Add function uctp_generic_winner, needed for time control.
[pachi.git] / uct / tree.c
blobb164c52140e152b83610c38ec921e31f15e15cfc
1 #include <assert.h>
2 #include <math.h>
3 #include <stddef.h>
4 #include <stdint.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
9 #define DEBUG
10 #include "board.h"
11 #include "debug.h"
12 #include "engine.h"
13 #include "move.h"
14 #include "playout.h"
15 #include "tactics.h"
16 #include "uct/internal.h"
17 #include "uct/prior.h"
18 #include "uct/tree.h"
21 /* This function may be called by multiple threads in parallel */
22 static struct tree_node *
23 tree_init_node(struct tree *t, coord_t coord, int depth)
25 struct tree_node *n = calloc(1, sizeof(*n));
26 if (!n) {
27 fprintf(stderr, "tree_init_node(): OUT OF MEMORY\n");
28 exit(1);
30 __sync_fetch_and_add(&t->nodes_size, sizeof(*n));
31 n->coord = coord;
32 n->depth = depth;
33 volatile static long c = 1000000;
34 n->hash = __sync_fetch_and_add(&c, 1);
35 if (depth > t->max_depth)
36 t->max_depth = depth;
37 return n;
40 struct tree *
41 tree_init(struct board *board, enum stone color)
43 struct tree *t = calloc(1, sizeof(*t));
44 t->board = board;
45 /* The root PASS move is only virtual, we never play it. */
46 t->root = tree_init_node(t, pass, 0);
47 t->root_symmetry = board->symmetry;
48 t->root_color = stone_other(color); // to research black moves, root will be white
49 return t;
53 static void
54 tree_done_node(struct tree *t, struct tree_node *n)
56 struct tree_node *ni = n->children;
57 while (ni) {
58 struct tree_node *nj = ni->sibling;
59 tree_done_node(t, ni);
60 ni = nj;
62 t->nodes_size -= sizeof(*n); // atomic operation not needed here
63 free(n);
66 void
67 tree_done(struct tree *t)
69 tree_done_node(t, t->root);
70 if (t->chchvals) free(t->chchvals);
71 if (t->chvals) free(t->chvals);
72 free(t);
76 static void
77 tree_node_dump(struct tree *tree, struct tree_node *node, int l, int thres)
79 for (int i = 0; i < l; i++) fputc(' ', stderr);
80 int children = 0;
81 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
82 children++;
83 /* We use 1 as parity, since for all nodes we want to know the
84 * win probability of _us_, not the node color. */
85 fprintf(stderr, "[%s] %f %% %d [prior %f %% %d amaf %f %% %d]; hints %x; %d children <%"PRIhash">\n",
86 coord2sstr(node->coord, tree->board),
87 tree_node_get_value(tree, 1, node->u.value), node->u.playouts,
88 tree_node_get_value(tree, 1, node->prior.value), node->prior.playouts,
89 tree_node_get_value(tree, 1, node->amaf.value), node->amaf.playouts,
90 node->hints, children, node->hash);
92 /* Print nodes sorted by #playouts. */
94 struct tree_node *nbox[1000]; int nboxl = 0;
95 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
96 if (ni->u.playouts > thres)
97 nbox[nboxl++] = ni;
99 while (true) {
100 int best = -1;
101 for (int i = 0; i < nboxl; i++)
102 if (nbox[i] && (best < 0 || nbox[i]->u.playouts > nbox[best]->u.playouts))
103 best = i;
104 if (best < 0)
105 break;
106 tree_node_dump(tree, nbox[best], l + 1, /* node->u.value < 0.1 ? 0 : */ thres);
107 nbox[best] = NULL;
111 void
112 tree_dump_chval(struct tree *tree, struct move_stats *v)
114 for (int y = board_size(tree->board) - 2; y > 1; y--) {
115 for (int x = 1; x < board_size(tree->board) - 1; x++) {
116 coord_t c = coord_xy(tree->board, x, y);
117 fprintf(stderr, "%.2f%%%05d ", v[c].value, v[c].playouts);
