3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/kmemtrace.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
120 #include <asm/cacheflush.h>
121 #include <asm/tlbflush.h>
122 #include <asm/page.h>
125 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
126 * 0 for faster, smaller code (especially in the critical paths).
128 * STATS - 1 to collect stats for /proc/slabinfo.
129 * 0 for faster, smaller code (especially in the critical paths).
131 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
134 #ifdef CONFIG_DEBUG_SLAB
137 #define FORCED_DEBUG 1
141 #define FORCED_DEBUG 0
144 /* Shouldn't this be in a header file somewhere? */
145 #define BYTES_PER_WORD sizeof(void *)
146 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
148 #ifndef ARCH_KMALLOC_FLAGS
149 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
152 /* Legal flag mask for kmem_cache_create(). */
154 # define CREATE_MASK (SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
158 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
160 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
162 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
166 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
172 * Bufctl's are used for linking objs within a slab
175 * This implementation relies on "struct page" for locating the cache &
176 * slab an object belongs to.
177 * This allows the bufctl structure to be small (one int), but limits
178 * the number of objects a slab (not a cache) can contain when off-slab
179 * bufctls are used. The limit is the size of the largest general cache
180 * that does not use off-slab slabs.
181 * For 32bit archs with 4 kB pages, is this 56.
182 * This is not serious, as it is only for large objects, when it is unwise
183 * to have too many per slab.
184 * Note: This limit can be raised by introducing a general cache whose size
185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
188 typedef unsigned int kmem_bufctl_t
;
189 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
190 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
191 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
192 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
197 * Manages the objs in a slab. Placed either at the beginning of mem allocated
198 * for a slab, or allocated from an general cache.
199 * Slabs are chained into three list: fully used, partial, fully free slabs.
202 struct list_head list
;
203 unsigned long colouroff
;
204 void *s_mem
; /* including colour offset */
205 unsigned int inuse
; /* num of objs active in slab */
207 unsigned short nodeid
;
213 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
214 * arrange for kmem_freepages to be called via RCU. This is useful if
215 * we need to approach a kernel structure obliquely, from its address
216 * obtained without the usual locking. We can lock the structure to
217 * stabilize it and check it's still at the given address, only if we
218 * can be sure that the memory has not been meanwhile reused for some
219 * other kind of object (which our subsystem's lock might corrupt).
221 * rcu_read_lock before reading the address, then rcu_read_unlock after
222 * taking the spinlock within the structure expected at that address.
224 * We assume struct slab_rcu can overlay struct slab when destroying.
227 struct rcu_head head
;
228 struct kmem_cache
*cachep
;
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
240 * The limit is stored in the per-cpu structure to reduce the data cache
247 unsigned int batchcount
;
248 unsigned int touched
;
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
258 * bootstrap: The caches do not work without cpuarrays anymore, but the
259 * cpuarrays are allocated from the generic caches...
261 #define BOOT_CPUCACHE_ENTRIES 1
262 struct arraycache_init
{
263 struct array_cache cache
;
264 void *entries
[BOOT_CPUCACHE_ENTRIES
];
268 * The slab lists for all objects.
271 struct list_head slabs_partial
; /* partial list first, better asm code */
272 struct list_head slabs_full
;
273 struct list_head slabs_free
;
274 unsigned long free_objects
;
275 unsigned int free_limit
;
276 unsigned int colour_next
; /* Per-node cache coloring */
277 spinlock_t list_lock
;
278 struct array_cache
*shared
; /* shared per node */
279 struct array_cache
**alien
; /* on other nodes */
280 unsigned long next_reap
; /* updated without locking */
281 int free_touched
; /* updated without locking */
285 * Need this for bootstrapping a per node allocator.
287 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
288 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
289 #define CACHE_CACHE 0
290 #define SIZE_AC MAX_NUMNODES
291 #define SIZE_L3 (2 * MAX_NUMNODES)
293 static int drain_freelist(struct kmem_cache
*cache
,
294 struct kmem_list3
*l3
, int tofree
);
295 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
297 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
298 static void cache_reap(struct work_struct
*unused
);
301 * This function must be completely optimized away if a constant is passed to
302 * it. Mostly the same as what is in linux/slab.h except it returns an index.
304 static __always_inline
int index_of(const size_t size
)
306 extern void __bad_size(void);
308 if (__builtin_constant_p(size
)) {
316 #include <linux/kmalloc_sizes.h>
324 static int slab_early_init
= 1;
326 #define INDEX_AC index_of(sizeof(struct arraycache_init))
327 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
329 static void kmem_list3_init(struct kmem_list3
*parent
)
331 INIT_LIST_HEAD(&parent
->slabs_full
);
332 INIT_LIST_HEAD(&parent
->slabs_partial
);
333 INIT_LIST_HEAD(&parent
->slabs_free
);
334 parent
->shared
= NULL
;
335 parent
->alien
= NULL
;
336 parent
->colour_next
= 0;
337 spin_lock_init(&parent
->list_lock
);
338 parent
->free_objects
= 0;
339 parent
->free_touched
= 0;
342 #define MAKE_LIST(cachep, listp, slab, nodeid) \
344 INIT_LIST_HEAD(listp); \
345 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
348 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
350 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
351 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
352 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
355 #define CFLGS_OFF_SLAB (0x80000000UL)
356 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
358 #define BATCHREFILL_LIMIT 16
360 * Optimization question: fewer reaps means less probability for unnessary
361 * cpucache drain/refill cycles.
363 * OTOH the cpuarrays can contain lots of objects,
364 * which could lock up otherwise freeable slabs.
366 #define REAPTIMEOUT_CPUC (2*HZ)
367 #define REAPTIMEOUT_LIST3 (4*HZ)
370 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
371 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
372 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
373 #define STATS_INC_GROWN(x) ((x)->grown++)
374 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
375 #define STATS_SET_HIGH(x) \
377 if ((x)->num_active > (x)->high_mark) \
378 (x)->high_mark = (x)->num_active; \
380 #define STATS_INC_ERR(x) ((x)->errors++)
381 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
382 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
383 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
384 #define STATS_SET_FREEABLE(x, i) \
386 if ((x)->max_freeable < i) \
387 (x)->max_freeable = i; \
389 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
390 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
391 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
392 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
394 #define STATS_INC_ACTIVE(x) do { } while (0)
395 #define STATS_DEC_ACTIVE(x) do { } while (0)
396 #define STATS_INC_ALLOCED(x) do { } while (0)
397 #define STATS_INC_GROWN(x) do { } while (0)
398 #define STATS_ADD_REAPED(x,y) do { } while (0)
399 #define STATS_SET_HIGH(x) do { } while (0)
400 #define STATS_INC_ERR(x) do { } while (0)
401 #define STATS_INC_NODEALLOCS(x) do { } while (0)
402 #define STATS_INC_NODEFREES(x) do { } while (0)
403 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
404 #define STATS_SET_FREEABLE(x, i) do { } while (0)
405 #define STATS_INC_ALLOCHIT(x) do { } while (0)
406 #define STATS_INC_ALLOCMISS(x) do { } while (0)
407 #define STATS_INC_FREEHIT(x) do { } while (0)
408 #define STATS_INC_FREEMISS(x) do { } while (0)
414 * memory layout of objects:
416 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
417 * the end of an object is aligned with the end of the real
418 * allocation. Catches writes behind the end of the allocation.
419 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
421 * cachep->obj_offset: The real object.
422 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
423 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
424 * [BYTES_PER_WORD long]
426 static int obj_offset(struct kmem_cache
*cachep
)
428 return cachep
->obj_offset
;
431 static int obj_size(struct kmem_cache
*cachep
)
433 return cachep
->obj_size
;
436 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
438 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
439 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
440 sizeof(unsigned long long));
443 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
445 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
446 if (cachep
->flags
& SLAB_STORE_USER
)
447 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
448 sizeof(unsigned long long) -
450 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
451 sizeof(unsigned long long));
454 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
456 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
457 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
462 #define obj_offset(x) 0
463 #define obj_size(cachep) (cachep->buffer_size)
464 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
465 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
466 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
470 #ifdef CONFIG_TRACING
471 size_t slab_buffer_size(struct kmem_cache
*cachep
)
473 return cachep
->buffer_size
;
475 EXPORT_SYMBOL(slab_buffer_size
);
479 * Do not go above this order unless 0 objects fit into the slab.
481 #define BREAK_GFP_ORDER_HI 1
482 #define BREAK_GFP_ORDER_LO 0
483 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
486 * Functions for storing/retrieving the cachep and or slab from the page
487 * allocator. These are used to find the slab an obj belongs to. With kfree(),
488 * these are used to find the cache which an obj belongs to.
490 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
492 page
->lru
.next
= (struct list_head
*)cache
;
495 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
497 page
= compound_head(page
);
498 BUG_ON(!PageSlab(page
));
499 return (struct kmem_cache
*)page
->lru
.next
;
502 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
504 page
->lru
.prev
= (struct list_head
*)slab
;
507 static inline struct slab
*page_get_slab(struct page
*page
)
509 BUG_ON(!PageSlab(page
));
510 return (struct slab
*)page
->lru
.prev
;
513 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
515 struct page
*page
= virt_to_head_page(obj
);
516 return page_get_cache(page
);
519 static inline struct slab
*virt_to_slab(const void *obj
)
521 struct page
*page
= virt_to_head_page(obj
);
522 return page_get_slab(page
);
525 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
528 return slab
->s_mem
+ cache
->buffer_size
* idx
;
532 * We want to avoid an expensive divide : (offset / cache->buffer_size)
533 * Using the fact that buffer_size is a constant for a particular cache,
534 * we can replace (offset / cache->buffer_size) by
535 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
537 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
538 const struct slab
*slab
, void *obj
)
540 u32 offset
= (obj
- slab
->s_mem
);
541 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
545 * These are the default caches for kmalloc. Custom caches can have other sizes.
547 struct cache_sizes malloc_sizes
[] = {
548 #define CACHE(x) { .cs_size = (x) },
549 #include <linux/kmalloc_sizes.h>
553 EXPORT_SYMBOL(malloc_sizes
);
555 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
561 static struct cache_names __initdata cache_names
[] = {
562 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
563 #include <linux/kmalloc_sizes.h>
568 static struct arraycache_init initarray_cache __initdata
=
569 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
570 static struct arraycache_init initarray_generic
=
571 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
573 /* internal cache of cache description objs */
574 static struct kmem_cache cache_cache
= {
576 .limit
= BOOT_CPUCACHE_ENTRIES
,
578 .buffer_size
= sizeof(struct kmem_cache
),
579 .name
= "kmem_cache",
582 #define BAD_ALIEN_MAGIC 0x01020304ul
585 * chicken and egg problem: delay the per-cpu array allocation
586 * until the general caches are up.
597 * used by boot code to determine if it can use slab based allocator
599 int slab_is_available(void)
601 return g_cpucache_up
>= EARLY
;
604 #ifdef CONFIG_LOCKDEP
607 * Slab sometimes uses the kmalloc slabs to store the slab headers
608 * for other slabs "off slab".
609 * The locking for this is tricky in that it nests within the locks
610 * of all other slabs in a few places; to deal with this special
611 * locking we put on-slab caches into a separate lock-class.
613 * We set lock class for alien array caches which are up during init.
614 * The lock annotation will be lost if all cpus of a node goes down and
615 * then comes back up during hotplug
617 static struct lock_class_key on_slab_l3_key
;
618 static struct lock_class_key on_slab_alc_key
;
620 static void init_node_lock_keys(int q
)
622 struct cache_sizes
*s
= malloc_sizes
;
624 if (g_cpucache_up
!= FULL
)
627 for (s
= malloc_sizes
; s
->cs_size
!= ULONG_MAX
; s
++) {
628 struct array_cache
**alc
;
629 struct kmem_list3
*l3
;
632 l3
= s
->cs_cachep
->nodelists
[q
];
633 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
635 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
638 * FIXME: This check for BAD_ALIEN_MAGIC
639 * should go away when common slab code is taught to
640 * work even without alien caches.
641 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
642 * for alloc_alien_cache,
644 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
648 lockdep_set_class(&alc
[r
]->lock
,
654 static inline void init_lock_keys(void)
659 init_node_lock_keys(node
);
662 static void init_node_lock_keys(int q
)
666 static inline void init_lock_keys(void)
672 * Guard access to the cache-chain.
