Fix ICU iterators on leading/trailing whitespace
[openttd/fttd.git] / src / newgrf_engine.cpp
blob8e9a4737a4d225d7a815bd7e743354c3ee294cfb
1 /* $Id$ */
3 /*
4 * This file is part of OpenTTD.
5 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
6 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
7 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
8 */
10 /** @file newgrf_engine.cpp NewGRF handling of engines. */
12 #include "stdafx.h"
13 #include "debug.h"
14 #include "train.h"
15 #include "roadveh.h"
16 #include "company_func.h"
17 #include "newgrf_cargo.h"
18 #include "newgrf_spritegroup.h"
19 #include "date_func.h"
20 #include "vehicle_func.h"
21 #include "core/random_func.hpp"
22 #include "aircraft.h"
23 #include "station_base.h"
24 #include "company_base.h"
25 #include "newgrf_railtype.h"
26 #include "ship.h"
28 struct WagonOverride {
29 EngineID *train_id;
30 uint trains;
31 CargoID cargo;
32 const SpriteGroup *group;
35 void SetWagonOverrideSprites(EngineID engine, CargoID cargo, const SpriteGroup *group, EngineID *train_id, uint trains)
37 Engine *e = Engine::Get(engine);
38 WagonOverride *wo;
40 assert(cargo < NUM_CARGO + 2); // Include CT_DEFAULT and CT_PURCHASE pseudo cargoes.
42 e->overrides_count++;
43 e->overrides = ReallocT(e->overrides, e->overrides_count);
45 wo = &e->overrides[e->overrides_count - 1];
46 wo->group = group;
47 wo->cargo = cargo;
48 wo->trains = trains;
49 wo->train_id = MallocT<EngineID>(trains);
50 memcpy(wo->train_id, train_id, trains * sizeof *train_id);
53 const SpriteGroup *GetWagonOverrideSpriteSet(EngineID engine, CargoID cargo, EngineID overriding_engine)
55 const Engine *e = Engine::Get(engine);
57 /* XXX: This could turn out to be a timesink on profiles. We could
58 * always just dedicate 65535 bytes for an [engine][train] trampoline
59 * for O(1). Or O(logMlogN) and searching binary tree or smt. like
60 * that. --pasky */
62 for (uint i = 0; i < e->overrides_count; i++) {
63 const WagonOverride *wo = &e->overrides[i];
65 if (wo->cargo != cargo && wo->cargo != CT_DEFAULT) continue;
67 for (uint j = 0; j < wo->trains; j++) {
68 if (wo->train_id[j] == overriding_engine) return wo->group;
71 return NULL;
74 /**
75 * Unload all wagon override sprite groups.
77 void UnloadWagonOverrides(Engine *e)
79 for (uint i = 0; i < e->overrides_count; i++) {
80 WagonOverride *wo = &e->overrides[i];
81 free(wo->train_id);
83 free(e->overrides);
84 e->overrides_count = 0;
85 e->overrides = NULL;
89 void SetCustomEngineSprites(EngineID engine, byte cargo, const SpriteGroup *group)
91 Engine *e = Engine::Get(engine);
92 assert(cargo < lengthof(e->grf_prop.spritegroup));
94 if (e->grf_prop.spritegroup[cargo] != NULL) {
95 grfmsg(6, "SetCustomEngineSprites: engine %d cargo %d already has group -- replacing", engine, cargo);
97 e->grf_prop.spritegroup[cargo] = group;
102 * Tie a GRFFile entry to an engine, to allow us to retrieve GRF parameters
103 * etc during a game.
104 * @param engine Engine ID to tie the GRFFile to.
105 * @param file Pointer of GRFFile to tie.
