byoyomi_time
= 0.0;
51 ti
->len
.t
.byoyomi_time_max
= 0.0;
52 ti
->len
.t
.byoyomi_periods
= 0;
53 ti
->len
.t
.byoyomi_stones
= 0;
54 ti
->len
.t
.byoyomi_stones_max
= 0;
55 } else { assert(ti
->period
== TT_MOVE
);
56 ti
->len
.t
.main_time
= 0.0;
57 ti
->len
.t
.byoyomi_time
= atof(s
);
58 ti
->len
.t
.byoyomi_time_max
= ti
->len
.t
.byoyomi_time
;
59 ti
->len
.t
.byoyomi_periods
= 1;
60 ti
->len
.t
.byoyomi_stones
= 1;
61 ti
->len
.t
.byoyomi_stones_max
= 1;
68 /* Update time settings according to gtp time_settings or kgs-time_settings command. */
70 time_settings(struct time_info
*ti
, int main_time
, int byoyomi_time
, int byoyomi_stones
, int byoyomi_periods
)
73 ti
->period
= TT_NULL
; // no time limit, rely on engine default
75 ti
->period
= main_time
> 0 ? TT_TOTAL
: TT_MOVE
;
76 ti
->dim
= TD_WALLTIME
;
77 ti
->len
.t
.timer_start
= 0;
78 ti
->len
.t
.main_time
= (double) main_time
;
79 ti
->len
.t
.byoyomi_time
= (double) byoyomi_time
;
80 ti
->len
.t
.byoyomi_periods
= byoyomi_periods
;
81 ti
->len
.t
.byoyomi_stones
= byoyomi_stones
;
82 ti
->len
.t
.canadian
= byoyomi_stones
> 0;
83 if (byoyomi_time
> 0) {
84 /* Normally, only one of byoyomi_periods and
85 * byoyomi_stones arguments will be > 0. However,
86 * our data structure uses generalized byoyomi
87 * specification that will assume "1 byoyomi period
88 * of N stones" for Canadian byoyomi and "N byoyomi
89 * periods of 1 stone" for Japanese byoyomi. */
90 if (ti
->len
.t
.byoyomi_periods
< 1)
91 ti
->len
.t
.byoyomi_periods
= 1;
92 if (ti
->len
.t
.byoyomi_stones
< 1)
93 ti
->len
.t
.byoyomi_stones
= 1;
95 assert(!ti
->len
.t
.byoyomi_periods
&& !ti
->len
.t
.byoyomi_stones
);
97 ti
->len
.t
.byoyomi_time_max
= ti
->len
.t
.byoyomi_time
;
98 ti
->len
.t
.byoyomi_stones_max
= ti
->len
.t
.byoyomi_stones
;
102 /* Update time information according to gtp time_left command.
103 * kgs doesn't give time_left for the first move, so make sure
104 * that just time_settings + time_stop_conditions still work. */
106 time_left(struct time_info
*ti
, int time_left
, int stones_left
)
108 assert(ti
->period
!= TT_NULL
);
109 ti
->dim
= TD_WALLTIME
;
111 if (!time_left
&& !stones_left
) {
112 /* Some GTP peers send time_left 0 0 at the end of main time. */
113 ti
->period
= TT_MOVE
;
114 ti
->len
.t
.main_time
= 0;
115 /* byoyomi_time kept fully charged. */
117 } else if (!stones_left
) {
119 ti
->period
= TT_TOTAL
;
120 ti
->len
.t
.main_time
= time_left
;
121 /* byoyomi_time kept fully charged. */
125 ti
->period
= TT_MOVE
;
126 ti
->len
.t
.main_time
= 0;
127 ti
->len
.t
.byoyomi_time
= time_left
;
128 if (ti
->len
.t
.canadian
) {
129 ti
->len
.t
.byoyomi_stones
= stones_left
;
131 // field misused by kgs
132 ti
->len
.t
.byoyomi_periods
= stones_left
;
137 /* Start our timer. kgs does this (correctly) on "play" not "genmove"
138 * unless we are making the first move of the game. */
140 time_start_timer(struct time_info
*ti
)
142 if (ti
->period
!= TT_NULL
&& ti
->dim
== TD_WALLTIME
)
143 ti
->len
.t
.timer_start
= time_now();
147 time_sub(struct time_info
*ti
, double interval
)
149 assert(ti
->dim
== TD_WALLTIME
&& ti
->period
!= TT_NULL
);
151 if (ti
->period
== TT_TOTAL
) {
152 ti
->len
.t
.main_time
-= interval
;
153 if (ti
->len
.t
.main_time
>= 0)
155 if (ti
->len
.t
.byoyomi_time
<= 0) {
156 /* No byoyomi to save us. */
157 fprintf(stderr
, "*** LOST ON TIME internally! (%0.2f, spent %0.2fs on last move)\n",
