UCB1AMAF: Reintroduce support for pre-Sylvain formula; sylvain_rave is still default
[pachi.git] / uct / tree.c
blob73681f81028737167bcbbd6681e7e1077d39ba1f
1 #include <assert.h>
2 #include <math.h>
3 #include <stddef.h>
4 #include <stdint.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
9 #include "board.h"
10 #include "debug.h"
11 #include "engine.h"
12 #include "move.h"
13 #include "playout.h"
14 #include "uct/internal.h"
15 #include "uct/prior.h"
16 #include "uct/tree.h"
19 static struct tree_node *
20 tree_init_node(struct tree *t, coord_t coord, int depth)
22 struct tree_node *n = calloc(1, sizeof(*n));
23 n->coord = coord;
24 n->depth = depth;
25 static long c = 1000000;
26 n->hash = c++;
27 if (depth > t->max_depth)
28 t->max_depth = depth;
29 return n;
32 struct tree *
33 tree_init(struct board *board, enum stone color)
35 struct tree *t = calloc(1, sizeof(*t));
36 t->board = board;
37 /* The root PASS move is only virtual, we never play it. */
38 t->root = tree_init_node(t, pass, 0);
39 t->root_symmetry = board->symmetry;
40 t->root_color = stone_other(color); // to research black moves, root will be white
41 return t;
45 static void
46 tree_done_node(struct tree *t, struct tree_node *n)
48 struct tree_node *ni = n->children;
49 while (ni) {
50 struct tree_node *nj = ni->sibling;
51 tree_done_node(t, ni);
52 ni = nj;
54 free(n);
57 void
58 tree_done(struct tree *t)
60 tree_done_node(t, t->root);
61 free(t);
65 static void
66 tree_node_dump(struct tree *tree, struct tree_node *node, int l, int thres)
68 for (int i = 0; i < l; i++) fputc(' ', stderr);
69 int children = 0;
70 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
71 children++;
72 /* We use 1 as parity, since for all nodes we want to know the
73 * win probability of _us_, not the node color. */
74 fprintf(stderr, "[%s] %f (%d/%d playouts [prior %d/%d amaf %d/%d]; hints %x; %d children) <%lld>\n",
75 coord2sstr(node->coord, tree->board),
76 tree_node_get_value(tree, node, u, 1),
77 tree_node_get_wins(tree, node, u, 1), node->u.playouts,
78 tree_node_get_wins(tree, node, prior, 1), node->prior.playouts,
79 tree_node_get_wins(tree, node, amaf, 1), node->amaf.playouts,
80 node->hints, children, node->hash);
82 /* Print nodes sorted by #playouts. */
84 struct tree_node *nbox[1000]; int nboxl = 0;
85 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
86 if (ni->u.playouts > thres)
87 nbox[nboxl++] = ni;
89 while (true) {
90 int best = -1;
91 for (int i = 0; i < nboxl; i++)
92 if (nbox[i] && (best < 0 || nbox[i]->u.playouts > nbox[best]->u.playouts))
93 best = i;
94 if (best < 0)
95 break;
96 tree_node_dump(tree, nbox[best], l + 1, /* node->u.value < 0.1 ? 0 : */ thres);
97 nbox[best] = NULL;
101 void
102 tree_dump(struct tree *tree, int thres)
104 if (thres && tree->root->u.playouts / thres > 100) {
105 /* Be a bit sensible about this; the opening book can create
106 * huge dumps at first. */
107 thres = tree->root->u.playouts / 100 * (thres < 1000 ? 1 : thres / 1000);
109 tree_node_dump(tree, tree->root, 0, thres);
113 static char *
114 tree_book_name(struct board *b)
116 static char buf[256];
117 if (b->handicap > 0) {
118 sprintf(buf, "uctbook-%d-%02.01f-h%d.pachitree", b->size - 2, b->komi, b->handicap);
119 } else {
120 sprintf(buf, "uctbook-%d-%02.01f.pachitree", b->size - 2, b->komi);
122 return buf;
125 static void
126 tree_node_save(FILE *f, struct tree_node *node, int thres)
128 fputc(1, f);
129 fwrite(((void *) node) + offsetof(struct tree_node, depth),
130 sizeof(struct tree_node) - offsetof(struct tree_node, depth),
131 1, f);
133 if (node->u.playouts >= thres)
134 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
135 tree_node_save(f, ni, thres);
137 fputc(0, f);
140 void
141 tree_save(struct tree *tree, struct board *b, int thres)
143 char *filename = tree_book_name(b);
144 FILE *f = fopen(filename, "wb");
145 if (!f) {
146 perror("fopen");
147 return;
149 tree_node_save(f, tree->root, thres);
150 fputc(0, f);
151 fclose(f);
155 void
156 tree_node_load(FILE *f, struct tree_node *node, int *num)
158 (*num)++;
160 fread(((void *) node) + offsetof(struct tree_node, depth),
161 sizeof(struct tree_node) - offsetof(struct tree_node, depth),
162 1, f);
164 /* Keep values in sane scale, otherwise we start overflowing.