107 void SetEngineGRF(EngineID engine, const GRFFile *file)
109 Engine *e = Engine::Get(engine);
110 e->grf_prop.grffile = file;
114 static int MapOldSubType(const Vehicle *v)
116 switch (v->type) {
117 case VEH_TRAIN:
118 if (Train::From(v)->IsEngine()) return 0;
119 if (Train::From(v)->IsFreeWagon()) return 4;
120 return 2;
121 case VEH_ROAD:
122 case VEH_SHIP: return 0;
123 case VEH_AIRCRAFT:
124 case VEH_DISASTER: return v->subtype;
125 case VEH_EFFECT: return v->subtype << 1;
126 default: NOT_REACHED();
131 /* TTDP style aircraft movement states for GRF Action 2 Var 0xE2 */
132 enum TTDPAircraftMovementStates {
133 AMS_TTDP_HANGAR,
134 AMS_TTDP_TO_HANGAR,
135 AMS_TTDP_TO_PAD1,
136 AMS_TTDP_TO_PAD2,
137 AMS_TTDP_TO_PAD3,
138 AMS_TTDP_TO_ENTRY_2_AND_3,
139 AMS_TTDP_TO_ENTRY_2_AND_3_AND_H,
140 AMS_TTDP_TO_JUNCTION,
141 AMS_TTDP_LEAVE_RUNWAY,
142 AMS_TTDP_TO_INWAY,
143 AMS_TTDP_TO_RUNWAY,
144 AMS_TTDP_TO_OUTWAY,
145 AMS_TTDP_WAITING,
146 AMS_TTDP_TAKEOFF,
147 AMS_TTDP_TO_TAKEOFF,
148 AMS_TTDP_CLIMBING,
149 AMS_TTDP_FLIGHT_APPROACH,
150 AMS_TTDP_UNUSED_0x11,
151 AMS_TTDP_FLIGHT_TO_TOWER,
152 AMS_TTDP_UNUSED_0x13,
153 AMS_TTDP_FLIGHT_FINAL,
154 AMS_TTDP_FLIGHT_DESCENT,
155 AMS_TTDP_BRAKING,
156 AMS_TTDP_HELI_TAKEOFF_AIRPORT,
157 AMS_TTDP_HELI_TO_TAKEOFF_AIRPORT,
158 AMS_TTDP_HELI_LAND_AIRPORT,
159 AMS_TTDP_HELI_TAKEOFF_HELIPORT,
160 AMS_TTDP_HELI_TO_TAKEOFF_HELIPORT,
161 AMS_TTDP_HELI_LAND_HELIPORT,
166 * Map OTTD aircraft movement states to TTDPatch style movement states
167 * (VarAction 2 Variable 0xE2)
169 static byte MapAircraftMovementState(const Aircraft *v)
171 const Station *st = GetTargetAirportIfValid(v);
172 if (st == NULL) return AMS_TTDP_FLIGHT_TO_TOWER;
174 const AirportFTAClass *afc = st->airport.GetFTA();
175 uint16 amdflag = afc->MovingData(v->pos)->flag;
177 switch (v->state) {
178 case HANGAR:
179 /* The international airport is a special case as helicopters can land in
180 * front of the hangar. Helicopters also change their air.state to
181 * AMED_HELI_LOWER some time before actually descending. */
183 /* This condition only occurs for helicopters, during descent,
184 * to a landing by the hangar of an international airport. */
185 if (amdflag & AMED_HELI_LOWER) return AMS_TTDP_HELI_LAND_AIRPORT;
187 /* This condition only occurs for helicopters, before starting descent,
188 * to a landing by the hangar of an international airport. */
189 if (amdflag & AMED_SLOWTURN) return AMS_TTDP_FLIGHT_TO_TOWER;
191 /* The final two conditions apply to helicopters or aircraft.
192 * Has reached hangar? */
193 if (amdflag & AMED_EXACTPOS) return AMS_TTDP_HANGAR;
195 /* Still moving towards hangar. */
196 return AMS_TTDP_TO_HANGAR;
198 case TERM1:
199 if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD1;
200 return AMS_TTDP_TO_JUNCTION;
202 case TERM2:
203 if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD2;
204 return AMS_TTDP_TO_ENTRY_2_AND_3_AND_H;
206 case TERM3:
207 case TERM4:
208 case TERM5:
209 case TERM6:
210 case TERM7:
211 case TERM8:
212 /* TTDPatch only has 3 terminals, so treat these states the same */
213 if (amdflag & AMED_EXACTPOS) return AMS_TTDP_TO_PAD3;
214 return AMS_TTDP_TO_ENTRY_2_AND_3_AND_H;
216 case HELIPAD1:
217 case HELIPAD2:
218 case HELIPAD3:
219 /* Will only occur for helicopters.*/
220 if (amdflag & AMED_HELI_LOWER) return AMS_TTDP_HELI_LAND_AIRPORT; // Descending.
