17 #include "uct/internal.h"
18 #include "uct/prior.h"
20 #include "uct/slave.h"
23 /* Allocate tree node(s). The returned nodes are _not_ initialized.
24 * Returns NULL if not enough memory.
25 * This function may be called by multiple threads in parallel. */
26 static struct tree_node
*
27 tree_alloc_node(struct tree
*t
, int count
, bool fast_alloc
, hash_t
*hash
)
29 struct tree_node
*n
= NULL
;
30 size_t nsize
= count
* sizeof(*n
);
31 unsigned long old_size
= __sync_fetch_and_add(&t
->nodes_size
, nsize
);
34 if (old_size
+ nsize
> t
->max_tree_size
)
36 assert(t
->nodes
!= NULL
);
37 n
= (struct tree_node
*)(t
->nodes
+ old_size
);
38 memset(n
, 0, sizeof(*n
));
40 n
= calloc2(count
, sizeof(*n
));
44 volatile static long c
= 1000000;
45 *hash
= __sync_fetch_and_add(&c
, count
);
51 /* Initialize a node at a given place in memory.
52 * This function may be called by multiple threads in parallel. */
54 tree_setup_node(struct tree
*t
, struct tree_node
*n
, coord_t coord
, int depth
, hash_t hash
)
59 if (depth
> t
->max_depth
)
63 /* Allocate and initialize a node. Returns NULL (fast_alloc mode)
64 * or exits the main program if not enough memory.
65 * This function may be called by multiple threads in parallel. */
66 static struct tree_node
*
67 tree_init_node(struct tree
*t
, coord_t coord
, int depth
, bool fast_alloc
)
71 n
= tree_alloc_node(t
, 1, fast_alloc
, &hash
);
73 tree_setup_node(t
, n
, coord
, depth
, hash
);
77 /* Create a tree structure. Pre-allocate all nodes if max_tree_size is > 0. */
79 tree_init(struct board
*board
, enum stone color
, unsigned long max_tree_size
, float ltree_aging
, int hbits
)
81 struct tree
*t
= calloc2(1, sizeof(*t
));
83 t
->max_tree_size
= max_tree_size
;
84 if (max_tree_size
!= 0) {
85 t
->nodes
= malloc2(max_tree_size
);
86 /* The nodes buffer doesn't need initialization. This is currently
87 * done by tree_init_node to spread the load. Doing a memset for the
88 * entire buffer here would be too slow for large trees (>10 GB). */
90 /* The root PASS move is only virtual, we never play it. */
91 t
->root
= tree_init_node(t
, pass
, 0, t
->nodes
);
92 t
->root_symmetry
= board
->symmetry
;
93 t
->root_color
= stone_other(color
); // to research black moves, root will be white
95 t
->ltree_black
= tree_init_node(t
, pass
, 0, false);
96 t
->ltree_white
= tree_init_node(t
, pass
, 0, false);
97 t
->ltree_aging
= ltree_aging
;
100 if (hbits
) t
->htable
= uct_htable_alloc(hbits
);
105 /* This function may be called by multiple threads in parallel on the
106 * same tree, but not on node n. n may be detached from the tree but
107 * must have been created in this tree originally.
