kgs-genmove_cleanup, UCT pass_all_alive: Fix up semantics
[pachi/ann.git] / uct / uct.c
blob589b66eedd6f3fda74dabde0af1f0b6603e94b61
1 #include <assert.h>
2 #include <math.h>
3 #include <pthread.h>
4 #include <signal.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <time.h>
10 #define DEBUG
12 #include "debug.h"
13 #include "board.h"
14 #include "gtp.h"
15 #include "move.h"
16 #include "mq.h"
17 #include "playout.h"
18 #include "playout/elo.h"
19 #include "playout/moggy.h"
20 #include "playout/light.h"
21 #include "random.h"
22 #include "tactics.h"
23 #include "timeinfo.h"
24 #include "distributed/distributed.h"
25 #include "uct/dynkomi.h"
26 #include "uct/internal.h"
27 #include "uct/prior.h"
28 #include "uct/tree.h"
29 #include "uct/uct.h"
30 #include "uct/walk.h"
32 struct uct_policy *policy_ucb1_init(struct uct *u, char *arg);
33 struct uct_policy *policy_ucb1amaf_init(struct uct *u, char *arg);
34 static void uct_pondering_stop(struct uct *u);
35 static void uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color);
36 static char *uct_getstats(struct uct *u, struct board *b, coord_t *c);
38 /* Default number of simulations to perform per move.
39 * Note that this is now in total over all threads! (Unless TM_ROOT.) */
40 #define MC_GAMES 80000
41 #define MC_GAMELEN MAX_GAMELEN
42 static const struct time_info default_ti = {
43 .period = TT_MOVE,
44 .dim = TD_GAMES,
45 .len = { .games = MC_GAMES },
48 /* How big proportion of ownermap counts must be of one color to consider
49 * the point sure. */
50 #define GJ_THRES 0.8
51 /* How many games to consider at minimum before judging groups. */
52 #define GJ_MINGAMES 500
54 /* How often to inspect the tree from the main thread to check for playout
55 * stop, progress reports, etc. (in seconds) */
56 #define TREE_BUSYWAIT_INTERVAL 0.1 /* 100ms */
58 /* Once per how many simulations (per thread) to show a progress report line. */
59 #define TREE_SIMPROGRESS_INTERVAL 10000
61 /* How often to send stats updates for the distributed engine (in seconds). */
62 #define STATS_SEND_INTERVAL 0.5
64 /* When terminating uct_search() early, the safety margin to add to the
65 * remaining playout number estimate when deciding whether the result can
66 * still change. */
67 #define PLAYOUT_DELTA_SAFEMARGIN 1000
70 static void
71 setup_state(struct uct *u, struct board *b, enum stone color)
73 u->t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0, u->local_tree_aging);
74 if (u->force_seed)
75 fast_srandom(u->force_seed);
76 if (UDEBUGL(0))
77 fprintf(stderr, "Fresh board with random seed %lu\n", fast_getseed());
78 //board_print(b, stderr);
79 if (!u->no_book && b->moves == 0) {
80 assert(color == S_BLACK);
81 tree_load(u->t, b);
85 static void
86 reset_state(struct uct *u)
88 assert(u->t);
89 tree_done(u->t); u->t = NULL;
92 static void
93 setup_dynkomi(struct uct *u, struct board *b, enum stone to_play)
95 if (u->t->use_extra_komi && u->dynkomi->permove)
96 u->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, u->t);
99 static void
100 prepare_move(struct engine *e, struct board *b, enum stone color)
102 struct uct *u = e->data;
104 if (u->t) {
105 /* Verify that we have sane state. */
106 assert(b->es == u);
107 assert(u->t && b->moves);
108 if (color != stone_other(u->t->root_color)) {
109 fprintf(stderr, "Fatal: Non-alternating play detected %d %d\n",
110 color, u->t->root_color);
111 exit(1);
114 } else {
115 /* We need fresh state. */
116 b->es = u;
117 setup_state(u, b, color);
120 u->ownermap.playouts = 0;
121 memset(u->ownermap.map, 0, board_size2(b) * sizeof(u->ownermap.map[0]));
124 static void
125 dead_group_list(struct uct *u, struct board *b, struct move_queue *mq)
127 struct group_judgement gj;
128 gj.thres = GJ_THRES;
129 gj.gs = alloca(board_size2(b) * sizeof(gj.gs[0]));
130 board_ownermap_judge_group(b, &u->ownermap, &gj);
131 groups_of_status(b, &gj, GS_DEAD, mq);
134 bool
135 uct_pass_is_safe(struct uct *u, struct board *b, enum stone color, bool pass_all_alive)
137 if (u->ownermap.playouts < GJ_MINGAMES)
138 return false;
140 struct move_queue mq = { .moves = 0 };
141 dead_group_list(u, b, &mq);
142 if (pass_all_alive && mq.moves > 0)
143 return false; // We need to remove some dead groups first.
144 return pass_is_safe(b, color, &mq);
147 /* This function is called only when running as slave in the distributed version. */
148 static enum parse_code
149 uct_notify(struct engine *e, struct board *b, int id, char *cmd, char *args, char **reply)
151 struct uct *u = e->data;
153 static bool board_resized = false;
154 board_resized |= is_gamestart(cmd);
156 /* Force resending the whole command history if we are out of sync
157 * but do it only once, not if already getting the history. */
158 if ((move_number(id) != b->moves || !board_resized)
159 && !reply_disabled(id) && !is_reset(cmd)) {
160 if (UDEBUGL(0))
161 fprintf(stderr, "Out of sync, id %d, move %d\n", id, b->moves);
162 static char buf[128];
163 snprintf(buf, sizeof(buf), "out of sync, move %d expected", b->moves);
164 *reply = buf;
165 return P_DONE_ERROR;
167 u->gtp_id = id;
168 return reply_disabled(id) ? P_NOREPLY : P_OK;
171 static char *
172 uct_printhook_ownermap(struct board *board, coord_t c, char *s, char *end)
174 struct uct *u = board->es;
175 assert(u);
176 const char chr[] = ":XO,"; // dame, black, white, unclear
177 const char chm[] = ":xo,";
178 char ch = chr[board_ownermap_judge_point(&u->ownermap, c, GJ_THRES)];
179 if (ch == ',') { // less precise estimate then?