674 static DEFINE_MUTEX(cache_chain_mutex
);
675 static struct list_head cache_chain
;
677 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
679 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
681 return cachep
->array
[smp_processor_id()];
684 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
687 struct cache_sizes
*csizep
= malloc_sizes
;
690 /* This happens if someone tries to call
691 * kmem_cache_create(), or __kmalloc(), before
692 * the generic caches are initialized.
694 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
697 return ZERO_SIZE_PTR
;
699 while (size
> csizep
->cs_size
)
703 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
704 * has cs_{dma,}cachep==NULL. Thus no special case
705 * for large kmalloc calls required.
707 #ifdef CONFIG_ZONE_DMA
708 if (unlikely(gfpflags
& GFP_DMA
))
709 return csizep
->cs_dmacachep
;
711 return csizep
->cs_cachep
;
714 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
716 return __find_general_cachep(size
, gfpflags
);
719 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
721 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
725 * Calculate the number of objects and left-over bytes for a given buffer size.
727 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
728 size_t align
, int flags
, size_t *left_over
,
733 size_t slab_size
= PAGE_SIZE
<< gfporder
;
736 * The slab management structure can be either off the slab or
737 * on it. For the latter case, the memory allocated for a
741 * - One kmem_bufctl_t for each object
742 * - Padding to respect alignment of @align
743 * - @buffer_size bytes for each object
745 * If the slab management structure is off the slab, then the
746 * alignment will already be calculated into the size. Because
747 * the slabs are all pages aligned, the objects will be at the
748 * correct alignment when allocated.
750 if (flags
& CFLGS_OFF_SLAB
) {
752 nr_objs
= slab_size
/ buffer_size
;
754 if (nr_objs
> SLAB_LIMIT
)
755 nr_objs
= SLAB_LIMIT
;
758 * Ignore padding for the initial guess. The padding
759 * is at most @align-1 bytes, and @buffer_size is at
760 * least @align. In the worst case, this result will
761 * be one greater than the number of objects that fit
762 * into the memory allocation when taking the padding
765 nr_objs
= (slab_size
- sizeof(struct slab
)) /
766 (buffer_size
+ sizeof(kmem_bufctl_t
));
769 * This calculated number will be either the right
770 * amount, or one greater than what we want.
772 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
776 if (nr_objs
> SLAB_LIMIT
)
777 nr_objs
= SLAB_LIMIT
;
779 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
782 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
785 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
787 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
790 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
791 function
, cachep
->name
, msg
);
796 * By default on NUMA we use alien caches to stage the freeing of
797 * objects allocated from other nodes. This causes massive memory
798 * inefficiencies when using fake NUMA setup to split memory into a
799 * large number of small nodes, so it can be disabled on the command
803 static int use_alien_caches __read_mostly
= 1;
804 static int __init
noaliencache_setup(char *s
)
806 use_alien_caches
= 0;
809 __setup("noaliencache", noaliencache_setup
);
813 * Special reaping functions for NUMA systems called from cache_reap().
814 * These take care of doing round robin flushing of alien caches (containing
815 * objects freed on different nodes from which they were allocated) and the
816 * flushing of remote pcps by calling drain_node_pages.
818 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
820 static void init_reap_node(int cpu
)
824 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
825 if (node
== MAX_NUMNODES
)
826 node
= first_node(node_online_map
);
828 per_cpu(slab_reap_node
, cpu
) = node
;
831 static void next_reap_node(void)
833 int node
= __get_cpu_var(slab_reap_node
);
835 node
= next_node(node
, node_online_map
);
836 if (unlikely(node
>= MAX_NUMNODES
))
837 node
= first_node(node_online_map
);
838 __get_cpu_var(slab_reap_node
) = node
;
842 #define init_reap_node(cpu) do { } while (0)
843 #define next_reap_node(void) do { } while (0)
847 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
848 * via the workqueue/eventd.
849 * Add the CPU number into the expiration time to minimize the possibility of
850 * the CPUs getting into lockstep and contending for the global cache chain
853 static void __cpuinit
start_cpu_timer(int cpu
)
855 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
858 * When this gets called from do_initcalls via cpucache_init(),
859 * init_workqueues() has already run, so keventd will be setup
862 if (keventd_up() && reap_work
->work
.func
== NULL
) {
864 INIT_DELAYED_WORK(reap_work
, cache_reap
);
865 schedule_delayed_work_on(cpu
, reap_work
,
866 __round_jiffies_relative(HZ
, cpu
));
870 static struct array_cache
*alloc_arraycache(int node
, int entries
,
871 int batchcount
, gfp_t gfp
)
873 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
874 struct array_cache
*nc
= NULL
;
876 nc
= kmalloc_node(memsize
, gfp
, node
);
878 * The array_cache structures contain pointers to free object.
879 * However, when such objects are allocated or transfered to another
880 * cache the pointers are not cleared and they could be counted as
881 * valid references during a kmemleak scan. Therefore, kmemleak must
882 * not scan such objects.
884 kmemleak_no_scan(nc
);
888 nc
->batchcount
= batchcount
;
890 spin_lock_init(&nc
->lock
);
896 * Transfer objects in one arraycache to another.
897 * Locking must be handled by the caller.
899 * Return the number of entries transferred.
901 static int transfer_objects(struct array_cache
*to
,
902 struct array_cache
*from
, unsigned int max
)
904 /* Figure out how many entries to transfer */
905 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
910 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
920 #define drain_alien_cache(cachep, alien) do { } while (0)
921 #define reap_alien(cachep, l3) do { } while (0)
923 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
925 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
928 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
932 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
937 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
943 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
944 gfp_t flags
, int nodeid
)
949 #else /* CONFIG_NUMA */
951 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
952 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
954 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
956 struct array_cache
**ac_ptr
;
957 int memsize
= sizeof(void *) * nr_node_ids
;
962 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
965 if (i
== node
|| !node_online(i
))
967 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
969 for (i
--; i
>= 0; i
--)
979 static void free_alien_cache(struct array_cache
**ac_ptr
)
990 static void __drain_alien_cache(struct kmem_cache
*cachep
,
991 struct array_cache
*ac
, int node
)
993 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
996 spin_lock(&rl3
->list_lock
);
998 * Stuff objects into the remote nodes shared array first.
999 * That way we could avoid the overhead of putting the objects
1000 * into the free lists and getting them back later.
1003 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1005 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1007 spin_unlock(&rl3
->list_lock
);
1012 * Called from cache_reap() to regularly drain alien caches round robin.
1014 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1016 int node
= __get_cpu_var(slab_reap_node
);
1019 struct array_cache
*ac
= l3
->alien
[node
];
1021 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1022 __drain_alien_cache(cachep
, ac
, node
);
1023 spin_unlock_irq(&ac
->lock
);
1028 static void drain_alien_cache(struct kmem_cache
*cachep
,
1029 struct array_cache
**alien
)
1032 struct array_cache
*ac
;
1033 unsigned long flags
;
1035 for_each_online_node(i
) {
1038 spin_lock_irqsave(&ac
->lock
, flags
);
1039 __drain_alien_cache(cachep
, ac
, i
);
1040 spin_unlock_irqrestore(&ac
->lock
, flags
);
1045 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1047 struct slab
*slabp
= virt_to_slab(objp
);
1048 int nodeid
= slabp
->nodeid
;
1049 struct kmem_list3
*l3
;
1050 struct array_cache
*alien
= NULL
;
1053 node
= numa_mem_id();
1056 * Make sure we are not freeing a object from another node to the array
1057 * cache on this cpu.
1059 if (likely(slabp
->nodeid
== node
))
1062 l3
= cachep
->nodelists
[node
];
1063 STATS_INC_NODEFREES(cachep
);
1064 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1065 alien
= l3
->alien
[nodeid
];
1066 spin_lock(&alien
->lock
);
1067 if (unlikely(alien
->avail
== alien
->limit
)) {
1068 STATS_INC_ACOVERFLOW(cachep
);
1069 __drain_alien_cache(cachep
, alien
, nodeid
);
1071 alien
->entry
[alien
->avail
++] = objp
;
1072 spin_unlock(&alien
->lock
);
1074 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1075 free_block(cachep
, &objp
, 1, nodeid
);
1076 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1083 * Allocates and initializes nodelists for a node on each slab cache, used for
1084 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1085 * will be allocated off-node since memory is not yet online for the new node.
1086 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1089 * Must hold cache_chain_mutex.
1091 static int init_cache_nodelists_node(int node
)
1093 struct kmem_cache
*cachep
;
1094 struct kmem_list3
*l3
;
1095 const int memsize
= sizeof(struct kmem_list3
);
1097 list_for_each_entry(cachep
, &cache_chain
, next
) {
1099 * Set up the size64 kmemlist for cpu before we can
1100 * begin anything. Make sure some other cpu on this
1101 * node has not already allocated this
1103 if (!cachep
->nodelists
[node
]) {
1104 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1107 kmem_list3_init(l3
);
1108 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1109 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1112 * The l3s don't come and go as CPUs come and
1113 * go. cache_chain_mutex is sufficient
1116 cachep
->nodelists
[node
] = l3
;
1119 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1120 cachep
->nodelists
[node
]->free_limit
=
1121 (1 + nr_cpus_node(node
)) *
1122 cachep
->batchcount
+ cachep
->num
;
1123 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1128 static void __cpuinit
cpuup_canceled(long cpu
)
1130 struct kmem_cache
*cachep
;
1131 struct kmem_list3
*l3
= NULL
;
1132 int node
= cpu_to_mem(cpu
);
1133 const struct cpumask
*mask
= cpumask_of_node(node
);
1135 list_for_each_entry(cachep
, &cache_chain
, next
) {
1136 struct array_cache
*nc
;
1137 struct array_cache
*shared
;
1138 struct array_cache
**alien
;
1140 /* cpu is dead; no one can alloc from it. */
1141 nc
= cachep
->array
[cpu
];
1142 cachep
->array
[cpu
] = NULL
;
1143 l3
= cachep
->nodelists
[node
];
1146 goto free_array_cache
;
1148 spin_lock_irq(&l3
->list_lock
);
1150 /* Free limit for this kmem_list3 */
1151 l3
->free_limit
-= cachep
->batchcount
;
1153 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1155 if (!cpumask_empty(mask
)) {
1156 spin_unlock_irq(&l3
->list_lock
);
1157 goto free_array_cache
;
1160 shared
= l3
->shared
;
1162 free_block(cachep
, shared
->entry
,
1163 shared
->avail
, node
);
1170 spin_unlock_irq(&l3
->list_lock
);
1174 drain_alien_cache(cachep
, alien
);
1175 free_alien_cache(alien
);
1181 * In the previous loop, all the objects were freed to
1182 * the respective cache's slabs, now we can go ahead and
1183 * shrink each nodelist to its limit.
1185 list_for_each_entry(cachep
, &cache_chain
, next
) {
1186 l3
= cachep
->nodelists
[node
];
1189 drain_freelist(cachep
, l3
, l3
->free_objects
);
1193 static int __cpuinit
cpuup_prepare(long cpu
)
1195 struct kmem_cache
*cachep
;
1196 struct kmem_list3
*l3
= NULL
;
1197 int node
= cpu_to_mem(cpu
);
1201 * We need to do this right in the beginning since
1202 * alloc_arraycache's are going to use this list.
1203 * kmalloc_node allows us to add the slab to the right
1204 * kmem_list3 and not this cpu's kmem_list3
1206 err
= init_cache_nodelists_node(node
);
1211 * Now we can go ahead with allocating the shared arrays and
1214 list_for_each_entry(cachep
, &cache_chain
, next
) {
1215 struct array_cache
*nc
;
1216 struct array_cache
*shared
= NULL
;
1217 struct array_cache
**alien
= NULL
;
1219 nc
= alloc_arraycache(node
, cachep
->limit
,
1220 cachep
->batchcount
, GFP_KERNEL
);
1223 if (cachep
->shared
) {
1224 shared
= alloc_arraycache(node
,
1225 cachep
->shared
* cachep
->batchcount
,
1226 0xbaadf00d, GFP_KERNEL
);
1232 if (use_alien_caches
) {
1233 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1240 cachep
->array
[cpu
] = nc
;
1241 l3
= cachep
->nodelists
[node
];
1244 spin_lock_irq(&l3
->list_lock
);
1247 * We are serialised from CPU_DEAD or
1248 * CPU_UP_CANCELLED by the cpucontrol lock
1250 l3
->shared
= shared
;
1259 spin_unlock_irq(&l3
->list_lock
);
1261 free_alien_cache(alien
);
1263 init_node_lock_keys(node
);
1267 cpuup_canceled(cpu
);
1271 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1272 unsigned long action
, void *hcpu
)
1274 long cpu
= (long)hcpu
;
1278 case CPU_UP_PREPARE
:
1279 case CPU_UP_PREPARE_FROZEN
:
1280 mutex_lock(&cache_chain_mutex
);
1281 err
= cpuup_prepare(cpu
);
1282 mutex_unlock(&cache_chain_mutex
);
1285 case CPU_ONLINE_FROZEN
:
1286 start_cpu_timer(cpu
);
1288 #ifdef CONFIG_HOTPLUG_CPU
1289 case CPU_DOWN_PREPARE
:
1290 case CPU_DOWN_PREPARE_FROZEN
:
1292 * Shutdown cache reaper. Note that the cache_chain_mutex is
1293 * held so that if cache_reap() is invoked it cannot do
1294 * anything expensive but will only modify reap_work
1295 * and reschedule the timer.
