Fix the 6ec3ca4 fix: a late slave didn't get correct komi.
[pachi.git] / uct / uct.c
blob6ddf1ed9ddb9f89964acfa2fe6b303af79c70273
1 #include <assert.h>
2 #include <math.h>
3 #include <pthread.h>
4 #include <signal.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <time.h>
10 #define DEBUG
12 #include "debug.h"
13 #include "board.h"
14 #include "gtp.h"
15 #include "move.h"
16 #include "mq.h"
17 #include "playout.h"
18 #include "playout/elo.h"
19 #include "playout/moggy.h"
20 #include "playout/light.h"
21 #include "random.h"
22 #include "tactics.h"
23 #include "timeinfo.h"
24 #include "distributed/distributed.h"
25 #include "uct/dynkomi.h"
26 #include "uct/internal.h"
27 #include "uct/prior.h"
28 #include "uct/tree.h"
29 #include "uct/uct.h"
30 #include "uct/walk.h"
32 struct uct_policy *policy_ucb1_init(struct uct *u, char *arg);
33 struct uct_policy *policy_ucb1amaf_init(struct uct *u, char *arg);
34 static void uct_pondering_stop(struct uct *u);
35 static void uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color);
36 static char *uct_getstats(struct uct *u, struct board *b, coord_t *c);
38 /* Default number of simulations to perform per move.
39 * Note that this is now in total over all threads! (Unless TM_ROOT.) */
40 #define MC_GAMES 80000
41 #define MC_GAMELEN MAX_GAMELEN
42 static const struct time_info default_ti = {
43 .period = TT_MOVE,
44 .dim = TD_GAMES,
45 .len = { .games = MC_GAMES },
48 /* How big proportion of ownermap counts must be of one color to consider
49 * the point sure. */
50 #define GJ_THRES 0.8
51 /* How many games to consider at minimum before judging groups. */
52 #define GJ_MINGAMES 500
54 /* How often to inspect the tree from the main thread to check for playout
55 * stop, progress reports, etc. (in seconds) */
56 #define TREE_BUSYWAIT_INTERVAL 0.1 /* 100ms */
58 /* Once per how many simulations (per thread) to show a progress report line. */
59 #define TREE_SIMPROGRESS_INTERVAL 10000
61 /* How often to send stats updates for the distributed engine (in seconds). */
62 #define STATS_SEND_INTERVAL 0.5
64 /* When terminating uct_search() early, the safety margin to add to the
65 * remaining playout number estimate when deciding whether the result can
66 * still change. */
67 #define PLAYOUT_DELTA_SAFEMARGIN 1000
70 static void
71 setup_state(struct uct *u, struct board *b, enum stone color)
73 u->t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0, u->local_tree_aging);
74 if (u->force_seed)
75 fast_srandom(u->force_seed);
76 if (UDEBUGL(0))
77 fprintf(stderr, "Fresh board with random seed %lu\n", fast_getseed());
78 //board_print(b, stderr);
79 if (!u->no_book && b->moves == 0) {
80 assert(color == S_BLACK);
81 tree_load(u->t, b);
85 static void
86 reset_state(struct uct *u)
88 assert(u->t);
89 tree_done(u->t); u->t = NULL;
92 static void
93 setup_dynkomi(struct uct *u, struct board *b, enum stone to_play)
95 if (u->t->use_extra_komi && u->dynkomi->permove)
96 u->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, u->t);
99 static void
100 prepare_move(struct engine *e, struct board *b, enum stone color)
102 struct uct *u = e->data;
104 if (u->t) {
105 /* Verify that we have sane state. */
106 assert(b->es == u);
107 assert(u->t && b->moves);
108 if (color != stone_other(u->t->root_color)) {
109 fprintf(stderr, "Fatal: Non-alternating play detected %d %d\n",
110 color, u->t->root_color);
111 exit(1);
114 } else {
115 /* We need fresh state. */
116 b->es = u;
117 setup_state(u, b, color);
120 u->ownermap.playouts = 0;
121 memset(u->ownermap.map, 0, board_size2(b) * sizeof(u->ownermap.map[0]));
124 static void
125 dead_group_list(struct uct *u, struct board *b, struct move_queue *mq)
127 struct group_judgement gj;
128 gj.thres = GJ_THRES;
129 gj.gs = alloca(board_size2(b) * sizeof(gj.gs[0]));
130 board_ownermap_judge_group(b, &u->ownermap, &gj);
131 groups_of_status(b, &gj, GS_DEAD, mq);
134 bool
135 uct_pass_is_safe(struct uct *u, struct board *b, enum stone color, bool pass_all_alive)
137 if (u->ownermap.playouts < GJ_MINGAMES)
138 return false;
140 struct move_queue mq = { .moves = 0 };
141 if (!pass_all_alive)
142 dead_group_list(u, b, &mq);
143 return pass_is_safe(b, color, &mq);
146 /* This function is called only when running as slave in the distributed version. */
147 static enum parse_code
148 uct_notify(struct engine *e, struct board *b, int id, char *cmd, char *args, char **reply)
150 struct uct *u = e->data;
152 static bool board_resized = false;
153 board_resized |= is_gamestart(cmd);
155 /* Force resending the whole command history if we are out of sync
156 * but do it only once, not if already getting the history. */
157 if ((move_number(id) != b->moves || !board_resized) && !reply_disabled(id)) {
158 if (UDEBUGL(0))
159 fprintf(stderr, "Out of sync, id %d, move %d\n", id, b->moves);
160 static char buf[128];
161 snprintf(buf, sizeof(buf), "out of sync, move %d expected", b->moves);
162 *reply = buf;
163 return P_DONE_ERROR;
165 u->gtp_id = id;
166 return reply_disabled(id) ? P_NOREPLY : P_OK;
169 static char *
170 uct_printhook_ownermap(struct board *board, coord_t c, char *s, char *end)
172 struct uct *u = board->es;
173 assert(u);
174 const char chr[] = ":XO,"; // dame, black, white, unclear
175 const char chm[] = ":xo,";
176 char ch = chr[board_ownermap_judge_point(&u->ownermap, c, GJ_THRES)];
177 if (ch == ',') { // less precise estimate then?
