UCT reporting=jsonbig: Like json, plus ownership, chain status information
[pachi.git] / uct / walk.c
blob5c2f90868a412ba97aaa3a7ed6329ecb96bb71ed
1 #include <assert.h>
2 #include <math.h>
3 #include <pthread.h>
4 #include <signal.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
9 #define DEBUG
11 #include "debug.h"
12 #include "board.h"
13 #include "move.h"
14 #include "playout.h"
15 #include "probdist.h"
16 #include "random.h"
17 #include "uct/dynkomi.h"
18 #include "uct/internal.h"
19 #include "uct/search.h"
20 #include "uct/tree.h"
21 #include "uct/uct.h"
22 #include "uct/walk.h"
24 #define DESCENT_DLEN 512
27 void
28 uct_progress_text(struct uct *u, struct tree *t, enum stone color, int playouts, bool final)
30 if (!UDEBUGL(0))
31 return;
33 /* Best move */
34 struct tree_node *best = u->policy->choose(u->policy, t->root, t->board, color, resign);
35 if (!best) {
36 fprintf(stderr, "... No moves left\n");
37 return;
39 fprintf(stderr, "[%d] ", playouts);
40 fprintf(stderr, "best %f ", tree_node_get_value(t, 1, best->u.value));
42 /* Dynamic komi */
43 if (t->use_extra_komi)
44 fprintf(stderr, "komi %.1f ", t->extra_komi);
46 /* Best sequence */
47 fprintf(stderr, "| seq ");
48 for (int depth = 0; depth < 4; depth++) {
49 if (best && best->u.playouts >= 25) {
50 fprintf(stderr, "%3s ", coord2sstr(best->coord, t->board));
51 best = u->policy->choose(u->policy, best, t->board, color, resign);
52 } else {
53 fprintf(stderr, " ");
57 /* Best candidates */
58 fprintf(stderr, "| can ");
59 int cans = 4;
60 struct tree_node *can[cans];
61 memset(can, 0, sizeof(can));
62 best = t->root->children;
63 while (best) {
64 int c = 0;
65 while ((!can[c] || best->u.playouts > can[c]->u.playouts) && ++c < cans);
66 for (int d = 0; d < c; d++) can[d] = can[d + 1];
67 if (c > 0) can[c - 1] = best;
68 best = best->sibling;
70 while (--cans >= 0) {
71 if (can[cans]) {
72 fprintf(stderr, "%3s(%.3f) ",
73 coord2sstr(can[cans]->coord, t->board),
74 tree_node_get_value(t, 1, can[cans]->u.value));
75 } else {
76 fprintf(stderr, " ");
80 fprintf(stderr, "\n");
83 void
84 uct_progress_json(struct uct *u, struct tree *t, enum stone color, int playouts, bool final, bool big)
86 /* Prefix indicating JSON line. */
87 fprintf(stderr, "/**/ {\"%s\": {", final ? "final" : "interm");
89 /* Plaout count */
90 fprintf(stderr, "\"playouts\": %d", playouts);
92 /* Dynamic komi */
93 if (t->use_extra_komi)
94 fprintf(stderr, ", \"extrakomi\": %.1f", t->extra_komi);
96 struct tree_node *best = u->policy->choose(u->policy, t->root, t->board, color, resign);
97 if (best) {
98 /* Best move */
99 fprintf(stderr, ", \"best\": {\"%s\": %f}",
100 coord2sstr(best->coord, t->board),
101 tree_node_get_value(t, 1, best->u.value));
103 /* Best sequence */
104 fprintf(stderr, ", \"seq\": [");
105 for (int depth = 0; depth < 4; depth++) {
106 if (!best || best->u.playouts < 25) break;
107 fprintf(stderr, "%s\"%s\"", depth > 0 ? "," : "",
108 coord2sstr(best->coord, t->board));
109 best = u->policy->choose(u->policy, best, t->board, color, resign);
111 fprintf(stderr, "]");
114 /* Best candidates */
115 int cans = 4;
116 struct tree_node *can[cans];
117 memset(can, 0, sizeof(can));
118 best = t->root->children;
119 while (best) {
120 int c = 0;
121 while ((!can[c] || best->u.playouts > can[c]->u.playouts) && ++c < cans);
122 for (int d = 0; d < c; d++) can[d] = can[d + 1];
123 if (c > 0) can[c - 1] = best;
124 best = best->sibling;
126 fprintf(stderr, ", \"can\": [");
127 while (--cans >= 0) {
128 if (!can[cans]) break;
129 fprintf(stderr, "%s{\"%s\":%.3f}",
130 cans < 3 ? "," : "",
131 coord2sstr(can[cans]->coord, t->board),
132 tree_node_get_value(t, 1, can[cans]->u.value));
134 fprintf(stderr, "]");
136 if (big) {
137 /* Ownership statistics. {"b":val,"w":val,"d":val}
138 * where each val is in range [0,1] describes likelihood
139 * of this point becoming black, white and dame.
