10 #include "tactics/util.h"
11 #include "uct/dynkomi.h"
12 #include "uct/internal.h"
17 generic_done(struct uct_dynkomi
*d
)
19 if (d
->data
) free(d
->data
);
24 /* NONE dynkomi strategy - never fiddle with komi values. */
27 uct_dynkomi_init_none(struct uct
*u
, char *arg
, struct board
*b
)
29 struct uct_dynkomi
*d
= calloc2(1, sizeof(*d
));
33 d
->done
= generic_done
;
37 fprintf(stderr
, "uct: Dynkomi method none accepts no arguments\n");
45 /* LINEAR dynkomi strategy - Linearly Decreasing Handicap Compensation. */
46 /* At move 0, we impose extra komi of handicap_count*handicap_value, then
47 * we linearly decrease this extra komi throughout the game down to 0
48 * at @moves moves. Towards the end of the game the linear compensation
49 * becomes zero but we increase the extra komi when winning big. This reduces
50 * the number of point-wasting moves and makes the game more enjoyable for humans. */
52 struct dynkomi_linear
{
53 int handicap_value
[S_MAX
];
56 /* Increase the extra komi if my win ratio > green_zone but always
57 * keep extra_komi <= komi_ratchet. komi_ratchet starts infinite but decreases
58 * when we give too much extra komi and this puts us back < orange_zone.
59 * This is meant only to increase the territory margin when playing against
60 * weaker opponents. We never take negative komi when losing. The ratchet helps
61 * avoiding oscillations and keeping us above orange_zone.
62 * To disable the adaptive phase, set green_zone=2. */
63 floating_t komi_ratchet
;
64 floating_t green_zone
;
65 floating_t orange_zone
;
70 linear_permove(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
)
72 struct dynkomi_linear
*l
= d
->data
;
73 enum stone color
= d
->uct
->pondering
? tree
->root_color
: stone_other(tree
->root_color
);
74 int lmoves
= l
->moves
[color
];
75 floating_t extra_komi
;
77 if (b
->moves
< lmoves
) {
78 floating_t base_komi
= board_effective_handicap(b
, l
->handicap_value
[color
]);
79 extra_komi
= base_komi
* (lmoves
- b
->moves
) / lmoves
;
82 extra_komi
= floor(tree
->extra_komi
);
85 /* Do not take decisions on unstable value. */
86 if (tree
->root
->u
.playouts
< GJ_MINGAMES
) return extra_komi
;
88 floating_t my_value
= tree_node_get_value(tree
, 1, tree
->root
->u
.value
);
89 /* We normalize komi as in komi_by_value(), > 0 when winning. */
90 extra_komi
= komi_by_color(extra_komi
, color
);
91 assert(extra_komi
>= 0);
92 floating_t orig_komi
= extra_komi
;
94 if (my_value
< 0.5 && l
->komi_ratchet
> 0 && l
->komi_ratchet
!= INFINITY
) {
96 fprintf(stderr
, "losing %f extra %.1f ratchet %.1f -> 0\n",
97 my_value
, extra_komi
, l
->komi_ratchet
);
98 /* Disable dynkomi completely, too dangerous in this game. */
99 extra_komi
= l
->komi_ratchet
= 0;
101 } else if (my_value
< l
->orange_zone
&& extra_komi
> 0) {
102 extra_komi
= l
->komi_ratchet
= fmax(extra_komi
- l
->drop_step
, 0.0);
103 if (extra_komi
!= orig_komi
&& DEBUGL(3))
104 fprintf(stderr
, "dropping to %f ratchet -> %.1f\n",
105 my_value
, extra_komi
);
107 } else if (my_value
> l
->green_zone
&& extra_komi
+1 <= l
->komi_ratchet
) {
109 if (extra_komi
!= orig_komi
&& DEBUGL(3))
110 fprintf(stderr
, "winning %f extra_komi -> %.1f, ratchet %.1f\n",
111 my_value
, extra_komi
, l
->komi_ratchet
);
113 return komi_by_color(extra_komi
, color
);
117 linear_persim(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
, struct tree_node
*node
)
119 struct dynkomi_linear
*l
= d
->data
;
121 return tree
->extra_komi
;
122 /* We don't reuse computed value from tree->extra_komi,
123 * since we want to use value correct for this node depth.
124 * This also means the values will stay correct after
126 return linear_permove(d
, b
, tree
);
130 uct_dynkomi_init_linear(struct uct
*u
, char *arg
, struct board
*b
)
132 struct uct_dynkomi
*d
= calloc2(1, sizeof(*d
));
134 d
->permove
= linear_permove
;
135 d
->persim
= linear_persim
;
136 d
->done
= generic_done
;
138 struct dynkomi_linear
*l
= calloc2(1, sizeof(*l
));
141 /* Force white to feel behind and try harder, but not to the
142 * point of resigning immediately in high handicap games.