158 ti
->len
.t
.main_time
, interval
);
159 /* What can we do? Pretend this didn't happen. */
160 ti
->len
.t
.main_time
= 1.0f
;
163 /* Fall-through to byoyomi. */
164 ti
->period
= TT_MOVE
;
165 interval
= -ti
->len
.t
.main_time
;
166 ti
->len
.t
.main_time
= 0;
169 ti
->len
.t
.byoyomi_time
-= interval
;
170 if (ti
->len
.t
.byoyomi_time
< 0) {
172 if (--ti
->len
.t
.byoyomi_periods
< 1) {
173 fprintf(stderr
, "*** LOST ON TIME internally! (%0.2f, spent %0.2fs on last move)\n",
174 ti
->len
.t
.byoyomi_time
, interval
);
175 /* Well, what can we do? Pretend this didn't happen. */
176 ti
->len
.t
.byoyomi_periods
= 1;
178 ti
->len
.t
.byoyomi_time
= ti
->len
.t
.byoyomi_time_max
;
179 ti
->len
.t
.byoyomi_stones
= ti
->len
.t
.byoyomi_stones_max
;
182 if (--ti
->len
.t
.byoyomi_stones
< 1) {
183 /* Finished a period. */
184 ti
->len
.t
.byoyomi_time
= ti
->len
.t
.byoyomi_time_max
;
185 ti
->len
.t
.byoyomi_stones
= ti
->len
.t
.byoyomi_stones_max
;
189 /* Returns the current time. */
194 clock_gettime(CLOCK_REALTIME
, &now
);
195 return now
.tv_sec
+ now
.tv_nsec
/1000000000.0;
198 /* Sleep for a given interval (in seconds). Return immediately if interval < 0. */
200 time_sleep(double interval
)
204 ts
.tv_nsec
= (int)(modf(interval
, &sec
)*1000000000.0);
205 ts
.tv_sec
= (int)sec
;
206 nanosleep(&ts
, NULL
); /* ignore error if interval was < 0 */
210 /* Returns true if we are in byoyomi (or should play as if in byo yomi
211 * because remaining time per move in main time is less than byoyomi time
214 time_in_byoyomi(struct time_info
*ti
) {
215 assert(ti
->dim
== TD_WALLTIME
);
216 if (!ti
->len
.t
.byoyomi_time
)
217 return false; // there is no byoyomi!
218 assert(ti
->len
.t
.byoyomi_stones
> 0);
219 if (!ti
->len
.t
.main_time
)
220 return true; // we _are_ in byoyomi
221 if (ti
->len
.t
.main_time
<= ti
->len
.t
.byoyomi_time
/ ti
->len
.t
.byoyomi_stones
+ 0.001)
222 return true; // our basic time left is less than byoyomi time per move
226 /* Set worst.time to all available remaining time (main time plus usable
227 * byoyomi), to be spread over returned number of moves (expected game
228 * length minus moves to be played in final byoyomi - if we would not be
229 * able to spend more time on them in main time anyway). */
231 time_stop_set_remaining(struct time_info
*ti
, struct board
*b
, double net_lag
, struct time_stop
*stop
)
233 int moves_left
= board_estimated_moves_left(b
);
234 stop
->worst
.time
= ti
->len
.t
.main_time
;
236 if (!ti
->len
.t
.byoyomi_time
)
239 /* Time for one move in byoyomi. */
240 assert(ti
->len
.t
.byoyomi_stones
> 0);
241 double move_time
= ti
->len
.t
.byoyomi_time
/ ti
->len
.t
.byoyomi_stones
;
243 /* (i) Plan to extend our thinking time to make use of byoyom. */
245 /* For Japanese byoyomi with N>1 periods, we use N-1 periods
246 * as main time, keeping the last one as insurance against
247 * unexpected net lag. */
248 if (ti
->len
.t
.byoyomi_periods
> 2) {
249 stop
->worst
.time
+= (ti
->len
.t
.byoyomi_periods
- 2) * move_time
;
250 // Will add 1 more byoyomi_time just below
253 /* In case of Canadian byoyomi, include time that can be spent
254 * on its first move. */
255 stop
->worst
.time
+= move_time
;
257 /* (ii) Do not play faster in main time than we would in byoyomi. */
259 /* Maximize the number of moves played uniformly in main time,
260 * while not playing faster in main time than in byoyomi.