1297 cancel_rearming_delayed_work(&per_cpu(slab_reap_work
, cpu
));
1298 /* Now the cache_reaper is guaranteed to be not running. */
1299 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1301 case CPU_DOWN_FAILED
:
1302 case CPU_DOWN_FAILED_FROZEN
:
1303 start_cpu_timer(cpu
);
1306 case CPU_DEAD_FROZEN
:
1308 * Even if all the cpus of a node are down, we don't free the
1309 * kmem_list3 of any cache. This to avoid a race between
1310 * cpu_down, and a kmalloc allocation from another cpu for
1311 * memory from the node of the cpu going down. The list3
1312 * structure is usually allocated from kmem_cache_create() and
1313 * gets destroyed at kmem_cache_destroy().
1317 case CPU_UP_CANCELED
:
1318 case CPU_UP_CANCELED_FROZEN
:
1319 mutex_lock(&cache_chain_mutex
);
1320 cpuup_canceled(cpu
);
1321 mutex_unlock(&cache_chain_mutex
);
1324 return notifier_from_errno(err
);
1327 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1328 &cpuup_callback
, NULL
, 0
1331 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1333 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1334 * Returns -EBUSY if all objects cannot be drained so that the node is not
1337 * Must hold cache_chain_mutex.
1339 static int __meminit
drain_cache_nodelists_node(int node
)
1341 struct kmem_cache
*cachep
;
1344 list_for_each_entry(cachep
, &cache_chain
, next
) {
1345 struct kmem_list3
*l3
;
1347 l3
= cachep
->nodelists
[node
];
1351 drain_freelist(cachep
, l3
, l3
->free_objects
);
1353 if (!list_empty(&l3
->slabs_full
) ||
1354 !list_empty(&l3
->slabs_partial
)) {
1362 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1363 unsigned long action
, void *arg
)
1365 struct memory_notify
*mnb
= arg
;
1369 nid
= mnb
->status_change_nid
;
1374 case MEM_GOING_ONLINE
:
1375 mutex_lock(&cache_chain_mutex
);
1376 ret
= init_cache_nodelists_node(nid
);
1377 mutex_unlock(&cache_chain_mutex
);
1379 case MEM_GOING_OFFLINE
:
1380 mutex_lock(&cache_chain_mutex
);
1381 ret
= drain_cache_nodelists_node(nid
);
1382 mutex_unlock(&cache_chain_mutex
);
1386 case MEM_CANCEL_ONLINE
:
1387 case MEM_CANCEL_OFFLINE
:
1391 return ret
? notifier_from_errno(ret
) : NOTIFY_OK
;
1393 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1396 * swap the static kmem_list3 with kmalloced memory
1398 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1401 struct kmem_list3
*ptr
;
1403 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1406 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1408 * Do not assume that spinlocks can be initialized via memcpy:
1410 spin_lock_init(&ptr
->list_lock
);
1412 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1413 cachep
->nodelists
[nodeid
] = ptr
;
1417 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1418 * size of kmem_list3.
1420 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1424 for_each_online_node(node
) {
1425 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1426 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1428 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1433 * Initialisation. Called after the page allocator have been initialised and
1434 * before smp_init().
1436 void __init
kmem_cache_init(void)
1439 struct cache_sizes
*sizes
;
1440 struct cache_names
*names
;
1445 if (num_possible_nodes() == 1)
1446 use_alien_caches
= 0;
1448 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1449 kmem_list3_init(&initkmem_list3
[i
]);
1450 if (i
< MAX_NUMNODES
)
1451 cache_cache
.nodelists
[i
] = NULL
;
1453 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1456 * Fragmentation resistance on low memory - only use bigger
1457 * page orders on machines with more than 32MB of memory.
1459 if (totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1460 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1462 /* Bootstrap is tricky, because several objects are allocated
1463 * from caches that do not exist yet:
1464 * 1) initialize the cache_cache cache: it contains the struct
1465 * kmem_cache structures of all caches, except cache_cache itself:
1466 * cache_cache is statically allocated.
1467 * Initially an __init data area is used for the head array and the
1468 * kmem_list3 structures, it's replaced with a kmalloc allocated
1469 * array at the end of the bootstrap.
1470 * 2) Create the first kmalloc cache.
1471 * The struct kmem_cache for the new cache is allocated normally.
1472 * An __init data area is used for the head array.
1473 * 3) Create the remaining kmalloc caches, with minimally sized
1475 * 4) Replace the __init data head arrays for cache_cache and the first
1476 * kmalloc cache with kmalloc allocated arrays.
1477 * 5) Replace the __init data for kmem_list3 for cache_cache and
1478 * the other cache's with kmalloc allocated memory.
1479 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1482 node
= numa_mem_id();
1484 /* 1) create the cache_cache */
1485 INIT_LIST_HEAD(&cache_chain
);
1486 list_add(&cache_cache
.next
, &cache_chain
);
1487 cache_cache
.colour_off
= cache_line_size();
1488 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1489 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1492 * struct kmem_cache size depends on nr_node_ids, which
1493 * can be less than MAX_NUMNODES.
1495 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1496 nr_node_ids
* sizeof(struct kmem_list3
*);
1498 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1500 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1502 cache_cache
.reciprocal_buffer_size
=
1503 reciprocal_value(cache_cache
.buffer_size
);
1505 for (order
= 0; order
< MAX_ORDER
; order
++) {
1506 cache_estimate(order
, cache_cache
.buffer_size
,
1507 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1508 if (cache_cache
.num
)
1511 BUG_ON(!cache_cache
.num
);
1512 cache_cache
.gfporder
= order
;
1513 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1514 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1515 sizeof(struct slab
), cache_line_size());
1517 /* 2+3) create the kmalloc caches */
1518 sizes
= malloc_sizes
;
1519 names
= cache_names
;
1522 * Initialize the caches that provide memory for the array cache and the
1523 * kmem_list3 structures first. Without this, further allocations will
1527 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1528 sizes
[INDEX_AC
].cs_size
,
1529 ARCH_KMALLOC_MINALIGN
,
1530 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1533 if (INDEX_AC
!= INDEX_L3
) {
1534 sizes
[INDEX_L3
].cs_cachep
=
1535 kmem_cache_create(names
[INDEX_L3
].name
,
1536 sizes
[INDEX_L3
].cs_size
,
1537 ARCH_KMALLOC_MINALIGN
,
1538 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1542 slab_early_init
= 0;
1544 while (sizes
->cs_size
!= ULONG_MAX
) {
1546 * For performance, all the general caches are L1 aligned.
1547 * This should be particularly beneficial on SMP boxes, as it
1548 * eliminates "false sharing".
1549 * Note for systems short on memory removing the alignment will
1550 * allow tighter packing of the smaller caches.
1552 if (!sizes
->cs_cachep
) {
1553 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1555 ARCH_KMALLOC_MINALIGN
,
1556 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1559 #ifdef CONFIG_ZONE_DMA
1560 sizes
->cs_dmacachep
= kmem_cache_create(
1563 ARCH_KMALLOC_MINALIGN
,
1564 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1571 /* 4) Replace the bootstrap head arrays */
1573 struct array_cache
*ptr
;
1575 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1577 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1578 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1579 sizeof(struct arraycache_init
));
1581 * Do not assume that spinlocks can be initialized via memcpy:
1583 spin_lock_init(&ptr
->lock
);
1585 cache_cache
.array
[smp_processor_id()] = ptr
;
1587 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1589 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1590 != &initarray_generic
.cache
);
1591 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1592 sizeof(struct arraycache_init
));
1594 * Do not assume that spinlocks can be initialized via memcpy:
1596 spin_lock_init(&ptr
->lock
);
1598 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1601 /* 5) Replace the bootstrap kmem_list3's */
1605 for_each_online_node(nid
) {
1606 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1608 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1609 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1611 if (INDEX_AC
!= INDEX_L3
) {
1612 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1613 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1618 g_cpucache_up
= EARLY
;
1621 void __init
kmem_cache_init_late(void)
1623 struct kmem_cache
*cachep
;
1625 /* 6) resize the head arrays to their final sizes */
1626 mutex_lock(&cache_chain_mutex
);
1627 list_for_each_entry(cachep
, &cache_chain
, next
)
1628 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1630 mutex_unlock(&cache_chain_mutex
);
1633 g_cpucache_up
= FULL
;
1635 /* Annotate slab for lockdep -- annotate the malloc caches */
1639 * Register a cpu startup notifier callback that initializes
1640 * cpu_cache_get for all new cpus
1642 register_cpu_notifier(&cpucache_notifier
);
1646 * Register a memory hotplug callback that initializes and frees
1649 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1653 * The reap timers are started later, with a module init call: That part
1654 * of the kernel is not yet operational.
1658 static int __init
cpucache_init(void)
1663 * Register the timers that return unneeded pages to the page allocator
1665 for_each_online_cpu(cpu
)
1666 start_cpu_timer(cpu
);
1669 __initcall(cpucache_init
);
1672 * Interface to system's page allocator. No need to hold the cache-lock.
1674 * If we requested dmaable memory, we will get it. Even if we
1675 * did not request dmaable memory, we might get it, but that
1676 * would be relatively rare and ignorable.
1678 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1686 * Nommu uses slab's for process anonymous memory allocations, and thus
1687 * requires __GFP_COMP to properly refcount higher order allocations
1689 flags
|= __GFP_COMP
;
1692 flags
|= cachep
->gfpflags
;
1693 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1694 flags
|= __GFP_RECLAIMABLE
;
1696 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1700 nr_pages
= (1 << cachep
->gfporder
);
1701 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1702 add_zone_page_state(page_zone(page
),
1703 NR_SLAB_RECLAIMABLE
, nr_pages
);
1705 add_zone_page_state(page_zone(page
),
1706 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1707 for (i
= 0; i
< nr_pages
; i
++)
1708 __SetPageSlab(page
+ i
);
1710 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1711 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1714 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1716 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1719 return page_address(page
);
1723 * Interface to system's page release.