180 ch = chm[board_ownermap_judge_point(&u->ownermap, c, 0.67)];
182 s += snprintf(s, end - s, "%c ", ch);
183 return s;
186 static char *
187 uct_notify_play(struct engine *e, struct board *b, struct move *m)
189 struct uct *u = e->data;
190 if (!u->t) {
191 /* No state, create one - this is probably game beginning
192 * and we need to load the opening book right now. */
193 prepare_move(e, b, m->color);
194 assert(u->t);
197 /* Stop pondering, required by tree_promote_at() */
198 uct_pondering_stop(u);
200 if (is_resign(m->coord)) {
201 /* Reset state. */
202 reset_state(u);
203 return NULL;
206 /* Promote node of the appropriate move to the tree root. */
207 assert(u->t->root);
208 if (!tree_promote_at(u->t, b, m->coord)) {
209 if (UDEBUGL(0))
210 fprintf(stderr, "Warning: Cannot promote move node! Several play commands in row?\n");
211 reset_state(u);
212 return NULL;
215 /* If we are a slave in a distributed engine, start pondering once
216 * we know which move we actually played. See uct_genmove() about
217 * the check for pass. */
218 if (u->pondering_opt && u->slave && m->color == u->my_color && !is_pass(m->coord))
219 uct_pondering_start(u, b, u->t, stone_other(m->color));
221 return NULL;
224 static char *
225 uct_chat(struct engine *e, struct board *b, char *cmd)
227 struct uct *u = e->data;
228 static char reply[1024];
230 cmd += strspn(cmd, " \n\t");
231 if (!strncasecmp(cmd, "winrate", 7)) {
232 if (!u->t)
233 return "no game context (yet?)";
234 enum stone color = u->t->root_color;
235 struct tree_node *n = u->t->root;
236 snprintf(reply, 1024, "In %d playouts at %d threads, %s %s can win with %.2f%% probability",
237 n->u.playouts, u->threads, stone2str(color), coord2sstr(n->coord, b),
238 tree_node_get_value(u->t, -1, n->u.value) * 100);
239 if (u->t->use_extra_komi && abs(u->t->extra_komi) >= 0.5) {
240 sprintf(reply + strlen(reply), ", while self-imposing extra komi %.1f",
241 u->t->extra_komi);
243 strcat(reply, ".");
244 return reply;
246 return NULL;
249 static void
250 uct_dead_group_list(struct engine *e, struct board *b, struct move_queue *mq)
252 struct uct *u = e->data;
254 /* This means the game is probably over, no use pondering on. */
255 uct_pondering_stop(u);
257 if (u->pass_all_alive)
258 return; // no dead groups
260 bool mock_state = false;
262 if (!u->t) {
263 /* No state, but we cannot just back out - we might
264 * have passed earlier, only assuming some stones are
265 * dead, and then re-connected, only to lose counting
266 * when all stones are assumed alive. */
267 /* Mock up some state and seed the ownermap by few
268 * simulations. */
269 prepare_move(e, b, S_BLACK); assert(u->t);
270 for (int i = 0; i < GJ_MINGAMES; i++)
271 uct_playout(u, b, S_BLACK, u->t);
272 mock_state = true;
275 dead_group_list(u, b, mq);
277 if (mock_state) {
278 /* Clean up the mock state in case we will receive
279 * a genmove; we could get a non-alternating-move
280 * error from prepare_move() in that case otherwise. */
281 reset_state(u);
285 static void
286 playout_policy_done(struct playout_policy *p)
288 if (p->done) p->done(p);
289 if (p->data) free(p->data);
290 free(p);
293 static void
294 uct_done(struct engine *e)
296 /* This is called on engine reset, especially when clear_board
297 * is received and new game should begin. */
298 struct uct *u = e->data;
299 uct_pondering_stop(u);
300 if (u->t) reset_state(u);
301 free(u->ownermap.map);
303 free(u->policy);
304 free(u->random_policy);
305 playout_policy_done(u->playout);
306 uct_prior_done(u->prior);
310 /* Pachi threading structure (if uct_playouts_parallel() is used):
312 * main thread
313 * | main(), GTP communication, ...
314 * | starts and stops the search managed by thread_manager
316 * thread_manager
317 * | spawns and collects worker threads
319 * worker0
320 * worker1
321 * ...
322 * workerK
323 * uct_playouts() loop, doing descend-playout until uct_halt
325 * Another way to look at it is by functions (lines denote thread boundaries):
327 * | uct_genmove()
328 * | uct_search() (uct_search_start() .. uct_search_stop())
329 * | -----------------------
330 * | spawn_thread_manager()
331 * | -----------------------
332 * | spawn_worker()
333 * V uct_playouts() */
335 /* Set in thread manager in case the workers should stop. */
336 volatile sig_atomic_t uct_halt = 0;
337 /* ID of the running worker thread. */
338 __thread int thread_id = -1;
339 /* ID of the thread manager. */
340 static pthread_t thread_manager;
341 static bool thread_manager_running;
343 static pthread_mutex_t finish_mutex = PTHREAD_MUTEX_INITIALIZER;
344 static pthread_cond_t finish_cond = PTHREAD_COND_INITIALIZER;
345 static volatile int finish_thread;
346 static pthread_mutex_t finish_serializer = PTHREAD_MUTEX_INITIALIZER;
348 struct spawn_ctx {
349 int tid;
350 struct uct *u;
351 struct board *b;
352 enum stone color;
353 struct tree *t;
354 unsigned long seed;
355 int games;
358 static void *
359 spawn_worker(void *ctx_)
361 struct spawn_ctx *ctx = ctx_;
362 /* Setup */
363 fast_srandom(ctx->seed);
364 thread_id = ctx->tid;
365 /* Run */
366 ctx->games = uct_playouts(ctx->u, ctx->b, ctx->color, ctx->t);
367 /* Finish */
368 pthread_mutex_lock(&finish_serializer);
369 pthread_mutex_lock(&finish_mutex);
370 finish_thread = ctx->tid;
371 pthread_cond_signal(&finish_cond);
372 pthread_mutex_unlock(&finish_mutex);
373 return ctx;
376 /* Thread manager, controlling worker threads. It must be called with
377 * finish_mutex lock held, but it will unlock it itself before exiting;
378 * this is necessary to be completely deadlock-free. */
379 /* The finish_cond can be signalled for it to stop; in that case,
380 * the caller should set finish_thread = -1. */
381 /* After it is started, it will update mctx->t to point at some tree
382 * used for the actual search (matters only for TM_ROOT), on return
383 * it will set mctx->games to the number of performed simulations. */
384 static void *