143 * By move 100 white should still be behind but should have
144 * caught up enough to avoid resigning. */
145 if (board_large(b
)) {
146 l
->moves
[S_BLACK
] = 100;
147 l
->moves
[S_WHITE
] = 50;
149 /* The real value of one stone is twice the komi so about 15 points.
150 * But use a lower value to avoid being too pessimistic as black
151 * or too optimistic as white. */
152 l
->handicap_value
[S_BLACK
] = 8;
153 l
->handicap_value
[S_WHITE
] = 1;
155 l
->komi_ratchet
= INFINITY
;
156 l
->green_zone
= 0.85;
157 l
->orange_zone
= 0.8;
161 char *optspec
, *next
= arg
;
164 next
+= strcspn(next
, ":");
165 if (*next
) { *next
++ = 0; } else { *next
= 0; }
167 char *optname
= optspec
;
168 char *optval
= strchr(optspec
, '=');
169 if (optval
) *optval
++ = 0;
171 if (!strcasecmp(optname
, "moves") && optval
) {
172 /* Dynamic komi in handicap game; linearly
173 * decreases to basic settings until move
174 * #optval. moves=blackmoves%whitemoves */
175 for (int i
= S_BLACK
; *optval
&& i
<= S_WHITE
; i
++) {
176 l
->moves
[i
] = atoi(optval
);
177 optval
+= strcspn(optval
, "%");
178 if (*optval
) optval
++;
180 } else if (!strcasecmp(optname
, "handicap_value") && optval
) {
181 /* Point value of single handicap stone,
182 * for dynkomi computation. */
183 for (int i
= S_BLACK
; *optval
&& i
<= S_WHITE
; i
++) {
184 l
->handicap_value
[i
] = atoi(optval
);
185 optval
+= strcspn(optval
, "%");
186 if (*optval
) optval
++;
188 } else if (!strcasecmp(optname
, "rootbased")) {
189 /* If set, the extra komi applied will be
190 * the same for all simulations within a move,
191 * instead of being same for all simulations
192 * within the tree node. */
193 l
->rootbased
= !optval
|| atoi(optval
);
194 } else if (!strcasecmp(optname
, "green_zone") && optval
) {
195 /* Increase komi when win ratio is above green_zone */
196 l
->green_zone
= atof(optval
);
197 } else if (!strcasecmp(optname
, "orange_zone") && optval
) {
198 /* Decrease komi when > 0 and win ratio is below orange_zone */
199 l
->orange_zone
= atof(optval
);
200 } else if (!strcasecmp(optname
, "drop_step") && optval
) {
201 /* Decrease komi by drop_step points */
202 l
->drop_step
= atof(optval
);
204 fprintf(stderr
, "uct: Invalid dynkomi argument %s or missing value\n", optname
);
214 /* ADAPTIVE dynkomi strategy - Adaptive Situational Compensation */
215 /* We adapt the komi based on current situation:
216 * (i) score-based: We maintain the average score outcome of our
217 * games and adjust the komi by a fractional step towards the expected
219 * (ii) value-based: While winrate is above given threshold, adjust
220 * the komi by a fixed step in the appropriate direction.
221 * These adjustments can be
222 * (a) Move-stepped, new extra komi value is always set only at the
223 * beginning of the tree search for next move;
224 * (b) Continuous, new extra komi value is periodically re-determined
225 * and adjusted throughout a single tree search. */
227 struct dynkomi_adaptive
{
228 /* Do not take measured average score into regard for
229 * first @lead_moves - the variance is just too much.