119 fprintf(stderr, "\n");
123 void
124 tree_dump(struct tree *tree, int thres)
126 if (thres && tree->root->u.playouts / thres > 100) {
127 /* Be a bit sensible about this; the opening book can create
128 * huge dumps at first. */
129 thres = tree->root->u.playouts / 100 * (thres < 1000 ? 1 : thres / 1000);
131 fprintf(stderr, "(UCT tree; root %s; extra komi %f)\n",
132 stone2str(tree->root_color), tree->extra_komi);
133 tree_node_dump(tree, tree->root, 0, thres);
135 if (DEBUGL(3) && tree->chvals) {
136 fprintf(stderr, "children stats:\n");
137 tree_dump_chval(tree, tree->chvals);
138 fprintf(stderr, "grandchildren stats:\n");
139 tree_dump_chval(tree, tree->chchvals);
144 static char *
145 tree_book_name(struct board *b)
147 static char buf[256];
148 if (b->handicap > 0) {
149 sprintf(buf, "uctbook-%d-%02.01f-h%d.pachitree", b->size - 2, b->komi, b->handicap);
150 } else {
151 sprintf(buf, "uctbook-%d-%02.01f.pachitree", b->size - 2, b->komi);
153 return buf;
156 static void
157 tree_node_save(FILE *f, struct tree_node *node, int thres)
159 bool save_children = node->u.playouts >= thres;
161 if (!save_children)
162 node->is_expanded = 0;
164 fputc(1, f);
165 fwrite(((void *) node) + offsetof(struct tree_node, depth),
166 sizeof(struct tree_node) - offsetof(struct tree_node, depth),
167 1, f);
169 if (save_children) {
170 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
171 tree_node_save(f, ni, thres);
172 } else {
173 if (node->children)
174 node->is_expanded = 1;
177 fputc(0, f);
180 void
181 tree_save(struct tree *tree, struct board *b, int thres)
183 char *filename = tree_book_name(b);
184 FILE *f = fopen(filename, "wb");
185 if (!f) {
186 perror("fopen");
187 return;
189 tree_node_save(f, tree->root, thres);
190 fputc(0, f);
191 fclose(f);
195 void
196 tree_node_load(FILE *f, struct tree_node *node, int *num)
198 (*num)++;
200 fread(((void *) node) + offsetof(struct tree_node, depth),
201 sizeof(struct tree_node) - offsetof(struct tree_node, depth),
202 1, f);
204 /* Keep values in sane scale, otherwise we start overflowing. */
205 #define MAX_PLAYOUTS 10000000
206 if (node->u.playouts > MAX_PLAYOUTS) {
207 node->u.playouts = MAX_PLAYOUTS;
209 if (node->amaf.playouts > MAX_PLAYOUTS) {
210 node->amaf.playouts = MAX_PLAYOUTS;
213 memcpy(&node->pamaf, &node->amaf, sizeof(node->amaf));
214 memcpy(&node->pu, &node->u, sizeof(node->u));
216 struct tree_node *ni = NULL, *ni_prev = NULL;
217 while (fgetc(f)) {
218 ni_prev = ni; ni = calloc(1, sizeof(*ni));
219 if (!node->children)
220 node->children = ni;
221 else
222 ni_prev->sibling = ni;
223 ni->parent = node;
224 tree_node_load(f, ni, num);
228 void
229 tree_load(struct tree *tree, struct board *b)
231 char *filename = tree_book_name(b);
232 FILE *f = fopen(filename, "rb");
233 if (!f)
234 return;
236 fprintf(stderr, "Loading opening book %s...\n", filename);
238 int num = 0;
239 if (fgetc(f))
240 tree_node_load(f, tree->root, &num);
241 fprintf(stderr, "Loaded %d nodes.\n", num);
243 fclose(f);
247 static struct tree_node *
248 tree_node_copy(struct tree_node *node)
250 struct tree_node *n2 = malloc(sizeof(*n2));
251 *n2 = *node;
252 if (!node->children)
253 return n2;
254 struct tree_node *ni = node->children;
255 struct tree_node *ni2 = tree_node_copy(ni);
256 n2->children = ni2; ni2->parent = n2;
257 while ((ni = ni->sibling)) {
258 ni2->sibling = tree_node_copy(ni);