108 * It returns the remaining size of the tree after n has been freed. */
110 tree_done_node(struct tree
*t
, struct tree_node
*n
)
112 struct tree_node
*ni
= n
->children
;
114 struct tree_node
*nj
= ni
->sibling
;
115 tree_done_node(t
, ni
);
119 unsigned long old_size
= __sync_fetch_and_sub(&t
->nodes_size
, sizeof(*n
));
120 return old_size
- sizeof(*n
);
128 /* Worker thread for tree_done_node_detached(). Only for fast_alloc=false. */
130 tree_done_node_worker(void *ctx_
)
132 struct subtree_ctx
*ctx
= ctx_
;
133 char *str
= coord2str(ctx
->n
->coord
, ctx
->t
->board
);
135 unsigned long tree_size
= tree_done_node(ctx
->t
, ctx
->n
);
139 fprintf(stderr
, "done freeing node at %s, tree size %lu\n", str
, tree_size
);
145 /* Asynchronously free the subtree of nodes rooted at n. If the tree becomes
146 * empty free the tree also. Only for fast_alloc=false. */
148 tree_done_node_detached(struct tree
*t
, struct tree_node
*n
)
150 if (n
->u
.playouts
< 1000) { // no thread for small tree
151 if (!tree_done_node(t
, n
))
156 pthread_attr_init(&attr
);
157 pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
160 struct subtree_ctx
*ctx
= malloc2(sizeof(struct subtree_ctx
));
163 pthread_create(&thread
, &attr
, tree_done_node_worker
, ctx
);
164 pthread_attr_destroy(&attr
);
168 tree_done(struct tree
*t
)
170 tree_done_node(t
, t
->ltree_black
);
171 tree_done_node(t
, t
->ltree_white
);
173 if (t
->htable
) free(t
->htable
);
177 } else if (!tree_done_node(t
, t
->root
)) {
179 /* A tree_done_node_worker might still be running on this tree but
180 * it will free the tree later. It is also freeing nodes faster than
181 * we will create new ones. */
187 tree_node_dump(struct tree
*tree
, struct tree_node
*node
, int l
, int thres
)
189 for (int i
= 0; i
< l
; i
++) fputc(' ', stderr
);
191 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
193 /* We use 1 as parity, since for all nodes we want to know the
194 * win probability of _us_, not the node color. */
195 fprintf(stderr
, "[%s] %f %% %d [prior %f %% %d amaf %f %% %d]; hints %x; %d children <%"PRIhash
">\n",
196 coord2sstr(node
->coord
, tree
->board
),
197 tree_node_get_value(tree
, 1, node
->u
.value
), node
->u
.playouts
,
198 tree_node_get_value(tree
, 1, node
->prior
.value
), node
->prior
.playouts
,
199 tree_node_get_value(tree
, 1, node
->amaf
.value
), node
->amaf
.playouts
,
200 node
->hints
, children
, node
->hash
);
202 /* Print nodes sorted by #playouts. */
204 struct tree_node
*nbox
[1000]; int nboxl
= 0;
205 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
206 if (ni
->u
.playouts
> thres
)
211 for (int i
= 0; i
< nboxl
; i
++)
212 if (nbox
[i
] && (best
< 0 || nbox
[i
]->u
.playouts
> nbox
[best
]->u
.playouts
))
216 tree_node_dump(tree
, nbox
[best
], l
+ 1, /* node->u.value < 0.1 ? 0 : */ thres
);
222 tree_dump(struct tree
*tree
, int thres
)
224 if (thres
&& tree
->root
->u
.playouts
/ thres
> 100) {
225 /* Be a bit sensible about this; the opening book can create
226 * huge dumps at first. */
227 thres
= tree
->root
->u
.playouts
/ 100 * (thres
< 1000 ? 1 : thres
/ 1000);
229 fprintf(stderr
, "(UCT tree; root %s; extra komi %f)\n",
230 stone2str(tree
->root_color
), tree
->extra_komi
);
231 tree_node_dump(tree
, tree
->root
, 0, thres
);
233 if (DEBUGL(3) && tree
->ltree_black
) {
234 fprintf(stderr
, "B local tree:\n");
235 tree_node_dump(tree
, tree
->ltree_black
, 0, thres
);
236 fprintf(stderr
, "W local tree:\n");
237 tree_node_dump(tree
, tree
->ltree_white
, 0, thres
);
243 tree_book_name(struct board
*b
)