385 spawn_thread_manager(void *ctx_)
387 /* In thread_manager, we use only some of the ctx fields. */
388 struct spawn_ctx *mctx = ctx_;
389 struct uct *u = mctx->u;
390 struct tree *t = mctx->t;
391 bool shared_tree = u->parallel_tree;
392 fast_srandom(mctx->seed);
394 int played_games = 0;
395 pthread_t threads[u->threads];
396 int joined = 0;
398 uct_halt = 0;
400 /* Garbage collect the tree by preference when pondering. */
401 if (u->pondering && t->nodes && t->nodes_size > t->max_tree_size/2) {
402 unsigned long temp_size = (MIN_FREE_MEM_PERCENT * t->max_tree_size) / 100;
403 t->root = tree_garbage_collect(t, temp_size, t->root);
406 /* Spawn threads... */
407 for (int ti = 0; ti < u->threads; ti++) {
408 struct spawn_ctx *ctx = malloc(sizeof(*ctx));
409 ctx->u = u; ctx->b = mctx->b; ctx->color = mctx->color;
410 mctx->t = ctx->t = shared_tree ? t : tree_copy(t);
411 ctx->tid = ti; ctx->seed = fast_random(65536) + ti;
412 pthread_create(&threads[ti], NULL, spawn_worker, ctx);
413 if (UDEBUGL(3))
414 fprintf(stderr, "Spawned worker %d\n", ti);
417 /* ...and collect them back: */
418 while (joined < u->threads) {
419 /* Wait for some thread to finish... */
420 pthread_cond_wait(&finish_cond, &finish_mutex);
421 if (finish_thread < 0) {
422 /* Stop-by-caller. Tell the workers to wrap up. */
423 uct_halt = 1;
424 continue;
426 /* ...and gather its remnants. */
427 struct spawn_ctx *ctx;
428 pthread_join(threads[finish_thread], (void **) &ctx);
429 played_games += ctx->games;
430 joined++;
431 if (!shared_tree) {
432 if (ctx->t == mctx->t) mctx->t = t;
433 tree_merge(t, ctx->t);
434 tree_done(ctx->t);
436 free(ctx);
437 if (UDEBUGL(3))
438 fprintf(stderr, "Joined worker %d\n", finish_thread);
439 pthread_mutex_unlock(&finish_serializer);
442 pthread_mutex_unlock(&finish_mutex);
444 if (!shared_tree)
445 tree_normalize(mctx->t, u->threads);
447 mctx->games = played_games;
448 return mctx;
451 static struct spawn_ctx *
452 uct_search_start(struct uct *u, struct board *b, enum stone color, struct tree *t)
454 assert(u->threads > 0);
455 assert(!thread_manager_running);
457 struct spawn_ctx ctx = { .u = u, .b = b, .color = color, .t = t, .seed = fast_random(65536) };
458 static struct spawn_ctx mctx; mctx = ctx;
459 pthread_mutex_lock(&finish_mutex);
460 pthread_create(&thread_manager, NULL, spawn_thread_manager, &mctx);
461 thread_manager_running = true;
462 return &mctx;
465 static struct spawn_ctx *
466 uct_search_stop(void)
468 assert(thread_manager_running);
470 /* Signal thread manager to stop the workers. */
471 pthread_mutex_lock(&finish_mutex);
472 finish_thread = -1;
473 pthread_cond_signal(&finish_cond);
474 pthread_mutex_unlock(&finish_mutex);
476 /* Collect the thread manager. */
477 struct spawn_ctx *pctx;
478 thread_manager_running = false;
479 pthread_join(thread_manager, (void **) &pctx);
480 return pctx;
484 /* Determine whether we should terminate the search early. */
485 static bool
486 uct_search_stop_early(struct uct *u, struct tree *t, struct board *b,
487 struct time_info *ti, struct time_stop *stop,
488 struct tree_node *best, struct tree_node *best2,
489 int base_playouts, int i)
491 /* Always use at least half the desired time. It is silly
492 * to lose a won game because we played a bad move in 0.1s. */
493 double elapsed = 0;
494 if (ti->dim == TD_WALLTIME) {
495 elapsed = time_now() - ti->len.t.timer_start;
496 if (elapsed < 0.5 * stop->desired.time) return false;
499 /* Early break in won situation. */
500 if (best->u.playouts >= 2000 && tree_node_get_value(t, 1, best->u.value) >= u->loss_threshold)
501 return true;
502 /* Earlier break in super-won situation. */
503 if (best->u.playouts >= 500 && tree_node_get_value(t, 1, best->u.value) >= 0.95)
504 return true;
506 /* Break early if we estimate the second-best move cannot
507 * catch up in assigned time anymore. We use all our time
508 * if we are in byoyomi with single stone remaining in our
509 * period, however - it's better to pre-ponder. */
510 bool time_indulgent = (!ti->len.t.main_time && ti->len.t.byoyomi_stones == 1);
511 if (best2 && ti->dim == TD_WALLTIME && !time_indulgent) {
512 double remaining = stop->worst.time - elapsed;
513 double pps = ((double)i - base_playouts) / elapsed;
514 double estplayouts = remaining * pps + PLAYOUT_DELTA_SAFEMARGIN;
515 if (best->u.playouts > best2->u.playouts + estplayouts) {
516 if (UDEBUGL(2))
517 fprintf(stderr, "Early stop, result cannot change: "
518 "best %d, best2 %d, estimated %f simulations to go\n",
519 best->u.playouts, best2->u.playouts, estplayouts);
520 return true;
524 return false;
527 /* Determine whether we should terminate the search later than expected. */
528 static bool
529 uct_search_keep_looking(struct uct *u, struct tree *t, struct board *b,
530 struct time_info *ti, struct time_stop *stop,
531 struct tree_node *best, struct tree_node *best2,
532 struct tree_node *bestr, struct tree_node *winner, int i)
534 if (!best) {
535 if (UDEBUGL(2))
536 fprintf(stderr, "Did not find best move, still trying...\n");
537 return true;
540 /* Do not waste time if we are winning. Spend up to worst time if
541 * we are unsure, but only desired time if we are sure of winning. */
542 float beta = 2 * (tree_node_get_value(t, 1, best->u.value) - 0.5);
543 if (ti->dim == TD_WALLTIME && beta > 0) {
544 double good_enough = stop->desired.time * beta + stop->worst.time * (1 - beta);
545 double elapsed = time_now() - ti->len.t.timer_start;
546 if (elapsed > good_enough) return false;
549 if (u->best2_ratio > 0) {
550 /* Check best/best2 simulations ratio. If the
551 * two best moves give very similar results,
552 * keep simulating. */
553 if (best2 && best2->u.playouts
554 && (double)best->u.playouts / best2->u.playouts < u->best2_ratio) {
555 if (UDEBUGL(2))
556 fprintf(stderr, "Best2 ratio %f < threshold %f\n",
557 (double)best->u.playouts / best2->u.playouts,
558 u->best2_ratio);
559 return true;
563 if (u->bestr_ratio > 0) {