178 ch = chm[board_ownermap_judge_point(&u->ownermap, c, 0.67)];
180 s += snprintf(s, end - s, "%c ", ch);
181 return s;
184 static char *
185 uct_notify_play(struct engine *e, struct board *b, struct move *m)
187 struct uct *u = e->data;
188 if (!u->t) {
189 /* No state, create one - this is probably game beginning
190 * and we need to load the opening book right now. */
191 prepare_move(e, b, m->color);
192 assert(u->t);
195 /* Stop pondering, required by tree_promote_at() */
196 uct_pondering_stop(u);
198 if (is_resign(m->coord)) {
199 /* Reset state. */
200 reset_state(u);
201 return NULL;
204 /* Promote node of the appropriate move to the tree root. */
205 assert(u->t->root);
206 if (!tree_promote_at(u->t, b, m->coord)) {
207 if (UDEBUGL(0))
208 fprintf(stderr, "Warning: Cannot promote move node! Several play commands in row?\n");
209 reset_state(u);
210 return NULL;
213 /* If we are a slave in a distributed engine, start pondering once
214 * we know which move we actually played. See uct_genmove() about
215 * the check for pass. */
216 if (u->pondering_opt && u->slave && m->color == u->my_color && !is_pass(m->coord))
217 uct_pondering_start(u, b, u->t, stone_other(m->color));
219 return NULL;
222 static char *
223 uct_chat(struct engine *e, struct board *b, char *cmd)
225 struct uct *u = e->data;
226 static char reply[1024];
228 cmd += strspn(cmd, " \n\t");
229 if (!strncasecmp(cmd, "winrate", 7)) {
230 if (!u->t)
231 return "no game context (yet?)";
232 enum stone color = u->t->root_color;
233 struct tree_node *n = u->t->root;
234 snprintf(reply, 1024, "In %d playouts at %d threads, %s %s can win with %.2f%% probability",
235 n->u.playouts, u->threads, stone2str(color), coord2sstr(n->coord, b),
236 tree_node_get_value(u->t, -1, n->u.value) * 100);
237 if (u->t->use_extra_komi && abs(u->t->extra_komi) >= 0.5) {
238 sprintf(reply + strlen(reply), ", while self-imposing extra komi %.1f",
239 u->t->extra_komi);
241 strcat(reply, ".");
242 return reply;
244 return NULL;
247 static void
248 uct_dead_group_list(struct engine *e, struct board *b, struct move_queue *mq)
250 struct uct *u = e->data;
252 /* This means the game is probably over, no use pondering on. */
253 uct_pondering_stop(u);
255 if (u->pass_all_alive)
256 return; // no dead groups
258 bool mock_state = false;
260 if (!u->t) {
261 /* No state, but we cannot just back out - we might
262 * have passed earlier, only assuming some stones are
263 * dead, and then re-connected, only to lose counting
264 * when all stones are assumed alive. */
265 /* Mock up some state and seed the ownermap by few
266 * simulations. */
267 prepare_move(e, b, S_BLACK); assert(u->t);
268 for (int i = 0; i < GJ_MINGAMES; i++)
269 uct_playout(u, b, S_BLACK, u->t);
270 mock_state = true;
273 dead_group_list(u, b, mq);
275 if (mock_state) {
276 /* Clean up the mock state in case we will receive
277 * a genmove; we could get a non-alternating-move
278 * error from prepare_move() in that case otherwise. */
279 reset_state(u);
283 static void
284 playout_policy_done(struct playout_policy *p)
286 if (p->done) p->done(p);
287 if (p->data) free(p->data);
288 free(p);
291 static void
292 uct_done(struct engine *e)
294 /* This is called on engine reset, especially when clear_board
295 * is received and new game should begin. */
296 struct uct *u = e->data;
297 uct_pondering_stop(u);
298 if (u->t) reset_state(u);
299 free(u->ownermap.map);
301 free(u->policy);
302 free(u->random_policy);
303 playout_policy_done(u->playout);
304 uct_prior_done(u->prior);
308 /* Pachi threading structure (if uct_playouts_parallel() is used):
310 * main thread
311 * | main(), GTP communication, ...
312 * | starts and stops the search managed by thread_manager
314 * thread_manager
315 * | spawns and collects worker threads
317 * worker0
318 * worker1
319 * ...
320 * workerK
321 * uct_playouts() loop, doing descend-playout until uct_halt
323 * Another way to look at it is by functions (lines denote thread boundaries):
325 * | uct_genmove()
326 * | uct_search() (uct_search_start() .. uct_search_stop())
327 * | -----------------------
328 * | spawn_thread_manager()
329 * | -----------------------
330 * | spawn_worker()
331 * V uct_playouts() */
333 /* Set in thread manager in case the workers should stop. */
334 volatile sig_atomic_t uct_halt = 0;
335 /* ID of the running worker thread. */
336 __thread int thread_id = -1;
337 /* ID of the thread manager. */
338 static pthread_t thread_manager;
339 static bool thread_manager_running;
341 static pthread_mutex_t finish_mutex = PTHREAD_MUTEX_INITIALIZER;
342 static pthread_cond_t finish_cond = PTHREAD_COND_INITIALIZER;
343 static volatile int finish_thread;
344 static pthread_mutex_t finish_serializer = PTHREAD_MUTEX_INITIALIZER;
346 struct spawn_ctx {
347 int tid;
348 struct uct *u;
349 struct board *b;
350 enum stone color;
351 struct tree *t;
352 unsigned long seed;
353 int games;
356 static void *
357 spawn_worker(void *ctx_)
359 struct spawn_ctx *ctx = ctx_;
360 /* Setup */
361 fast_srandom(ctx->seed);
362 thread_id = ctx->tid;
363 /* Run */
364 ctx->games = uct_playouts(ctx->u, ctx->b, ctx->color, ctx->t);
365 /* Finish */
366 pthread_mutex_lock(&finish_serializer);
367 pthread_mutex_lock(&finish_mutex);
368 finish_thread = ctx->tid;
369 pthread_cond_signal(&finish_cond);
370 pthread_mutex_unlock(&finish_mutex);
371 return ctx;
374 /* Thread manager, controlling worker threads. It must be called with
375 * finish_mutex lock held, but it will unlock it itself before exiting;
376 * this is necessary to be completely deadlock-free. */
377 /* The finish_cond can be signalled for it to stop; in that case,
378 * the caller should set finish_thread = -1. */
379 /* After it is started, it will update mctx->t to point at some tree
380 * used for the actual search (matters only for TM_ROOT), on return
381 * it will set mctx->games to the number of performed simulations. */
382 static void *