1725 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1727 unsigned long i
= (1 << cachep
->gfporder
);
1728 struct page
*page
= virt_to_page(addr
);
1729 const unsigned long nr_freed
= i
;
1731 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1733 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1734 sub_zone_page_state(page_zone(page
),
1735 NR_SLAB_RECLAIMABLE
, nr_freed
);
1737 sub_zone_page_state(page_zone(page
),
1738 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1740 BUG_ON(!PageSlab(page
));
1741 __ClearPageSlab(page
);
1744 if (current
->reclaim_state
)
1745 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1746 free_pages((unsigned long)addr
, cachep
->gfporder
);
1749 static void kmem_rcu_free(struct rcu_head
*head
)
1751 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1752 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1754 kmem_freepages(cachep
, slab_rcu
->addr
);
1755 if (OFF_SLAB(cachep
))
1756 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1761 #ifdef CONFIG_DEBUG_PAGEALLOC
1762 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1763 unsigned long caller
)
1765 int size
= obj_size(cachep
);
1767 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1769 if (size
< 5 * sizeof(unsigned long))
1772 *addr
++ = 0x12345678;
1774 *addr
++ = smp_processor_id();
1775 size
-= 3 * sizeof(unsigned long);
1777 unsigned long *sptr
= &caller
;
1778 unsigned long svalue
;
1780 while (!kstack_end(sptr
)) {
1782 if (kernel_text_address(svalue
)) {
1784 size
-= sizeof(unsigned long);
1785 if (size
<= sizeof(unsigned long))
1791 *addr
++ = 0x87654321;
1795 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1797 int size
= obj_size(cachep
);
1798 addr
= &((char *)addr
)[obj_offset(cachep
)];
1800 memset(addr
, val
, size
);
1801 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1804 static void dump_line(char *data
, int offset
, int limit
)
1807 unsigned char error
= 0;
1810 printk(KERN_ERR
"%03x:", offset
);
1811 for (i
= 0; i
< limit
; i
++) {
1812 if (data
[offset
+ i
] != POISON_FREE
) {
1813 error
= data
[offset
+ i
];
1816 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1820 if (bad_count
== 1) {
1821 error
^= POISON_FREE
;
1822 if (!(error
& (error
- 1))) {
1823 printk(KERN_ERR
"Single bit error detected. Probably "
1826 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1829 printk(KERN_ERR
"Run a memory test tool.\n");
1838 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1843 if (cachep
->flags
& SLAB_RED_ZONE
) {
1844 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1845 *dbg_redzone1(cachep
, objp
),
1846 *dbg_redzone2(cachep
, objp
));
1849 if (cachep
->flags
& SLAB_STORE_USER
) {
1850 printk(KERN_ERR
"Last user: [<%p>]",
1851 *dbg_userword(cachep
, objp
));
1852 print_symbol("(%s)",
1853 (unsigned long)*dbg_userword(cachep
, objp
));
1856 realobj
= (char *)objp
+ obj_offset(cachep
);
1857 size
= obj_size(cachep
);
1858 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1861 if (i
+ limit
> size
)
1863 dump_line(realobj
, i
, limit
);
1867 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1873 realobj
= (char *)objp
+ obj_offset(cachep
);
1874 size
= obj_size(cachep
);
1876 for (i
= 0; i
< size
; i
++) {
1877 char exp
= POISON_FREE
;
1880 if (realobj
[i
] != exp
) {
1886 "Slab corruption: %s start=%p, len=%d\n",
1887 cachep
->name
, realobj
, size
);
1888 print_objinfo(cachep
, objp
, 0);
1890 /* Hexdump the affected line */
1893 if (i
+ limit
> size
)
1895 dump_line(realobj
, i
, limit
);
1898 /* Limit to 5 lines */
1904 /* Print some data about the neighboring objects, if they
1907 struct slab
*slabp
= virt_to_slab(objp
);
1910 objnr
= obj_to_index(cachep
, slabp
, objp
);
1912 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1913 realobj
= (char *)objp
+ obj_offset(cachep
);
1914 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1916 print_objinfo(cachep
, objp
, 2);
1918 if (objnr
+ 1 < cachep
->num
) {
1919 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1920 realobj
= (char *)objp
+ obj_offset(cachep
);
1921 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1923 print_objinfo(cachep
, objp
, 2);
1930 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1933 for (i
= 0; i
< cachep
->num
; i
++) {
1934 void *objp
= index_to_obj(cachep
, slabp
, i
);
1936 if (cachep
->flags
& SLAB_POISON
) {
1937 #ifdef CONFIG_DEBUG_PAGEALLOC
1938 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1940 kernel_map_pages(virt_to_page(objp
),
1941 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1943 check_poison_obj(cachep
, objp
);
1945 check_poison_obj(cachep
, objp
);
1948 if (cachep
->flags
& SLAB_RED_ZONE
) {
1949 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1950 slab_error(cachep
, "start of a freed object "
1952 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1953 slab_error(cachep
, "end of a freed object "
1959 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1965 * slab_destroy - destroy and release all objects in a slab
1966 * @cachep: cache pointer being destroyed
1967 * @slabp: slab pointer being destroyed
1969 * Destroy all the objs in a slab, and release the mem back to the system.
1970 * Before calling the slab must have been unlinked from the cache. The
1971 * cache-lock is not held/needed.
1973 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1975 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1977 slab_destroy_debugcheck(cachep
, slabp
);
1978 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1979 struct slab_rcu
*slab_rcu
;
1981 slab_rcu
= (struct slab_rcu
*)slabp
;
1982 slab_rcu
->cachep
= cachep
;
1983 slab_rcu
->addr
= addr
;
1984 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1986 kmem_freepages(cachep
, addr
);
1987 if (OFF_SLAB(cachep
))
1988 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1992 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1995 struct kmem_list3
*l3
;
1997 for_each_online_cpu(i
)
1998 kfree(cachep
->array
[i
]);
2000 /* NUMA: free the list3 structures */
2001 for_each_online_node(i
) {
2002 l3
= cachep
->nodelists
[i
];
2005 free_alien_cache(l3
->alien
);
2009 kmem_cache_free(&cache_cache
, cachep
);
2014 * calculate_slab_order - calculate size (page order) of slabs
2015 * @cachep: pointer to the cache that is being created
2016 * @size: size of objects to be created in this cache.
2017 * @align: required alignment for the objects.
2018 * @flags: slab allocation flags
2020 * Also calculates the number of objects per slab.
2022 * This could be made much more intelligent. For now, try to avoid using
2023 * high order pages for slabs. When the gfp() functions are more friendly
2024 * towards high-order requests, this should be changed.
2026 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2027 size_t size
, size_t align
, unsigned long flags
)
2029 unsigned long offslab_limit
;
2030 size_t left_over
= 0;
2033 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2037 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2041 if (flags
& CFLGS_OFF_SLAB
) {
2043 * Max number of objs-per-slab for caches which
2044 * use off-slab slabs. Needed to avoid a possible
2045 * looping condition in cache_grow().
2047 offslab_limit
= size
- sizeof(struct slab
);
2048 offslab_limit
/= sizeof(kmem_bufctl_t
);
2050 if (num
> offslab_limit
)
2054 /* Found something acceptable - save it away */
2056 cachep
->gfporder
= gfporder
;
2057 left_over
= remainder
;
2060 * A VFS-reclaimable slab tends to have most allocations
2061 * as GFP_NOFS and we really don't want to have to be allocating
2062 * higher-order pages when we are unable to shrink dcache.
2064 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2068 * Large number of objects is good, but very large slabs are
2069 * currently bad for the gfp()s.
2071 if (gfporder
>= slab_break_gfp_order
)
2075 * Acceptable internal fragmentation?
2077 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2083 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2085 if (g_cpucache_up
== FULL
)
2086 return enable_cpucache(cachep
, gfp
);
2088 if (g_cpucache_up
== NONE
) {
2090 * Note: the first kmem_cache_create must create the cache
2091 * that's used by kmalloc(24), otherwise the creation of
2092 * further caches will BUG().
2094 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2097 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2098 * the first cache, then we need to set up all its list3s,
2099 * otherwise the creation of further caches will BUG().
2101 set_up_list3s(cachep
, SIZE_AC
);
2102 if (INDEX_AC
== INDEX_L3
)
2103 g_cpucache_up
= PARTIAL_L3
;
2105 g_cpucache_up
= PARTIAL_AC
;
2107 cachep
->array
[smp_processor_id()] =
2108 kmalloc(sizeof(struct arraycache_init
), gfp
);
2110 if (g_cpucache_up
== PARTIAL_AC
) {
2111 set_up_list3s(cachep
, SIZE_L3
);
2112 g_cpucache_up
= PARTIAL_L3
;
2115 for_each_online_node(node
) {
2116 cachep
->nodelists
[node
] =
2117 kmalloc_node(sizeof(struct kmem_list3
),
2119 BUG_ON(!cachep
->nodelists
[node
]);
2120 kmem_list3_init(cachep
->nodelists
[node
]);
2124 cachep
->nodelists
[numa_mem_id()]->next_reap
=
2125 jiffies
+ REAPTIMEOUT_LIST3
+
2126 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2128 cpu_cache_get(cachep
)->avail
= 0;
2129 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2130 cpu_cache_get(cachep
)->batchcount
= 1;
2131 cpu_cache_get(cachep
)->touched
= 0;
2132 cachep
->batchcount
= 1;
2133 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2138 * kmem_cache_create - Create a cache.
2139 * @name: A string which is used in /proc/slabinfo to identify this cache.
2140 * @size: The size of objects to be created in this cache.
2141 * @align: The required alignment for the objects.
2142 * @flags: SLAB flags
2143 * @ctor: A constructor for the objects.
2145 * Returns a ptr to the cache on success, NULL on failure.
2146 * Cannot be called within a int, but can be interrupted.
2147 * The @ctor is run when new pages are allocated by the cache.
2149 * @name must be valid until the cache is destroyed. This implies that
2150 * the module calling this has to destroy the cache before getting unloaded.
2151 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2152 * therefore applications must manage it themselves.
2156 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2157 * to catch references to uninitialised memory.
2159 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2160 * for buffer overruns.
2162 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2163 * cacheline. This can be beneficial if you're counting cycles as closely
2167 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2168 unsigned long flags
, void (*ctor
)(void *))
2170 size_t left_over
, slab_size
, ralign
;
2171 struct kmem_cache
*cachep
= NULL
, *pc
;
2175 * Sanity checks... these are all serious usage bugs.
2177 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2178 size
> KMALLOC_MAX_SIZE
) {
2179 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2185 * We use cache_chain_mutex to ensure a consistent view of
2186 * cpu_online_mask as well. Please see cpuup_callback
2188 if (slab_is_available()) {
2190 mutex_lock(&cache_chain_mutex
);
2193 list_for_each_entry(pc
, &cache_chain
, next
) {
2198 * This happens when the module gets unloaded and doesn't
2199 * destroy its slab cache and no-one else reuses the vmalloc
2200 * area of the module. Print a warning.
2202 res
= probe_kernel_address(pc
->name
, tmp
);
2205 "SLAB: cache with size %d has lost its name\n",
2210 if (!strcmp(pc
->name
, name
)) {
2212 "kmem_cache_create: duplicate cache %s\n", name
);
2219 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2222 * Enable redzoning and last user accounting, except for caches with
2223 * large objects, if the increased size would increase the object size
2224 * above the next power of two: caches with object sizes just above a
2225 * power of two have a significant amount of internal fragmentation.
2227 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2228 2 * sizeof(unsigned long long)))
2229 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2230 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2231 flags
|= SLAB_POISON
;
2233 if (flags
& SLAB_DESTROY_BY_RCU
)
2234 BUG_ON(flags
& SLAB_POISON
);
2237 * Always checks flags, a caller might be expecting debug support which
2240 BUG_ON(flags
& ~CREATE_MASK
);
2243 * Check that size is in terms of words. This is needed to avoid
2244 * unaligned accesses for some archs when redzoning is used, and makes
2245 * sure any on-slab bufctl's are also correctly aligned.
2247 if (size
& (BYTES_PER_WORD
- 1)) {
2248 size
+= (BYTES_PER_WORD
- 1);
2249 size
&= ~(BYTES_PER_WORD
- 1);
2252 /* calculate the final buffer alignment: */
2254 /* 1) arch recommendation: can be overridden for debug */
2255 if (flags
& SLAB_HWCACHE_ALIGN
) {
2257 * Default alignment: as specified by the arch code. Except if
2258 * an object is really small, then squeeze multiple objects into
2261 ralign
= cache_line_size();
2262 while (size
<= ralign
/ 2)
2265 ralign
= BYTES_PER_WORD
;
2269 * Redzoning and user store require word alignment or possibly larger.
2270 * Note this will be overridden by architecture or caller mandated
2271 * alignment if either is greater than BYTES_PER_WORD.
2273 if (flags
& SLAB_STORE_USER
)
2274 ralign
= BYTES_PER_WORD
;
2276 if (flags
& SLAB_RED_ZONE
) {
2277 ralign
= REDZONE_ALIGN
;
2278 /* If redzoning, ensure that the second redzone is suitably
2279 * aligned, by adjusting the object size accordingly. */
2280 size
+= REDZONE_ALIGN
- 1;
2281 size
&= ~(REDZONE_ALIGN
- 1);
2284 /* 2) arch mandated alignment */
2285 if (ralign
< ARCH_SLAB_MINALIGN
) {
2286 ralign
= ARCH_SLAB_MINALIGN
;
2288 /* 3) caller mandated alignment */
2289 if (ralign
< align
) {
2292 /* disable debug if not aligning with REDZONE_ALIGN */
2293 if (ralign
& (__alignof__(unsigned long long) - 1))
2294 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2300 if (slab_is_available())
2305 /* Get cache's description obj. */
2306 cachep
= kmem_cache_zalloc(&cache_cache
, gfp
);
2311 cachep
->obj_size
= size
;
2314 * Both debugging options require word-alignment which is calculated
2317 if (flags
& SLAB_RED_ZONE
) {
2318 /* add space for red zone words */
2319 cachep
->obj_offset
+= align
;
2320 size
+= align
+ sizeof(unsigned long long);
2322 if (flags
& SLAB_STORE_USER
) {
2323 /* user store requires one word storage behind the end of
2324 * the real object. But if the second red zone needs to be
2325 * aligned to 64 bits, we must allow that much space.