259 ni2 = ni2->sibling; ni2->parent = n2;
261 return n2;
264 struct tree *
265 tree_copy(struct tree *tree)
267 struct tree *t2 = malloc(sizeof(*t2));
268 *t2 = *tree;
269 t2->root = tree_node_copy(tree->root);
270 return t2;
274 static void
275 tree_node_merge(struct tree_node *dest, struct tree_node *src)
277 /* Do not merge nodes that weren't touched at all. */
278 assert(dest->pamaf.playouts == src->pamaf.playouts);
279 assert(dest->pu.playouts == src->pu.playouts);
280 if (src->amaf.playouts - src->pamaf.playouts == 0
281 && src->u.playouts - src->pu.playouts == 0) {
282 return;
285 dest->hints |= src->hints;
287 /* Merge the children, both are coord-sorted lists. */
288 struct tree_node *di = dest->children, **dref = &dest->children;
289 struct tree_node *si = src->children, **sref = &src->children;
290 while (di && si) {
291 if (di->coord != si->coord) {
292 /* src has some extra items or misses di */
293 struct tree_node *si2 = si->sibling;
294 while (si2 && di->coord != si2->coord) {
295 si2 = si2->sibling;
297 if (!si2)
298 goto next_di; /* src misses di, move on */
299 /* chain the extra [si,si2) items before di */
300 (*dref) = si;
301 while (si->sibling != si2) {
302 si->parent = dest;
303 si = si->sibling;
305 si->parent = dest;
306 si->sibling = di;
307 si = si2;
308 (*sref) = si;
310 /* Matching nodes - recurse... */
311 tree_node_merge(di, si);
312 /* ...and move on. */
313 sref = &si->sibling; si = si->sibling;
314 next_di:
315 dref = &di->sibling; di = di->sibling;
317 if (si) {
318 /* Some outstanding nodes are left on src side, rechain
319 * them to dst. */
320 (*dref) = si;
321 while (si) {
322 si->parent = dest;
323 si = si->sibling;
325 (*sref) = NULL;
328 /* Priors should be constant. */
329 assert(dest->prior.playouts == src->prior.playouts && dest->prior.value == src->prior.value);
331 stats_merge(&dest->amaf, &src->amaf);
332 stats_merge(&dest->u, &src->u);
335 /* Merge two trees built upon the same board. Note that the operation is
336 * destructive on src. */
337 void
338 tree_merge(struct tree *dest, struct tree *src)
340 if (src->max_depth > dest->max_depth)
341 dest->max_depth = src->max_depth;
342 tree_node_merge(dest->root, src->root);
346 static void
347 tree_node_normalize(struct tree_node *node, int factor)
349 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
350 tree_node_normalize(ni, factor);
352 #define normalize(s1, s2, t) node->s2.t = node->s1.t + (node->s2.t - node->s1.t) / factor;
353 normalize(pamaf, amaf, playouts);
354 memcpy(&node->pamaf, &node->amaf, sizeof(node->amaf));
356 normalize(pu, u, playouts);
357 memcpy(&node->pu, &node->u, sizeof(node->u));
358 #undef normalize
361 /* Normalize a tree, dividing the amaf and u values by given
362 * factor; otherwise, simulations run in independent threads
363 * two trees built upon the same board. To correctly handle
364 * results taken from previous simulation run, they are backed
365 * up in tree. */
366 void
367 tree_normalize(struct tree *tree, int factor)
369 tree_node_normalize(tree->root, factor);
373 /* Get a node of given coordinate from within parent, possibly creating it
374 * if necessary - in a very raw form (no .d, priors, ...). */
375 /* FIXME: Adjust for board symmetry. */
376 struct tree_node *
377 tree_get_node(struct tree *t, struct tree_node *parent, coord_t c, bool create)
379 if (!parent->children || parent->children->coord >= c) {