383 spawn_thread_manager(void *ctx_)
385 /* In thread_manager, we use only some of the ctx fields. */
386 struct spawn_ctx *mctx = ctx_;
387 struct uct *u = mctx->u;
388 struct tree *t = mctx->t;
389 bool shared_tree = u->parallel_tree;
390 fast_srandom(mctx->seed);
392 int played_games = 0;
393 pthread_t threads[u->threads];
394 int joined = 0;
396 uct_halt = 0;
398 /* Garbage collect the tree by preference when pondering. */
399 if (u->pondering && t->nodes && t->nodes_size > t->max_tree_size/2) {
400 unsigned long temp_size = (MIN_FREE_MEM_PERCENT * t->max_tree_size) / 100;
401 t->root = tree_garbage_collect(t, temp_size, t->root);
404 /* Spawn threads... */
405 for (int ti = 0; ti < u->threads; ti++) {
406 struct spawn_ctx *ctx = malloc(sizeof(*ctx));
407 ctx->u = u; ctx->b = mctx->b; ctx->color = mctx->color;
408 mctx->t = ctx->t = shared_tree ? t : tree_copy(t);
409 ctx->tid = ti; ctx->seed = fast_random(65536) + ti;
410 pthread_create(&threads[ti], NULL, spawn_worker, ctx);
411 if (UDEBUGL(3))
412 fprintf(stderr, "Spawned worker %d\n", ti);
415 /* ...and collect them back: */
416 while (joined < u->threads) {
417 /* Wait for some thread to finish... */
418 pthread_cond_wait(&finish_cond, &finish_mutex);
419 if (finish_thread < 0) {
420 /* Stop-by-caller. Tell the workers to wrap up. */
421 uct_halt = 1;
422 continue;
424 /* ...and gather its remnants. */
425 struct spawn_ctx *ctx;
426 pthread_join(threads[finish_thread], (void **) &ctx);
427 played_games += ctx->games;
428 joined++;
429 if (!shared_tree) {
430 if (ctx->t == mctx->t) mctx->t = t;
431 tree_merge(t, ctx->t);
432 tree_done(ctx->t);
434 free(ctx);
435 if (UDEBUGL(3))
436 fprintf(stderr, "Joined worker %d\n", finish_thread);
437 pthread_mutex_unlock(&finish_serializer);
440 pthread_mutex_unlock(&finish_mutex);
442 if (!shared_tree)
443 tree_normalize(mctx->t, u->threads);
445 mctx->games = played_games;
446 return mctx;
449 static struct spawn_ctx *
450 uct_search_start(struct uct *u, struct board *b, enum stone color, struct tree *t)
452 assert(u->threads > 0);
453 assert(!thread_manager_running);
455 struct spawn_ctx ctx = { .u = u, .b = b, .color = color, .t = t, .seed = fast_random(65536) };
456 static struct spawn_ctx mctx; mctx = ctx;
457 pthread_mutex_lock(&finish_mutex);
458 pthread_create(&thread_manager, NULL, spawn_thread_manager, &mctx);
459 thread_manager_running = true;
460 return &mctx;
463 static struct spawn_ctx *
464 uct_search_stop(void)
466 assert(thread_manager_running);
468 /* Signal thread manager to stop the workers. */
469 pthread_mutex_lock(&finish_mutex);
470 finish_thread = -1;
471 pthread_cond_signal(&finish_cond);
472 pthread_mutex_unlock(&finish_mutex);
474 /* Collect the thread manager. */
475 struct spawn_ctx *pctx;
476 thread_manager_running = false;
477 pthread_join(thread_manager, (void **) &pctx);
478 return pctx;
482 /* Determine whether we should terminate the search early. */
483 static bool
484 uct_search_stop_early(struct uct *u, struct tree *t, struct board *b,
485 struct time_info *ti, struct time_stop *stop,
486 struct tree_node *best, struct tree_node *best2,
487 int base_playouts, int i)
489 /* Always use at least half the desired time. It is silly
490 * to lose a won game because we played a bad move in 0.1s. */
491 double elapsed = 0;
492 if (ti->dim == TD_WALLTIME) {
493 elapsed = time_now() - ti->len.t.timer_start;
494 if (elapsed < 0.5 * stop->desired.time) return false;
497 /* Early break in won situation. */
498 if (best->u.playouts >= 2000 && tree_node_get_value(t, 1, best->u.value) >= u->loss_threshold)
499 return true;
500 /* Earlier break in super-won situation. */
501 if (best->u.playouts >= 500 && tree_node_get_value(t, 1, best->u.value) >= 0.95)
502 return true;
504 /* Break early if we estimate the second-best move cannot
505 * catch up in assigned time anymore. We use all our time
506 * if we are in byoyomi with single stone remaining in our
507 * period, however - it's better to pre-ponder. */
508 bool time_indulgent = (!ti->len.t.main_time && ti->len.t.byoyomi_stones == 1);
509 if (best2 && ti->dim == TD_WALLTIME && !time_indulgent) {
510 double remaining = stop->worst.time - elapsed;
511 double pps = ((double)i - base_playouts) / elapsed;
512 double estplayouts = remaining * pps + PLAYOUT_DELTA_SAFEMARGIN;
513 if (best->u.playouts > best2->u.playouts + estplayouts) {
514 if (UDEBUGL(2))
515 fprintf(stderr, "Early stop, result cannot change: "
516 "best %d, best2 %d, estimated %f simulations to go\n",
517 best->u.playouts, best2->u.playouts, estplayouts);
518 return true;
522 return false;
525 /* Determine whether we should terminate the search later. */
526 static bool
527 uct_search_keep_looking(struct uct *u, struct tree *t, struct board *b,
528 struct time_info *ti, struct time_stop *stop,
529 struct tree_node *best, struct tree_node *best2,
530 struct tree_node *bestr, struct tree_node *winner, int i)
532 if (!best) {
533 if (UDEBUGL(2))
534 fprintf(stderr, "Did not find best move, still trying...\n");
535 return true;
538 /* Do not waste time if we are winning. Spend up to worst time if
539 * we are unsure, but only desired time if we are sure of winning. */
540 float beta = 2 * (tree_node_get_value(t, 1, best->u.value) - 0.5);
541 if (ti->dim == TD_WALLTIME && beta > 0) {
542 double good_enough = stop->desired.time * beta + stop->worst.time * (1 - beta);
543 double elapsed = time_now() - ti->len.t.timer_start;
544 if (elapsed > good_enough) return false;
547 if (u->best2_ratio > 0) {
548 /* Check best/best2 simulations ratio. If the
549 * two best moves give very similar results,
550 * keep simulating. */
551 if (best2 && best2->u.playouts
552 && (double)best->u.playouts / best2->u.playouts < u->best2_ratio) {
553 if (UDEBUGL(2))
554 fprintf(stderr, "Best2 ratio %f < threshold %f\n",
555 (double)best->u.playouts / best2->u.playouts,
556 u->best2_ratio);
557 return true;
561 if (u->bestr_ratio > 0) {