140 * If dame rate would be 0, only black rate is sent and
141 * white rate can be computed as 1-blackrate. */
142 fprintf(stderr, ", \"ownage\": [");
143 int f = 0;
144 foreach_point(t->board) {
145 if (board_at(t->board, c) != S_NONE) continue;
146 fprintf(stderr, "%s{\"%s\":{", f++ > 0 ? "," : "",
147 coord2sstr(c, t->board));
148 floating_t drate = (floating_t) u->ownermap.map[c][S_NONE] / u->ownermap.playouts;
149 bool p = false;
150 #define print_rate(color,letter) \
151 if (drate >= 0.001 || color == S_BLACK) { \
152 floating_t rate = (floating_t) u->ownermap.map[c][color] / u->ownermap.playouts; \
153 fprintf(stderr, "%s\"%c\":%.3f", p ? "," : "", letter, rate); \
154 p = true; \
156 print_rate(S_BLACK, 'b');
157 print_rate(S_WHITE, 'w');
158 print_rate(S_NONE, 'd');
159 fprintf(stderr, "}}");
160 } foreach_point_end;
161 fprintf(stderr, "]");
163 /* Chain status statistics. Each chain is identified
164 * by some stone within, and bound to a value in range
165 * [0,1] describing likelihood of survival. */
166 fprintf(stderr, ", \"chainstatus\": [");
167 f = 0;
168 foreach_point(t->board) {
169 group_t g = group_at(t->board, c);
170 if (!g || groupnext_at(t->board, c)) continue;
171 /* Last stone in some group. */
172 fprintf(stderr, "%s{\"%s\":%.3f}",
173 f++ > 0 ? "," : "",
174 coord2sstr(c, t->board),
175 (floating_t) u->ownermap.map[c][board_at(t->board, c)] / u->ownermap.playouts);
176 } foreach_point_end;
177 fprintf(stderr, "]");
180 fprintf(stderr, "}}\n");
183 void
184 uct_progress_status(struct uct *u, struct tree *t, enum stone color, int playouts, bool final)
186 switch (u->reporting) {
187 case UR_TEXT:
188 uct_progress_text(u, t, color, playouts, final);
189 break;
190 case UR_JSON:
191 case UR_JSON_BIG:
192 uct_progress_json(u, t, color, playouts, final,
193 u->reporting == UR_JSON_BIG);
194 break;
195 default: assert(0);
200 static void
201 record_amaf_move(struct playout_amafmap *amaf, coord_t coord, enum stone color)
203 if (amaf->map[coord] == S_NONE || amaf->map[coord] == color) {
204 amaf->map[coord] = color;
205 } else { // XXX: Respect amaf->record_nakade
206 amaf_op(amaf->map[coord], +);
208 amaf->game[amaf->gamelen].coord = coord;
209 amaf->game[amaf->gamelen].color = color;
210 amaf->gamelen++;
211 assert(amaf->gamelen < sizeof(amaf->game) / sizeof(amaf->game[0]));
215 struct uct_playout_callback {
216 struct uct *uct;
217 struct tree *tree;
218 struct tree_node *lnode;
222 static coord_t
223 uct_playout_hook(struct playout_policy *playout, struct playout_setup *setup, struct board *b, enum stone color, int mode)
225 /* XXX: This is used in some non-master branches. */
226 return pass;
229 static coord_t
230 uct_playout_prepolicy(struct playout_policy *playout, struct playout_setup *setup, struct board *b, enum stone color)
232 return uct_playout_hook(playout, setup, b, color, 0);
235 static coord_t
236 uct_playout_postpolicy(struct playout_policy *playout, struct playout_setup *setup, struct board *b, enum stone color)
238 return uct_playout_hook(playout, setup, b, color, 1);
242 static int
243 uct_leaf_node(struct uct *u, struct board *b, enum stone player_color,