2327 if (flags
& SLAB_RED_ZONE
)
2328 size
+= REDZONE_ALIGN
;
2330 size
+= BYTES_PER_WORD
;
2332 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2333 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2334 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2335 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2342 * Determine if the slab management is 'on' or 'off' slab.
2343 * (bootstrapping cannot cope with offslab caches so don't do
2344 * it too early on. Always use on-slab management when
2345 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2347 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
&&
2348 !(flags
& SLAB_NOLEAKTRACE
))
2350 * Size is large, assume best to place the slab management obj
2351 * off-slab (should allow better packing of objs).
2353 flags
|= CFLGS_OFF_SLAB
;
2355 size
= ALIGN(size
, align
);
2357 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2361 "kmem_cache_create: couldn't create cache %s.\n", name
);
2362 kmem_cache_free(&cache_cache
, cachep
);
2366 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2367 + sizeof(struct slab
), align
);
2370 * If the slab has been placed off-slab, and we have enough space then
2371 * move it on-slab. This is at the expense of any extra colouring.
2373 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2374 flags
&= ~CFLGS_OFF_SLAB
;
2375 left_over
-= slab_size
;
2378 if (flags
& CFLGS_OFF_SLAB
) {
2379 /* really off slab. No need for manual alignment */
2381 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2383 #ifdef CONFIG_PAGE_POISONING
2384 /* If we're going to use the generic kernel_map_pages()
2385 * poisoning, then it's going to smash the contents of
2386 * the redzone and userword anyhow, so switch them off.
2388 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2389 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2393 cachep
->colour_off
= cache_line_size();
2394 /* Offset must be a multiple of the alignment. */
2395 if (cachep
->colour_off
< align
)
2396 cachep
->colour_off
= align
;
2397 cachep
->colour
= left_over
/ cachep
->colour_off
;
2398 cachep
->slab_size
= slab_size
;
2399 cachep
->flags
= flags
;
2400 cachep
->gfpflags
= 0;
2401 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2402 cachep
->gfpflags
|= GFP_DMA
;
2403 cachep
->buffer_size
= size
;
2404 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2406 if (flags
& CFLGS_OFF_SLAB
) {
2407 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2409 * This is a possibility for one of the malloc_sizes caches.
2410 * But since we go off slab only for object size greater than
2411 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2412 * this should not happen at all.
2413 * But leave a BUG_ON for some lucky dude.
2415 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2417 cachep
->ctor
= ctor
;
2418 cachep
->name
= name
;
2420 if (setup_cpu_cache(cachep
, gfp
)) {
2421 __kmem_cache_destroy(cachep
);
2426 /* cache setup completed, link it into the list */
2427 list_add(&cachep
->next
, &cache_chain
);
2429 if (!cachep
&& (flags
& SLAB_PANIC
))
2430 panic("kmem_cache_create(): failed to create slab `%s'\n",
2432 if (slab_is_available()) {
2433 mutex_unlock(&cache_chain_mutex
);
2438 EXPORT_SYMBOL(kmem_cache_create
);
2441 static void check_irq_off(void)
2443 BUG_ON(!irqs_disabled());
2446 static void check_irq_on(void)
2448 BUG_ON(irqs_disabled());
2451 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2455 assert_spin_locked(&cachep
->nodelists
[numa_mem_id()]->list_lock
);
2459 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2463 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2468 #define check_irq_off() do { } while(0)
2469 #define check_irq_on() do { } while(0)
2470 #define check_spinlock_acquired(x) do { } while(0)
2471 #define check_spinlock_acquired_node(x, y) do { } while(0)
2474 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2475 struct array_cache
*ac
,
2476 int force
, int node
);
2478 static void do_drain(void *arg
)
2480 struct kmem_cache
*cachep
= arg
;
2481 struct array_cache
*ac
;
2482 int node
= numa_mem_id();
2485 ac
= cpu_cache_get(cachep
);
2486 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2487 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2488 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2492 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2494 struct kmem_list3
*l3
;
2497 on_each_cpu(do_drain
, cachep
, 1);
2499 for_each_online_node(node
) {
2500 l3
= cachep
->nodelists
[node
];
2501 if (l3
&& l3
->alien
)
2502 drain_alien_cache(cachep
, l3
->alien
);
2505 for_each_online_node(node
) {
2506 l3
= cachep
->nodelists
[node
];
2508 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2513 * Remove slabs from the list of free slabs.
2514 * Specify the number of slabs to drain in tofree.
2516 * Returns the actual number of slabs released.
2518 static int drain_freelist(struct kmem_cache
*cache
,
2519 struct kmem_list3
*l3
, int tofree
)
2521 struct list_head
*p
;
2526 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2528 spin_lock_irq(&l3
->list_lock
);
2529 p
= l3
->slabs_free
.prev
;
2530 if (p
== &l3
->slabs_free
) {
2531 spin_unlock_irq(&l3
->list_lock
);
2535 slabp
= list_entry(p
, struct slab
, list
);
2537 BUG_ON(slabp
->inuse
);
2539 list_del(&slabp
->list
);
2541 * Safe to drop the lock. The slab is no longer linked
2544 l3
->free_objects
-= cache
->num
;
2545 spin_unlock_irq(&l3
->list_lock
);
2546 slab_destroy(cache
, slabp
);
2553 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2554 static int __cache_shrink(struct kmem_cache
*cachep
)
2557 struct kmem_list3
*l3
;
2559 drain_cpu_caches(cachep
);
2562 for_each_online_node(i
) {
2563 l3
= cachep
->nodelists
[i
];
2567 drain_freelist(cachep
, l3
, l3
->free_objects
);
2569 ret
+= !list_empty(&l3
->slabs_full
) ||
2570 !list_empty(&l3
->slabs_partial
);
2572 return (ret
? 1 : 0);
2576 * kmem_cache_shrink - Shrink a cache.
2577 * @cachep: The cache to shrink.
2579 * Releases as many slabs as possible for a cache.
2580 * To help debugging, a zero exit status indicates all slabs were released.
2582 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2585 BUG_ON(!cachep
|| in_interrupt());
2588 mutex_lock(&cache_chain_mutex
);
2589 ret
= __cache_shrink(cachep
);
2590 mutex_unlock(&cache_chain_mutex
);
2594 EXPORT_SYMBOL(kmem_cache_shrink
);
2597 * kmem_cache_destroy - delete a cache
2598 * @cachep: the cache to destroy
2600 * Remove a &struct kmem_cache object from the slab cache.
2602 * It is expected this function will be called by a module when it is
2603 * unloaded. This will remove the cache completely, and avoid a duplicate
2604 * cache being allocated each time a module is loaded and unloaded, if the
2605 * module doesn't have persistent in-kernel storage across loads and unloads.
2607 * The cache must be empty before calling this function.
2609 * The caller must guarantee that noone will allocate memory from the cache
2610 * during the kmem_cache_destroy().
2612 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2614 BUG_ON(!cachep
|| in_interrupt());
2616 /* Find the cache in the chain of caches. */
2618 mutex_lock(&cache_chain_mutex
);
2620 * the chain is never empty, cache_cache is never destroyed
2622 list_del(&cachep
->next
);
2623 if (__cache_shrink(cachep
)) {
2624 slab_error(cachep
, "Can't free all objects");
2625 list_add(&cachep
->next
, &cache_chain
);
2626 mutex_unlock(&cache_chain_mutex
);
2631 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2634 __kmem_cache_destroy(cachep
);
2635 mutex_unlock(&cache_chain_mutex
);
2638 EXPORT_SYMBOL(kmem_cache_destroy
);
2641 * Get the memory for a slab management obj.
2642 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2643 * always come from malloc_sizes caches. The slab descriptor cannot
2644 * come from the same cache which is getting created because,
2645 * when we are searching for an appropriate cache for these
2646 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2647 * If we are creating a malloc_sizes cache here it would not be visible to
2648 * kmem_find_general_cachep till the initialization is complete.
2649 * Hence we cannot have slabp_cache same as the original cache.
2651 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2652 int colour_off
, gfp_t local_flags
,
2657 if (OFF_SLAB(cachep
)) {
2658 /* Slab management obj is off-slab. */
2659 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2660 local_flags
, nodeid
);
2662 * If the first object in the slab is leaked (it's allocated
2663 * but no one has a reference to it), we want to make sure
2664 * kmemleak does not treat the ->s_mem pointer as a reference
2665 * to the object. Otherwise we will not report the leak.
2667 kmemleak_scan_area(&slabp
->list
, sizeof(struct list_head
),
2672 slabp
= objp
+ colour_off
;
2673 colour_off
+= cachep
->slab_size
;
2676 slabp
->colouroff
= colour_off
;
2677 slabp
->s_mem
= objp
+ colour_off
;
2678 slabp
->nodeid
= nodeid
;
2683 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2685 return (kmem_bufctl_t
*) (slabp
+ 1);
2688 static void cache_init_objs(struct kmem_cache
*cachep
,
2693 for (i
= 0; i
< cachep
->num
; i
++) {
2694 void *objp
= index_to_obj(cachep
, slabp
, i
);
2696 /* need to poison the objs? */
2697 if (cachep
->flags
& SLAB_POISON
)
2698 poison_obj(cachep
, objp
, POISON_FREE
);
2699 if (cachep
->flags
& SLAB_STORE_USER
)
2700 *dbg_userword(cachep
, objp
) = NULL
;
2702 if (cachep
->flags
& SLAB_RED_ZONE
) {
2703 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2704 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2707 * Constructors are not allowed to allocate memory from the same
2708 * cache which they are a constructor for. Otherwise, deadlock.
2709 * They must also be threaded.
2711 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2712 cachep
->ctor(objp
+ obj_offset(cachep
));
2714 if (cachep
->flags
& SLAB_RED_ZONE
) {
2715 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2716 slab_error(cachep
, "constructor overwrote the"
2717 " end of an object");
2718 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2719 slab_error(cachep
, "constructor overwrote the"
2720 " start of an object");
2722 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2723 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2724 kernel_map_pages(virt_to_page(objp
),
2725 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2730 slab_bufctl(slabp
)[i
] = i
+ 1;
2732 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2735 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2737 if (CONFIG_ZONE_DMA_FLAG
) {
2738 if (flags
& GFP_DMA
)
2739 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2741 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2745 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2748 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2752 next
= slab_bufctl(slabp
)[slabp
->free
];
2754 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2755 WARN_ON(slabp
->nodeid
!= nodeid
);
2762 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2763 void *objp
, int nodeid
)
2765 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2768 /* Verify that the slab belongs to the intended node */
2769 WARN_ON(slabp
->nodeid
!= nodeid
);
2771 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2772 printk(KERN_ERR
"slab: double free detected in cache "
2773 "'%s', objp %p\n", cachep
->name
, objp
);
2777 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2778 slabp
->free
= objnr
;
2783 * Map pages beginning at addr to the given cache and slab. This is required
2784 * for the slab allocator to be able to lookup the cache and slab of a
2785 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2787 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2793 page
= virt_to_page(addr
);
2796 if (likely(!PageCompound(page
)))
2797 nr_pages
<<= cache
->gfporder
;
2800 page_set_cache(page
, cache
);
2801 page_set_slab(page
, slab
);
2803 } while (--nr_pages
);
2807 * Grow (by 1) the number of slabs within a cache. This is called by
2808 * kmem_cache_alloc() when there are no active objs left in a cache.
2810 static int cache_grow(struct kmem_cache
*cachep
,
2811 gfp_t flags
, int nodeid
, void *objp
)
2816 struct kmem_list3
*l3
;
2819 * Be lazy and only check for valid flags here, keeping it out of the
2820 * critical path in kmem_cache_alloc().
2822 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2823 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2825 /* Take the l3 list lock to change the colour_next on this node */
2827 l3
= cachep
->nodelists
[nodeid
];
2828 spin_lock(&l3
->list_lock
);
2830 /* Get colour for the slab, and cal the next value. */
2831 offset
= l3
->colour_next
;
2833 if (l3
->colour_next
>= cachep
->colour
)
2834 l3
->colour_next
= 0;
2835 spin_unlock(&l3
->list_lock
);
2837 offset
*= cachep
->colour_off
;
2839 if (local_flags
& __GFP_WAIT
)
2843 * The test for missing atomic flag is performed here, rather than
2844 * the more obvious place, simply to reduce the critical path length
2845 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2846 * will eventually be caught here (where it matters).