230 * (Instead, we consider the handicap-based komi provided
231 * by linear dynkomi.) */
233 /* Maximum komi to pretend the opponent to give. */
234 floating_t max_losing_komi
;
235 /* Game portion at which losing komi is not allowed anymore. */
236 floating_t losing_komi_stop
;
237 /* Alternative game portion determination. */
239 floating_t (*indicator
)(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
, enum stone color
);
241 /* Value-based adaptation. */
242 floating_t zone_red
, zone_green
;
244 floating_t score_step_byavg
; // use portion of average score as increment
245 bool use_komi_ratchet
;
246 bool losing_komi_ratchet
; // ratchet even losing komi
247 int komi_ratchet_maxage
;
248 // runtime, not configuration:
249 int komi_ratchet_age
;
250 floating_t komi_ratchet
;
252 /* Score-based adaptation. */
253 floating_t (*adapter
)(struct uct_dynkomi
*d
, struct board
*b
);
254 floating_t adapt_base
; // [0,1)
255 /* Sigmoid adaptation rate parameter; see below for details. */
256 floating_t adapt_phase
; // [0,1]
257 floating_t adapt_rate
; // [1,infty)
258 /* Linear adaptation rate parameter. */
260 floating_t adapt_dir
; // [-1,1]
262 #define TRUSTWORTHY_KOMI_PLAYOUTS 200
265 board_game_portion(struct dynkomi_adaptive
*a
, struct board
*b
)
267 if (!a
->adapt_aport
) {
268 int total_moves
= b
->moves
+ 2 * board_estimated_moves_left(b
);
269 return (floating_t
) b
->moves
/ total_moves
;
271 int brsize
= board_size(b
) - 2;
272 return 1.0 - (floating_t
) b
->flen
/ (brsize
* brsize
);
277 adapter_sigmoid(struct uct_dynkomi
*d
, struct board
*b
)
279 struct dynkomi_adaptive
*a
= d
->data
;
280 /* Figure out how much to adjust the komi based on the game
281 * stage. The adaptation rate is 0 at the beginning,
282 * at game stage a->adapt_phase crosses though 0.5 and
283 * approaches 1 at the game end; the slope is controlled
284 * by a->adapt_rate. */
285 floating_t game_portion
= board_game_portion(a
, b
);
286 floating_t l
= game_portion
- a
->adapt_phase
;
287 return 1.0 / (1.0 + exp(-a
->adapt_rate
* l
));
291 adapter_linear(struct uct_dynkomi
*d
, struct board
*b
)
293 struct dynkomi_adaptive
*a
= d
->data
;
294 /* Figure out how much to adjust the komi based on the game
295 * stage. We just linearly increase/decrease the adaptation
296 * rate for first N moves. */
297 if (b
->moves
> a
->adapt_moves
)
299 if (a
->adapt_dir
< 0)
300 return 1 - (- a
->adapt_dir
) * b
->moves
/ a
->adapt_moves
;
302 return a
->adapt_dir
* b
->moves
/ a
->adapt_moves
;
306 komi_by_score(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
, enum stone color
)
308 struct dynkomi_adaptive
*a
= d
->data
;
309 if (d
->score
.playouts
< TRUSTWORTHY_KOMI_PLAYOUTS
)
310 return tree
->extra_komi
;
312 struct move_stats score
= d
->score
;
313 /* Almost-reset tree->score to gather fresh stats. */
314 d
->score
.playouts
= 1;
316 /* Look at average score and push extra_komi in that direction. */
317 floating_t p
= a
->adapter(d
, b
);
318 p
= a
->adapt_base
+ p
* (1 - a
->adapt_base
);
319 if (p
> 0.9) p
= 0.9; // don't get too eager!
320 floating_t extra_komi
= tree
->extra_komi
+ p
* score
.value
;
322 fprintf(stderr
, "mC += %f * %f\n", p
, score
.value
);
327 komi_by_value(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
, enum stone color
)
329 struct dynkomi_adaptive
*a
= d
->data
;
330 if (d
->value
.playouts
< TRUSTWORTHY_KOMI_PLAYOUTS
)
331 return tree
->extra_komi
;
333 struct move_stats value
= d
->value
;
334 /* Almost-reset tree->value to gather fresh stats. */
335 d
->value
.playouts
= 1;
336 /* Correct color POV. */
337 if (color
== S_WHITE
)
338 value
.value
= 1 - value
.value
;
340 /* We have three "value zones":
341 * red zone | yellow zone | green zone
343 * red zone: reduce komi
344 * yellow zone: do not touch komi
345 * green zone: enlage komi.
347 * Also, at some point komi will be tuned in such way
348 * that it will be in green zone but increasing it will
349 * be unfeasible. Thus, we have a _ratchet_ - we will
350 * remember the last komi that has put us into the
351 * red zone, and not use it or go over it. We use the
352 * ratchet only when giving extra komi, we always want
353 * to try to reduce extra komi we take.