244 struct playout_amafmap *amaf,
245 struct uct_descent *descent, int *dlen,
246 struct tree_node *significant[2],
247 struct tree *t, struct tree_node *n, enum stone node_color,
248 char *spaces)
250 enum stone next_color = stone_other(node_color);
251 int parity = (next_color == player_color ? 1 : -1);
253 /* We need to make sure only one thread expands the node. If
254 * we are unlucky enough for two threads to meet in the same
255 * node, the latter one will simply do another simulation from
256 * the node itself, no big deal. t->nodes_size may exceed
257 * the maximum in multi-threaded case but not by much so it's ok.
258 * The size test must be before the test&set not after, to allow
259 * expansion of the node later if enough nodes have been freed. */
260 if (n->u.playouts >= u->expand_p && t->nodes_size < u->max_tree_size
261 && !__sync_lock_test_and_set(&n->is_expanded, 1)) {
262 tree_expand_node(t, n, b, next_color, u, parity);
264 if (UDEBUGL(7))
265 fprintf(stderr, "%s*-- UCT playout #%d start [%s] %f\n",
266 spaces, n->u.playouts, coord2sstr(n->coord, t->board),
267 tree_node_get_value(t, parity, n->u.value));
269 struct uct_playout_callback upc = {
270 .uct = u,
271 .tree = t,
272 /* TODO: Don't necessarily restart the sequence walk when
273 * entering playout. */
274 .lnode = NULL,
277 struct playout_setup ps = {
278 .gamelen = u->gamelen,
279 .mercymin = u->mercymin,
280 .prepolicy_hook = uct_playout_prepolicy,
281 .postpolicy_hook = uct_playout_postpolicy,
282 .hook_data = &upc,
284 int result = play_random_game(&ps, b, next_color,
285 u->playout_amaf ? amaf : NULL,
286 &u->ownermap, u->playout);
287 if (next_color == S_WHITE) {
288 /* We need the result from black's perspective. */
289 result = - result;
291 if (UDEBUGL(7))
292 fprintf(stderr, "%s -- [%d..%d] %s random playout result %d\n",
293 spaces, player_color, next_color, coord2sstr(n->coord, t->board), result);
295 return result;
298 static floating_t
299 scale_value(struct uct *u, struct board *b, int result)
301 floating_t rval = result > 0 ? 1.0 : result < 0 ? 0.0 : 0.5;
302 if (u->val_scale && result != 0) {
303 int vp = u->val_points;
304 if (!vp) {
305 vp = board_size(b) - 1; vp *= vp; vp *= 2;
308 floating_t sval = (floating_t) abs(result) / vp;
309 sval = sval > 1 ? 1 : sval;
310 if (result < 0) sval = 1 - sval;
311 if (u->val_extra)
312 rval += u->val_scale * sval;
313 else
314 rval = (1 - u->val_scale) * rval + u->val_scale * sval;
315 // fprintf(stderr, "score %d => sval %f, rval %f\n", result, sval, rval);
317 return rval;
320 static void
321 record_local_sequence(struct uct *u, struct tree *t,
322 struct uct_descent *descent, int dlen, int di,
323 enum stone seq_color, floating_t rval)
325 #define LTREE_DEBUG if (UDEBUGL(6))
327 /* Ignore pass sequences. */
328 if (is_pass(descent[di].node->coord))
329 return;
331 /* Transform the rval appropriately, based on the expected
332 * result at the root of the sequence. */
333 if (u->local_tree_rootseqval) {
334 float expval = descent[di - 1].value.value;
335 rval = stats_temper_value(rval, expval, u->local_tree);
338 LTREE_DEBUG fprintf(stderr, "recording result %f in local %s sequence: ",