2848 kmem_flagcheck(cachep
, flags
);
2851 * Get mem for the objs. Attempt to allocate a physical page from
2855 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2859 /* Get slab management. */
2860 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2861 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2865 slab_map_pages(cachep
, slabp
, objp
);
2867 cache_init_objs(cachep
, slabp
);
2869 if (local_flags
& __GFP_WAIT
)
2870 local_irq_disable();
2872 spin_lock(&l3
->list_lock
);
2874 /* Make slab active. */
2875 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2876 STATS_INC_GROWN(cachep
);
2877 l3
->free_objects
+= cachep
->num
;
2878 spin_unlock(&l3
->list_lock
);
2881 kmem_freepages(cachep
, objp
);
2883 if (local_flags
& __GFP_WAIT
)
2884 local_irq_disable();
2891 * Perform extra freeing checks:
2892 * - detect bad pointers.
2893 * - POISON/RED_ZONE checking
2895 static void kfree_debugcheck(const void *objp
)
2897 if (!virt_addr_valid(objp
)) {
2898 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2899 (unsigned long)objp
);
2904 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2906 unsigned long long redzone1
, redzone2
;
2908 redzone1
= *dbg_redzone1(cache
, obj
);
2909 redzone2
= *dbg_redzone2(cache
, obj
);
2914 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2917 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2918 slab_error(cache
, "double free detected");
2920 slab_error(cache
, "memory outside object was overwritten");
2922 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2923 obj
, redzone1
, redzone2
);
2926 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2933 BUG_ON(virt_to_cache(objp
) != cachep
);
2935 objp
-= obj_offset(cachep
);
2936 kfree_debugcheck(objp
);
2937 page
= virt_to_head_page(objp
);
2939 slabp
= page_get_slab(page
);
2941 if (cachep
->flags
& SLAB_RED_ZONE
) {
2942 verify_redzone_free(cachep
, objp
);
2943 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2944 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2946 if (cachep
->flags
& SLAB_STORE_USER
)
2947 *dbg_userword(cachep
, objp
) = caller
;
2949 objnr
= obj_to_index(cachep
, slabp
, objp
);
2951 BUG_ON(objnr
>= cachep
->num
);
2952 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2954 #ifdef CONFIG_DEBUG_SLAB_LEAK
2955 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2957 if (cachep
->flags
& SLAB_POISON
) {
2958 #ifdef CONFIG_DEBUG_PAGEALLOC
2959 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2960 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2961 kernel_map_pages(virt_to_page(objp
),
2962 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2964 poison_obj(cachep
, objp
, POISON_FREE
);
2967 poison_obj(cachep
, objp
, POISON_FREE
);
2973 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2978 /* Check slab's freelist to see if this obj is there. */
2979 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2981 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2984 if (entries
!= cachep
->num
- slabp
->inuse
) {
2986 printk(KERN_ERR
"slab: Internal list corruption detected in "
2987 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2988 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2990 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2993 printk("\n%03x:", i
);
2994 printk(" %02x", ((unsigned char *)slabp
)[i
]);
3001 #define kfree_debugcheck(x) do { } while(0)
3002 #define cache_free_debugcheck(x,objp,z) (objp)
3003 #define check_slabp(x,y) do { } while(0)
3006 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
3009 struct kmem_list3
*l3
;
3010 struct array_cache
*ac
;
3015 node
= numa_mem_id();
3016 ac
= cpu_cache_get(cachep
);
3017 batchcount
= ac
->batchcount
;
3018 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3020 * If there was little recent activity on this cache, then
3021 * perform only a partial refill. Otherwise we could generate
3024 batchcount
= BATCHREFILL_LIMIT
;
3026 l3
= cachep
->nodelists
[node
];
3028 BUG_ON(ac
->avail
> 0 || !l3
);
3029 spin_lock(&l3
->list_lock
);
3031 /* See if we can refill from the shared array */
3032 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
)) {
3033 l3
->shared
->touched
= 1;
3037 while (batchcount
> 0) {
3038 struct list_head
*entry
;
3040 /* Get slab alloc is to come from. */
3041 entry
= l3
->slabs_partial
.next
;
3042 if (entry
== &l3
->slabs_partial
) {
3043 l3
->free_touched
= 1;
3044 entry
= l3
->slabs_free
.next
;
3045 if (entry
== &l3
->slabs_free
)
3049 slabp
= list_entry(entry
, struct slab
, list
);
3050 check_slabp(cachep
, slabp
);
3051 check_spinlock_acquired(cachep
);
3054 * The slab was either on partial or free list so
3055 * there must be at least one object available for
3058 BUG_ON(slabp
->inuse
>= cachep
->num
);
3060 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3061 STATS_INC_ALLOCED(cachep
);
3062 STATS_INC_ACTIVE(cachep
);
3063 STATS_SET_HIGH(cachep
);
3065 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3068 check_slabp(cachep
, slabp
);
3070 /* move slabp to correct slabp list: */
3071 list_del(&slabp
->list
);
3072 if (slabp
->free
== BUFCTL_END
)
3073 list_add(&slabp
->list
, &l3
->slabs_full
);
3075 list_add(&slabp
->list
, &l3
->slabs_partial
);
3079 l3
->free_objects
-= ac
->avail
;
3081 spin_unlock(&l3
->list_lock
);
3083 if (unlikely(!ac
->avail
)) {
3085 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3087 /* cache_grow can reenable interrupts, then ac could change. */
3088 ac
= cpu_cache_get(cachep
);
3089 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3092 if (!ac
->avail
) /* objects refilled by interrupt? */
3096 return ac
->entry
[--ac
->avail
];
3099 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3102 might_sleep_if(flags
& __GFP_WAIT
);
3104 kmem_flagcheck(cachep
, flags
);
3109 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3110 gfp_t flags
, void *objp
, void *caller
)
3114 if (cachep
->flags
& SLAB_POISON
) {
3115 #ifdef CONFIG_DEBUG_PAGEALLOC
3116 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3117 kernel_map_pages(virt_to_page(objp
),
3118 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3120 check_poison_obj(cachep
, objp
);
3122 check_poison_obj(cachep
, objp
);
3124 poison_obj(cachep
, objp
, POISON_INUSE
);
3126 if (cachep
->flags
& SLAB_STORE_USER
)
3127 *dbg_userword(cachep
, objp
) = caller
;
3129 if (cachep
->flags
& SLAB_RED_ZONE
) {
3130 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3131 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3132 slab_error(cachep
, "double free, or memory outside"
3133 " object was overwritten");
3135 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3136 objp
, *dbg_redzone1(cachep
, objp
),
3137 *dbg_redzone2(cachep
, objp
));
3139 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3140 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3142 #ifdef CONFIG_DEBUG_SLAB_LEAK
3147 slabp
= page_get_slab(virt_to_head_page(objp
));
3148 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3149 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3152 objp
+= obj_offset(cachep
);
3153 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3155 #if ARCH_SLAB_MINALIGN
3156 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3157 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3158 objp
, ARCH_SLAB_MINALIGN
);
3164 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3167 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3169 if (cachep
== &cache_cache
)
3172 return should_failslab(obj_size(cachep
), flags
, cachep
->flags
);
3175 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3178 struct array_cache
*ac
;
3182 ac
= cpu_cache_get(cachep
);
3183 if (likely(ac
->avail
)) {
3184 STATS_INC_ALLOCHIT(cachep
);
3186 objp
= ac
->entry
[--ac
->avail
];
3188 STATS_INC_ALLOCMISS(cachep
);
3189 objp
= cache_alloc_refill(cachep
, flags
);
3191 * the 'ac' may be updated by cache_alloc_refill(),
3192 * and kmemleak_erase() requires its correct value.
3194 ac
= cpu_cache_get(cachep
);
3197 * To avoid a false negative, if an object that is in one of the
3198 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3199 * treat the array pointers as a reference to the object.
3202 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3208 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3210 * If we are in_interrupt, then process context, including cpusets and
3211 * mempolicy, may not apply and should not be used for allocation policy.
3213 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3215 int nid_alloc
, nid_here
;
3217 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3219 nid_alloc
= nid_here
= numa_mem_id();
3221 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3222 nid_alloc
= cpuset_slab_spread_node();
3223 else if (current
->mempolicy
)
3224 nid_alloc
= slab_node(current
->mempolicy
);
3226 if (nid_alloc
!= nid_here
)
3227 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3232 * Fallback function if there was no memory available and no objects on a
3233 * certain node and fall back is permitted. First we scan all the
3234 * available nodelists for available objects. If that fails then we
3235 * perform an allocation without specifying a node. This allows the page
3236 * allocator to do its reclaim / fallback magic. We then insert the
3237 * slab into the proper nodelist and then allocate from it.
3239 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3241 struct zonelist
*zonelist
;
3245 enum zone_type high_zoneidx
= gfp_zone(flags
);
3249 if (flags
& __GFP_THISNODE
)
3253 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3254 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3258 * Look through allowed nodes for objects available
3259 * from existing per node queues.
3261 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3262 nid
= zone_to_nid(zone
);
3264 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3265 cache
->nodelists
[nid
] &&
3266 cache
->nodelists
[nid
]->free_objects
) {
3267 obj
= ____cache_alloc_node(cache
,
3268 flags
| GFP_THISNODE
, nid
);
3276 * This allocation will be performed within the constraints
3277 * of the current cpuset / memory policy requirements.
3278 * We may trigger various forms of reclaim on the allowed
3279 * set and go into memory reserves if necessary.
3281 if (local_flags
& __GFP_WAIT
)
3283 kmem_flagcheck(cache
, flags
);
3284 obj
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3285 if (local_flags
& __GFP_WAIT
)
3286 local_irq_disable();
3289 * Insert into the appropriate per node queues
3291 nid
= page_to_nid(virt_to_page(obj
));
3292 if (cache_grow(cache
, flags
, nid
, obj
)) {
3293 obj
= ____cache_alloc_node(cache
,
3294 flags
| GFP_THISNODE
, nid
);
3297 * Another processor may allocate the
3298 * objects in the slab since we are
3299 * not holding any locks.
3303 /* cache_grow already freed obj */
3313 * A interface to enable slab creation on nodeid
3315 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3318 struct list_head
*entry
;
3320 struct kmem_list3
*l3
;
3324 l3
= cachep
->nodelists
[nodeid
];
3329 spin_lock(&l3
->list_lock
);
3330 entry
= l3
->slabs_partial
.next
;
3331 if (entry
== &l3
->slabs_partial
) {
3332 l3
->free_touched
= 1;
3333 entry
= l3
->slabs_free
.next
;
3334 if (entry
== &l3
->slabs_free
)
3338 slabp
= list_entry(entry
, struct slab
, list
);
3339 check_spinlock_acquired_node(cachep
, nodeid
);
3340 check_slabp(cachep
, slabp
);
3342 STATS_INC_NODEALLOCS(cachep
);
3343 STATS_INC_ACTIVE(cachep
);
3344 STATS_SET_HIGH(cachep
);
3346 BUG_ON(slabp
->inuse
== cachep
->num
);
3348 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3349 check_slabp(cachep
, slabp
);
3351 /* move slabp to correct slabp list: */
3352 list_del(&slabp
->list
);
3354 if (slabp
->free
== BUFCTL_END
)
3355 list_add(&slabp
->list
, &l3
->slabs_full
);
3357 list_add(&slabp
->list
, &l3
->slabs_partial
);
3359 spin_unlock(&l3
->list_lock
);
3363 spin_unlock(&l3
->list_lock
);
3364 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3368 return fallback_alloc(cachep
, flags
);
3375 * kmem_cache_alloc_node - Allocate an object on the specified node
3376 * @cachep: The cache to allocate from.
3377 * @flags: See kmalloc().
3378 * @nodeid: node number of the target node.
3379 * @caller: return address of caller, used for debug information
3381 * Identical to kmem_cache_alloc but it will allocate memory on the given
3382 * node, which can improve the performance for cpu bound structures.
3384 * Fallback to other node is possible if __GFP_THISNODE is not set.
