UCT dynkomi komi_by_value(): Some ratchet tweaking; reset age when lowering the bar
[pachi.git] / uct / walk.c
blob312076c3826c3c301dc9b7919d633f07de1acd70
1 #include <assert.h>
2 #include <pthread.h>
3 #include <signal.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
8 #define DEBUG
10 #include "debug.h"
11 #include "board.h"
12 #include "move.h"
13 #include "playout.h"
14 #include "playout/elo.h"
15 #include "probdist.h"
16 #include "random.h"
17 #include "uct/dynkomi.h"
18 #include "uct/internal.h"
19 #include "uct/search.h"
20 #include "uct/tree.h"
21 #include "uct/uct.h"
22 #include "uct/walk.h"
24 void
25 uct_progress_status(struct uct *u, struct tree *t, enum stone color, int playouts)
27 if (!UDEBUGL(0))
28 return;
30 /* Best move */
31 struct tree_node *best = u->policy->choose(u->policy, t->root, t->board, color, resign);
32 if (!best) {
33 fprintf(stderr, "... No moves left\n");
34 return;
36 fprintf(stderr, "[%d] ", playouts);
37 fprintf(stderr, "best %f ", tree_node_get_value(t, 1, best->u.value));
39 /* Dynamic komi */
40 if (t->use_extra_komi)
41 fprintf(stderr, "komi %.1f ", t->extra_komi);
43 /* Max depth */
44 fprintf(stderr, "deepest % 2d ", t->max_depth - t->root->depth);
46 /* Best sequence */
47 fprintf(stderr, "| seq ");
48 for (int depth = 0; depth < 6; depth++) {
49 if (best && best->u.playouts >= 25) {
50 fprintf(stderr, "%3s ", coord2sstr(best->coord, t->board));
51 best = u->policy->choose(u->policy, best, t->board, color, resign);
52 } else {
53 fprintf(stderr, " ");
57 /* Best candidates */
58 fprintf(stderr, "| can ");
59 int cans = 4;
60 struct tree_node *can[cans];
61 memset(can, 0, sizeof(can));
62 best = t->root->children;
63 while (best) {
64 int c = 0;
65 while ((!can[c] || best->u.playouts > can[c]->u.playouts) && ++c < cans);
66 for (int d = 0; d < c; d++) can[d] = can[d + 1];
67 if (c > 0) can[c - 1] = best;
68 best = best->sibling;
70 while (--cans >= 0) {
71 if (can[cans]) {
72 fprintf(stderr, "%3s(%.3f) ",
73 coord2sstr(can[cans]->coord, t->board),
74 tree_node_get_value(t, 1, can[cans]->u.value));
75 } else {
76 fprintf(stderr, " ");
80 fprintf(stderr, "\n");
84 struct uct_playout_callback {
85 struct uct *uct;
86 struct tree *tree;
87 struct tree_node *lnode;
90 static void
91 uct_playout_probdist(void *data, struct board *b, enum stone to_play, struct probdist *pd)
93 /* Create probability distribution according to found local tree
94 * sequence. */
95 struct uct_playout_callback *upc = data;
96 assert(upc && upc->tree && pd && b);
97 coord_t c = b->last_move.coord;
98 enum stone color = b->last_move.color;
100 if (is_pass(c)) {
101 /* Break local sequence. */
102 upc->lnode = NULL;
103 } else if (upc->lnode) {
104 /* Try to follow local sequence. */
105 upc->lnode = tree_get_node(upc->tree, upc->lnode, c, false);
108 if (!upc->lnode || !upc->lnode->children) {
109 /* There's no local sequence, start new one! */
110 upc->lnode = color == S_BLACK ? upc->tree->ltree_black : upc->tree->ltree_white;
111 upc->lnode = tree_get_node(upc->tree, upc->lnode, c, false);
114 if (!upc->lnode || !upc->lnode->children) {
115 /* We have no local sequence and we cannot find any starting
116 * by node corresponding to last move. */
117 if (!upc->uct->local_tree_pseqroot) {
118 /* Give up then, we have nothing to contribute. */