339 rval, stone2str(seq_color));
341 /* Sequences starting deeper are less relevant in general. */
342 int pval = LTREE_PLAYOUTS_MULTIPLIER;
343 if (u->local_tree && u->local_tree_depth_decay > 0)
344 pval = ((floating_t) pval) / pow(u->local_tree_depth_decay, di - 1);
345 if (!pval) {
346 LTREE_DEBUG fprintf(stderr, "too deep @%d\n", di);
347 return;
350 /* Pick the right local tree root... */
351 struct tree_node *lnode = seq_color == S_BLACK ? t->ltree_black : t->ltree_white;
352 lnode->u.playouts++;
354 /* ...and record the sequence. */
355 int di0 = di;
356 while (di < dlen && (di == di0 || descent[di].node->d < u->tenuki_d)) {
357 LTREE_DEBUG fprintf(stderr, "%s[%d] ",
358 coord2sstr(descent[di].node->coord, t->board),
359 descent[di].node->d);
360 lnode = tree_get_node(t, lnode, descent[di++].node->coord, true);
361 assert(lnode);
362 stats_add_result(&lnode->u, rval, pval);
365 /* Add lnode for tenuki (pass) if we descended further. */
366 if (di < dlen) {
367 LTREE_DEBUG fprintf(stderr, "pass ");
368 lnode = tree_get_node(t, lnode, pass, true);
369 assert(lnode);
370 stats_add_result(&lnode->u, rval, pval);
373 LTREE_DEBUG fprintf(stderr, "\n");
378 uct_playout(struct uct *u, struct board *b, enum stone player_color, struct tree *t)
380 struct board b2;
381 board_copy(&b2, b);
383 struct playout_amafmap *amaf = NULL;
384 if (u->policy->wants_amaf) {
385 amaf = calloc2(1, sizeof(*amaf));
386 amaf->map = calloc2(board_size2(&b2) + 1, sizeof(*amaf->map));
387 amaf->map++; // -1 is pass
390 /* Walk the tree until we find a leaf, then expand it and do
391 * a random playout. */
392 struct tree_node *n = t->root;
393 enum stone node_color = stone_other(player_color);
394 assert(node_color == t->root_color);
396 /* Tree descent history. */
397 /* XXX: This is somewhat messy since @n and descent[dlen-1].node are
398 * redundant. */
399 struct uct_descent descent[DESCENT_DLEN];
400 descent[0].node = n; descent[0].lnode = NULL;
401 int dlen = 1;
402 /* Total value of the sequence. */
403 struct move_stats seq_value = { .playouts = 0 };
404 /* The last "significant" node along the descent (i.e. node
405 * with higher than configured number of playouts). For black
406 * and white. */
407 struct tree_node *significant[2] = { NULL, NULL };
408 if (n->u.playouts >= u->significant_threshold)
409 significant[node_color - 1] = n;
411 int result;
412 int pass_limit = (board_size(&b2) - 2) * (board_size(&b2) - 2) / 2;
413 int passes = is_pass(b->last_move.coord) && b->moves > 0;
415 /* debug */
416 static char spaces[] = "\0 ";
417 /* /debug */
418 if (UDEBUGL(8))
419 fprintf(stderr, "--- UCT walk with color %d\n", player_color);
421 while (!tree_leaf_node(n) && passes < 2) {
422 spaces[dlen - 1] = ' '; spaces[dlen] = 0;
425 /*** Choose a node to descend to: */
427 /* Parity is chosen already according to the child color, since
428 * it is applied to children. */
429 node_color = stone_other(node_color);
430 int parity = (node_color == player_color ? 1 : -1);
432 assert(dlen < DESCENT_DLEN);
433 descent[dlen] = descent[dlen - 1];
434 if (u->local_tree && (!descent[dlen].lnode || descent[dlen].node->d >= u->tenuki_d)) {