245 static char buf
[256];
246 if (b
->handicap
> 0) {
247 sprintf(buf
, "uctbook-%d-%02.01f-h%d.pachitree", b
->size
- 2, b
->komi
, b
->handicap
);
249 sprintf(buf
, "uctbook-%d-%02.01f.pachitree", b
->size
- 2, b
->komi
);
255 tree_node_save(FILE *f
, struct tree_node
*node
, int thres
)
257 bool save_children
= node
->u
.playouts
>= thres
;
260 node
->is_expanded
= 0;
263 fwrite(((void *) node
) + offsetof(struct tree_node
, depth
),
264 sizeof(struct tree_node
) - offsetof(struct tree_node
, depth
),
268 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
269 tree_node_save(f
, ni
, thres
);
272 node
->is_expanded
= 1;
279 tree_save(struct tree
*tree
, struct board
*b
, int thres
)
281 char *filename
= tree_book_name(b
);
282 FILE *f
= fopen(filename
, "wb");
287 tree_node_save(f
, tree
->root
, thres
);
294 tree_node_load(FILE *f
, struct tree_node
*node
, int *num
)
298 fread(((void *) node
) + offsetof(struct tree_node
, depth
),
299 sizeof(struct tree_node
) - offsetof(struct tree_node
, depth
),
302 /* Keep values in sane scale, otherwise we start overflowing. */
303 #define MAX_PLAYOUTS 10000000
304 if (node
->u
.playouts
> MAX_PLAYOUTS
) {
305 node
->u
.playouts
= MAX_PLAYOUTS
;
307 if (node
->amaf
.playouts
> MAX_PLAYOUTS
) {
308 node
->amaf
.playouts
= MAX_PLAYOUTS
;
310 memcpy(&node
->pu
, &node
->u
, sizeof(node
->u
));
312 struct tree_node
*ni
= NULL
, *ni_prev
= NULL
;
314 ni_prev
= ni
; ni
= calloc2(1, sizeof(*ni
));
318 ni_prev
->sibling
= ni
;
320 tree_node_load(f
, ni
, num
);
325 tree_load(struct tree
*tree
, struct board
*b
)
327 char *filename
= tree_book_name(b
);
328 FILE *f
= fopen(filename
, "rb");
332 fprintf(stderr
, "Loading opening book %s...\n", filename
);
336 tree_node_load(f
, tree
->root
, &num
);
337 fprintf(stderr
, "Loaded %d nodes.\n", num
);
343 /* Copy the subtree rooted at node: all nodes at or below depth
344 * or with at least threshold playouts. Only for fast_alloc.
345 * The code is destructive on src. The relative order of children of
346 * a given node is preserved (assumed by tree_get_node in particular).
347 * Returns the copy of node in the destination tree, or NULL
348 * if we could not copy it. */
349 static struct tree_node
*
350 tree_prune(struct tree
*dest
, struct tree
*src
, struct tree_node
*node
,
351 int threshold
, int depth
)
353 assert(dest
->nodes
&& node
);
354 struct tree_node
*n2
= tree_alloc_node(dest
, 1, true, NULL
);
358 if (n2
->depth
> dest
->max_depth
)
359 dest
->max_depth
= n2
->depth
;
361 n2
->is_expanded
= false;
363 if (node
->depth
>= depth
&& node
->u
.playouts
< threshold
)
365 /* For deep nodes with many playouts, we must copy all children,
366 * even those with zero playouts, because partially expanded
367 * nodes are not supported. Considering them as fully expanded
368 * would degrade the playing strength. The only exception is
369 * when dest becomes full, but this should never happen in practice
370 * if threshold is chosen to limit the number of nodes traversed. */
371 struct tree_node
*ni
= node
->children
;
374 struct tree_node
**prev2
= &(n2
->children
);
376 struct tree_node
*ni2
= tree_prune(dest
, src
, ni
, threshold
, depth
);
379 prev2
= &(ni2
->sibling
);
384 n2
->is_expanded
= true;
386 n2
->children
= NULL
; // avoid partially expanded nodes
391 /* The following constants are used for garbage collection of nodes.
392 * A tree is considered large if the top node has >= 40K playouts.
393 * For such trees, we copy deep nodes only if they have enough
394 * playouts, with a gradually increasing threshold up to 40.