355 * TODO: Make the ratchet expire after a while. */
357 /* We use komi_by_color() first to normalize komi
358 * additions/subtractions, then apply it again on
359 * return value to restore original komi parity. */
360 /* Positive extra_komi means that we are _giving_
361 * komi (winning), negative extra_komi is _taking_
363 floating_t extra_komi
= komi_by_color(tree
->extra_komi
, color
);
364 int score_step_red
= -a
->score_step
;
365 int score_step_green
= a
->score_step
;
367 if (a
->score_step_byavg
!= 0) {
368 struct move_stats score
= d
->score
;
369 /* Almost-reset tree->score to gather fresh stats. */
370 d
->score
.playouts
= 1;
371 /* Correct color POV. */
372 if (color
== S_WHITE
)
373 score
.value
= - score
.value
;
375 score_step_green
= round(score
.value
* a
->score_step_byavg
);
377 score_step_red
= round(-score
.value
* a
->score_step_byavg
);
378 if (score_step_green
< 0 || score_step_red
> 0) {
379 /* The steps are in bad direction - keep still. */
380 return komi_by_color(extra_komi
, color
);
384 /* Wear out the ratchet. */
385 if (a
->use_komi_ratchet
&& a
->komi_ratchet_maxage
> 0) {
386 a
->komi_ratchet_age
+= value
.playouts
;
387 if (a
->komi_ratchet_age
> a
->komi_ratchet_maxage
) {
388 a
->komi_ratchet
= 1000;
389 a
->komi_ratchet_age
= 0;
393 if (value
.value
< a
->zone_red
) {
394 /* Red zone. Take extra komi. */
396 fprintf(stderr
, "[red] %f, step %d | komi ratchet %f age %d/%d -> %f\n",
397 value
.value
, score_step_red
, a
->komi_ratchet
, a
->komi_ratchet_age
, a
->komi_ratchet_maxage
, extra_komi
);
398 if (a
->losing_komi_ratchet
|| extra_komi
> 0) {
399 a
->komi_ratchet
= extra_komi
;
400 a
->komi_ratchet_age
= 0;
402 extra_komi
+= score_step_red
;
403 return komi_by_color(extra_komi
, color
);
405 } else if (value
.value
< a
->zone_green
) {
406 /* Yellow zone, do nothing. */
407 return komi_by_color(extra_komi
, color
);
410 /* Green zone. Give extra komi. */
412 fprintf(stderr
, "[green] %f, step %d | komi ratchet %f age %d/%d\n",
413 value
.value
, score_step_green
, a
->komi_ratchet
, a
->komi_ratchet_age
, a
->komi_ratchet_maxage
);
414 extra_komi
+= score_step_green
;
415 if (a
->use_komi_ratchet
&& extra_komi
>= a
->komi_ratchet
)
416 extra_komi
= a
->komi_ratchet
- 1;
417 return komi_by_color(extra_komi
, color
);
422 bounded_komi(struct dynkomi_adaptive
*a
, struct board
*b
,
423 enum stone color
, floating_t komi
, floating_t max_losing_komi
)
425 /* At the end of game, disallow losing komi. */
426 if (komi_by_color(komi
, color
) < 0
427 && board_game_portion(a
, b
) > a
->losing_komi_stop
)
430 /* Get lower bound on komi we take so that we don't underperform
432 floating_t min_komi
= komi_by_color(- max_losing_komi
, color
);
434 if (komi_by_color(komi
- min_komi
, color
) > 0)
441 adaptive_permove(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
)
443 /* We do not use extra komi at the game end - we are not
444 * to fool ourselves at this point. */
445 if (board_estimated_moves_left(b
) <= MIN_MOVES_LEFT
) {
446 tree
->use_extra_komi
= false;
449 struct dynkomi_adaptive
*a
= d
->data
;
450 enum stone color
= stone_other(tree
->root_color
);
452 fprintf(stderr
, "m %d/%d ekomi %f permove %f/%d\n",
453 b
->moves
, a
->lead_moves
, tree
->extra_komi
,
454 d
->score
.value
, d
->score
.playouts
);
456 if (b
->moves
<= a
->lead_moves
)
457 return bounded_komi(a
, b
, color
,
458 board_effective_handicap(b
, 7 /* XXX */),
461 floating_t komi
= a
->indicator(d
, b
, tree
, color
);
463 fprintf(stderr
, "dynkomi: %f -> %f\n", tree
->extra_komi
, komi
);
464 return bounded_komi(a
, b
, color
, komi
, a
->max_losing_komi
);
468 adaptive_persim(struct uct_dynkomi
*d
, struct board
*b
, struct tree
*tree
, struct tree_node
*node
)
470 return tree