221 if (amdflag & AMED_SLOWTURN) return AMS_TTDP_FLIGHT_TO_TOWER; // Still hasn't started descent.
222 return AMS_TTDP_TO_JUNCTION; // On the ground.
224 case TAKEOFF: // Moving to takeoff position.
225 return AMS_TTDP_TO_OUTWAY;
227 case STARTTAKEOFF: // Accelerating down runway.
228 return AMS_TTDP_TAKEOFF;
230 case ENDTAKEOFF: // Ascent
231 return AMS_TTDP_CLIMBING;
233 case HELITAKEOFF: // Helicopter is moving to take off position.
234 if (afc->delta_z == 0) {
235 return amdflag & AMED_HELI_RAISE ?
236 AMS_TTDP_HELI_TAKEOFF_AIRPORT : AMS_TTDP_TO_JUNCTION;
237 } else {
238 return AMS_TTDP_HELI_TAKEOFF_HELIPORT;
241 case FLYING:
242 return amdflag & AMED_HOLD ? AMS_TTDP_FLIGHT_APPROACH : AMS_TTDP_FLIGHT_TO_TOWER;
244 case LANDING: // Descent
245 return AMS_TTDP_FLIGHT_DESCENT;
247 case ENDLANDING: // On the runway braking
248 if (amdflag & AMED_BRAKE) return AMS_TTDP_BRAKING;
249 /* Landed - moving off runway */
250 return AMS_TTDP_TO_INWAY;
252 case HELILANDING:
253 case HELIENDLANDING: // Helicoptor is decending.
254 if (amdflag & AMED_HELI_LOWER) {
255 return afc->delta_z == 0 ?
256 AMS_TTDP_HELI_LAND_AIRPORT : AMS_TTDP_HELI_LAND_HELIPORT;
257 } else {
258 return AMS_TTDP_FLIGHT_TO_TOWER;
261 default:
262 return AMS_TTDP_HANGAR;
267 /* TTDP style aircraft movement action for GRF Action 2 Var 0xE6 */
268 enum TTDPAircraftMovementActions {
269 AMA_TTDP_IN_HANGAR,
270 AMA_TTDP_ON_PAD1,
271 AMA_TTDP_ON_PAD2,
272 AMA_TTDP_ON_PAD3,
273 AMA_TTDP_HANGAR_TO_PAD1,
274 AMA_TTDP_HANGAR_TO_PAD2,
275 AMA_TTDP_HANGAR_TO_PAD3,
276 AMA_TTDP_LANDING_TO_PAD1,
277 AMA_TTDP_LANDING_TO_PAD2,
278 AMA_TTDP_LANDING_TO_PAD3,
279 AMA_TTDP_PAD1_TO_HANGAR,
280 AMA_TTDP_PAD2_TO_HANGAR,
281 AMA_TTDP_PAD3_TO_HANGAR,
282 AMA_TTDP_PAD1_TO_TAKEOFF,
283 AMA_TTDP_PAD2_TO_TAKEOFF,
284 AMA_TTDP_PAD3_TO_TAKEOFF,
285 AMA_TTDP_HANGAR_TO_TAKOFF,
286 AMA_TTDP_LANDING_TO_HANGAR,
287 AMA_TTDP_IN_FLIGHT,
292 * Map OTTD aircraft movement states to TTDPatch style movement actions
293 * (VarAction 2 Variable 0xE6)
294 * This is not fully supported yet but it's enough for Planeset.