435 /* Start new local sequence. */
436 /* Remember that node_color already holds color of the
437 * to-be-found child. */
438 descent[dlen].lnode = node_color == S_BLACK ? t->ltree_black : t->ltree_white;
441 if (!u->random_policy_chance || fast_random(u->random_policy_chance))
442 u->policy->descend(u->policy, t, &descent[dlen], parity, b2.moves > pass_limit);
443 else
444 u->random_policy->descend(u->random_policy, t, &descent[dlen], parity, b2.moves > pass_limit);
447 /*** Perform the descent: */
449 if (descent[dlen].node->u.playouts >= u->significant_threshold) {
450 significant[node_color - 1] = descent[dlen].node;
453 seq_value.playouts += descent[dlen].value.playouts;
454 seq_value.value += descent[dlen].value.value * descent[dlen].value.playouts;
455 n = descent[dlen++].node;
456 assert(n == t->root || n->parent);
457 if (UDEBUGL(7))
458 fprintf(stderr, "%s+-- UCT sent us to [%s:%d] %d,%f\n",
459 spaces, coord2sstr(n->coord, t->board),
460 n->coord, n->u.playouts,
461 tree_node_get_value(t, parity, n->u.value));
463 /* Add virtual loss if we need to; this is used to discourage
464 * other threads from visiting this node in case of multiple
465 * threads doing the tree search. */
466 if (u->virtual_loss)
467 stats_add_result(&n->u, node_color == S_BLACK ? 0.0 : 1.0, u->virtual_loss);
469 assert(n->coord >= -1);
470 if (amaf && !is_pass(n->coord))
471 record_amaf_move(amaf, n->coord, node_color);
473 struct move m = { n->coord, node_color };
474 int res = board_play(&b2, &m);
476 if (res < 0 || (!is_pass(m.coord) && !group_at(&b2, m.coord)) /* suicide */
477 || b2.superko_violation) {
478 if (UDEBUGL(4)) {
479 for (struct tree_node *ni = n; ni; ni = ni->parent)
480 fprintf(stderr, "%s<%"PRIhash"> ", coord2sstr(ni->coord, t->board), ni->hash);
481 fprintf(stderr, "marking invalid %s node %d,%d res %d group %d spk %d\n",
482 stone2str(node_color), coord_x(n->coord,b), coord_y(n->coord,b),
483 res, group_at(&b2, m.coord), b2.superko_violation);
485 n->hints |= TREE_HINT_INVALID;
486 result = 0;
487 goto end;
490 if (is_pass(n->coord))
491 passes++;
492 else
493 passes = 0;
496 if (amaf) {
497 amaf->game_baselen = amaf->gamelen;
498 amaf->record_nakade = u->playout_amaf_nakade;
501 if (t->use_extra_komi && u->dynkomi->persim) {
502 b2.komi += round(u->dynkomi->persim(u->dynkomi, &b2, t, n));
505 if (passes >= 2) {
506 /* XXX: No dead groups support. */
507 floating_t score = board_official_score(&b2, NULL);
508 /* Result from black's perspective (no matter who
509 * the player; black's perspective is always
510 * what the tree stores. */
511 result = - (score * 2);
513 if (UDEBUGL(5))
514 fprintf(stderr, "[%d..%d] %s p-p scoring playout result %d (W %f)\n",
515 player_color, node_color, coord2sstr(n->coord, t->board), result, score);
516 if (UDEBUGL(6))
517 board_print(&b2, stderr);
519 board_ownermap_fill(&u->ownermap, &b2);
521 } else { // assert(tree_leaf_node(n));
522 /* In case of parallel tree search, the assertion might
523 * not hold if two threads chew on the same node. */
524 result = uct_leaf_node(u, &b2, player_color, amaf, descent, &dlen, significant, t, n, node_color, spaces);