564 /* Check best, best_best value difference. If the best move
565 * and its best child do not give similar enough results,
566 * keep simulating. */
567 if (bestr && bestr->u.playouts
568 && fabs((double)best->u.value - bestr->u.value) > u->bestr_ratio) {
569 if (UDEBUGL(2))
570 fprintf(stderr, "Bestr delta %f > threshold %f\n",
571 fabs((double)best->u.value - bestr->u.value),
572 u->bestr_ratio);
573 return true;
577 if (winner && winner != best) {
578 /* Keep simulating if best explored
579 * does not have also highest value. */
580 if (UDEBUGL(2))
581 fprintf(stderr, "[%d] best %3s [%d] %f != winner %3s [%d] %f\n", i,
582 coord2sstr(best->coord, t->board),
583 best->u.playouts, tree_node_get_value(t, 1, best->u.value),
584 coord2sstr(winner->coord, t->board),
585 winner->u.playouts, tree_node_get_value(t, 1, winner->u.value));
586 return true;
589 /* No reason to keep simulating, bye. */
590 return false;
593 /* Run time-limited MCTS search on foreground. */
594 static int
595 uct_search(struct uct *u, struct board *b, struct time_info *ti, enum stone color, struct tree *t)
597 int base_playouts = u->t->root->u.playouts;
598 if (UDEBUGL(2) && base_playouts > 0)
599 fprintf(stderr, "<pre-simulated %d games skipped>\n", base_playouts);
601 /* Set up time conditions. */
602 if (ti->period == TT_NULL) *ti = default_ti;
603 struct time_stop stop;
604 time_stop_conditions(ti, b, u->fuseki_end, u->yose_start, &stop);
606 /* Number of last dynkomi adjustment. */
607 int last_dynkomi = t->root->u.playouts;
608 /* Number of last game with progress print. */
609 int last_print = t->root->u.playouts;
610 /* Number of simulations to wait before next print. */
611 int print_interval = TREE_SIMPROGRESS_INTERVAL * (u->thread_model == TM_ROOT ? 1 : u->threads);
612 /* Printed notification about full memory? */
613 bool print_fullmem = false;
614 /* Absolute time of last distributed stats update. */
615 double last_stats_sent = time_now();
616 /* Interval between distributed stats updates. */
617 double stats_interval = STATS_SEND_INTERVAL;
619 struct spawn_ctx *ctx = uct_search_start(u, b, color, t);
621 /* The search tree is ctx->t. This is normally == t, but in case of
622 * TM_ROOT, it is one of the trees belonging to the independent
623 * workers. It is important to reference ctx->t directly since the
624 * thread manager will swap the tree pointer asynchronously. */
625 /* XXX: This means TM_ROOT support is suboptimal since single stalled
626 * thread can stall the others in case of limiting the search by game
627 * count. However, TM_ROOT just does not deserve any more extra code
628 * right now. */
630 struct tree_node *best = NULL;
631 struct tree_node *best2 = NULL; // Second-best move.
632 struct tree_node *bestr = NULL; // best's best child.
633 struct tree_node *winner = NULL;
635 double busywait_interval = TREE_BUSYWAIT_INTERVAL;
637 /* Now, just periodically poll the search tree. */
638 while (1) {
639 time_sleep(busywait_interval);
640 /* busywait_interval should never be less than desired time, or the
641 * time control is broken. But if it happens to be less, we still search
642 * at least 100ms otherwise the move is completely random. */
644 int i = ctx->t->root->u.playouts;
646 /* Adjust dynkomi? */
647 if (ctx->t->use_extra_komi && u->dynkomi->permove
648 && u->dynkomi_interval
649 && i > last_dynkomi + u->dynkomi_interval) {
650 last_dynkomi += u->dynkomi_interval;
651 float old_dynkomi = ctx->t->extra_komi;
652 ctx->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, ctx->t);
653 if (UDEBUGL(3) && old_dynkomi != ctx->t->extra_komi)
654 fprintf(stderr, "dynkomi adjusted (%f -> %f)\n", old_dynkomi, ctx->t->extra_komi);
657 /* Print progress? */
658 if (i - last_print > print_interval) {
659 last_print += print_interval; // keep the numbers tidy
660 uct_progress_status(u, ctx->t, color, last_print);
662 if (!print_fullmem && ctx->t->nodes_size > u->max_tree_size) {
663 if (UDEBUGL(2))
664 fprintf(stderr, "memory limit hit (%lu > %lu)\n", ctx->t->nodes_size, u->max_tree_size);
665 print_fullmem = true;
668 /* Never consider stopping if we played too few simulations.
669 * Maybe we risk losing on time when playing in super-extreme
670 * time pressure but the tree is going to be just too messed
671 * up otherwise - we might even play invalid suicides or pass
672 * when we mustn't. */
673 if (i < GJ_MINGAMES)
674 continue;
676 best = u->policy->choose(u->policy, ctx->t->root, b, color, resign);
677 if (best) best2 = u->policy->choose(u->policy, ctx->t->root, b, color, best->coord);
679 /* Possibly stop search early if it's no use to try on. */
680 if (best && uct_search_stop_early(u, ctx->t, b, ti, &stop, best, best2, base_playouts, i))
681 break;
683 /* Check against time settings. */
684 bool desired_done = false;
685 double now = time_now();
686 if (ti->dim == TD_WALLTIME) {
687 double elapsed = now - ti->len.t.timer_start;
688 if (elapsed > stop.worst.time) break;
689 desired_done = elapsed > stop.desired.time;
690 if (stats_interval < 0.1 * stop.desired.time)
691 stats_interval = 0.1 * stop.desired.time;
693 } else { assert(ti->dim == TD_GAMES);
694 if (i > stop.worst.playouts) break;
695 desired_done = i > stop.desired.playouts;
698 /* We want to stop simulating, but are willing to keep trying
699 * if we aren't completely sure about the winner yet. */
700 if (desired_done) {
701 if (u->policy->winner && u->policy->evaluate) {
702 struct uct_descent descent = { .node = ctx->t->root };
703 u->policy->winner(u->policy, ctx->t, &descent);
704 winner = descent.node;
706 if (best)
707 bestr = u->policy->choose(u->policy, best, b, stone_other(color), resign);
708 if (!uct_search_keep_looking(u, ctx->t, b, ti, &stop, best, best2, bestr, winner, i))
709 break;
712 /* TODO: Early break if best->variance goes under threshold and we already
713 * have enough playouts (possibly thanks to book or to pondering)? */
715 /* Send new stats for the distributed engine.