119 return;
121 /* Construct probability distribution from possible first
122 * sequence move. Remember that @color is color of the
123 * *last* move. */
124 upc->lnode = color == S_BLACK ? upc->tree->ltree_white : upc->tree->ltree_black;
125 if (!upc->lnode->children) {
126 /* We don't even have anything in our tree yet. */
127 return;
131 /* The probdist has the right structure only if BOARD_GAMMA is defined. */
132 #ifndef BOARD_GAMMA
133 assert(0);
134 #endif
136 /* Construct probability distribution from lnode children. */
137 /* XXX: How to derive the appropriate gamma? */
138 #define li_value(color, li) (li->u.playouts * (color == S_BLACK ? li->u.value : (1 - li->u.value)))
139 #define li_gamma(color, li) (0.5 + li_value(color, li))
140 struct tree_node *li = upc->lnode->children;
141 assert(li);
142 if (is_pass(li->coord)) {
143 /* Tenuki. */
144 /* TODO: Spread tenuki gamma over all moves we don't touch. */
145 li = li->sibling;
147 for (; li; li = li->sibling) {
148 if (board_at(b, li->coord) != S_NONE)
149 continue;
150 probdist_set(pd, li->coord, pd->items[li->coord] * li_gamma(to_play, li));
155 static int
156 uct_leaf_node(struct uct *u, struct board *b, enum stone player_color,
157 struct playout_amafmap *amaf,
158 struct tree *t, struct tree_node *n, enum stone node_color,
159 char *spaces)
161 enum stone next_color = stone_other(node_color);
162 int parity = (next_color == player_color ? 1 : -1);
164 /* If we don't anticipate well the opponent move during pondering
165 * (the played move has few playouts) we still need more memory
166 * during genmove to explore the tree actually played.
167 * For fast_alloc, the tree compaction will free enough memory
168 * immediately. */
169 unsigned long max_tree_size = u->max_tree_size;
170 if (u->pondering && !u->fast_alloc)
171 max_tree_size = (max_tree_size * (100 - MIN_FREE_MEM_PERCENT)) / 100;
173 /* We need to make sure only one thread expands the node. If
174 * we are unlucky enough for two threads to meet in the same
175 * node, the latter one will simply do another simulation from
176 * the node itself, no big deal. t->nodes_size may exceed
177 * the maximum in multi-threaded case but not by much so it's ok.
178 * The size test must be before the test&set not after, to allow
179 * expansion of the node later if enough nodes have been freed. */
180 if (n->u.playouts >= u->expand_p && t->nodes_size < max_tree_size
181 && !__sync_lock_test_and_set(&n->is_expanded, 1)) {
182 tree_expand_node(t, n, b, next_color, u, parity);
184 if (UDEBUGL(7))
185 fprintf(stderr, "%s*-- UCT playout #%d start [%s] %f\n",
186 spaces, n->u.playouts, coord2sstr(n->coord, t->board),
187 tree_node_get_value(t, parity, n->u.value));
189 /* TODO: Don't necessarily restart the sequence walk when entering
190 * playout. */
191 struct uct_playout_callback upc = { .uct = u, .tree = t, .lnode = NULL };
192 if (u->local_tree_playout) {
193 /* N.B.: We know this is ELO playout. */
194 playout_elo_callback(u->playout, uct_playout_probdist, &upc);
197 struct playout_setup ps = { .gamelen = u->gamelen, .mercymin = u->mercymin };
198 int result = play_random_game(&ps, b, next_color,
199 u->playout_amaf ? amaf : NULL,
200 &u->ownermap, u->playout);
201 if (next_color == S_WHITE) {
202 /* We need the result from black's perspective. */