3386 static __always_inline
void *
3387 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3390 unsigned long save_flags
;
3392 int slab_node
= numa_mem_id();
3394 flags
&= gfp_allowed_mask
;
3396 lockdep_trace_alloc(flags
);
3398 if (slab_should_failslab(cachep
, flags
))
3401 cache_alloc_debugcheck_before(cachep
, flags
);
3402 local_irq_save(save_flags
);
3407 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3408 /* Node not bootstrapped yet */
3409 ptr
= fallback_alloc(cachep
, flags
);
3413 if (nodeid
== slab_node
) {
3415 * Use the locally cached objects if possible.
3416 * However ____cache_alloc does not allow fallback
3417 * to other nodes. It may fail while we still have
3418 * objects on other nodes available.
3420 ptr
= ____cache_alloc(cachep
, flags
);
3424 /* ___cache_alloc_node can fall back to other nodes */
3425 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3427 local_irq_restore(save_flags
);
3428 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3429 kmemleak_alloc_recursive(ptr
, obj_size(cachep
), 1, cachep
->flags
,
3433 kmemcheck_slab_alloc(cachep
, flags
, ptr
, obj_size(cachep
));
3435 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3436 memset(ptr
, 0, obj_size(cachep
));
3441 static __always_inline
void *
3442 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3446 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3447 objp
= alternate_node_alloc(cache
, flags
);
3451 objp
= ____cache_alloc(cache
, flags
);
3454 * We may just have run out of memory on the local node.
3455 * ____cache_alloc_node() knows how to locate memory on other nodes
3458 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3465 static __always_inline
void *
3466 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3468 return ____cache_alloc(cachep
, flags
);
3471 #endif /* CONFIG_NUMA */
3473 static __always_inline
void *
3474 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3476 unsigned long save_flags
;
3479 flags
&= gfp_allowed_mask
;
3481 lockdep_trace_alloc(flags
);
3483 if (slab_should_failslab(cachep
, flags
))
3486 cache_alloc_debugcheck_before(cachep
, flags
);
3487 local_irq_save(save_flags
);
3488 objp
= __do_cache_alloc(cachep
, flags
);
3489 local_irq_restore(save_flags
);
3490 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3491 kmemleak_alloc_recursive(objp
, obj_size(cachep
), 1, cachep
->flags
,
3496 kmemcheck_slab_alloc(cachep
, flags
, objp
, obj_size(cachep
));
3498 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3499 memset(objp
, 0, obj_size(cachep
));
3505 * Caller needs to acquire correct kmem_list's list_lock
3507 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3511 struct kmem_list3
*l3
;
3513 for (i
= 0; i
< nr_objects
; i
++) {
3514 void *objp
= objpp
[i
];
3517 slabp
= virt_to_slab(objp
);
3518 l3
= cachep
->nodelists
[node
];
3519 list_del(&slabp
->list
);
3520 check_spinlock_acquired_node(cachep
, node
);
3521 check_slabp(cachep
, slabp
);
3522 slab_put_obj(cachep
, slabp
, objp
, node
);
3523 STATS_DEC_ACTIVE(cachep
);
3525 check_slabp(cachep
, slabp
);
3527 /* fixup slab chains */
3528 if (slabp
->inuse
== 0) {
3529 if (l3
->free_objects
> l3
->free_limit
) {
3530 l3
->free_objects
-= cachep
->num
;
3531 /* No need to drop any previously held
3532 * lock here, even if we have a off-slab slab
3533 * descriptor it is guaranteed to come from
3534 * a different cache, refer to comments before
3537 slab_destroy(cachep
, slabp
);
3539 list_add(&slabp
->list
, &l3
->slabs_free
);
3542 /* Unconditionally move a slab to the end of the
3543 * partial list on free - maximum time for the
3544 * other objects to be freed, too.
3546 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3551 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3554 struct kmem_list3
*l3
;
3555 int node
= numa_mem_id();
3557 batchcount
= ac
->batchcount
;
3559 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3562 l3
= cachep
->nodelists
[node
];
3563 spin_lock(&l3
->list_lock
);
3565 struct array_cache
*shared_array
= l3
->shared
;
3566 int max
= shared_array
->limit
- shared_array
->avail
;
3568 if (batchcount
> max
)
3570 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3571 ac
->entry
, sizeof(void *) * batchcount
);
3572 shared_array
->avail
+= batchcount
;
3577 free_block(cachep
, ac
->entry
, batchcount
, node
);
3582 struct list_head
*p
;
3584 p
= l3
->slabs_free
.next
;
3585 while (p
!= &(l3
->slabs_free
)) {
3588 slabp
= list_entry(p
, struct slab
, list
);
3589 BUG_ON(slabp
->inuse
);
3594 STATS_SET_FREEABLE(cachep
, i
);
3597 spin_unlock(&l3
->list_lock
);
3598 ac
->avail
-= batchcount
;
3599 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3603 * Release an obj back to its cache. If the obj has a constructed state, it must
3604 * be in this state _before_ it is released. Called with disabled ints.
3606 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3608 struct array_cache
*ac
= cpu_cache_get(cachep
);
3611 kmemleak_free_recursive(objp
, cachep
->flags
);
3612 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3614 kmemcheck_slab_free(cachep
, objp
, obj_size(cachep
));
3617 * Skip calling cache_free_alien() when the platform is not numa.
3618 * This will avoid cache misses that happen while accessing slabp (which
3619 * is per page memory reference) to get nodeid. Instead use a global
3620 * variable to skip the call, which is mostly likely to be present in
3623 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3626 if (likely(ac
->avail
< ac
->limit
)) {
3627 STATS_INC_FREEHIT(cachep
);
3628 ac
->entry
[ac
->avail
++] = objp
;
3631 STATS_INC_FREEMISS(cachep
);
3632 cache_flusharray(cachep
, ac
);
3633 ac
->entry
[ac
->avail
++] = objp
;
3638 * kmem_cache_alloc - Allocate an object
3639 * @cachep: The cache to allocate from.
3640 * @flags: See kmalloc().
3642 * Allocate an object from this cache. The flags are only relevant
3643 * if the cache has no available objects.
3645 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3647 void *ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3649 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3650 obj_size(cachep
), cachep
->buffer_size
, flags
);
3654 EXPORT_SYMBOL(kmem_cache_alloc
);
3656 #ifdef CONFIG_TRACING
3657 void *kmem_cache_alloc_notrace(struct kmem_cache
*cachep
, gfp_t flags
)
3659 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3661 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
3665 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3666 * @cachep: the cache we're checking against
3667 * @ptr: pointer to validate
3669 * This verifies that the untrusted pointer looks sane;
3670 * it is _not_ a guarantee that the pointer is actually
3671 * part of the slab cache in question, but it at least
3672 * validates that the pointer can be dereferenced and
3673 * looks half-way sane.
3675 * Currently only used for dentry validation.
3677 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3679 unsigned long size
= cachep
->buffer_size
;
3682 if (unlikely(!kern_ptr_validate(ptr
, size
)))
3684 page
= virt_to_page(ptr
);
3685 if (unlikely(!PageSlab(page
)))
3687 if (unlikely(page_get_cache(page
) != cachep
))
3695 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3697 void *ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3698 __builtin_return_address(0));
3700 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3701 obj_size(cachep
), cachep
->buffer_size
,
3706 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3708 #ifdef CONFIG_TRACING
3709 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*cachep
,
3713 return __cache_alloc_node(cachep
, flags
, nodeid
,
3714 __builtin_return_address(0));
3716 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
3719 static __always_inline
void *
3720 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3722 struct kmem_cache
*cachep
;
3725 cachep
= kmem_find_general_cachep(size
, flags
);
3726 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3728 ret
= kmem_cache_alloc_node_notrace(cachep
, flags
, node
);
3730 trace_kmalloc_node((unsigned long) caller
, ret
,
3731 size
, cachep
->buffer_size
, flags
, node
);
3736 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3737 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3739 return __do_kmalloc_node(size
, flags
, node
,
3740 __builtin_return_address(0));
3742 EXPORT_SYMBOL(__kmalloc_node
);
3744 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3745 int node
, unsigned long caller
)
3747 return __do_kmalloc_node(size
, flags
, node
, (void *)caller
);
3749 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3751 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3753 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3755 EXPORT_SYMBOL(__kmalloc_node
);
3756 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3757 #endif /* CONFIG_NUMA */
3760 * __do_kmalloc - allocate memory
3761 * @size: how many bytes of memory are required.
3762 * @flags: the type of memory to allocate (see kmalloc).
3763 * @caller: function caller for debug tracking of the caller
3765 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3768 struct kmem_cache
*cachep
;
3771 /* If you want to save a few bytes .text space: replace
3773 * Then kmalloc uses the uninlined functions instead of the inline
3776 cachep
= __find_general_cachep(size
, flags
);
3777 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3779 ret
= __cache_alloc(cachep
, flags
, caller
);
3781 trace_kmalloc((unsigned long) caller
, ret
,
3782 size
, cachep
->buffer_size
, flags
);
3788 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3789 void *__kmalloc(size_t size
, gfp_t flags
)
3791 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3793 EXPORT_SYMBOL(__kmalloc
);
3795 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3797 return __do_kmalloc(size
, flags
, (void *)caller
);
3799 EXPORT_SYMBOL(__kmalloc_track_caller
);
3802 void *__kmalloc(size_t size
, gfp_t flags
)
3804 return __do_kmalloc(size
, flags
, NULL
);
3806 EXPORT_SYMBOL(__kmalloc
);
3810 * kmem_cache_free - Deallocate an object
3811 * @cachep: The cache the allocation was from.
3812 * @objp: The previously allocated object.
3814 * Free an object which was previously allocated from this
3817 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3819 unsigned long flags
;
3821 local_irq_save(flags
);
3822 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3823 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3824 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3825 __cache_free(cachep
, objp
);
3826 local_irq_restore(flags
);
3828 trace_kmem_cache_free(_RET_IP_
, objp
);
3830 EXPORT_SYMBOL(kmem_cache_free
);
3833 * kfree - free previously allocated memory
3834 * @objp: pointer returned by kmalloc.
3836 * If @objp is NULL, no operation is performed.
3838 * Don't free memory not originally allocated by kmalloc()
3839 * or you will run into trouble.
3841 void kfree(const void *objp
)
3843 struct kmem_cache
*c
;
3844 unsigned long flags
;
3846 trace_kfree(_RET_IP_
, objp
);
3848 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3850 local_irq_save(flags
);
3851 kfree_debugcheck(objp
);
3852 c
= virt_to_cache(objp
);
3853 debug_check_no_locks_freed(objp
, obj_size(c
));
3854 debug_check_no_obj_freed(objp
, obj_size(c
));
3855 __cache_free(c
, (void *)objp
);
3856 local_irq_restore(flags
);
3858 EXPORT_SYMBOL(kfree
);
3860 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3862 return obj_size(cachep
);
3864 EXPORT_SYMBOL(kmem_cache_size
);
3866 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3868 return cachep
->name
;
3870 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3873 * This initializes kmem_list3 or resizes various caches for all nodes.
3875 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3878 struct kmem_list3
*l3
;
3879 struct array_cache
*new_shared
;
3880 struct array_cache
**new_alien
= NULL
;
3882 for_each_online_node(node
) {
3884 if (use_alien_caches
) {
3885 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3891 if (cachep
->shared
) {
3892 new_shared
= alloc_arraycache(node
,
3893 cachep
->shared
*cachep
->batchcount
,
3896 free_alien_cache(new_alien
);
3901 l3
= cachep
->nodelists
[node
];
3903 struct array_cache
*shared
= l3
->shared
;
3905 spin_lock_irq(&l3
->list_lock
);
3908 free_block(cachep
, shared
->entry
,
3909 shared
->avail
, node
);
3911 l3
->shared
= new_shared
;
3913 l3
->alien
= new_alien
;
3916 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3917 cachep
->batchcount
+ cachep
->num
;
3918 spin_unlock_irq(&l3
->list_lock
);
3920 free_alien_cache(new_alien
);
3923 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
3925 free_alien_cache(new_alien
);
3930 kmem_list3_init(l3
);
3931 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3932 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3933 l3
->shared
= new_shared
;
3934 l3
->alien
= new_alien
;
3935 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3936 cachep
->batchcount
+ cachep
->num
;
3937 cachep
->nodelists
[node
] = l3
;
3942 if (!cachep
->next
.next
) {
3943 /* Cache is not active yet. Roll back what we did */
3946 if (cachep
->nodelists
[node
]) {
3947 l3
= cachep
->nodelists
[node
];
3950 free_alien_cache(l3
->alien
);
3952 cachep
->nodelists
[node
] = NULL
;
3960 struct ccupdate_struct
{
3961 struct kmem_cache
*cachep
;
3962 struct array_cache
*new[NR_CPUS
];
3965 static void do_ccupdate_local(void *info
)
3967 struct ccupdate_struct
*new = info
;
3968 struct array_cache
*old
;
3971 old
= cpu_cache_get(new->cachep
);
3973 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3974 new->new[smp_processor_id()] = old
;
3977 /* Always called with the cache_chain_mutex held */
3978 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3979 int batchcount
, int shared
, gfp_t gfp
)
3981 struct ccupdate_struct
*new;
3984 new = kzalloc(sizeof(*new), gfp
);
3988 for_each_online_cpu(i
) {
3989 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
3992 for (i
--; i
>= 0; i
--)
3998 new->cachep
= cachep
;
4000 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
4003 cachep
->batchcount
= batchcount
;
4004 cachep
->limit
= limit
;
4005 cachep
->shared
= shared
;
4007 for_each_online_cpu(i
) {
4008 struct array_cache
*ccold
= new->new[i
];
4011 spin_lock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4012 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
4013 spin_unlock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4017 return alloc_kmemlist(cachep
, gfp
);
4020 /* Called with cache_chain_mutex held always */
4021 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
4027 * The head array serves three purposes:
4028 * - create a LIFO ordering, i.e. return objects that are cache-warm
4029 * - reduce the number of spinlock operations.