527 if (amaf && u->playout_amaf_cutoff) {
528 unsigned int cutoff = amaf->game_baselen;
529 cutoff += (amaf->gamelen - amaf->game_baselen) * u->playout_amaf_cutoff / 100;
530 /* Now, reconstruct the amaf map. */
531 memset(amaf->map, 0, board_size2(&b2) * sizeof(*amaf->map));
532 for (unsigned int i = 0; i < cutoff; i++) {
533 coord_t coord = amaf->game[i].coord;
534 enum stone color = amaf->game[i].color;
535 if (amaf->map[coord] == S_NONE || amaf->map[coord] == color) {
536 amaf->map[coord] = color;
537 /* Nakade always recorded for in-tree part */
538 } else if (amaf->record_nakade || i <= amaf->game_baselen) {
539 amaf_op(amaf->map[n->coord], +);
544 /* Record the result. */
546 assert(n == t->root || n->parent);
547 floating_t rval = scale_value(u, b, result);
548 u->policy->update(u->policy, t, n, node_color, player_color, amaf, &b2, rval);
550 if (t->use_extra_komi) {
551 stats_add_result(&u->dynkomi->score, result / 2, 1);
552 stats_add_result(&u->dynkomi->value, rval, 1);
555 if (u->local_tree && n->parent && !is_pass(n->coord) && dlen > 0) {
556 /* Possibly transform the rval appropriately. */
557 if (!u->local_tree_rootseqval) {
558 floating_t expval = seq_value.value / seq_value.playouts;
559 rval = stats_temper_value(rval, expval, u->local_tree);
562 /* Get the local sequences and record them in ltree. */
563 /* We will look for sequence starts in our descent
564 * history, then run record_local_sequence() for each
565 * found sequence start; record_local_sequence() may
566 * pick longer sequences from descent history then,
567 * which is expected as it will create new lnodes. */
568 enum stone seq_color = player_color;
569 /* First move always starts a sequence. */
570 record_local_sequence(u, t, descent, dlen, 1, seq_color, rval);
571 seq_color = stone_other(seq_color);
572 for (int dseqi = 2; dseqi < dlen; dseqi++, seq_color = stone_other(seq_color)) {
573 if (u->local_tree_allseq) {
574 /* We are configured to record all subsequences. */
575 record_local_sequence(u, t, descent, dlen, dseqi, seq_color, rval);
576 continue;
578 if (descent[dseqi].node->d >= u->tenuki_d) {
579 /* Tenuki! Record the fresh sequence. */
580 record_local_sequence(u, t, descent, dlen, dseqi, seq_color, rval);
581 continue;
583 if (descent[dseqi].lnode && !descent[dseqi].lnode) {
584 /* Record result for in-descent picked sequence. */
585 record_local_sequence(u, t, descent, dlen, dseqi, seq_color, rval);
586 continue;
591 end:
592 /* We need to undo the virtual loss we added during descend. */
593 if (u->virtual_loss) {
594 floating_t loss = node_color == S_BLACK ? 0.0 : 1.0;
595 for (; n->parent; n = n->parent) {
596 stats_rm_result(&n->u, loss, u->virtual_loss);
597 loss = 1.0 - loss;
601 if (amaf) {
602 free(amaf->map - 1);
603 free(amaf);
605 board_done_noalloc(&b2);
606 return result;
610 uct_playouts(struct uct *u, struct board *b, enum stone color, struct tree *t, struct time_info *ti)
612 int i;
613 if (ti && ti->dim == TD_GAMES) {
614 for (i = 0; t->root->u.playouts <= ti->len.games; i++)
615 uct_playout(u, b, color, t);
616 } else {
617 for (i = 0; !uct_halt; i++)
618 uct_playout(u, b, color, t);
620 return i;