716 * End with #\n (not \n\n) to indicate a temporary result. */
717 if (u->slave && now - last_stats_sent > stats_interval) {
718 printf("=%d %s\n#\n", u->gtp_id, uct_getstats(u, b, NULL));
719 fflush(stdout);
720 last_stats_sent = now;
724 ctx = uct_search_stop();
726 if (UDEBUGL(2)) {
727 fprintf(stderr, "(avg score %f/%d value %f/%d)\n",
728 u->dynkomi->score.value, u->dynkomi->score.playouts,
729 u->dynkomi->value.value, u->dynkomi->value.playouts);
730 tree_dump(t, u->dumpthres);
732 if (UDEBUGL(0))
733 uct_progress_status(u, t, color, ctx->games);
735 return ctx->games;
739 /* Start pondering background with @color to play. */
740 static void
741 uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color)
743 if (UDEBUGL(1))
744 fprintf(stderr, "Starting to ponder with color %s\n", stone2str(stone_other(color)));
745 u->pondering = true;
747 /* We need a local board copy to ponder upon. */
748 struct board *b = malloc(sizeof(*b)); board_copy(b, b0);
750 /* *b0 did not have the genmove'd move played yet. */
751 struct move m = { t->root->coord, t->root_color };
752 int res = board_play(b, &m);
753 assert(res >= 0);
754 setup_dynkomi(u, b, stone_other(m.color));
756 /* Start MCTS manager thread "headless". */
757 uct_search_start(u, b, color, t);
760 /* uct_search_stop() frontend for the pondering (non-genmove) mode. */
761 static void
762 uct_pondering_stop(struct uct *u)
764 u->pondering = false;
765 if (!thread_manager_running)
766 return;
768 /* Stop the thread manager. */
769 struct spawn_ctx *ctx = uct_search_stop();
770 if (UDEBUGL(1)) {
771 fprintf(stderr, "(pondering) ");
772 uct_progress_status(u, ctx->t, ctx->color, ctx->games);
774 free(ctx->b);
778 static coord_t *
779 uct_genmove(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
781 double start_time = time_now();
782 struct uct *u = e->data;
784 if (b->superko_violation) {
785 fprintf(stderr, "!!! WARNING: SUPERKO VIOLATION OCCURED BEFORE THIS MOVE\n");
786 fprintf(stderr, "Maybe you play with situational instead of positional superko?\n");
787 fprintf(stderr, "I'm going to ignore the violation, but note that I may miss\n");
788 fprintf(stderr, "some moves valid under this ruleset because of this.\n");
789 b->superko_violation = false;
792 /* Seed the tree. */
793 uct_pondering_stop(u);
794 prepare_move(e, b, color);
795 assert(u->t);
796 u->my_color = color;
798 /* How to decide whether to use dynkomi in this game? Since we use
799 * pondering, it's not simple "who-to-play" matter. Decide based on
800 * the last genmove issued. */
801 u->t->use_extra_komi = !!(u->dynkomi_mask & color);
802 setup_dynkomi(u, b, color);
804 if (b->rules == RULES_JAPANESE)
805 u->territory_scoring = true;
807 /* Make pessimistic assumption about komi for Japanese rules to
808 * avoid losing by 0.5 when winning by 0.5 with Chinese rules.
809 * The rules usually give the same winner if the integer part of komi
810 * is odd so we adjust the komi only if it is even (for a board of
811 * odd size). We are not trying to get an exact evaluation for rare
812 * cases of seki. For details see http://home.snafu.de/jasiek/parity.html */
813 if (u->territory_scoring && (((int)floor(b->komi) + board_size(b)) & 1)) {
814 b->komi += (color == S_BLACK ? 1.0 : -1.0);
815 if (UDEBUGL(0))
816 fprintf(stderr, "Setting komi to %.1f assuming Japanese rules\n",
817 b->komi);
820 int base_playouts = u->t->root->u.playouts;
821 /* Perform the Monte Carlo Tree Search! */
822 int played_games = uct_search(u, b, ti, color, u->t);
824 /* Choose the best move from the tree. */
825 struct tree_node *best = u->policy->choose(u->policy, u->t->root, b, color, resign);
826 if (!best) {
827 if (!u->slave) reset_state(u);
828 return coord_copy(pass);
830 if (UDEBUGL(1))
831 fprintf(stderr, "*** WINNER is %s (%d,%d) with score %1.4f (%d/%d:%d/%d games), extra komi %f\n",
832 coord2sstr(best->coord, b), coord_x(best->coord, b), coord_y(best->coord, b),
833 tree_node_get_value(u->t, 1, best->u.value), best->u.playouts,
834 u->t->root->u.playouts, u->t->root->u.playouts - base_playouts, played_games,
835 u->t->extra_komi);
837 /* Do not resign if we're so short of time that evaluation of best
838 * move is completely unreliable, we might be winning actually.
839 * In this case best is almost random but still better than resign.
840 * Also do not resign if we are getting bad results while actually
841 * giving away extra komi points (dynkomi). */
842 if (tree_node_get_value(u->t, 1, best->u.value) < u->resign_ratio
843 && !is_pass(best->coord) && best->u.playouts > GJ_MINGAMES
844 && u->t->extra_komi <= 1 /* XXX we assume dynamic komi == we are black */) {
845 if (!u->slave) reset_state(u);
846 return coord_copy(resign);
849 /* If the opponent just passed and we win counting, always
850 * pass as well. */
851 if (b->moves > 1 && is_pass(b->last_move.coord)) {
852 /* Make sure enough playouts are simulated. */
853 while (u->ownermap.playouts < GJ_MINGAMES)
854 uct_playout(u, b, color, u->t);
855 if (uct_pass_is_safe(u, b, color, u->pass_all_alive || pass_all_alive)) {
856 if (UDEBUGL(0))
857 fprintf(stderr, "<Will rather pass, looks safe enough; score %f>\n",
858 board_official_score(b, NULL) / 2);
859 best->coord = pass;
863 /* If we are a slave in the distributed engine, we'll soon get
864 * a "play" command later telling us which move was chosen,
865 * and pondering now will not gain much. */
866 if (!u->slave) {
867 tree_promote_node(u->t, &best);
869 /* After a pass, pondering is harmful for two reasons:
870 * (i) We might keep pondering even when the game is over.
871 * Of course this is the case for opponent resign as well.
872 * (ii) More importantly, the ownermap will get skewed since
873 * the UCT will start cutting off any playouts. */
874 if (u->pondering_opt && !is_pass(best->coord)) {
875 uct_pondering_start(u, b, u->t, stone_other(color));
878 if (UDEBUGL(2)) {
879 double time = time_now() - start_time + 0.000001; /* avoid divide by zero */
880 fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n",
881 time, (int)(played_games/time), (int)(played_games/time/u->threads));
883 return coord_copy(best->coord);
886 /* Get stats updates for the distributed engine. Return a buffer
887 * with one line "total_playouts threads" then a list of lines
888 * "coord playouts value". The last line must not end with \n.
889 * If c is not null, add this move with root->playouts weight.