->extra_komi
;
474 uct_dynkomi_init_adaptive(struct uct
*u
, char *arg
, struct board
*b
)
476 struct uct_dynkomi
*d
= calloc2(1, sizeof(*d
));
478 d
->permove
= adaptive_permove
;
479 d
->persim
= adaptive_persim
;
480 d
->done
= generic_done
;
482 struct dynkomi_adaptive
*a
= calloc2(1, sizeof(*a
));
485 a
->lead_moves
= board_large(b
) ? 20 : 4; // XXX
486 a
->max_losing_komi
= 30;
487 a
->losing_komi_stop
= 1.0f
;
488 a
->indicator
= komi_by_value
;
490 a
->adapter
= adapter_sigmoid
;
492 a
->adapt_phase
= 0.65;
493 a
->adapt_moves
= 200;
497 a
->zone_green
= 0.50;
499 a
->use_komi_ratchet
= true;
500 a
->komi_ratchet_maxage
= 0;
501 a
->komi_ratchet
= 1000;
504 char *optspec
, *next
= arg
;
507 next
+= strcspn(next
, ":");
508 if (*next
) { *next
++ = 0; } else { *next
= 0; }
510 char *optname
= optspec
;
511 char *optval
= strchr(optspec
, '=');
512 if (optval
) *optval
++ = 0;
514 if (!strcasecmp(optname
, "lead_moves") && optval
) {
515 /* Do not adjust komi adaptively for first
517 a
->lead_moves
= atoi(optval
);
518 } else if (!strcasecmp(optname
, "max_losing_komi") && optval
) {
519 a
->max_losing_komi
= atof(optval
);
520 } else if (!strcasecmp(optname
, "losing_komi_stop") && optval
) {
521 a
->losing_komi_stop
= atof(optval
);
522 } else if (!strcasecmp(optname
, "indicator")) {
523 /* Adaptatation indicator - how to decide
524 * the adaptation rate and direction. */
525 if (!strcasecmp(optval
, "value")) {
526 /* Winrate w/ komi so far. */
527 a
->indicator
= komi_by_value
;
528 } else if (!strcasecmp(optval
, "score")) {
529 /* Expected score w/ current komi. */
530 a
->indicator
= komi_by_score
;
532 fprintf(stderr
, "UCT: Invalid indicator %s\n", optval
);
536 /* value indicator settings */
537 } else if (!strcasecmp(optname
, "zone_red") && optval
) {
538 a
->zone_red
= atof(optval
);
539 } else if (!strcasecmp(optname
, "zone_green") && optval
) {
540 a
->zone_green
= atof(optval
);
541 } else if (!strcasecmp(optname
, "score_step") && optval
) {
542 a
->score_step
= atoi(optval
);
543 } else if (!strcasecmp(optname
, "score_step_byavg") && optval
) {
544 a
->score_step_byavg
= atof(optval
);
545 } else if (!strcasecmp(optname
, "use_komi_ratchet")) {
546 a
->use_komi_ratchet
= !optval
|| atoi(optval
);
547 } else if (!strcasecmp(optname
, "losing_komi_ratchet")) {
548 a
->losing_komi_ratchet
= !optval
|| atoi(optval
);
549 } else if (!strcasecmp(optname
, "komi_ratchet_age") && optval
) {
550 a
->komi_ratchet_maxage
= atoi(optval
);
552 /* score indicator settings */
553 } else if (!strcasecmp(optname
, "adapter") && optval
) {
554 /* Adaptatation method. */
555 if (!strcasecmp(optval
, "sigmoid")) {
556 a
->adapter
= adapter_sigmoid
;
557 } else if (!strcasecmp(optval
, "linear")) {
558 a
->adapter
= adapter_linear
;
560 fprintf(stderr
, "UCT: Invalid adapter %s\n", optval
);
563 } else if (!strcasecmp(optname
, "adapt_base") && optval
) {
564 /* Adaptation base rate; see above. */
565 a
->adapt_base
= atof(optval
);
566 } else if (!strcasecmp(optname
, "adapt_rate") && optval
) {
567 /* Adaptation slope; see above. */
568 a
->adapt_rate
= atof(optval
);
569 } else if (!strcasecmp(optname
, "adapt_phase") && optval
) {
570 /* Adaptation phase shift; see above. */
571 a
->adapt_phase
= atof(optval
);
572 } else if (!strcasecmp(optname
, "adapt_moves") && optval
) {
573 /* Adaptation move amount; see above. */
574 a
->adapt_moves
= atoi(optval
);
575 } else if (!strcasecmp(optname
, "adapt_aport")) {
576 a
->adapt_aport
= !optval
|| atoi(optval
);
577 } else if (!strcasecmp(optname
, "adapt_dir") && optval
) {
578 /* Adaptation direction vector; see above. */
579 a
->adapt_dir
= atof(optval
);
582 fprintf(stderr
, "uct: Invalid dynkomi argument %s or missing value\n", optname
);