395 * These constants define how much time we're willing to spend
396 * scanning the source tree when promoting a move. The chosen values
397 * make worst case pruning in about 3s for 20 GB ram, and this
398 * is only for long thinking time (>1M playouts). For fast games the
399 * trees don't grow large. For small ram or fast game we copy the
400 * entire tree. These values do not degrade playing strength and are
401 * necessary to avoid losing on time; increasing DEEP_PLAYOUTS_THRESHOLD
402 * or decreasing LARGE_TREE_PLAYOUTS will make the program faster but
404 #define LARGE_TREE_PLAYOUTS 40000LL
405 #define DEEP_PLAYOUTS_THRESHOLD 40
407 /* Garbage collect the tree early if the top node has < 5K playouts,
408 * to avoid having to do it later on a large subtree.
409 * This guarantees garbage collection in < 1s. */
410 #define SMALL_TREE_PLAYOUTS 5000
412 /* Free all the tree, keeping only the subtree rooted at node.
413 * Prune the subtree if necessary to fit in max_size bytes or
414 * to save time scanning the tree.
415 * Returns the moved node. Only for fast_alloc. */
417 tree_garbage_collect(struct tree
*tree
, unsigned long max_size
, struct tree_node
*node
)
419 assert(tree
->nodes
&& !node
->parent
&& !node
->sibling
);
420 double start_time
= time_now();
422 struct tree
*temp_tree
= tree_init(tree
->board
, tree
->root_color
, max_size
, tree
->ltree_aging
, 0);
423 temp_tree
->nodes_size
= 0; // We do not want the dummy pass node
424 struct tree_node
*temp_node
;
426 /* Find the maximum depth at which we can copy all nodes. */
428 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
430 unsigned long nodes_size
= max_nodes
* sizeof(*node
);
431 int max_depth
= node
->depth
;
432 while (nodes_size
< max_size
&& max_nodes
> 1) {
434 nodes_size
+= max_nodes
* nodes_size
;
438 /* Copy all nodes for small trees. For large trees, copy all nodes
439 * with depth <= max_depth, and all nodes with enough playouts.
440 * Avoiding going too deep (except for nodes with many playouts) is mostly
441 * to save time scanning the source tree. It can take over 20s to traverse
442 * completely a large source tree (20 GB) even without copying because
443 * the traversal is not friendly at all with the memory cache. */
444 int threshold
= (node
->u
.playouts
- LARGE_TREE_PLAYOUTS
) * DEEP_PLAYOUTS_THRESHOLD
/ LARGE_TREE_PLAYOUTS
;
445 if (threshold
< 0) threshold
= 0;
446 if (threshold
> DEEP_PLAYOUTS_THRESHOLD
) threshold
= DEEP_PLAYOUTS_THRESHOLD
;
447 temp_node
= tree_prune(temp_tree
, tree
, node
, threshold
, max_depth
);
450 /* Now copy back to original tree. */
451 tree
->nodes_size
= 0;
453 struct tree_node
*new_node
= tree_prune(tree
, temp_tree
, temp_node
, 0, temp_tree
->max_depth
);
456 double now
= time_now();
457 static double prev_time
;
458 if (!prev_time
) prev_time
= start_time
;
460 "tree pruned in %0.6g s, prev %0.3g s ago, dest depth %d wanted %d,"
461 " max_size %lu, pruned size %lu, playouts %d\n",
462 now
- start_time
, start_time
- prev_time
, temp_tree
->max_depth
, max_depth
,
463 max_size
, temp_tree
->nodes_size
, new_node
->u
.playouts
);
464 prev_time
= start_time
;
466 if (temp_tree
->nodes_size
>= temp_tree
->max_tree_size
) {
467 fprintf(stderr
, "temp tree overflow, increase max_tree_size %lu or MIN_FREE_MEM_PERCENT %llu\n",
468 tree
->max_tree_size
, MIN_FREE_MEM_PERCENT
);
470 assert(tree
->nodes_size
== temp_tree
->nodes_size
);
471 assert(tree
->max_depth
== temp_tree