203 result = - result;
205 if (UDEBUGL(7))
206 fprintf(stderr, "%s -- [%d..%d] %s random playout result %d\n",
207 spaces, player_color, next_color, coord2sstr(n->coord, t->board), result);
209 return result;
212 static float
213 scale_value(struct uct *u, struct board *b, int result)
215 float rval = result > 0;
216 if (u->val_scale) {
217 int vp = u->val_points;
218 if (!vp) {
219 vp = board_size(b) - 1; vp *= vp; vp *= 2;
222 float sval = (float) abs(result) / vp;
223 sval = sval > 1 ? 1 : sval;
224 if (result < 0) sval = 1 - sval;
225 if (u->val_extra)
226 rval += u->val_scale * sval;
227 else
228 rval = (1 - u->val_scale) * rval + u->val_scale * sval;
229 // fprintf(stderr, "score %d => sval %f, rval %f\n", result, sval, rval);
231 return rval;
234 static void
235 record_local_sequence(struct uct *u, struct tree *t,
236 struct uct_descent *descent, int dlen, int di,
237 enum stone seq_color, float rval)
239 /* Ignore pass sequences. */
240 if (is_pass(descent[di].node->coord))
241 return;
243 #define LTREE_DEBUG if (UDEBUGL(6))
244 LTREE_DEBUG fprintf(stderr, "recording result %f in local %s sequence: ",
245 rval, stone2str(seq_color));
246 int di0 = di;
248 /* Pick the right local tree root... */
249 struct tree_node *lnode = seq_color == S_BLACK ? t->ltree_black : t->ltree_white;
250 lnode->u.playouts++;
252 /* ...and record the sequence. */
253 while (di < dlen && (di == di0 || descent[di].node->d < u->tenuki_d)) {
254 LTREE_DEBUG fprintf(stderr, "%s[%d] ",
255 coord2sstr(descent[di].node->coord, t->board),
256 descent[di].node->d);
257 lnode = tree_get_node(t, lnode, descent[di++].node->coord, true);
258 assert(lnode);
259 stats_add_result(&lnode->u, rval, 1);
262 /* Add lnode for tenuki (pass) if we descended further. */
263 if (di < dlen) {
264 LTREE_DEBUG fprintf(stderr, "pass ");
265 lnode = tree_get_node(t, lnode, pass, true);
266 assert(lnode);
267 stats_add_result(&lnode->u, rval, 1);
270 LTREE_DEBUG fprintf(stderr, "\n");
275 uct_playout(struct uct *u, struct board *b, enum stone player_color, struct tree *t)
277 struct board b2;
278 board_copy(&b2, b);
280 struct playout_amafmap *amaf = NULL;
281 if (u->policy->wants_amaf) {
282 amaf = calloc2(1, sizeof(*amaf));
283 amaf->map = calloc2(board_size2(&b2) + 1, sizeof(*amaf->map));
284 amaf->map++; // -1 is pass
287 /* Walk the tree until we find a leaf, then expand it and do
288 * a random playout. */
289 struct tree_node *n = t->root;
290 enum stone node_color = stone_other(player_color);
291 assert(node_color == t->root_color);
293 /* Tree descent history. */
294 /* XXX: This is somewhat messy since @n and descent[dlen-1].node are
295 * redundant. */
296 #define DLEN 512
297 struct uct_descent descent[DLEN];
298 descent[0].node = n; descent[0].lnode = NULL;
299 int dlen = 1;
300 /* Total value of the sequence. */
301 struct move_stats seq_value = { .playouts = 0 };
303 int result;
304 int pass_limit = (board_size(&b2) - 2) * (board_size(&b2) - 2) / 2;
305 int passes = is_pass(b->last_move.coord) && b->moves > 0;
307 /* debug */
308 int depth = 0;
309 static char spaces[] = "\0 ";
310 /* /debug */
311 if (UDEBUGL(8))
312 fprintf(stderr, "--- UCT walk with color %d\n", player_color);
314 while (!tree_leaf_node(n) && passes < 2) {
315 spaces[depth++] = ' '; spaces[depth] = 0;
318 /*** Choose a node to descend to: */