562 /* Check best, best_best value difference. If the best move
563 * and its best child do not give similar enough results,
564 * keep simulating. */
565 if (bestr && bestr->u.playouts
566 && fabs((double)best->u.value - bestr->u.value) > u->bestr_ratio) {
567 if (UDEBUGL(2))
568 fprintf(stderr, "Bestr delta %f > threshold %f\n",
569 fabs((double)best->u.value - bestr->u.value),
570 u->bestr_ratio);
571 return true;
575 if (winner && winner != best) {
576 /* Keep simulating if best explored
577 * does not have also highest value. */
578 if (UDEBUGL(2))
579 fprintf(stderr, "[%d] best %3s [%d] %f != winner %3s [%d] %f\n", i,
580 coord2sstr(best->coord, t->board),
581 best->u.playouts, tree_node_get_value(t, 1, best->u.value),
582 coord2sstr(winner->coord, t->board),
583 winner->u.playouts, tree_node_get_value(t, 1, winner->u.value));
584 return true;
587 /* No reason to keep simulating, bye. */
588 return false;
591 /* Run time-limited MCTS search on foreground. */
592 static int
593 uct_search(struct uct *u, struct board *b, struct time_info *ti, enum stone color, struct tree *t)
595 int base_playouts = u->t->root->u.playouts;
596 if (UDEBUGL(2) && base_playouts > 0)
597 fprintf(stderr, "<pre-simulated %d games skipped>\n", base_playouts);
599 /* Set up time conditions. */
600 if (ti->period == TT_NULL) *ti = default_ti;
601 struct time_stop stop;
602 time_stop_conditions(ti, b, u->fuseki_end, u->yose_start, &stop);
604 /* Number of last dynkomi adjustment. */
605 int last_dynkomi = t->root->u.playouts;
606 /* Number of last game with progress print. */
607 int last_print = t->root->u.playouts;
608 /* Number of simulations to wait before next print. */
609 int print_interval = TREE_SIMPROGRESS_INTERVAL * (u->thread_model == TM_ROOT ? 1 : u->threads);
610 /* Printed notification about full memory? */
611 bool print_fullmem = false;
612 /* Absolute time of last distributed stats update. */
613 double last_stats_sent = time_now();
614 /* Interval between distributed stats updates. */
615 double stats_interval = STATS_SEND_INTERVAL;
617 struct spawn_ctx *ctx = uct_search_start(u, b, color, t);
619 /* The search tree is ctx->t. This is normally == t, but in case of
620 * TM_ROOT, it is one of the trees belonging to the independent
621 * workers. It is important to reference ctx->t directly since the
622 * thread manager will swap the tree pointer asynchronously. */
623 /* XXX: This means TM_ROOT support is suboptimal since single stalled
624 * thread can stall the others in case of limiting the search by game
625 * count. However, TM_ROOT just does not deserve any more extra code
626 * right now. */
628 struct tree_node *best = NULL;
629 struct tree_node *best2 = NULL; // Second-best move.
630 struct tree_node *bestr = NULL; // best's best child.
631 struct tree_node *winner = NULL;
633 double busywait_interval = TREE_BUSYWAIT_INTERVAL;
635 /* Now, just periodically poll the search tree. */
636 while (1) {
637 time_sleep(busywait_interval);
638 /* busywait_interval should never be less than desired time, or the
639 * time control is broken. But if it happens to be less, we still search
640 * at least 100ms otherwise the move is completely random. */
642 int i = ctx->t->root->u.playouts;
644 /* Adjust dynkomi? */
645 if (ctx->t->use_extra_komi && u->dynkomi->permove
646 && u->dynkomi_interval
647 && i > last_dynkomi + u->dynkomi_interval) {
648 float old_dynkomi = ctx->t->extra_komi;
649 ctx->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, ctx->t);
650 if (UDEBUGL(3) && old_dynkomi != ctx->t->extra_komi)
651 fprintf(stderr, "dynkomi adjusted (%f -> %f)\n", old_dynkomi, ctx->t->extra_komi);
654 /* Print progress? */
655 if (i - last_print > print_interval) {
656 last_print += print_interval; // keep the numbers tidy
657 uct_progress_status(u, ctx->t, color, last_print);
659 if (!print_fullmem && ctx->t->nodes_size > u->max_tree_size) {
660 if (UDEBUGL(2))
661 fprintf(stderr, "memory limit hit (%lu > %lu)\n", ctx->t->nodes_size, u->max_tree_size);
662 print_fullmem = true;
665 /* Never consider stopping if we played too few simulations.
666 * Maybe we risk losing on time when playing in super-extreme
667 * time pressure but the tree is going to be just too messed
668 * up otherwise - we might even play invalid suicides or pass
669 * when we mustn't. */
670 if (i < GJ_MINGAMES)
671 continue;
673 best = u->policy->choose(u->policy, ctx->t->root, b, color, resign);
674 if (best) best2 = u->policy->choose(u->policy, ctx->t->root, b, color, best->coord);
676 /* Possibly stop search early if it's no use to try on. */
677 if (best && uct_search_stop_early(u, ctx->t, b, ti, &stop, best, best2, base_playouts, i))
678 break;
680 /* Check against time settings. */
681 bool desired_done = false;
682 double now = time_now();
683 if (ti->dim == TD_WALLTIME) {
684 double elapsed = now - ti->len.t.timer_start;
685 if (elapsed > stop.worst.time) break;
686 desired_done = elapsed > stop.desired.time;
687 if (stats_interval < 0.1 * stop.desired.time)
688 stats_interval = 0.1 * stop.desired.time;
690 } else { assert(ti->dim == TD_GAMES);
691 if (i > stop.worst.playouts) break;
692 desired_done = i > stop.desired.playouts;
695 /* We want to stop simulating, but are willing to keep trying
696 * if we aren't completely sure about the winner yet. */
697 if (desired_done) {
698 if (u->policy->winner && u->policy->evaluate) {
699 struct uct_descent descent = { .node = ctx->t->root };
700 u->policy->winner(u->policy, ctx->t, &descent);
701 winner = descent.node;
703 if (best)
704 bestr = u->policy->choose(u->policy, best, b, stone_other(color), resign);
705 if (!uct_search_keep_looking(u, ctx->t, b, ti, &stop, best, best2, bestr, winner, i))
706 break;
709 /* TODO: Early break if best->variance goes under threshold and we already
710 * have enough playouts (possibly thanks to book or to pondering)? */
712 /* Send new stats for the distributed engine.