->max_depth
);
473 tree_done(temp_tree
);
478 /* Get a node of given coordinate from within parent, possibly creating it
479 * if necessary - in a very raw form (no .d, priors, ...). */
480 /* FIXME: Adjust for board symmetry. */
482 tree_get_node(struct tree
*t
, struct tree_node
*parent
, coord_t c
, bool create
)
484 if (!parent
->children
|| parent
->children
->coord
>= c
) {
485 /* Special case: Insertion at the beginning. */
486 if (parent
->children
&& parent
->children
->coord
== c
)
487 return parent
->children
;
491 struct tree_node
*nn
= tree_init_node(t
, c
, parent
->depth
+ 1, false);
492 nn
->parent
= parent
; nn
->sibling
= parent
->children
;
493 parent
->children
= nn
;
497 /* No candidate at the beginning, look through all the children. */
499 struct tree_node
*ni
;
500 for (ni
= parent
->children
; ni
->sibling
; ni
= ni
->sibling
)
501 if (ni
->sibling
->coord
>= c
)
504 if (ni
->sibling
&& ni
->sibling
->coord
== c
)
506 assert(ni
->coord
< c
);
510 struct tree_node
*nn
= tree_init_node(t
, c
, parent
->depth
+ 1, false);
511 nn
->parent
= parent
; nn
->sibling
= ni
->sibling
; ni
->sibling
= nn
;
515 /* Get local tree node corresponding to given node, given local node child
516 * iterator @lni (which points either at the corresponding node, or at the
517 * nearest local tree node after @ni). */
519 tree_lnode_for_node(struct tree
*tree
, struct tree_node
*ni
, struct tree_node
*lni
, int tenuki_d
)
521 /* Now set up lnode, which is the actual local node
522 * corresponding to ni - either lni if it is an
523 * exact match and ni is not tenuki, <pass> local
524 * node if ni is tenuki, or NULL if there is no
525 * corresponding node available. */
527 if (is_pass(ni
->coord
)) {
528 /* Also, for sanity reasons we never use local
529 * tree for passes. (Maybe we could, but it's
530 * too hard to think about.) */
534 if (lni
->coord
== ni
->coord
) {
535 /* We don't consider tenuki a sequence play
536 * that we have in local tree even though
537 * ni->d is too high; this can happen if this
538 * occured in different board topology. */
542 if (ni
->d
>= tenuki_d
) {
543 /* Tenuki, pick a pass lsibling if available. */
544 assert(lni
->parent
&& lni
->parent
->children
);
545 if (is_pass(lni
->parent
->children
->coord
)) {
546 return lni
->parent
->children
;
552 /* No corresponding local node, lnode stays NULL. */
557 /* Tree symmetry: When possible, we will localize the tree to a single part
558 * of the board in tree_expand_node() and possibly flip along symmetry axes
559 * to another part of the board in tree_promote_at(). We follow b->symmetry
560 * guidelines here. */
563 /* This function must be thread safe, given that board b is only modified by the calling thread. */
565 tree_expand_node(struct tree
*t
, struct tree_node
*node
, struct board
*b
, enum stone color
, struct uct
*u
, int parity
)
567 /* Get a Common Fate Graph distance map from parent node. */
568 int distances
[board_size2(b
)];
569 if (!is_pass(b
->last_move
.coord
) && !is_resign(b
->last_move
.coord
)) {
570 cfg_distances(b
, node
->coord
, distances
, TREE_NODE_D_MAX
);
572 // Pass or resign - everything is too far.
573 foreach_point(b
) { distances
[c
] = TREE_NODE_D_MAX
+ 1; } foreach_point_end
;
576 /* Get a map of prior values to initialize the new nodes with. */
577 struct prior_map map
= {
580 .parity
= tree_parity(t
, parity
),
581 .distances
= distances
,
583 // Include pass in the prior map.