296 static byte MapAircraftMovementAction(const Aircraft *v)
298 switch (v->state) {
299 case HANGAR:
300 return (v->cur_speed > 0) ? AMA_TTDP_LANDING_TO_HANGAR : AMA_TTDP_IN_HANGAR;
302 case TERM1:
303 case HELIPAD1:
304 return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD1 : AMA_TTDP_LANDING_TO_PAD1;
306 case TERM2:
307 case HELIPAD2:
308 return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD2 : AMA_TTDP_LANDING_TO_PAD2;
310 case TERM3:
311 case TERM4:
312 case TERM5:
313 case TERM6:
314 case TERM7:
315 case TERM8:
316 case HELIPAD3:
317 return (v->current_order.IsType(OT_LOADING)) ? AMA_TTDP_ON_PAD3 : AMA_TTDP_LANDING_TO_PAD3;
319 case TAKEOFF: // Moving to takeoff position
320 case STARTTAKEOFF: // Accelerating down runway
321 case ENDTAKEOFF: // Ascent
322 case HELITAKEOFF:
323 /* @todo Need to find which terminal (or hangar) we've come from. How? */
324 return AMA_TTDP_PAD1_TO_TAKEOFF;
326 case FLYING:
327 return AMA_TTDP_IN_FLIGHT;
329 case LANDING: // Descent
330 case ENDLANDING: // On the runway braking
331 case HELILANDING:
332 case HELIENDLANDING:
333 /* @todo Need to check terminal we're landing to. Is it known yet? */
334 return (v->current_order.IsType(OT_GOTO_DEPOT)) ?
335 AMA_TTDP_LANDING_TO_HANGAR : AMA_TTDP_LANDING_TO_PAD1;
337 default:
338 return AMA_TTDP_IN_HANGAR;
343 /* virtual */ uint32 VehicleScopeResolver::GetRandomBits() const
345 return this->v == NULL ? 0 : this->v->random_bits;
348 /* virtual */ uint32 VehicleScopeResolver::GetTriggers() const
350 return this->v == NULL ? 0 : this->v->waiting_triggers;
353 /* virtual */ void VehicleScopeResolver::SetTriggers(int triggers) const
355 /* Evil cast to get around const-ness. This used to be achieved by an
356 * innocent looking function pointer cast... Currently I cannot see a
357 * way of avoiding this without removing consts deep within gui code.
359 Vehicle *v = const_cast<Vehicle *>(this->v);
361 /* This function must only be called when processing triggers -- any
362 * other time is an error. */
363 assert(this->ro.trigger != 0);
365 if (v != NULL) v->waiting_triggers = triggers;
369 /* virtual */ ScopeResolver *VehicleResolverObject::GetScope(VarSpriteGroupScope scope, byte relative)
371 switch (scope) {
372 case VSG_SCOPE_SELF: return &this->self_scope;
373 case VSG_SCOPE_PARENT: return &this->parent_scope;
374 case VSG_SCOPE_RELATIVE: {
375 int32 count = GB(relative, 0, 4);
376 if (this->self_scope.v != NULL && (relative != this->cached_relative_count || count == 0)) {
377 /* Note: This caching only works as long as the VSG_SCOPE_RELATIVE cannot be used in
378 * VarAct2 with procedure calls. */
379 if (count == 0) count = GetRegister(0x100);
381 const Vehicle *v = NULL;
382 switch (GB(relative, 6, 2)) {
383 default: NOT_REACHED();
384 case 0x00: // count back (away from the engine), starting at this vehicle
385 v = this->self_scope.v;
386 break;
387 case 0x01: // count forward (toward the engine), starting at this vehicle
388 v = this->self_scope.v;
389 count = -count;
390 break;
391 case 0x02: // count back, starting at the engine
392 v = this->parent_scope.v;
393 break;
394 case 0x03: { // count back, starting at the first vehicle in this chain of vehicles with the same ID, as for vehicle variable 41
395 const Vehicle *self = this->self_scope.v;
396 for (const Vehicle *u = self->First(); u != self; u = u->Next()) {
397 if (u->engine_type != self->engine_type) {
398 v = NULL;
399 } else {
400 if (v == NULL) v = u;
403 if (v == NULL) v = self;
404 break;
407 this->relative_scope.SetVehicle(v->Move(count));
409 return &this->relative_scope;
411 default: return ResolverObject::GetScope(scope, relative);
416 * Determines the livery of an engine.