4030 * - reduce the number of linked list operations on the slab and
4031 * bufctl chains: array operations are cheaper.
4032 * The numbers are guessed, we should auto-tune as described by
4035 if (cachep
->buffer_size
> 131072)
4037 else if (cachep
->buffer_size
> PAGE_SIZE
)
4039 else if (cachep
->buffer_size
> 1024)
4041 else if (cachep
->buffer_size
> 256)
4047 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4048 * allocation behaviour: Most allocs on one cpu, most free operations
4049 * on another cpu. For these cases, an efficient object passing between
4050 * cpus is necessary. This is provided by a shared array. The array
4051 * replaces Bonwick's magazine layer.
4052 * On uniprocessor, it's functionally equivalent (but less efficient)
4053 * to a larger limit. Thus disabled by default.
4056 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4061 * With debugging enabled, large batchcount lead to excessively long
4062 * periods with disabled local interrupts. Limit the batchcount
4067 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
, gfp
);
4069 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4070 cachep
->name
, -err
);
4075 * Drain an array if it contains any elements taking the l3 lock only if
4076 * necessary. Note that the l3 listlock also protects the array_cache
4077 * if drain_array() is used on the shared array.
4079 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4080 struct array_cache
*ac
, int force
, int node
)
4084 if (!ac
|| !ac
->avail
)
4086 if (ac
->touched
&& !force
) {
4089 spin_lock_irq(&l3
->list_lock
);
4091 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4092 if (tofree
> ac
->avail
)
4093 tofree
= (ac
->avail
+ 1) / 2;
4094 free_block(cachep
, ac
->entry
, tofree
, node
);
4095 ac
->avail
-= tofree
;
4096 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4097 sizeof(void *) * ac
->avail
);
4099 spin_unlock_irq(&l3
->list_lock
);
4104 * cache_reap - Reclaim memory from caches.
4105 * @w: work descriptor
4107 * Called from workqueue/eventd every few seconds.
4109 * - clear the per-cpu caches for this CPU.
4110 * - return freeable pages to the main free memory pool.
4112 * If we cannot acquire the cache chain mutex then just give up - we'll try
4113 * again on the next iteration.
4115 static void cache_reap(struct work_struct
*w
)
4117 struct kmem_cache
*searchp
;
4118 struct kmem_list3
*l3
;
4119 int node
= numa_mem_id();
4120 struct delayed_work
*work
= to_delayed_work(w
);
4122 if (!mutex_trylock(&cache_chain_mutex
))
4123 /* Give up. Setup the next iteration. */
4126 list_for_each_entry(searchp
, &cache_chain
, next
) {
4130 * We only take the l3 lock if absolutely necessary and we
4131 * have established with reasonable certainty that
4132 * we can do some work if the lock was obtained.
4134 l3
= searchp
->nodelists
[node
];
4136 reap_alien(searchp
, l3
);
4138 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4141 * These are racy checks but it does not matter
4142 * if we skip one check or scan twice.
4144 if (time_after(l3
->next_reap
, jiffies
))
4147 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4149 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4151 if (l3
->free_touched
)
4152 l3
->free_touched
= 0;
4156 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4157 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4158 STATS_ADD_REAPED(searchp
, freed
);
4164 mutex_unlock(&cache_chain_mutex
);
4167 /* Set up the next iteration */
4168 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4171 #ifdef CONFIG_SLABINFO
4173 static void print_slabinfo_header(struct seq_file
*m
)
4176 * Output format version, so at least we can change it
4177 * without _too_ many complaints.
4180 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4182 seq_puts(m
, "slabinfo - version: 2.1\n");
4184 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4185 "<objperslab> <pagesperslab>");
4186 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4187 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4189 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4190 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4191 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4196 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4200 mutex_lock(&cache_chain_mutex
);
4202 print_slabinfo_header(m
);
4204 return seq_list_start(&cache_chain
, *pos
);
4207 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4209 return seq_list_next(p
, &cache_chain
, pos
);
4212 static void s_stop(struct seq_file
*m
, void *p
)
4214 mutex_unlock(&cache_chain_mutex
);
4217 static int s_show(struct seq_file
*m
, void *p
)
4219 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4221 unsigned long active_objs
;
4222 unsigned long num_objs
;
4223 unsigned long active_slabs
= 0;
4224 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4228 struct kmem_list3
*l3
;
4232 for_each_online_node(node
) {
4233 l3
= cachep
->nodelists
[node
];
4238 spin_lock_irq(&l3
->list_lock
);
4240 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4241 if (slabp
->inuse
!= cachep
->num
&& !error
)
4242 error
= "slabs_full accounting error";
4243 active_objs
+= cachep
->num
;
4246 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4247 if (slabp
->inuse
== cachep
->num
&& !error
)
4248 error
= "slabs_partial inuse accounting error";
4249 if (!slabp
->inuse
&& !error
)
4250 error
= "slabs_partial/inuse accounting error";
4251 active_objs
+= slabp
->inuse
;
4254 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4255 if (slabp
->inuse
&& !error
)
4256 error
= "slabs_free/inuse accounting error";
4259 free_objects
+= l3
->free_objects
;
4261 shared_avail
+= l3
->shared
->avail
;
4263 spin_unlock_irq(&l3
->list_lock
);
4265 num_slabs
+= active_slabs
;
4266 num_objs
= num_slabs
* cachep
->num
;
4267 if (num_objs
- active_objs
!= free_objects
&& !error
)
4268 error
= "free_objects accounting error";
4270 name
= cachep
->name
;
4272 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4274 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4275 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4276 cachep
->num
, (1 << cachep
->gfporder
));
4277 seq_printf(m
, " : tunables %4u %4u %4u",
4278 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4279 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4280 active_slabs
, num_slabs
, shared_avail
);
4283 unsigned long high
= cachep
->high_mark
;
4284 unsigned long allocs
= cachep
->num_allocations
;
4285 unsigned long grown
= cachep
->grown
;
4286 unsigned long reaped
= cachep
->reaped
;
4287 unsigned long errors
= cachep
->errors
;
4288 unsigned long max_freeable
= cachep
->max_freeable
;
4289 unsigned long node_allocs
= cachep
->node_allocs
;
4290 unsigned long node_frees
= cachep
->node_frees
;
4291 unsigned long overflows
= cachep
->node_overflow
;
4293 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4294 "%4lu %4lu %4lu %4lu %4lu",
4295 allocs
, high
, grown
,
4296 reaped
, errors
, max_freeable
, node_allocs
,
4297 node_frees
, overflows
);
4301 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4302 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4303 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4304 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4306 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4307 allochit
, allocmiss
, freehit
, freemiss
);
4315 * slabinfo_op - iterator that generates /proc/slabinfo
4324 * num-pages-per-slab
4325 * + further values on SMP and with statistics enabled
4328 static const struct seq_operations slabinfo_op
= {
4335 #define MAX_SLABINFO_WRITE 128
4337 * slabinfo_write - Tuning for the slab allocator
4339 * @buffer: user buffer
4340 * @count: data length
4343 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4344 size_t count
, loff_t
*ppos
)
4346 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4347 int limit
, batchcount
, shared
, res
;
4348 struct kmem_cache
*cachep
;
4350 if (count
> MAX_SLABINFO_WRITE
)
4352 if (copy_from_user(&kbuf
, buffer
, count
))
4354 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4356 tmp
= strchr(kbuf
, ' ');
4361 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4364 /* Find the cache in the chain of caches. */
4365 mutex_lock(&cache_chain_mutex
);
4367 list_for_each_entry(cachep
, &cache_chain
, next
) {
4368 if (!strcmp(cachep
->name
, kbuf
)) {
4369 if (limit
< 1 || batchcount
< 1 ||
4370 batchcount
> limit
|| shared
< 0) {
4373 res
= do_tune_cpucache(cachep
, limit
,
4380 mutex_unlock(&cache_chain_mutex
);
4386 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4388 return seq_open(file
, &slabinfo_op
);
4391 static const struct file_operations proc_slabinfo_operations
= {
4392 .open
= slabinfo_open
,
4394 .write
= slabinfo_write
,
4395 .llseek
= seq_lseek
,
4396 .release
= seq_release
,
4399 #ifdef CONFIG_DEBUG_SLAB_LEAK
4401 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4403 mutex_lock(&cache_chain_mutex
);
4404 return seq_list_start(&cache_chain
, *pos
);
4407 static inline int add_caller(unsigned long *n
, unsigned long v
)
4417 unsigned long *q
= p
+ 2 * i
;
4431 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4437 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4443 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4444 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4446 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4451 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4453 #ifdef CONFIG_KALLSYMS
4454 unsigned long offset
, size
;
4455 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4457 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4458 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4460 seq_printf(m
, " [%s]", modname
);
4464 seq_printf(m
, "%p", (void *)address
);
4467 static int leaks_show(struct seq_file
*m
, void *p
)
4469 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4471 struct kmem_list3
*l3
;
4473 unsigned long *n
= m
->private;
4477 if (!(cachep
->flags
& SLAB_STORE_USER
))
4479 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4482 /* OK, we can do it */
4486 for_each_online_node(node
) {
4487 l3
= cachep
->nodelists
[node
];
4492 spin_lock_irq(&l3
->list_lock
);
4494 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4495 handle_slab(n
, cachep
, slabp
);
4496 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4497 handle_slab(n
, cachep
, slabp
);
4498 spin_unlock_irq(&l3
->list_lock
);
4500 name
= cachep
->name
;
4502 /* Increase the buffer size */
4503 mutex_unlock(&cache_chain_mutex
);
4504 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4506 /* Too bad, we are really out */
4508 mutex_lock(&cache_chain_mutex
);
4511 *(unsigned long *)m
->private = n
[0] * 2;
4513 mutex_lock(&cache_chain_mutex
);
4514 /* Now make sure this entry will be retried */
4518 for (i
= 0; i
< n
[1]; i
++) {
4519 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4520 show_symbol(m
, n
[2*i
+2]);
4527 static const struct seq_operations slabstats_op
= {
4528 .start
= leaks_start
,
4534 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4536 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4539 ret
= seq_open(file
, &slabstats_op
);
4541 struct seq_file
*m
= file
->private_data
;
4542 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4551 static const struct file_operations proc_slabstats_operations
= {
4552 .open
= slabstats_open
,
4554 .llseek
= seq_lseek
,
4555 .release
= seq_release_private
,
4559 static int __init
slab_proc_init(void)
4561 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4562 #ifdef CONFIG_DEBUG_SLAB_LEAK
4563 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4567 module_init(slab_proc_init
);
4571 * ksize - get the actual amount of memory allocated for a given object
4572 * @objp: Pointer to the object
4574 * kmalloc may internally round up allocations and return more memory
4575 * than requested. ksize() can be used to determine the actual amount of
4576 * memory allocated. The caller may use this additional memory, even though
4577 * a smaller amount of memory was initially specified with the kmalloc call.
4578 * The caller must guarantee that objp points to a valid object previously
4579 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4580 * must not be freed during the duration of the call.
4582 size_t ksize(const void *objp
)
4585 if (unlikely(objp
== ZERO_SIZE_PTR
))
4588 return obj_size(virt_to_cache(objp
));
4590 EXPORT_SYMBOL(ksize
);