380 /* Special case: Insertion at the beginning. */
381 if (parent->children && parent->children->coord == c)
382 return parent->children;
383 if (!create)
384 return NULL;
386 struct tree_node *nn = tree_init_node(t, c, parent->depth + 1);
387 nn->parent = parent; nn->sibling = parent->children;
388 parent->children = nn;
389 return nn;
392 /* No candidate at the beginning, look through all the children. */
394 struct tree_node *ni;
395 for (ni = parent->children; ni->sibling; ni = ni->sibling)
396 if (ni->sibling->coord >= c)
397 break;
399 if (ni->sibling && ni->sibling->coord == c)
400 return ni->sibling;
401 assert(ni->coord < c);
402 if (!create)
403 return NULL;
405 struct tree_node *nn = tree_init_node(t, c, parent->depth + 1);
406 nn->parent = parent; nn->sibling = ni->sibling; ni->sibling = nn;
407 return nn;
411 /* Tree symmetry: When possible, we will localize the tree to a single part
412 * of the board in tree_expand_node() and possibly flip along symmetry axes
413 * to another part of the board in tree_promote_at(). We follow b->symmetry
414 * guidelines here. */
417 void
418 tree_expand_node(struct tree *t, struct tree_node *node, struct board *b, enum stone color, struct uct *u, int parity)
420 /* Get a Common Fate Graph distance map from parent node. */
421 int distances[board_size2(b)];
422 if (!is_pass(b->last_move.coord) && !is_resign(b->last_move.coord)) {
423 cfg_distances(b, node->coord, distances, TREE_NODE_D_MAX);
424 } else {
425 // Pass or resign - everything is too far.
426 foreach_point(b) { distances[c] = TREE_NODE_D_MAX + 1; } foreach_point_end;
429 /* Get a map of prior values to initialize the new nodes with. */
430 struct prior_map map = {
431 .b = b,
432 .to_play = color,
433 .parity = tree_parity(t, parity),
434 .distances = distances,
436 // Include pass in the prior map.
437 struct move_stats map_prior[board_size2(b) + 1]; map.prior = &map_prior[1];
438 bool map_consider[board_size2(b) + 1]; map.consider = &map_consider[1];
439 memset(map_prior, 0, sizeof(map_prior));
440 memset(map_consider, 0, sizeof(map_consider));
441 struct move pm = { .color = color };
442 map.consider[pass] = true;
443 foreach_point(b) {
444 if (board_at(b, c) != S_NONE)
445 continue;
446 pm.coord = c;
447 if (!board_is_valid_move(b, &pm))
448 continue;
449 map.consider[c] = true;
450 } foreach_point_end;
451 uct_prior(u, node, &map);
453 /* Now, create the nodes. */
454 struct tree_node *ni = tree_init_node(t, pass, node->depth + 1);
455 struct tree_node *first_child = ni;
456 ni->parent = node;
457 ni->prior = map.prior[pass]; ni->d = TREE_NODE_D_MAX + 1;
459 /* The loop considers only the symmetry playground. */
460 if (UDEBUGL(6)) {
461 fprintf(stderr, "expanding %s within [%d,%d],[%d,%d] %d-%d\n",
462 coord2sstr(node->coord, b),
463 b->symmetry.x1, b->symmetry.y1,
464 b->symmetry.x2, b->symmetry.y2,
465 b->symmetry.type, b->symmetry.d);
467 for (int i = b->symmetry.x1; i <= b->symmetry.x2; i++) {
468 for (int j = b->symmetry.y1; j <= b->symmetry.y2; j++) {
469 if (b->symmetry.d) {
470 int x = b->symmetry.type == SYM_DIAG_DOWN ? board_size(b) - 1 - i : i;
471 if (x > j) {
472 if (UDEBUGL(7))
473 fprintf(stderr, "drop %d,%d\n", i, j);
474 continue;
478 coord_t c = coord_xy_otf(i, j, t->board);
479 if (!map.consider[c]) // Filter out invalid moves
480 continue;
481 assert(c != node->coord); // I have spotted "C3 C3" in some sequence...