320 /* Parity is chosen already according to the child color, since
321 * it is applied to children. */
322 node_color = stone_other(node_color);
323 int parity = (node_color == player_color ? 1 : -1);
325 assert(dlen < DLEN);
326 descent[dlen] = descent[dlen - 1];
327 if (u->local_tree && (!descent[dlen].lnode || descent[dlen].node->d >= u->tenuki_d)) {
328 /* Start new local sequence. */
329 /* Remember that node_color already holds color of the
330 * to-be-found child. */
331 descent[dlen].lnode = node_color == S_BLACK ? t->ltree_black : t->ltree_white;
334 if (!u->random_policy_chance || fast_random(u->random_policy_chance))
335 u->policy->descend(u->policy, t, &descent[dlen], parity, b2.moves > pass_limit);
336 else
337 u->random_policy->descend(u->random_policy, t, &descent[dlen], parity, b2.moves > pass_limit);
340 /*** Perform the descent: */
342 seq_value.playouts += descent[dlen].value.playouts;
343 seq_value.value += descent[dlen].value.value * descent[dlen].value.playouts;
344 n = descent[dlen++].node;
345 assert(n == t->root || n->parent);
346 if (UDEBUGL(7))
347 fprintf(stderr, "%s+-- UCT sent us to [%s:%d] %f\n",
348 spaces, coord2sstr(n->coord, t->board), n->coord,
349 tree_node_get_value(t, parity, n->u.value));
351 /* Add virtual loss if we need to; this is used to discourage
352 * other threads from visiting this node in case of multiple
353 * threads doing the tree search. */
354 if (u->virtual_loss)
355 stats_add_result(&n->u, tree_parity(t, parity) > 0 ? 0 : 1, 1);
357 assert(n->coord >= -1);
358 if (amaf && !is_pass(n->coord)) {
359 if (amaf->map[n->coord] == S_NONE || amaf->map[n->coord] == node_color) {
360 amaf->map[n->coord] = node_color;
361 } else { // XXX: Respect amaf->record_nakade
362 amaf_op(amaf->map[n->coord], +);
364 amaf->game[amaf->gamelen].coord = n->coord;
365 amaf->game[amaf->gamelen].color = node_color;
366 amaf->gamelen++;
367 assert(amaf->gamelen < sizeof(amaf->game) / sizeof(amaf->game[0]));
370 struct move m = { n->coord, node_color };
371 int res = board_play(&b2, &m);
373 if (res < 0 || (!is_pass(m.coord) && !group_at(&b2, m.coord)) /* suicide */
374 || b2.superko_violation) {
375 if (UDEBUGL(4)) {
376 for (struct tree_node *ni = n; ni; ni = ni->parent)
377 fprintf(stderr, "%s<%"PRIhash"> ", coord2sstr(ni->coord, t->board), ni->hash);
378 fprintf(stderr, "marking invalid %s node %d,%d res %d group %d spk %d\n",
379 stone2str(node_color), coord_x(n->coord,b), coord_y(n->coord,b),
380 res, group_at(&b2, m.coord), b2.superko_violation);
382 n->hints |= TREE_HINT_INVALID;
383 result = 0;
384 goto end;
387 if (is_pass(n->coord))
388 passes++;
389 else
390 passes = 0;
393 if (amaf) {
394 amaf->game_baselen = amaf->gamelen;
395 amaf->record_nakade = u->playout_amaf_nakade;
398 if (t->use_extra_komi && u->dynkomi->persim) {
399 b2.komi += round(u->dynkomi->persim(u->dynkomi, &b2, t, n));
402 if (passes >= 2) {
403 /* XXX: No dead groups support. */
404 float score = board_official_score(&b2, NULL);
405 /* Result from black's perspective (no matter who
406 * the player; black's perspective is always
407 * what the tree stores. */
408 result = - (score * 2);
410 if (UDEBUGL(5))
411 fprintf(stderr, "[%d..%d] %s p-p scoring playout result %d (W %f)\n",
412 player_color, node_color, coord2sstr(n->coord, t->board), result, score);