418 * This always uses dual company colours independent of GUI settings. So it is desync-safe.
420 * @param engine Engine type
421 * @param v Vehicle, NULL in purchase list.
422 * @return Livery to use
424 static const Livery *LiveryHelper(EngineID engine, const Vehicle *v)
426 const Livery *l;
428 if (v == NULL) {
429 if (!Company::IsValidID(_current_company)) return NULL;
430 l = GetEngineLivery(engine, _current_company, INVALID_ENGINE, NULL, LIT_ALL);
431 } else if (v->IsGroundVehicle()) {
432 l = GetEngineLivery(v->engine_type, v->owner, v->GetGroundVehicleCache()->first_engine, v, LIT_ALL);
433 } else {
434 l = GetEngineLivery(v->engine_type, v->owner, INVALID_ENGINE, v, LIT_ALL);
437 return l;
441 * Helper to get the position of a vehicle within a chain of vehicles.
442 * @param v the vehicle to get the position of.
443 * @param consecutive whether to look at the whole chain or the vehicles
444 * with the same 'engine type'.
445 * @return the position in the chain from front and tail and chain length.
447 static uint32 PositionHelper(const Vehicle *v, bool consecutive)
449 const Vehicle *u;
450 byte chain_before = 0;
451 byte chain_after = 0;
453 for (u = v->First(); u != v; u = u->Next()) {
454 chain_before++;
455 if (consecutive && u->engine_type != v->engine_type) chain_before = 0;
458 while (u->Next() != NULL && (!consecutive || u->Next()->engine_type == v->engine_type)) {
459 chain_after++;
460 u = u->Next();
463 return chain_before | chain_after << 8 | (chain_before + chain_after + consecutive) << 16;
466 static uint32 VehicleGetVariable(Vehicle *v, const VehicleScopeResolver *object, byte variable, uint32 parameter, bool *available)
468 /* Calculated vehicle parameters */
469 switch (variable) {
470 case 0x25: // Get engine GRF ID
471 return v->GetGRFID();
473 case 0x40: // Get length of consist
474 if (!HasBit(v->grf_cache.cache_valid, NCVV_POSITION_CONSIST_LENGTH)) {
475 v->grf_cache.position_consist_length = PositionHelper(v, false);
476 SetBit(v->grf_cache.cache_valid, NCVV_POSITION_CONSIST_LENGTH);
478 return v->grf_cache.position_consist_length;
480 case 0x41: // Get length of same consecutive wagons
481 if (!HasBit(v->grf_cache.cache_valid, NCVV_POSITION_SAME_ID_LENGTH)) {
482 v->grf_cache.position_same_id_length = PositionHelper(v, true);
483 SetBit(v->grf_cache.cache_valid, NCVV_POSITION_SAME_ID_LENGTH);
485 return v->grf_cache.position_same_id_length;
487 case 0x42: { // Consist cargo information
488 if (!HasBit(v->grf_cache.cache_valid, NCVV_CONSIST_CARGO_INFORMATION)) {
489 const Vehicle *u;
490 byte cargo_classes = 0;
491 uint8 common_cargoes[NUM_CARGO];
492 uint8 common_subtypes[256];
493 byte user_def_data = 0;
494 CargoID common_cargo_type = CT_INVALID;
495 uint8 common_subtype = 0xFF; // Return 0xFF if nothing is carried
497 /* Reset our arrays */
498 memset(common_cargoes, 0, sizeof(common_cargoes));
499 memset(common_subtypes, 0, sizeof(common_subtypes));
501 for (u = v; u != NULL; u = u->Next()) {
502 if (v->type == VEH_TRAIN) user_def_data |= Train::From(u)->tcache.user_def_data;
504 /* Skip empty engines */
505 if (!u->GetEngine()->CanCarryCargo()) continue;
507 cargo_classes |= CargoSpec::Get(u->cargo_type)->classes;
508 common_cargoes[u->cargo_type]++;
511 /* Pick the most common cargo type */
512 uint common_cargo_best_amount = 0;
513 for (CargoID cargo = 0; cargo < NUM_CARGO; cargo++) {
514 if (common_cargoes[cargo] > common_cargo_best_amount) {
515 common_cargo_best_amount = common_cargoes[cargo];
516 common_cargo_type = cargo;