713 * End with #\n (not \n\n) to indicate a temporary result. */
714 if (u->slave && now - last_stats_sent > stats_interval) {
715 printf("=%d %s\n#\n", u->gtp_id, uct_getstats(u, b, NULL));
716 fflush(stdout);
717 last_stats_sent = now;
721 ctx = uct_search_stop();
723 if (UDEBUGL(2))
724 tree_dump(t, u->dumpthres);
725 if (UDEBUGL(0))
726 uct_progress_status(u, t, color, ctx->games);
728 return ctx->games;
732 /* Start pondering background with @color to play. */
733 static void
734 uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color)
736 if (UDEBUGL(1))
737 fprintf(stderr, "Starting to ponder with color %s\n", stone2str(stone_other(color)));
738 u->pondering = true;
740 /* We need a local board copy to ponder upon. */
741 struct board *b = malloc(sizeof(*b)); board_copy(b, b0);
743 /* *b0 did not have the genmove'd move played yet. */
744 struct move m = { t->root->coord, t->root_color };
745 int res = board_play(b, &m);
746 assert(res >= 0);
747 setup_dynkomi(u, b, stone_other(m.color));
749 /* Start MCTS manager thread "headless". */
750 uct_search_start(u, b, color, t);
753 /* uct_search_stop() frontend for the pondering (non-genmove) mode. */
754 static void
755 uct_pondering_stop(struct uct *u)
757 u->pondering = false;
758 if (!thread_manager_running)
759 return;
761 /* Stop the thread manager. */
762 struct spawn_ctx *ctx = uct_search_stop();
763 if (UDEBUGL(1)) {
764 fprintf(stderr, "(pondering) ");
765 uct_progress_status(u, ctx->t, ctx->color, ctx->games);
767 free(ctx->b);
771 static coord_t *
772 uct_genmove(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
774 double start_time = time_now();
775 struct uct *u = e->data;
777 if (b->superko_violation) {
778 fprintf(stderr, "!!! WARNING: SUPERKO VIOLATION OCCURED BEFORE THIS MOVE\n");
779 fprintf(stderr, "Maybe you play with situational instead of positional superko?\n");
780 fprintf(stderr, "I'm going to ignore the violation, but note that I may miss\n");
781 fprintf(stderr, "some moves valid under this ruleset because of this.\n");
782 b->superko_violation = false;
785 /* Seed the tree. */
786 uct_pondering_stop(u);
787 prepare_move(e, b, color);
788 assert(u->t);
789 u->my_color = color;
791 /* How to decide whether to use dynkomi in this game? Since we use
792 * pondering, it's not simple "who-to-play" matter. Decide based on
793 * the last genmove issued. */
794 u->t->use_extra_komi = !!(u->dynkomi_mask & color);
795 setup_dynkomi(u, b, color);
797 if (b->rules == RULES_JAPANESE)
798 u->territory_scoring = true;
800 /* Make pessimistic assumption about komi for Japanese rules to
801 * avoid losing by 0.5 when winning by 0.5 with Chinese rules.
802 * The rules usually give the same winner if the integer part of komi
803 * is odd so we adjust the komi only if it is even (for a board of
804 * odd size). We are not trying to get an exact evaluation for rare
805 * cases of seki. For details see http://home.snafu.de/jasiek/parity.html */
806 if (u->territory_scoring && (((int)floor(b->komi) + board_size(b)) & 1)) {
807 b->komi += (color == S_BLACK ? 1.0 : -1.0);
808 if (UDEBUGL(0))
809 fprintf(stderr, "Setting komi to %.1f assuming Japanese rules\n",
810 b->komi);
813 int base_playouts = u->t->root->u.playouts;
814 /* Perform the Monte Carlo Tree Search! */
815 int played_games = uct_search(u, b, ti, color, u->t);
817 /* Choose the best move from the tree. */
818 struct tree_node *best = u->policy->choose(u->policy, u->t->root, b, color, resign);
819 if (!best) {
820 if (!u->slave) reset_state(u);
821 return coord_copy(pass);
823 if (UDEBUGL(1))
824 fprintf(stderr, "*** WINNER is %s (%d,%d) with score %1.4f (%d/%d:%d/%d games), extra komi %f\n",
825 coord2sstr(best->coord, b), coord_x(best->coord, b), coord_y(best->coord, b),
826 tree_node_get_value(u->t, 1, best->u.value), best->u.playouts,
827 u->t->root->u.playouts, u->t->root->u.playouts - base_playouts, played_games,
828 u->t->extra_komi);
830 /* Do not resign if we're so short of time that evaluation of best
831 * move is completely unreliable, we might be winning actually.
832 * In this case best is almost random but still better than resign.
833 * Also do not resign if we are getting bad results while actually
834 * giving away extra komi points (dynkomi). */
835 if (tree_node_get_value(u->t, 1, best->u.value) < u->resign_ratio
836 && !is_pass(best->coord) && best->u.playouts > GJ_MINGAMES
837 && u->t->extra_komi <= 1 /* XXX we assume dynamic komi == we are black */) {
838 if (!u->slave) reset_state(u);
839 return coord_copy(resign);
842 /* If the opponent just passed and we win counting, always
843 * pass as well. */
844 if (b->moves > 1 && is_pass(b->last_move.coord)) {
845 /* Make sure enough playouts are simulated. */
846 while (u->ownermap.playouts < GJ_MINGAMES)
847 uct_playout(u, b, color, u->t);
848 if (uct_pass_is_safe(u, b, color, u->pass_all_alive || pass_all_alive)) {
849 if (UDEBUGL(0))
850 fprintf(stderr, "<Will rather pass, looks safe enough.>\n");
851 best->coord = pass;
855 /* If we are a slave in the distributed engine, we'll soon get
856 * a "play" command later telling us which move was chosen,
857 * and pondering now will not gain much. */
858 if (!u->slave) {
859 tree_promote_node(u->t, &best);
861 /* After a pass, pondering is harmful for two reasons:
862 * (i) We might keep pondering even when the game is over.
863 * Of course this is the case for opponent resign as well.
864 * (ii) More importantly, the ownermap will get skewed since
865 * the UCT will start cutting off any playouts. */
866 if (u->pondering_opt && !is_pass(best->coord)) {
867 uct_pondering_start(u, b, u->t, stone_other(color));
870 if (UDEBUGL(2)) {
871 double time = time_now() - start_time + 0.000001; /* avoid divide by zero */
872 fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n",
873 time, (int)(played_games/time), (int)(played_games/time/u->threads));
875 return coord_copy(best->coord);
878 /* Get stats updates for the distributed engine. Return a buffer
879 * with one line "total_playouts threads" then a list of lines
880 * "coord playouts value". The last line must not end with \n.
881 * If c is not null, add this move with root->playouts weight.
882 * This function is called only by the main thread, but may be
883 * called while the tree is updated by the worker threads.