890 * This function is called only by the main thread, but may be
891 * called while the tree is updated by the worker threads.
892 * Keep this code in sync with select_best_move(). */
893 static char *
894 uct_getstats(struct uct *u, struct board *b, coord_t *c)
896 static char reply[10240];
897 char *r = reply;
898 char *end = reply + sizeof(reply);
899 struct tree_node *root = u->t->root;
900 r += snprintf(r, end - r, "%d %d", root->u.playouts, u->threads);
901 int min_playouts = root->u.playouts / 100;
903 // Give a large weight to pass or resign, but still allow other moves.
904 if (c)
905 r += snprintf(r, end - r, "\n%s %d %.1f", coord2sstr(*c, b), root->u.playouts,
906 (float)is_pass(*c));
908 /* We rely on the fact that root->children is set only
909 * after all children are created. */
910 for (struct tree_node *ni = root->children; ni; ni = ni->sibling) {
911 if (ni->u.playouts <= min_playouts
912 || ni->hints & TREE_HINT_INVALID
913 || is_pass(ni->coord))
914 continue;
915 char *coord = coord2sstr(ni->coord, b);
916 // We return the values as stored in the tree, so from black's view.
917 r += snprintf(r, end - r, "\n%s %d %.7f", coord, ni->u.playouts, ni->u.value);
919 return reply;
922 static char *
923 uct_genmoves(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
925 struct uct *u = e->data;
926 assert(u->slave);
928 coord_t *c = uct_genmove(e, b, ti, color, pass_all_alive);
930 char *reply = uct_getstats(u, b, is_pass(*c) || is_resign(*c) ? c : NULL);
931 coord_done(c);
932 return reply;
936 bool
937 uct_genbook(struct engine *e, struct board *b, struct time_info *ti, enum stone color)
939 struct uct *u = e->data;
940 if (!u->t) prepare_move(e, b, color);
941 assert(u->t);
943 if (ti->dim == TD_GAMES) {
944 /* Don't count in games that already went into the book. */
945 ti->len.games += u->t->root->u.playouts;
947 uct_search(u, b, ti, color, u->t);
949 assert(ti->dim == TD_GAMES);
950 tree_save(u->t, b, ti->len.games / 100);
952 return true;
955 void
956 uct_dumpbook(struct engine *e, struct board *b, enum stone color)
958 struct uct *u = e->data;
959 struct tree *t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0, u->local_tree_aging);
960 tree_load(t, b);
961 tree_dump(t, 0);
962 tree_done(t);
966 struct uct *
967 uct_state_init(char *arg, struct board *b)
969 struct uct *u = calloc(1, sizeof(struct uct));
970 bool using_elo = false;
972 u->debug_level = debug_level;
973 u->gamelen = MC_GAMELEN;
974 u->mercymin = 0;
975 u->expand_p = 2;
976 u->dumpthres = 1000;
977 u->playout_amaf = true;
978 u->playout_amaf_nakade = false;
979 u->amaf_prior = false;
980 u->max_tree_size = 3072ULL * 1048576;
982 u->dynkomi_mask = S_BLACK;
984 u->threads = 1;
985 u->thread_model = TM_TREEVL;
986 u->parallel_tree = true;
987 u->virtual_loss = true;
989 u->fuseki_end = 20; // max time at 361*20% = 72 moves (our 36th move, still 99 to play)
990 u->yose_start = 40; // (100-40-25)*361/100/2 = 63 moves still to play by us then
991 u->bestr_ratio = 0.02;
992 // 2.5 is clearly too much, but seems to compensate well for overly stern time allocations.
993 // TODO: Further tuning and experiments with better time allocation schemes.
994 u->best2_ratio = 2.5;
996 u->val_scale = 0.04; u->val_points = 40;
998 u->tenuki_d = 4;
999 u->local_tree_aging = 2;
1001 if (arg) {
1002 char *optspec, *next = arg;
1003 while (*next) {
1004 optspec = next;
1005 next += strcspn(next, ",");
1006 if (*next) { *next++ = 0; } else { *next = 0; }
1008 char *optname = optspec;
1009 char *optval = strchr(optspec, '=');
1010 if (optval) *optval++ = 0;
1012 if (!strcasecmp(optname, "debug")) {
1013 if (optval)
1014 u->debug_level = atoi(optval);
1015 else
1016 u->debug_level++;
1017 } else if (!strcasecmp(optname, "mercy") && optval) {
1018 /* Minimal difference of black/white captures
1019 * to stop playout - "Mercy Rule". Speeds up
1020 * hopeless playouts at the expense of some
1021 * accuracy. */
1022 u->mercymin = atoi(optval);
1023 } else if (!strcasecmp(optname, "gamelen") && optval) {
1024 u->gamelen = atoi(optval);
1025 } else if (!strcasecmp(optname, "expand_p") && optval) {
1026 u->expand_p = atoi(optval);
1027 } else if (!strcasecmp(optname, "dumpthres") && optval) {
1028 u->dumpthres = atoi(optval);
1029 } else if (!strcasecmp(optname, "best2_ratio") && optval) {
1030 /* If set, prolong simulating while
1031 * first_best/second_best playouts ratio
1032 * is less than best2_ratio. */
1033 u->best2_ratio = atof(optval);
1034 } else if (!strcasecmp(optname, "bestr_ratio") && optval) {
1035 /* If set, prolong simulating while
1036 * best,best_best_child values delta
1037 * is more than bestr_ratio. */
1038 u->bestr_ratio = atof(optval);
1039 } else if (!strcasecmp(optname, "playout_amaf")) {
1040 /* Whether to include random playout moves in
1041 * AMAF as well. (Otherwise, only tree moves
1042 * are included in AMAF. Of course makes sense
1043 * only in connection with an AMAF policy.) */
1044 /* with-without: 55.5% (+-4.1) */
1045 if (optval && *optval == '0')
1046 u->playout_amaf = false;
1047 else
1048 u->playout_amaf = true;
1049 } else if (!strcasecmp(optname, "playout_amaf_nakade")) {
1050 /* Whether to include nakade moves from playouts
1051 * in the AMAF statistics; this tends to nullify
1052 * the playout_amaf effect by adding too much
1053 * noise. */
1054 if (optval && *optval == '0')
1055 u->playout_amaf_nakade = false;
1056 else
1057 u->playout_amaf_nakade = true;
1058 } else if (!strcasecmp(optname, "playout_amaf_cutoff") && optval) {
1059 /* Keep only first N% of playout stage AMAF
1060 * information. */
1061 u->playout_amaf_cutoff = atoi(optval);
1062 } else if ((!strcasecmp(optname, "policy") || !strcasecmp(optname, "random_policy")) && optval) {