165 * We may go slow here but we must be careful about not getting
166 * too huge integers.*/
167 #define MAX_PLAYOUTS 10000000
168 if (node->u.playouts > MAX_PLAYOUTS) {
169 int over = node->u.playouts - MAX_PLAYOUTS;
170 node->u.wins -= ((double) node->u.wins / node->u.playouts) * over;
171 node->u.playouts = MAX_PLAYOUTS;
173 if (node->amaf.playouts > MAX_PLAYOUTS) {
174 int over = node->amaf.playouts - MAX_PLAYOUTS;
175 node->amaf.wins -= ((double) node->amaf.wins / node->amaf.playouts) * over;
176 node->amaf.playouts = MAX_PLAYOUTS;
179 memcpy(&node->pamaf, &node->amaf, sizeof(node->amaf));
180 memcpy(&node->pu, &node->u, sizeof(node->u));
182 struct tree_node *ni = NULL, *ni_prev = NULL;
183 while (fgetc(f)) {
184 ni_prev = ni; ni = calloc(1, sizeof(*ni));
185 if (!node->children)
186 node->children = ni;
187 else
188 ni_prev->sibling = ni;
189 ni->parent = node;
190 tree_node_load(f, ni, num);
194 void
195 tree_load(struct tree *tree, struct board *b)
197 char *filename = tree_book_name(b);
198 FILE *f = fopen(filename, "rb");
199 if (!f)
200 return;
202 fprintf(stderr, "Loading opening book %s...\n", filename);
204 int num = 0;
205 if (fgetc(f))
206 tree_node_load(f, tree->root, &num);
207 fprintf(stderr, "Loaded %d nodes.\n", num);
209 fclose(f);
213 static struct tree_node *
214 tree_node_copy(struct tree_node *node)
216 struct tree_node *n2 = malloc(sizeof(*n2));
217 *n2 = *node;
218 if (!node->children)
219 return n2;
220 struct tree_node *ni = node->children;
221 struct tree_node *ni2 = tree_node_copy(ni);
222 n2->children = ni2; ni2->parent = n2;
223 while ((ni = ni->sibling)) {
224 ni2->sibling = tree_node_copy(ni);
225 ni2 = ni2->sibling; ni2->parent = n2;
227 return n2;
230 struct tree *
231 tree_copy(struct tree *tree)
233 struct tree *t2 = malloc(sizeof(*t2));
234 *t2 = *tree;
235 t2->root = tree_node_copy(tree->root);
236 return t2;
240 static void
241 tree_node_merge(struct tree_node *dest, struct tree_node *src)
243 dest->hints |= src->hints;
245 /* Merge the children, both are coord-sorted lists. */
246 struct tree_node *di = dest->children, **dref = &dest->children;
247 struct tree_node *si = src->children, **sref = &src->children;
248 while (di && si) {
249 if (di->coord != si->coord) {
250 /* src has some extra items or misses di */
251 struct tree_node *si2 = si->sibling;
252 while (si2 && di->coord != si2->coord) {
253 si2 = si2->sibling;
255 if (!si2)
256 goto next_di; /* src misses di, move on */
257 /* chain the extra [si,si2) items before di */
258 (*dref) = si;
259 while (si->sibling != si2) {
260 si->parent = dest;
261 si = si->sibling;
263 si->parent = dest;
264 si->sibling = di;
265 si = si2;
266 (*sref) = si;
268 /* Matching nodes - recurse... */
269 tree_node_merge(di, si);
270 /* ...and move on. */
271 sref = &si->sibling; si = si->sibling;
272 next_di:
273 dref = &di->sibling; di = di->sibling;
275 if (si) {
276 /* Some outstanding nodes are left on src side, rechain
277 * them to dst. */
278 (*dref) = si;
279 while (si) {
280 si->parent = dest;
281 si = si->sibling;