884 * Keep this code in sync with select_best_move(). */
885 static char *
886 uct_getstats(struct uct *u, struct board *b, coord_t *c)
888 static char reply[10240];
889 char *r = reply;
890 char *end = reply + sizeof(reply);
891 struct tree_node *root = u->t->root;
892 r += snprintf(r, end - r, "%d %d", root->u.playouts, u->threads);
893 int min_playouts = root->u.playouts / 100;
895 // Give a large weight to pass or resign, but still allow other moves.
896 if (c)
897 r += snprintf(r, end - r, "\n%s %d %.1f", coord2sstr(*c, b), root->u.playouts,
898 (float)is_pass(*c));
900 /* We rely on the fact that root->children is set only
901 * after all children are created. */
902 for (struct tree_node *ni = root->children; ni; ni = ni->sibling) {
903 if (ni->u.playouts <= min_playouts
904 || ni->hints & TREE_HINT_INVALID
905 || is_pass(ni->coord))
906 continue;
907 char *coord = coord2sstr(ni->coord, b);
908 // We return the values as stored in the tree, so from black's view.
909 r += snprintf(r, end - r, "\n%s %d %.7f", coord, ni->u.playouts, ni->u.value);
911 return reply;
914 static char *
915 uct_genmoves(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
917 struct uct *u = e->data;
918 assert(u->slave);
920 coord_t *c = uct_genmove(e, b, ti, color, pass_all_alive);
922 char *reply = uct_getstats(u, b, is_pass(*c) || is_resign(*c) ? c : NULL);
923 coord_done(c);
924 return reply;
928 bool
929 uct_genbook(struct engine *e, struct board *b, struct time_info *ti, enum stone color)
931 struct uct *u = e->data;
932 if (!u->t) prepare_move(e, b, color);
933 assert(u->t);
935 if (ti->dim == TD_GAMES) {
936 /* Don't count in games that already went into the book. */
937 ti->len.games += u->t->root->u.playouts;
939 uct_search(u, b, ti, color, u->t);
941 assert(ti->dim == TD_GAMES);
942 tree_save(u->t, b, ti->len.games / 100);
944 return true;
947 void
948 uct_dumpbook(struct engine *e, struct board *b, enum stone color)
950 struct uct *u = e->data;
951 struct tree *t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0, u->local_tree_aging);
952 tree_load(t, b);
953 tree_dump(t, 0);
954 tree_done(t);
958 struct uct *
959 uct_state_init(char *arg, struct board *b)
961 struct uct *u = calloc(1, sizeof(struct uct));
962 bool using_elo = false;
964 u->debug_level = debug_level;
965 u->gamelen = MC_GAMELEN;
966 u->mercymin = 0;
967 u->expand_p = 2;
968 u->dumpthres = 1000;
969 u->playout_amaf = true;
970 u->playout_amaf_nakade = false;
971 u->amaf_prior = false;
972 u->max_tree_size = 3072ULL * 1048576;
974 u->dynkomi_mask = S_BLACK;
976 u->threads = 1;
977 u->thread_model = TM_TREEVL;
978 u->parallel_tree = true;
979 u->virtual_loss = true;
981 u->fuseki_end = 20; // max time at 361*20% = 72 moves (our 36th move, still 99 to play)
982 u->yose_start = 40; // (100-40-25)*361/100/2 = 63 moves still to play by us then
983 u->bestr_ratio = 0.02;
984 // 2.5 is clearly too much, but seems to compensate well for overly stern time allocations.
985 // TODO: Further tuning and experiments with better time allocation schemes.
986 u->best2_ratio = 2.5;
988 u->val_scale = 0.04; u->val_points = 40;
990 u->tenuki_d = 4;
991 u->local_tree_aging = 2;
993 if (arg) {
994 char *optspec, *next = arg;
995 while (*next) {
996 optspec = next;
997 next += strcspn(next, ",");
998 if (*next) { *next++ = 0; } else { *next = 0; }
1000 char *optname = optspec;
1001 char *optval = strchr(optspec, '=');
1002 if (optval) *optval++ = 0;
1004 if (!strcasecmp(optname, "debug")) {
1005 if (optval)
1006 u->debug_level = atoi(optval);
1007 else
1008 u->debug_level++;
1009 } else if (!strcasecmp(optname, "mercy") && optval) {
1010 /* Minimal difference of black/white captures
1011 * to stop playout - "Mercy Rule". Speeds up
1012 * hopeless playouts at the expense of some
1013 * accuracy. */
1014 u->mercymin = atoi(optval);
1015 } else if (!strcasecmp(optname, "gamelen") && optval) {
1016 u->gamelen = atoi(optval);
1017 } else if (!strcasecmp(optname, "expand_p") && optval) {
1018 u->expand_p = atoi(optval);
1019 } else if (!strcasecmp(optname, "dumpthres") && optval) {
1020 u->dumpthres = atoi(optval);
1021 } else if (!strcasecmp(optname, "best2_ratio") && optval) {
1022 /* If set, prolong simulating while
1023 * first_best/second_best playouts ratio
1024 * is less than best2_ratio. */
1025 u->best2_ratio = atof(optval);
1026 } else if (!strcasecmp(optname, "bestr_ratio") && optval) {
1027 /* If set, prolong simulating while
1028 * best,best_best_child values delta
1029 * is more than bestr_ratio. */
1030 u->bestr_ratio = atof(optval);
1031 } else if (!strcasecmp(optname, "playout_amaf")) {
1032 /* Whether to include random playout moves in
1033 * AMAF as well. (Otherwise, only tree moves
1034 * are included in AMAF. Of course makes sense
1035 * only in connection with an AMAF policy.) */
1036 /* with-without: 55.5% (+-4.1) */
1037 if (optval && *optval == '0')
1038 u->playout_amaf = false;
1039 else
1040 u->playout_amaf = true;
1041 } else if (!strcasecmp(optname, "playout_amaf_nakade")) {
1042 /* Whether to include nakade moves from playouts
1043 * in the AMAF statistics; this tends to nullify
1044 * the playout_amaf effect by adding too much
1045 * noise. */
1046 if (optval && *optval == '0')
1047 u->playout_amaf_nakade = false;
1048 else
1049 u->playout_amaf_nakade = true;
1050 } else if (!strcasecmp(optname, "playout_amaf_cutoff") && optval) {
1051 /* Keep only first N% of playout stage AMAF
1052 * information. */
1053 u->playout_amaf_cutoff = atoi(optval);
1054 } else if ((!strcasecmp(optname, "policy") || !strcasecmp(optname, "random_policy")) && optval) {
1055 char *policyarg = strchr(optval, ':');