520 /* Count subcargo types of common_cargo_type */
521 for (u = v; u != NULL; u = u->Next()) {
522 /* Skip empty engines and engines not carrying common_cargo_type */
523 if (u->cargo_type != common_cargo_type || !u->GetEngine()->CanCarryCargo()) continue;
525 common_subtypes[u->cargo_subtype]++;
528 /* Pick the most common subcargo type*/
529 uint common_subtype_best_amount = 0;
530 for (uint i = 0; i < lengthof(common_subtypes); i++) {
531 if (common_subtypes[i] > common_subtype_best_amount) {
532 common_subtype_best_amount = common_subtypes[i];
533 common_subtype = i;
537 /* Note: We have to store the untranslated cargotype in the cache as the cache can be read by different NewGRFs,
538 * which will need different translations */
539 v->grf_cache.consist_cargo_information = cargo_classes | (common_cargo_type << 8) | (common_subtype << 16) | (user_def_data << 24);
540 SetBit(v->grf_cache.cache_valid, NCVV_CONSIST_CARGO_INFORMATION);
543 /* The cargo translation is specific to the accessing GRF, and thus cannot be cached. */
544 CargoID common_cargo_type = (v->grf_cache.consist_cargo_information >> 8) & 0xFF;
546 /* Unlike everywhere else the cargo translation table is only used since grf version 8, not 7.
547 * Note: The grffile == NULL case only happens if this function is called for default vehicles.
548 * And this is only done by CheckCaches(). */
549 const GRFFile *grffile = object->ro.grffile;
550 uint8 common_bitnum = (common_cargo_type == CT_INVALID) ? 0xFF :
551 (grffile == NULL || grffile->grf_version < 8) ? CargoSpec::Get(common_cargo_type)->bitnum : grffile->cargo_map[common_cargo_type];
553 return (v->grf_cache.consist_cargo_information & 0xFFFF00FF) | common_bitnum << 8;
556 case 0x43: // Company information
557 if (!HasBit(v->grf_cache.cache_valid, NCVV_COMPANY_INFORMATION)) {
558 v->grf_cache.company_information = GetCompanyInfo(v->owner, LiveryHelper(v->engine_type, v));
559 SetBit(v->grf_cache.cache_valid, NCVV_COMPANY_INFORMATION);
561 return v->grf_cache.company_information;
563 case 0x44: // Aircraft information
564 if (v->type != VEH_AIRCRAFT || !Aircraft::From(v)->IsNormalAircraft()) return UINT_MAX;
567 const Vehicle *w = v->Next();
568 uint16 altitude = v->z_pos - w->z_pos; // Aircraft height - shadow height
569 byte airporttype = ATP_TTDP_LARGE;
571 const Station *st = GetTargetAirportIfValid(Aircraft::From(v));
573 if (st != NULL && st->airport.tile != INVALID_TILE) {
574 airporttype = st->airport.GetSpec()->ttd_airport_type;
577 return (Clamp(altitude, 0, 0xFF) << 8) | airporttype;
580 case 0x45: { // Curvature info
581 /* Format: xxxTxBxF
582 * F - previous wagon to current wagon, 0 if vehicle is first
583 * B - current wagon to next wagon, 0 if wagon is last
584 * T - previous wagon to next wagon, 0 in an S-bend
586 if (!v->IsGroundVehicle()) return 0;
588 const Vehicle *u_p = v->Previous();
589 const Vehicle *u_n = v->Next();
590 DirDiff f = (u_p == NULL) ? DIRDIFF_SAME : DirDifference(u_p->direction, v->direction);
591 DirDiff b = (u_n == NULL) ? DIRDIFF_SAME : DirDifference(v->direction, u_n->direction);
592 DirDiff t = ChangeDirDiff(f, b);
594 return ((t > DIRDIFF_REVERSE ? t | 8 : t) << 16) |
595 ((b > DIRDIFF_REVERSE ? b | 8 : b) << 8) |
596 ( f > DIRDIFF_REVERSE ? f | 8 : f);
599 case 0x46: // Motion counter
600 return v->motion_counter;
602 case 0x47: { // Vehicle cargo info
603 /* Format: ccccwwtt
604 * tt - the cargo type transported by the vehicle,
605 * translated if a translation table has been installed.