1063 char *policyarg = strchr(optval, ':');
1064 struct uct_policy **p = !strcasecmp(optname, "policy") ? &u->policy : &u->random_policy;
1065 if (policyarg)
1066 *policyarg++ = 0;
1067 if (!strcasecmp(optval, "ucb1")) {
1068 *p = policy_ucb1_init(u, policyarg);
1069 } else if (!strcasecmp(optval, "ucb1amaf")) {
1070 *p = policy_ucb1amaf_init(u, policyarg);
1071 } else {
1072 fprintf(stderr, "UCT: Invalid tree policy %s\n", optval);
1073 exit(1);
1075 } else if (!strcasecmp(optname, "playout") && optval) {
1076 char *playoutarg = strchr(optval, ':');
1077 if (playoutarg)
1078 *playoutarg++ = 0;
1079 if (!strcasecmp(optval, "moggy")) {
1080 u->playout = playout_moggy_init(playoutarg, b);
1081 } else if (!strcasecmp(optval, "light")) {
1082 u->playout = playout_light_init(playoutarg, b);
1083 } else if (!strcasecmp(optval, "elo")) {
1084 u->playout = playout_elo_init(playoutarg, b);
1085 using_elo = true;
1086 } else {
1087 fprintf(stderr, "UCT: Invalid playout policy %s\n", optval);
1088 exit(1);
1090 } else if (!strcasecmp(optname, "prior") && optval) {
1091 u->prior = uct_prior_init(optval, b);
1092 } else if (!strcasecmp(optname, "amaf_prior") && optval) {
1093 u->amaf_prior = atoi(optval);
1094 } else if (!strcasecmp(optname, "threads") && optval) {
1095 /* By default, Pachi will run with only single
1096 * tree search thread! */
1097 u->threads = atoi(optval);
1098 } else if (!strcasecmp(optname, "thread_model") && optval) {
1099 if (!strcasecmp(optval, "root")) {
1100 /* Root parallelization - each thread
1101 * does independent search, trees are
1102 * merged at the end. */
1103 u->thread_model = TM_ROOT;
1104 u->parallel_tree = false;
1105 u->virtual_loss = false;
1106 } else if (!strcasecmp(optval, "tree")) {
1107 /* Tree parallelization - all threads
1108 * grind on the same tree. */
1109 u->thread_model = TM_TREE;
1110 u->parallel_tree = true;
1111 u->virtual_loss = false;
1112 } else if (!strcasecmp(optval, "treevl")) {
1113 /* Tree parallelization, but also
1114 * with virtual losses - this discou-
1115 * rages most threads choosing the
1116 * same tree branches to read. */
1117 u->thread_model = TM_TREEVL;
1118 u->parallel_tree = true;
1119 u->virtual_loss = true;
1120 } else {
1121 fprintf(stderr, "UCT: Invalid thread model %s\n", optval);
1122 exit(1);
1124 } else if (!strcasecmp(optname, "pondering")) {
1125 /* Keep searching even during opponent's turn. */
1126 u->pondering_opt = !optval || atoi(optval);
1127 } else if (!strcasecmp(optname, "fuseki_end") && optval) {
1128 /* At the very beginning it's not worth thinking
1129 * too long because the playout evaluations are
1130 * very noisy. So gradually increase the thinking
1131 * time up to maximum when fuseki_end percent
1132 * of the board has been played.
1133 * This only applies if we are not in byoyomi. */
1134 u->fuseki_end = atoi(optval);
1135 } else if (!strcasecmp(optname, "yose_start") && optval) {
1136 /* When yose_start percent of the board has been
1137 * played, or if we are in byoyomi, stop spending
1138 * more time and spread the remaining time
1139 * uniformly.
1140 * Between fuseki_end and yose_start, we spend
1141 * a constant proportion of the remaining time
1142 * on each move. (yose_start should actually
1143 * be much earlier than when real yose start,
1144 * but "yose" is a good short name to convey
1145 * the idea.) */
1146 u->yose_start = atoi(optval);
1147 } else if (!strcasecmp(optname, "force_seed") && optval) {
1148 u->force_seed = atoi(optval);
1149 } else if (!strcasecmp(optname, "no_book")) {
1150 u->no_book = true;
1151 } else if (!strcasecmp(optname, "dynkomi") && optval) {
1152 /* Dynamic komi approach; there are multiple
1153 * ways to adjust komi dynamically throughout
1154 * play. We currently support two: */
1155 char *dynkomiarg = strchr(optval, ':');
1156 if (dynkomiarg)
1157 *dynkomiarg++ = 0;
1158 if (!strcasecmp(optval, "none")) {
1159 u->dynkomi = uct_dynkomi_init_none(u, dynkomiarg, b);
1160 } else if (!strcasecmp(optval, "linear")) {
1161 u->dynkomi = uct_dynkomi_init_linear(u, dynkomiarg, b);
1162 } else if (!strcasecmp(optval, "adaptive")) {
1163 u->dynkomi = uct_dynkomi_init_adaptive(u, dynkomiarg, b);
1164 } else {
1165 fprintf(stderr, "UCT: Invalid dynkomi mode %s\n", optval);
1166 exit(1);
1168 } else if (!strcasecmp(optname, "dynkomi_mask") && optval) {
1169 /* Bitmask of colors the player must be
1170 * for dynkomi be applied; you may want
1171 * to use dynkomi_mask=3 to allow dynkomi
1172 * even in games where Pachi is white. */
1173 u->dynkomi_mask = atoi(optval);
1174 } else if (!strcasecmp(optname, "dynkomi_interval") && optval) {
1175 /* If non-zero, re-adjust dynamic komi
1176 * throughout a single genmove reading,
1177 * roughly every N simulations. */
1178 /* XXX: Does not work with tree
1179 * parallelization. */
1180 u->dynkomi_interval = atoi(optval);
1181 } else if (!strcasecmp(optname, "val_scale") && optval) {
1182 /* How much of the game result value should be
1183 * influenced by win size. Zero means it isn't. */
1184 u->val_scale = atof(optval);
1185 } else if (!strcasecmp(optname, "val_points") && optval) {
1186 /* Maximum size of win to be scaled into game
1187 * result value. Zero means boardsize^2. */
1188 u->val_points = atoi(optval) * 2; // result values are doubled
1189 } else if (!strcasecmp(optname, "val_extra")) {
1190 /* If false, the score coefficient will be simply
1191 * added to the value, instead of scaling the result
1192 * coefficient because of it. */
1193 u->val_extra = !optval || atoi(optval);
1194 } else if (!strcasecmp(optname, "local_tree") && optval) {
1195 /* Whether to bias exploration by local tree values
1196 * (must be supported by the used policy).
1197 * 0: Don't.