584 struct move_stats map_prior
[board_size2(b
) + 1]; map
.prior
= &map_prior
[1];
585 bool map_consider
[board_size2(b
) + 1]; map
.consider
= &map_consider
[1];
586 memset(map_prior
, 0, sizeof(map_prior
));
587 memset(map_consider
, 0, sizeof(map_consider
));
588 map
.consider
[pass
] = true;
589 foreach_free_point(b
) {
590 assert(board_at(b
, c
) == S_NONE
);
591 if (!board_is_valid_play(b
, color
, c
))
593 map
.consider
[c
] = true;
594 } foreach_free_point_end
;
595 uct_prior(u
, node
, &map
);
597 /* Now, create the nodes. */
598 struct tree_node
*ni
= tree_init_node(t
, pass
, node
->depth
+ 1, t
->nodes
);
599 /* In fast_alloc mode we might temporarily run out of nodes but
600 * this should be rare if MIN_FREE_MEM_PERCENT is set correctly. */
602 node
->is_expanded
= false;
605 struct tree_node
*first_child
= ni
;
607 ni
->prior
= map
.prior
[pass
]; ni
->d
= TREE_NODE_D_MAX
+ 1;
609 /* The loop considers only the symmetry playground. */
611 fprintf(stderr
, "expanding %s within [%d,%d],[%d,%d] %d-%d\n",
612 coord2sstr(node
->coord
, b
),
613 b
->symmetry
.x1
, b
->symmetry
.y1
,
614 b
->symmetry
.x2
, b
->symmetry
.y2
,
615 b
->symmetry
.type
, b
->symmetry
.d
);
617 for (int j
= b
->symmetry
.y1
; j
<= b
->symmetry
.y2
; j
++) {
618 for (int i
= b
->symmetry
.x1
; i
<= b
->symmetry
.x2
; i
++) {
620 int x
= b
->symmetry
.type
== SYM_DIAG_DOWN
? board_size(b
) - 1 - i
: i
;
623 fprintf(stderr
, "drop %d,%d\n", i
, j
);
628 coord_t c
= coord_xy(t
->board
, i
, j
);
629 if (!map
.consider
[c
]) // Filter out invalid moves
631 assert(c
!= node
->coord
); // I have spotted "C3 C3" in some sequence...
633 struct tree_node
*nj
= tree_init_node(t
, c
, node
->depth
+ 1, t
->nodes
);
635 node
->is_expanded
= false;
638 nj
->parent
= node
; ni
->sibling
= nj
; ni
= nj
;
640 ni
->prior
= map
.prior
[c
];
641 ni
->d
= distances
[c
];
644 node
->children
= first_child
; // must be done at the end to avoid race
649 flip_coord(struct board
*b
, coord_t c
,
650 bool flip_horiz
, bool flip_vert
, int flip_diag
)
652 int x
= coord_x(c
, b
), y
= coord_y(c
, b
);
654 int z
= x
; x
= y
; y
= z
;
657 x
= board_size(b
) - 1 - x
;
660 y
= board_size(b
) - 1 - y
;
662 return coord_xy(b
, x
, y
);
666 tree_fix_node_symmetry(struct board
*b
, struct tree_node
*node
,
667 bool flip_horiz
, bool flip_vert
, int flip_diag
)
669 if (!is_pass(node
->coord
))
670 node
->coord
= flip_coord(b
, node
->coord
, flip_horiz
, flip_vert
, flip_diag
);
672 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
673 tree_fix_node_symmetry(b
, ni
, flip_horiz
, flip_vert
, flip_diag
);
677 tree_fix_symmetry(struct tree
*tree
, struct board
*b
, coord_t c
)
682 struct board_symmetry
*s
= &tree
->root_symmetry
;
683 int cx
= coord_x(c
, b
), cy
= coord_y(c
, b
);
685 /* playground X->h->v->d normalization
691 bool flip_horiz
= cx
< s
->x1
|| cx
> s
->x2
;
692 bool flip_vert
= cy
< s
->y1
|| cy
> s
->y2
;
696 bool dir
= (s
->type
== SYM_DIAG_DOWN
);
697 int x
= dir
^ flip_horiz
^ flip_vert
? board_size(b
) - 1 - cx
: cx
;
698 if (flip_vert
? x
< cy
: x
> cy
) {
704 fprintf(stderr
, "%s [%d,%d -> %d,%d;%d,%d] will flip %d %d %d -> %s, sym %d (%d) -> %d (%d)\n",