606 * ww - cargo unit weight in 1/16 tons, same as cargo prop. 0F.
607 * cccc - the cargo class value of the cargo transported by the vehicle.
609 const CargoSpec *cs = CargoSpec::Get(v->cargo_type);
611 return (cs->classes << 16) | (cs->weight << 8) | v->GetGRF()->cargo_map[v->cargo_type];
614 case 0x48: return v->GetEngine()->flags; // Vehicle Type Info
615 case 0x49: return v->build_year;
617 case 0x4A: {
618 if (v->type != VEH_TRAIN) return 0;
619 Train *t = Train::From(v);
620 RailType rt = t->GetTrackRailType();
621 return (HasPowerOnRail(t->railtype, rt) ? 0x100 : 0) | GetReverseRailTypeTranslation(rt, object->ro.grffile);
624 case 0x4B: // Long date of last service
625 return v->date_of_last_service;
627 case 0x4C: // Current maximum speed in NewGRF units
628 if (!v->IsPrimaryVehicle()) return 0;
629 return v->GetCurrentMaxSpeed();
631 case 0x4D: // Position within articulated vehicle
632 if (!HasBit(v->grf_cache.cache_valid, NCVV_POSITION_IN_VEHICLE)) {
633 byte artic_before = 0;
634 for (const Vehicle *u = v; u->IsArticulatedPart(); u = u->Previous()) artic_before++;
635 byte artic_after = 0;
636 for (const Vehicle *u = v; u->HasArticulatedPart(); u = u->Next()) artic_after++;
637 v->grf_cache.position_in_vehicle = artic_before | artic_after << 8;
638 SetBit(v->grf_cache.cache_valid, NCVV_POSITION_IN_VEHICLE);
640 return v->grf_cache.position_in_vehicle;
642 /* Variables which use the parameter */
643 case 0x60: // Count consist's engine ID occurrence
644 if (v->type != VEH_TRAIN) return v->GetEngine()->grf_prop.local_id == parameter ? 1 : 0;
647 uint count = 0;
648 for (; v != NULL; v = v->Next()) {
649 if (v->GetEngine()->grf_prop.local_id == parameter) count++;
651 return count;
654 case 0x61: // Get variable of n-th vehicle in chain [signed number relative to vehicle]
655 if (!v->IsGroundVehicle() || parameter == 0x61) {
656 /* Not available */
657 break;
660 /* Only allow callbacks that don't change properties to avoid circular dependencies. */
661 if (object->ro.callback == CBID_NO_CALLBACK || object->ro.callback == CBID_RANDOM_TRIGGER || object->ro.callback == CBID_TRAIN_ALLOW_WAGON_ATTACH ||
662 object->ro.callback == CBID_VEHICLE_START_STOP_CHECK || object->ro.callback == CBID_VEHICLE_32DAY_CALLBACK || object->ro.callback == CBID_VEHICLE_COLOUR_MAPPING) {
663 Vehicle *u = v->Move((int32)GetRegister(0x10F));
664 if (u == NULL) return 0; // available, but zero
666 if (parameter == 0x5F) {
667 /* This seems to be the only variable that makes sense to access via var 61, but is not handled by VehicleGetVariable */
668 return (u->random_bits << 8) | u->waiting_triggers;
669 } else {
670 return VehicleGetVariable(u, object, parameter, GetRegister(0x10E), available);
673 /* Not available */
674 break;
676 case 0x62: { // Curvature/position difference for n-th vehicle in chain [signed number relative to vehicle]
677 /* Format: zzyyxxFD
678 * zz - Signed difference of z position between the selected and this vehicle.