261 * At this point, the main time remaining is stop->worst.time and
262 * already includes the first (canadian) or N-1 byoyomi periods. */
263 double real_move_time
= move_time
- net_lag
;
264 if (real_move_time
> 0) {
265 int main_moves
= stop
->worst
.time
/ real_move_time
;
266 if (moves_left
> main_moves
) {
267 /* We plan to do too many moves in main time,
268 * do the rest in byoyomi. */
269 moves_left
= main_moves
;
271 if (moves_left
<= 0) // possible if too much lag
278 /* Adjust the recommended per-move time based on the current game phase.
279 * We expect stop->worst to be total time available, stop->desired the current
280 * per-move time allocation, and set stop->desired to adjusted per-move time. */
282 time_stop_phase_adjust(struct board
*b
, int fuseki_end
, int yose_start
, struct time_stop
*stop
)
284 int bsize
= (board_size(b
)-2)*(board_size(b
)-2);
285 fuseki_end
= fuseki_end
* bsize
/ 100; // move nb at fuseki end
286 yose_start
= yose_start
* bsize
/ 100; // move nb at yose start
287 assert(fuseki_end
< yose_start
);
289 /* No adjustments in yose. */
290 if (b
->moves
>= yose_start
)
292 int moves_to_yose
= (yose_start
- b
->moves
) / 2;
293 // ^- /2 because we only consider the moves we have to play ourselves
294 int left_at_yose_start
= board_estimated_moves_left(b
) - moves_to_yose
;
295 if (left_at_yose_start
< MIN_MOVES_LEFT
)
296 left_at_yose_start
= MIN_MOVES_LEFT
;
298 /* This particular value of middlegame_time will continuously converge
299 * to effective "yose_time" value as we approach yose_start. */
300 double middlegame_time
= stop
->worst
.time
/ left_at_yose_start
;
301 if (middlegame_time
< stop
->desired
.time
)
304 if (b
->moves
< fuseki_end
) {
305 assert(fuseki_end
> 0);
306 /* At the game start, use stop->desired.time (rather
307 * conservative estimate), then gradually prolong it. */
308 double beta
= b
->moves
/ fuseki_end
;
309 stop
->desired
.time
= middlegame_time
* beta
+ stop
->desired
.time
* (1 - beta
);
311 } else { assert(b
->moves
< yose_start
);
312 /* Middlegame, start with relatively large value, then
313 * converge to the uniform-timeslice yose value. */
314 stop
->desired
.time
= middlegame_time
;
319 lag_adjust(double *time
, double net_lag
)
321 double nolag_time
= *time
;
323 if (*time
< MIN_THINK_WITH_LAG
&& nolag_time
> MIN_THINK_WITH_LAG
)
324 *time
= MIN_THINK_WITH_LAG
;
327 /* Pre-process time_info for search control and sets the desired stopping conditions. */
329 time_stop_conditions(struct time_info
*ti
, struct board
*b
, int fuseki_end
, int yose_start
, struct time_stop
*stop
)
331 /* We must have _some_ limits by now, be it random default values! */
332 assert(ti
->period
!= TT_NULL
);
334 /* Special-case limit by number of simulations. */
335 if (ti
->dim
== TD_GAMES
) {
336 if (ti
->period
== TT_TOTAL
) {
337 ti
->period
= TT_MOVE
;
338 ti
->len
.games
/= board_estimated_moves_left(b
);
341 stop
->desired
.playouts
= ti
->len
.games
;
342 /* We force worst == desired, so note that we will NOT loop
343 * until best == winner. */
344 stop
->worst
.playouts
= ti
->len
.games
;
348 assert(ti
->dim