283 (*sref) = NULL;
286 /* Priors should be constant. */
287 assert(dest->prior.playouts == src->prior.playouts && dest->prior.wins == src->prior.wins);
289 dest->amaf.playouts += src->amaf.playouts;
290 dest->amaf.wins += src->amaf.wins;
291 if (dest->amaf.playouts)
292 dest->amaf.value = (dest->amaf.value + src->amaf.value) / 2;
294 dest->u.playouts += src->u.playouts;
295 dest->u.wins += src->u.wins;
296 if (dest->prior.playouts + dest->amaf.playouts + dest->u.playouts)
297 dest->u.value = (dest->u.value + src->u.value) / 2;
300 /* Merge two trees built upon the same board. Note that the operation is
301 * destructive on src. */
302 void
303 tree_merge(struct tree *dest, struct tree *src)
305 if (src->max_depth > dest->max_depth)
306 dest->max_depth = src->max_depth;
307 tree_node_merge(dest->root, src->root);
311 static void
312 tree_node_normalize(struct tree_node *node, int factor)
314 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
315 tree_node_normalize(ni, factor);
317 #define normalize(s1, s2, t) node->s2.t = node->s1.t + (node->s2.t - node->s1.t) / factor;
318 normalize(pamaf, amaf, playouts);
319 normalize(pamaf, amaf, wins);
320 memcpy(&node->pamaf, &node->amaf, sizeof(node->amaf));
322 normalize(pu, u, playouts);
323 normalize(pu, u, wins);
324 memcpy(&node->pu, &node->u, sizeof(node->u));
325 #undef normalize
328 /* Normalize a tree, dividing the amaf and u values by given
329 * factor; otherwise, simulations run in independent threads
330 * two trees built upon the same board. To correctly handle
331 * results taken from previous simulation run, they are backed
332 * up in tree. */
333 void
334 tree_normalize(struct tree *tree, int factor)
336 tree_node_normalize(tree->root, factor);
340 /* Tree symmetry: When possible, we will localize the tree to a single part
341 * of the board in tree_expand_node() and possibly flip along symmetry axes
342 * to another part of the board in tree_promote_at(). We follow b->symmetry
343 * guidelines here. */
346 void
347 tree_expand_node(struct tree *t, struct tree_node *node, struct board *b, enum stone color, int radar, struct uct *u, int parity)
349 struct tree_node *ni = tree_init_node(t, pass, node->depth + 1);
350 ni->parent = node; node->children = ni;
351 uct_prior(u, t, ni, b, color, parity);
353 /* The loop considers only the symmetry playground. */
354 if (UDEBUGL(6)) {
355 fprintf(stderr, "expanding %s within [%d,%d],[%d,%d] %d-%d\n",
356 coord2sstr(node->coord, b),
357 b->symmetry.x1, b->symmetry.y1,
358 b->symmetry.x2, b->symmetry.y2,
359 b->symmetry.type, b->symmetry.d);
361 for (int i = b->symmetry.x1; i <= b->symmetry.x2; i++) {
362 for (int j = b->symmetry.y1; j <= b->symmetry.y2; j++) {
363 if (b->symmetry.d) {
364 int x = b->symmetry.type == SYM_DIAG_DOWN ? board_size(b) - 1 - i : i;
365 if (x > j) {
366 if (UDEBUGL(7))
367 fprintf(stderr, "drop %d,%d\n", i, j);
368 continue;
372 coord_t c = coord_xy_otf(i, j, t->board);
373 if (board_at(b, c) != S_NONE)
374 continue;
375 assert(c != node->coord); // I have spotted "C3 C3" in some sequence...