706 cx
, cy
, s
->x1
, s
->y1
, s
->x2
, s
->y2
,
707 flip_horiz
, flip_vert
, flip_diag
,
708 coord2sstr(flip_coord(b
, c
, flip_horiz
, flip_vert
, flip_diag
), b
),
709 s
->type
, s
->d
, b
->symmetry
.type
, b
->symmetry
.d
);
711 if (flip_horiz
|| flip_vert
|| flip_diag
)
712 tree_fix_node_symmetry(b
, tree
->root
, flip_horiz
, flip_vert
, flip_diag
);
717 tree_unlink_node(struct tree_node
*node
)
719 struct tree_node
*ni
= node
->parent
;
720 if (ni
->children
== node
) {
721 ni
->children
= node
->sibling
;
724 while (ni
->sibling
!= node
)
726 ni
->sibling
= node
->sibling
;
728 node
->sibling
= NULL
;
732 /* Reduce weight of statistics on promotion. Remove nodes that
733 * get reduced to zero playouts; returns next node to consider
734 * in the children list (@node may get deleted). */
735 static struct tree_node
*
736 tree_age_node(struct tree
*tree
, struct tree_node
*node
)
738 node
->u
.playouts
/= tree
->ltree_aging
;
739 if (node
->parent
&& !node
->u
.playouts
) {
740 struct tree_node
*sibling
= node
->sibling
;
741 /* Delete node, no playouts. */
742 tree_unlink_node(node
);
743 tree_done_node(tree
, node
);
747 struct tree_node
*ni
= node
->children
;
748 while (ni
) ni
= tree_age_node(tree
, ni
);
749 return node
->sibling
;
752 /* Promotes the given node as the root of the tree. In the fast_alloc
753 * mode, the node may be moved and some of its subtree may be pruned. */
755 tree_promote_node(struct tree
*tree
, struct tree_node
**node
)
757 assert((*node
)->parent
== tree
->root
);
758 tree_unlink_node(*node
);
760 /* Freeing the rest of the tree can take several seconds on large
761 * trees, so we must do it asynchronously: */
762 tree_done_node_detached(tree
, tree
->root
);
764 /* Garbage collect if we run out of memory, or it is cheap to do so now: */
765 unsigned long min_free_size
= (MIN_FREE_MEM_PERCENT
* tree
->max_tree_size
) / 100;
766 if (tree
->nodes_size
>= tree
->max_tree_size
- min_free_size
767 || (tree
->nodes_size
>= min_free_size
&& (*node
)->u
.playouts
< SMALL_TREE_PLAYOUTS
))
768 *node
= tree_garbage_collect(tree
, min_free_size
, *node
);
771 tree
->root_color
= stone_other(tree
->root_color
);
773 board_symmetry_update(tree
->board
, &tree
->root_symmetry
, (*node
)->coord
);
774 /* See tree.score description for explanation on why don't we zero
775 * score on node promotion. */
776 // tree->score.playouts = 0;
778 /* If the tree deepest node was under node, or if we called tree_garbage_collect,
779 * tree->max_depth is correct. Otherwise we could traverse the tree
780 * to recompute max_depth but it's not worth it: it's just for debugging
781 * and soon the tree will grow and max_depth will become correct again. */
783 if (tree
->ltree_aging
!= 1.0f
) { // XXX: != should work here even with the float
784 tree_age_node(tree
, tree
->ltree_black
);
785 tree_age_node(tree
, tree
->ltree_white
);
790 tree_promote_at(struct tree
*tree
, struct board
*b
, coord_t c
)
792 tree_fix_symmetry(tree
, b
, c
);
794 for (struct tree_node
*ni
= tree
->root
->children
; ni
; ni
= ni
->sibling
) {
795 if (ni
->coord
== c
) {
796 tree_promote_node(tree
, &ni
);