1198 * 1: Do, value = result.
1199 * Try to temper the result:
1200 * 2: Do, value = 0.5+(result-expected)/2.
1201 * 3: Do, value = 0.5+bzz((result-expected)^2).
1202 * 4: Do, value = 0.5+sqrt(result-expected)/2. */
1203 u->local_tree = atoi(optval);
1204 } else if (!strcasecmp(optname, "tenuki_d") && optval) {
1205 /* Tenuki distance at which to break the local tree. */
1206 u->tenuki_d = atoi(optval);
1207 if (u->tenuki_d > TREE_NODE_D_MAX + 1) {
1208 fprintf(stderr, "uct: tenuki_d must not be larger than TREE_NODE_D_MAX+1 %d\n", TREE_NODE_D_MAX + 1);
1209 exit(1);
1211 } else if (!strcasecmp(optname, "local_tree_aging") && optval) {
1212 /* How much to reduce local tree values between moves. */
1213 u->local_tree_aging = atof(optval);
1214 } else if (!strcasecmp(optname, "local_tree_allseq")) {
1215 /* By default, only complete sequences are stored
1216 * in the local tree. If this is on, also
1217 * subsequences starting at each move are stored. */
1218 u->local_tree_allseq = !optval || atoi(optval);
1219 } else if (!strcasecmp(optname, "local_tree_playout")) {
1220 /* Whether to adjust ELO playout probability
1221 * distributions according to matched localtree
1222 * information. */
1223 u->local_tree_playout = !optval || atoi(optval);
1224 } else if (!strcasecmp(optname, "local_tree_pseqroot")) {
1225 /* By default, when we have no sequence move
1226 * to suggest in-playout, we give up. If this
1227 * is on, we make probability distribution from
1228 * sequences first moves instead. */
1229 u->local_tree_pseqroot = !optval || atoi(optval);
1230 } else if (!strcasecmp(optname, "pass_all_alive")) {
1231 /* Whether to consider passing only after all
1232 * dead groups were removed from the board;
1233 * this is like all genmoves are in fact
1234 * kgs-genmove_cleanup. */
1235 u->pass_all_alive = !optval || atoi(optval);
1236 } else if (!strcasecmp(optname, "territory_scoring")) {
1237 /* Use territory scoring (default is area scoring).
1238 * An explicit kgs-rules command overrides this. */
1239 u->territory_scoring = !optval || atoi(optval);
1240 } else if (!strcasecmp(optname, "random_policy_chance") && optval) {
1241 /* If specified (N), with probability 1/N, random_policy policy
1242 * descend is used instead of main policy descend; useful
1243 * if specified policy (e.g. UCB1AMAF) can make unduly biased
1244 * choices sometimes, you can fall back to e.g.
1245 * random_policy=UCB1. */
1246 u->random_policy_chance = atoi(optval);
1247 } else if (!strcasecmp(optname, "max_tree_size") && optval) {
1248 /* Maximum amount of memory [MiB] consumed by the move tree.
1249 * For fast_alloc it includes the temp tree used for pruning.
1250 * Default is 3072 (3 GiB). Note that if you use TM_ROOT,
1251 * this limits size of only one of the trees, not all of them
1252 * together. */
1253 u->max_tree_size = atol(optval) * 1048576;
1254 } else if (!strcasecmp(optname, "fast_alloc")) {
1255 u->fast_alloc = !optval || atoi(optval);
1256 } else if (!strcasecmp(optname, "slave")) {
1257 /* Act as slave for the distributed engine. */
1258 u->slave = !optval || atoi(optval);
1259 } else if (!strcasecmp(optname, "banner") && optval) {
1260 /* Additional banner string. This must come as the
1261 * last engine parameter. */
1262 if (*next) *--next = ',';
1263 u->banner = strdup(optval);
1264 break;
1265 } else {
1266 fprintf(stderr, "uct: Invalid engine argument %s or missing value\n", optname);
1267 exit(1);
1272 u->resign_ratio = 0.2; /* Resign when most games are lost. */
1273 u->loss_threshold = 0.85; /* Stop reading if after at least 2000 playouts this is best value. */
1274 if (!u->policy)
1275 u->policy = policy_ucb1amaf_init(u, NULL);
1277 if (!!u->random_policy_chance ^ !!u->random_policy) {
1278 fprintf(stderr, "uct: Only one of random_policy and random_policy_chance is set\n");
1279 exit(1);
1282 if (!u->local_tree) {
1283 /* No ltree aging. */
1284 u->local_tree_aging = 1.0f;
1286 if (!using_elo)
1287 u->local_tree_playout = false;
1289 if (u->fast_alloc && !u->parallel_tree) {
1290 fprintf(stderr, "fast_alloc not supported with root parallelization.\n");
1291 exit(1);
1293 if (u->fast_alloc)
1294 u->max_tree_size = (100ULL * u->max_tree_size) / (100 + MIN_FREE_MEM_PERCENT);
1296 if (!u->prior)
1297 u->prior = uct_prior_init(NULL, b);
1299 if (!u->playout)
1300 u->playout = playout_moggy_init(NULL, b);
1301 u->playout->debug_level = u->debug_level;
1303 u->ownermap.map = malloc(board_size2(b) * sizeof(u->ownermap.map[0]));
1305 if (!u->dynkomi)
1306 u->dynkomi = uct_dynkomi_init_linear(u, NULL, b);
1308 /* Some things remain uninitialized for now - the opening book
1309 * is not loaded and the tree not set up. */
1310 /* This will be initialized in setup_state() at the first move
1311 * received/requested. This is because right now we are not aware
1312 * about any komi or handicap setup and such. */
1314 return u;
1317 struct engine *
1318 engine_uct_init(char *arg, struct board *b)
1320 struct uct *u = uct_state_init(arg, b);
1321 struct engine *e = calloc(1, sizeof(struct engine));
1322 e->name = "UCT Engine";
1323 e->printhook = uct_printhook_ownermap;
1324 e->notify_play = uct_notify_play;
1325 e->chat = uct_chat;
1326 e->genmove = uct_genmove;
1327 e->genmoves = uct_genmoves;
1328 e->dead_group_list = uct_dead_group_list;
1329 e->done = uct_done;
1330 e->data = u;
1331 if (u->slave)
1332 e->notify = uct_notify;
1334 const char banner[] = "I'm playing UCT. When I'm losing, I will resign, "
1335 "if I think I win, I play until you pass. "
1336 "Anyone can send me 'winrate' in private chat to get my assessment of the position.";
1337 if (!u->banner) u->banner = "";
1338 e->comment = malloc(sizeof(banner) + strlen(u->banner) + 1);
1339 sprintf(e->comment, "%s %s", banner, u->banner);
1341 return e;