1056 struct uct_policy **p = !strcasecmp(optname, "policy") ? &u->policy : &u->random_policy;
1057 if (policyarg)
1058 *policyarg++ = 0;
1059 if (!strcasecmp(optval, "ucb1")) {
1060 *p = policy_ucb1_init(u, policyarg);
1061 } else if (!strcasecmp(optval, "ucb1amaf")) {
1062 *p = policy_ucb1amaf_init(u, policyarg);
1063 } else {
1064 fprintf(stderr, "UCT: Invalid tree policy %s\n", optval);
1065 exit(1);
1067 } else if (!strcasecmp(optname, "playout") && optval) {
1068 char *playoutarg = strchr(optval, ':');
1069 if (playoutarg)
1070 *playoutarg++ = 0;
1071 if (!strcasecmp(optval, "moggy")) {
1072 u->playout = playout_moggy_init(playoutarg, b);
1073 } else if (!strcasecmp(optval, "light")) {
1074 u->playout = playout_light_init(playoutarg, b);
1075 } else if (!strcasecmp(optval, "elo")) {
1076 u->playout = playout_elo_init(playoutarg, b);
1077 using_elo = true;
1078 } else {
1079 fprintf(stderr, "UCT: Invalid playout policy %s\n", optval);
1080 exit(1);
1082 } else if (!strcasecmp(optname, "prior") && optval) {
1083 u->prior = uct_prior_init(optval, b);
1084 } else if (!strcasecmp(optname, "amaf_prior") && optval) {
1085 u->amaf_prior = atoi(optval);
1086 } else if (!strcasecmp(optname, "threads") && optval) {
1087 /* By default, Pachi will run with only single
1088 * tree search thread! */
1089 u->threads = atoi(optval);
1090 } else if (!strcasecmp(optname, "thread_model") && optval) {
1091 if (!strcasecmp(optval, "root")) {
1092 /* Root parallelization - each thread
1093 * does independent search, trees are
1094 * merged at the end. */
1095 u->thread_model = TM_ROOT;
1096 u->parallel_tree = false;
1097 u->virtual_loss = false;
1098 } else if (!strcasecmp(optval, "tree")) {
1099 /* Tree parallelization - all threads
1100 * grind on the same tree. */
1101 u->thread_model = TM_TREE;
1102 u->parallel_tree = true;
1103 u->virtual_loss = false;
1104 } else if (!strcasecmp(optval, "treevl")) {
1105 /* Tree parallelization, but also
1106 * with virtual losses - this discou-
1107 * rages most threads choosing the
1108 * same tree branches to read. */
1109 u->thread_model = TM_TREEVL;
1110 u->parallel_tree = true;
1111 u->virtual_loss = true;
1112 } else {
1113 fprintf(stderr, "UCT: Invalid thread model %s\n", optval);
1114 exit(1);
1116 } else if (!strcasecmp(optname, "pondering")) {
1117 /* Keep searching even during opponent's turn. */
1118 u->pondering_opt = !optval || atoi(optval);
1119 } else if (!strcasecmp(optname, "fuseki_end") && optval) {
1120 /* At the very beginning it's not worth thinking
1121 * too long because the playout evaluations are
1122 * very noisy. So gradually increase the thinking
1123 * time up to maximum when fuseki_end percent
1124 * of the board has been played.
1125 * This only applies if we are not in byoyomi. */
1126 u->fuseki_end = atoi(optval);
1127 } else if (!strcasecmp(optname, "yose_start") && optval) {
1128 /* When yose_start percent of the board has been
1129 * played, or if we are in byoyomi, stop spending
1130 * more time and spread the remaining time
1131 * uniformly.
1132 * Between fuseki_end and yose_start, we spend
1133 * a constant proportion of the remaining time
1134 * on each move. (yose_start should actually
1135 * be much earlier than when real yose start,
1136 * but "yose" is a good short name to convey
1137 * the idea.) */
1138 u->yose_start = atoi(optval);
1139 } else if (!strcasecmp(optname, "force_seed") && optval) {
1140 u->force_seed = atoi(optval);
1141 } else if (!strcasecmp(optname, "no_book")) {
1142 u->no_book = true;
1143 } else if (!strcasecmp(optname, "dynkomi") && optval) {
1144 /* Dynamic komi approach; there are multiple
1145 * ways to adjust komi dynamically throughout
1146 * play. We currently support two: */
1147 char *dynkomiarg = strchr(optval, ':');
1148 if (dynkomiarg)
1149 *dynkomiarg++ = 0;
1150 if (!strcasecmp(optval, "none")) {
1151 u->dynkomi = uct_dynkomi_init_none(u, dynkomiarg, b);
1152 } else if (!strcasecmp(optval, "linear")) {
1153 u->dynkomi = uct_dynkomi_init_linear(u, dynkomiarg, b);
1154 } else if (!strcasecmp(optval, "adaptive")) {
1155 u->dynkomi = uct_dynkomi_init_adaptive(u, dynkomiarg, b);
1156 } else {
1157 fprintf(stderr, "UCT: Invalid dynkomi mode %s\n", optval);
1158 exit(1);
1160 } else if (!strcasecmp(optname, "dynkomi_mask") && optval) {
1161 /* Bitmask of colors the player must be
1162 * for dynkomi be applied; you may want
1163 * to use dynkomi_mask=3 to allow dynkomi
1164 * even in games where Pachi is white. */
1165 u->dynkomi_mask = atoi(optval);
1166 } else if (!strcasecmp(optname, "dynkomi_interval") && optval) {
1167 /* If non-zero, re-adjust dynamic komi
1168 * throughout a single genmove reading,
1169 * roughly every N simulations. */
1170 u->dynkomi_interval = atoi(optval);
1171 } else if (!strcasecmp(optname, "val_scale") && optval) {
1172 /* How much of the game result value should be
1173 * influenced by win size. Zero means it isn't. */
1174 u->val_scale = atof(optval);
1175 } else if (!strcasecmp(optname, "val_points") && optval) {
1176 /* Maximum size of win to be scaled into game
1177 * result value. Zero means boardsize^2. */
1178 u->val_points = atoi(optval) * 2; // result values are doubled
1179 } else if (!strcasecmp(optname, "val_extra")) {
1180 /* If false, the score coefficient will be simply
1181 * added to the value, instead of scaling the result
1182 * coefficient because of it. */
1183 u->val_extra = !optval || atoi(optval);
1184 } else if (!strcasecmp(optname, "local_tree") && optval) {
1185 /* Whether to bias exploration by local tree values
1186 * (must be supported by the used policy).
1187 * 0: Don't.