== TD_WALLTIME
);
351 /* Minimum net lag (seconds) to be reserved in the time for move. */
352 double net_lag
= MAX_NET_LAG
;
353 if (!ti
->len
.t
.timer_start
) {
354 ti
->len
.t
.timer_start
= time_now(); // we're playing the first game move
356 net_lag
+= time_now() - ti
->len
.t
.timer_start
;
357 // TODO: keep statistics to get good estimate of lag not just current move
361 if (ti
->period
== TT_TOTAL
&& time_in_byoyomi(ti
)) {
362 /* Technically, we are still in main time, but we can
363 * effectively switch to byoyomi scheduling since we
364 * have less time available than one byoyomi move takes. */
365 ti
->period
= TT_MOVE
;
369 if (ti
->period
== TT_MOVE
) {
370 /* We are in byoyomi, or almost! */
372 /* The period can still include some tiny remnant of main
373 * time if we are just switching to byoyomi. */
374 double period_len
= ti
->len
.t
.byoyomi_time
+ ti
->len
.t
.main_time
;
376 stop
->worst
.time
= period_len
;
377 assert(ti
->len
.t
.byoyomi_stones
> 0);
378 stop
->desired
.time
= period_len
/ ti
->len
.t
.byoyomi_stones
;
380 /* Use a larger safety margin if we risk losing on time on
381 * this move; it makes no sense to have 30s byoyomi and wait
382 * until 28s to play our move). */
383 if (stop
->desired
.time
>= period_len
- net_lag
) {
384 double safe_margin
= RESERVED_BYOYOMI_PERCENT
* stop
->desired
.time
/ 100;
385 if (safe_margin
> net_lag
)
386 net_lag
= safe_margin
;
389 /* Make recommended_old == average(recommended_new, max) */
390 double worst_time
= stop
->desired
.time
* MAX_BYOYOMI_TIME_EXTENSION
;
391 if (worst_time
< stop
->worst
.time
)
392 stop
->worst
.time
= worst_time
;
393 stop
->desired
.time
*= (2 - MAX_BYOYOMI_TIME_EXTENSION
);
395 } else { assert(ti
->period
== TT_TOTAL
);
396 /* We are in main time. */
398 assert(ti
->len
.t
.main_time
> 0);
399 /* Set worst.time to all available remaining time, to be spread
400 * over returned number of moves. */
401 int moves_left
= time_stop_set_remaining(ti
, b
, net_lag
, stop
);
403 /* Allocate even slice of the remaining time for next move. */
404 stop
->desired
.time
= stop
->worst
.time
/ moves_left
;
405 assert(stop
->desired
.time
> 0 && stop
->worst
.time
> 0);
406 assert(stop
->desired
.time
<= stop
->worst
.time
+ 0.001);
408 /* Furthermore, tweak the slice based on the game phase. */
409 time_stop_phase_adjust(b
, fuseki_end
, yose_start
, stop
);
411 /* Put final upper bound on maximal time spent on the move. */
412 double worst_time
= stop
->desired
.time
* MAX_MAIN_TIME_EXTENSION
;
413 if (worst_time
< stop
->worst
.time
)
414 stop
->worst
.time
= worst_time
;
415 if (stop
->desired
.time
> stop
->worst
.time
)
416 stop
->desired
.time
= stop
->worst
.time
;
420 fprintf(stderr
, "desired %0.2f, worst %0.2f, clock [%d] %0.2f + %0.2f/%d*%d, lag %0.2f\n",
421 stop
->desired
.time
, stop
->worst
.time
,
422 ti
->dim
, ti
->len
.t
.main_time
,
423 ti
->len
.t
.byoyomi_time
, ti
->len
.t
.byoyomi_stones
,
424 ti
->len
.t
.byoyomi_periods
, net_lag
);
426 /* Account for lag. */
427 lag_adjust(&stop
->desired
.time
, net_lag
);
428 lag_adjust(&stop
->worst
.time
, net_lag
);