376 /* This looks very useful on large boards - weeds out huge amount of crufty moves. */
377 if (b->hash /* not empty board */ && radar && !board_stone_radar(b, c, radar))
378 continue;
380 struct tree_node *nj = tree_init_node(t, c, node->depth + 1);
381 nj->parent = node; ni->sibling = nj; ni = nj;
383 uct_prior(u, t, ni, b, color, parity);
389 static coord_t
390 flip_coord(struct board *b, coord_t c,
391 bool flip_horiz, bool flip_vert, int flip_diag)
393 int x = coord_x(c, b), y = coord_y(c, b);
394 if (flip_diag) {
395 int z = x; x = y; y = z;
397 if (flip_horiz) {
398 x = board_size(b) - 1 - x;
400 if (flip_vert) {
401 y = board_size(b) - 1 - y;
403 return coord_xy_otf(x, y, b);
406 static void
407 tree_fix_node_symmetry(struct board *b, struct tree_node *node,
408 bool flip_horiz, bool flip_vert, int flip_diag)
410 if (!is_pass(node->coord))
411 node->coord = flip_coord(b, node->coord, flip_horiz, flip_vert, flip_diag);
413 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
414 tree_fix_node_symmetry(b, ni, flip_horiz, flip_vert, flip_diag);
417 static void
418 tree_fix_symmetry(struct tree *tree, struct board *b, coord_t c)
420 if (is_pass(c))
421 return;
423 struct board_symmetry *s = &tree->root_symmetry;
424 int cx = coord_x(c, b), cy = coord_y(c, b);
426 /* playground X->h->v->d normalization
427 * :::.. .d...
428 * .::.. v....
429 * ..:.. .....
430 * ..... h...X
431 * ..... ..... */
432 bool flip_horiz = cx < s->x1 || cx > s->x2;
433 bool flip_vert = cy < s->y1 || cy > s->y2;
435 bool flip_diag = 0;
436 if (s->d) {
437 bool dir = (s->type == SYM_DIAG_DOWN);
438 int x = dir ^ flip_horiz ^ flip_vert ? board_size(b) - 1 - cx : cx;
439 if (flip_vert ? x < cy : x > cy) {
440 flip_diag = 1;
444 if (UDEBUGL(4)) {
445 fprintf(stderr, "%s will flip %d %d %d -> %s, sym %d (%d) -> %d (%d)\n",
446 coord2sstr(c, b), flip_horiz, flip_vert, flip_diag,
447 coord2sstr(flip_coord(b, c, flip_horiz, flip_vert, flip_diag), b),
448 s->type, s->d, b->symmetry.type, b->symmetry.d);
450 if (flip_horiz || flip_vert || flip_diag)
451 tree_fix_node_symmetry(b, tree->root, flip_horiz, flip_vert, flip_diag);
455 static void
456 tree_unlink_node(struct tree_node *node)
458 struct tree_node *ni = node->parent;
459 if (ni->children == node) {
460 ni->children = node->sibling;
461 } else {
462 ni = ni->children;
463 while (ni->sibling != node)
464 ni = ni->sibling;
465 ni->sibling = node->sibling;
467 node->sibling = NULL;
468 node->parent = NULL;
471 void
472 tree_delete_node(struct tree *tree, struct tree_node *node)
474 tree_unlink_node(node);
475 tree_done_node(tree, node);
478 void
479 tree_promote_node(struct tree *tree, struct tree_node *node)
481 assert(node->parent == tree->root);
482 tree_unlink_node(node);
483 tree_done_node(tree, tree->root);
484 tree->root = node;
485 tree->root_color = stone_other(tree->root_color);
486 board_symmetry_update(tree->board, &tree->root_symmetry, node->coord);
489 bool
490 tree_promote_at(struct tree *tree, struct board *b, coord_t c)
492 tree_fix_symmetry(tree, b, c);
494 for (struct tree_node *ni = tree->root->children; ni; ni = ni->sibling) {
495 if (ni->coord == c) {
496 tree_promote_node(tree, ni);
497 return true;
500 return false;