413 if (UDEBUGL(6))
414 board_print(&b2, stderr);
416 board_ownermap_fill(&u->ownermap, &b2);
418 } else { assert(u->parallel_tree || tree_leaf_node(n));
419 /* In case of parallel tree search, the assertion might
420 * not hold if two threads chew on the same node. */
421 result = uct_leaf_node(u, &b2, player_color, amaf, t, n, node_color, spaces);
424 if (amaf && u->playout_amaf_cutoff) {
425 int cutoff = amaf->game_baselen;
426 cutoff += (amaf->gamelen - amaf->game_baselen) * u->playout_amaf_cutoff / 100;
427 /* Now, reconstruct the amaf map. */
428 memset(amaf->map, 0, board_size2(&b2) * sizeof(*amaf->map));
429 for (int i = 0; i < cutoff; i++) {
430 coord_t coord = amaf->game[i].coord;
431 enum stone color = amaf->game[i].color;
432 if (amaf->map[coord] == S_NONE || amaf->map[coord] == color) {
433 amaf->map[coord] = color;
434 /* Nakade always recorded for in-tree part */
435 } else if (amaf->record_nakade || i <= amaf->game_baselen) {
436 amaf_op(amaf->map[n->coord], +);
441 assert(n == t->root || n->parent);
442 if (result != 0) {
443 float rval = scale_value(u, b, result);
444 u->policy->update(u->policy, t, n, node_color, player_color, amaf, rval);
446 if (t->use_extra_komi) {
447 stats_add_result(&u->dynkomi->score, result / 2, 1);
448 stats_add_result(&u->dynkomi->value, rval, 1);
451 if (u->local_tree && n->parent && !is_pass(n->coord) && dlen > 0) {
452 /* Possibly transform the rval appropriately. */
453 float expval = seq_value.value / seq_value.playouts;
454 rval = stats_temper_value(rval, expval, u->local_tree);
456 /* Get the local sequences and record them in ltree. */
457 /* We will look for sequence starts in our descent
458 * history, then run record_local_sequence() for each
459 * found sequence start; record_local_sequence() may
460 * pick longer sequences from descent history then,
461 * which is expected as it will create new lnodes. */
462 enum stone seq_color = player_color;
463 /* First move always starts a sequence. */
464 record_local_sequence(u, t, descent, dlen, 1, seq_color, rval);
465 seq_color = stone_other(seq_color);
466 for (int dseqi = 2; dseqi < dlen; dseqi++, seq_color = stone_other(seq_color)) {
467 if (u->local_tree_allseq) {
468 /* We are configured to record all subsequences. */
469 record_local_sequence(u, t, descent, dlen, dseqi, seq_color, rval);
470 continue;
472 if (descent[dseqi].node->d >= u->tenuki_d) {
473 /* Tenuki! Record the fresh sequence. */
474 record_local_sequence(u, t, descent, dlen, dseqi, seq_color, rval);
475 continue;
477 if (descent[dseqi].lnode && !descent[dseqi].lnode) {
478 /* Record result for in-descent picked sequence. */
479 record_local_sequence(u, t, descent, dlen, dseqi, seq_color, rval);
480 continue;
486 end:
487 /* We need to undo the virtual loss we added during descend. */
488 if (u->virtual_loss) {
489 int parity = (node_color == player_color ? 1 : -1);
490 for (; n->parent; n = n->parent) {
491 stats_rm_result(&n->u, tree_parity(t, parity) > 0 ? 0 : 1, 1);
492 parity = -parity;
496 if (amaf) {
497 free(amaf->map - 1);
498 free(amaf);
500 board_done_noalloc(&b2);
501 return result;
505 uct_playouts(struct uct *u, struct board *b, enum stone color, struct tree *t)
507 int i;
508 for (i = 0; !uct_halt; i++)
509 uct_playout(u, b, color, t);
510 return i;