483 struct tree_node *nj = tree_init_node(t, c, node->depth + 1);
484 nj->parent = node; ni->sibling = nj; ni = nj;
486 ni->prior = map.prior[c];
487 ni->d = distances[c];
490 node->children = first_child; // must be done at the end to avoid race
494 static coord_t
495 flip_coord(struct board *b, coord_t c,
496 bool flip_horiz, bool flip_vert, int flip_diag)
498 int x = coord_x(c, b), y = coord_y(c, b);
499 if (flip_diag) {
500 int z = x; x = y; y = z;
502 if (flip_horiz) {
503 x = board_size(b) - 1 - x;
505 if (flip_vert) {
506 y = board_size(b) - 1 - y;
508 return coord_xy_otf(x, y, b);
511 static void
512 tree_fix_node_symmetry(struct board *b, struct tree_node *node,
513 bool flip_horiz, bool flip_vert, int flip_diag)
515 if (!is_pass(node->coord))
516 node->coord = flip_coord(b, node->coord, flip_horiz, flip_vert, flip_diag);
518 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
519 tree_fix_node_symmetry(b, ni, flip_horiz, flip_vert, flip_diag);
522 static void
523 tree_fix_symmetry(struct tree *tree, struct board *b, coord_t c)
525 if (is_pass(c))
526 return;
528 struct board_symmetry *s = &tree->root_symmetry;
529 int cx = coord_x(c, b), cy = coord_y(c, b);
531 /* playground X->h->v->d normalization
532 * :::.. .d...
533 * .::.. v....
534 * ..:.. .....
535 * ..... h...X
536 * ..... ..... */
537 bool flip_horiz = cx < s->x1 || cx > s->x2;
538 bool flip_vert = cy < s->y1 || cy > s->y2;
540 bool flip_diag = 0;
541 if (s->d) {
542 bool dir = (s->type == SYM_DIAG_DOWN);
543 int x = dir ^ flip_horiz ^ flip_vert ? board_size(b) - 1 - cx : cx;
544 if (flip_vert ? x < cy : x > cy) {
545 flip_diag = 1;
549 if (DEBUGL(4)) {
550 fprintf(stderr, "%s [%d,%d -> %d,%d;%d,%d] will flip %d %d %d -> %s, sym %d (%d) -> %d (%d)\n",
551 coord2sstr(c, b),
552 cx, cy, s->x1, s->y1, s->x2, s->y2,
553 flip_horiz, flip_vert, flip_diag,
554 coord2sstr(flip_coord(b, c, flip_horiz, flip_vert, flip_diag), b),
555 s->type, s->d, b->symmetry.type, b->symmetry.d);
557 if (flip_horiz || flip_vert || flip_diag)
558 tree_fix_node_symmetry(b, tree->root, flip_horiz, flip_vert, flip_diag);
562 static void
563 tree_unlink_node(struct tree_node *node)
565 struct tree_node *ni = node->parent;
566 if (ni->children == node) {
567 ni->children = node->sibling;
568 } else {
569 ni = ni->children;
570 while (ni->sibling != node)
571 ni = ni->sibling;
572 ni->sibling = node->sibling;
574 node->sibling = NULL;
575 node->parent = NULL;
578 void
579 tree_delete_node(struct tree *tree, struct tree_node *node)
581 tree_unlink_node(node);
582 tree_done_node(tree, node);
585 void
586 tree_promote_node(struct tree *tree, struct tree_node *node)
588 assert(node->parent == tree->root);
589 tree_unlink_node(node);
590 tree_done_node(tree, tree->root);
591 tree->root = node;
592 tree->root_color = stone_other(tree->root_color);
593 board_symmetry_update(tree->board, &tree->root_symmetry, node->coord);
594 tree->max_depth--;
595 if (tree->chchvals) { free(tree->chchvals); tree->chchvals = NULL; }
596 if (tree->chvals) { free(tree->chvals); tree->chvals = NULL; }
599 bool
600 tree_promote_at(struct tree *tree, struct board *b, coord_t c)
602 tree_fix_symmetry(tree, b, c);
604 for (struct tree_node *ni = tree->root->children; ni; ni = ni->sibling) {
605 if (ni->coord == c) {
606 tree_promote_node(tree, ni);
607 return true;
610 return false;