1188 * 1: Do, value = result.
1189 * Try to temper the result:
1190 * 2: Do, value = 0.5+(result-expected)/2.
1191 * 3: Do, value = 0.5+bzz((result-expected)^2).
1192 * 4: Do, value = 0.5+sqrt(result-expected)/2. */
1193 u->local_tree = atoi(optval);
1194 } else if (!strcasecmp(optname, "tenuki_d") && optval) {
1195 /* Tenuki distance at which to break the local tree. */
1196 u->tenuki_d = atoi(optval);
1197 if (u->tenuki_d > TREE_NODE_D_MAX + 1) {
1198 fprintf(stderr, "uct: tenuki_d must not be larger than TREE_NODE_D_MAX+1 %d\n", TREE_NODE_D_MAX + 1);
1199 exit(1);
1201 } else if (!strcasecmp(optname, "local_tree_aging") && optval) {
1202 /* How much to reduce local tree values between moves. */
1203 u->local_tree_aging = atof(optval);
1204 } else if (!strcasecmp(optname, "local_tree_allseq")) {
1205 /* By default, only complete sequences are stored
1206 * in the local tree. If this is on, also
1207 * subsequences starting at each move are stored. */
1208 u->local_tree_allseq = !optval || atoi(optval);
1209 } else if (!strcasecmp(optname, "local_tree_playout")) {
1210 /* Whether to adjust ELO playout probability
1211 * distributions according to matched localtree
1212 * information. */
1213 u->local_tree_playout = !optval || atoi(optval);
1214 } else if (!strcasecmp(optname, "local_tree_pseqroot")) {
1215 /* By default, when we have no sequence move
1216 * to suggest in-playout, we give up. If this
1217 * is on, we make probability distribution from
1218 * sequences first moves instead. */
1219 u->local_tree_pseqroot = !optval || atoi(optval);
1220 } else if (!strcasecmp(optname, "pass_all_alive")) {
1221 /* Whether to consider all stones alive at the game
1222 * end instead of marking dead groupd. */
1223 u->pass_all_alive = !optval || atoi(optval);
1224 } else if (!strcasecmp(optname, "territory_scoring")) {
1225 /* Use territory scoring (default is area scoring).
1226 * An explicit kgs-rules command overrides this. */
1227 u->territory_scoring = !optval || atoi(optval);
1228 } else if (!strcasecmp(optname, "random_policy_chance") && optval) {
1229 /* If specified (N), with probability 1/N, random_policy policy
1230 * descend is used instead of main policy descend; useful
1231 * if specified policy (e.g. UCB1AMAF) can make unduly biased
1232 * choices sometimes, you can fall back to e.g.
1233 * random_policy=UCB1. */
1234 u->random_policy_chance = atoi(optval);
1235 } else if (!strcasecmp(optname, "max_tree_size") && optval) {
1236 /* Maximum amount of memory [MiB] consumed by the move tree.
1237 * For fast_alloc it includes the temp tree used for pruning.
1238 * Default is 3072 (3 GiB). Note that if you use TM_ROOT,
1239 * this limits size of only one of the trees, not all of them
1240 * together. */
1241 u->max_tree_size = atol(optval) * 1048576;
1242 } else if (!strcasecmp(optname, "fast_alloc")) {
1243 u->fast_alloc = !optval || atoi(optval);
1244 } else if (!strcasecmp(optname, "slave")) {
1245 /* Act as slave for the distributed engine. */
1246 u->slave = !optval || atoi(optval);
1247 } else if (!strcasecmp(optname, "banner") && optval) {
1248 /* Additional banner string. This must come as the
1249 * last engine parameter. */
1250 if (*next) *--next = ',';
1251 u->banner = strdup(optval);
1252 break;
1253 } else {
1254 fprintf(stderr, "uct: Invalid engine argument %s or missing value\n", optname);
1255 exit(1);
1260 u->resign_ratio = 0.2; /* Resign when most games are lost. */
1261 u->loss_threshold = 0.85; /* Stop reading if after at least 2000 playouts this is best value. */
1262 if (!u->policy)
1263 u->policy = policy_ucb1amaf_init(u, NULL);
1265 if (!!u->random_policy_chance ^ !!u->random_policy) {
1266 fprintf(stderr, "uct: Only one of random_policy and random_policy_chance is set\n");
1267 exit(1);
1270 if (!u->local_tree) {
1271 /* No ltree aging. */
1272 u->local_tree_aging = 1.0f;
1274 if (!using_elo)
1275 u->local_tree_playout = false;
1277 if (u->fast_alloc && !u->parallel_tree) {
1278 fprintf(stderr, "fast_alloc not supported with root parallelization.\n");
1279 exit(1);
1281 if (u->fast_alloc)
1282 u->max_tree_size = (100ULL * u->max_tree_size) / (100 + MIN_FREE_MEM_PERCENT);
1284 if (!u->prior)
1285 u->prior = uct_prior_init(NULL, b);
1287 if (!u->playout)
1288 u->playout = playout_moggy_init(NULL, b);
1289 u->playout->debug_level = u->debug_level;
1291 u->ownermap.map = malloc(board_size2(b) * sizeof(u->ownermap.map[0]));
1293 if (!u->dynkomi)
1294 u->dynkomi = uct_dynkomi_init_linear(u, NULL, b);
1296 /* Some things remain uninitialized for now - the opening book
1297 * is not loaded and the tree not set up. */
1298 /* This will be initialized in setup_state() at the first move
1299 * received/requested. This is because right now we are not aware
1300 * about any komi or handicap setup and such. */
1302 return u;
1305 struct engine *
1306 engine_uct_init(char *arg, struct board *b)
1308 struct uct *u = uct_state_init(arg, b);
1309 struct engine *e = calloc(1, sizeof(struct engine));
1310 e->name = "UCT Engine";
1311 e->printhook = uct_printhook_ownermap;
1312 e->notify_play = uct_notify_play;
1313 e->chat = uct_chat;
1314 e->genmove = uct_genmove;
1315 e->genmoves = uct_genmoves;
1316 e->dead_group_list = uct_dead_group_list;
1317 e->done = uct_done;
1318 e->data = u;
1319 if (u->slave)
1320 e->notify = uct_notify;
1322 const char banner[] = "I'm playing UCT. When I'm losing, I will resign, "
1323 "if I think I win, I play until you pass. "
1324 "Anyone can send me 'winrate' in private chat to get my assessment of the position.";
1325 if (!u->banner) u->banner = "";
1326 e->comment = malloc(sizeof(banner) + strlen(u->banner) + 1);
1327 sprintf(e->comment, "%s %s", banner, u->banner);
1329 return e;