679 * yy - Signed difference of y position between the selected and this vehicle.
680 * xx - Signed difference of x position between the selected and this vehicle.
681 * F - Flags, bit 7 corresponds to VS_HIDDEN.
682 * D - Dir difference, like in 0x45.
684 if (!v->IsGroundVehicle()) return 0;
686 const Vehicle *u = v->Move((int8)parameter);
687 if (u == NULL) return 0;
689 /* Get direction difference. */
690 bool prev = (int8)parameter < 0;
691 uint32 ret = prev ? DirDifference(u->direction, v->direction) : DirDifference(v->direction, u->direction);
692 if (ret > DIRDIFF_REVERSE) ret |= 0x08;
694 if (u->vehstatus & VS_HIDDEN) ret |= 0x80;
696 /* Get position difference. */
697 ret |= ((prev ? u->x_pos - v->x_pos : v->x_pos - u->x_pos) & 0xFF) << 8;
698 ret |= ((prev ? u->y_pos - v->y_pos : v->y_pos - u->y_pos) & 0xFF) << 16;
699 ret |= ((prev ? u->z_pos - v->z_pos : v->z_pos - u->z_pos) & 0xFF) << 24;
701 return ret;
704 case 0xFE:
705 case 0xFF: {
706 uint16 modflags = 0;
708 if (v->type == VEH_TRAIN) {
709 const Train *t = Train::From(v);
710 bool is_powered_wagon = HasBit(t->flags, VRF_POWEREDWAGON);
711 const Train *u = is_powered_wagon ? t->First() : t; // for powered wagons the engine defines the type of engine (i.e. railtype)
712 RailType railtype = t->GetTrackRailType();
713 bool powered = t->IsEngine() || is_powered_wagon;
714 bool has_power = HasPowerOnRail(u->railtype, railtype);
716 if (powered && has_power) SetBit(modflags, 5);
717 if (powered && !has_power) SetBit(modflags, 6);
718 if (HasBit(t->flags, VRF_TOGGLE_REVERSE)) SetBit(modflags, 8);
720 if (HasBit(v->vehicle_flags, VF_BUILT_AS_PROTOTYPE)) SetBit(modflags, 10);
722 return variable == 0xFE ? modflags : GB(modflags, 8, 8);
726 /* General vehicle properties */
727 switch (variable - 0x80) {
728 case 0x00: return v->type + 0x10;
729 case 0x01: return MapOldSubType(v);
730 case 0x04: return v->index;
731 case 0x05: return GB(v->index, 8, 8);
732 case 0x0A: return v->current_order.MapOldOrder();
733 case 0x0B: return v->current_order.GetDestination();
734 case 0x0C: return v->GetNumOrders();
735 case 0x0D: return v->cur_real_order_index;
736 case 0x10:
737 case 0x11: {
738 uint ticks;
739 if (v->current_order.IsType(OT_LOADING)) {
740 ticks = v->load_unload_ticks;
741 } else {
742 switch (v->type) {
743 case VEH_TRAIN: ticks = Train::From(v)->wait_counter; break;
744 case VEH_AIRCRAFT: ticks = Aircraft::From(v)->turn_counter; break;
745 default: ticks = 0; break;
748 return (variable - 0x80) == 0x10 ? ticks : GB(ticks, 8, 8);
750 case 0x12: return Clamp(v->date_of_last_service - DAYS_TILL_ORIGINAL_BASE_YEAR, 0, 0xFFFF);
751 case 0x13: return GB(Clamp(v->date_of_last_service - DAYS_TILL_ORIGINAL_BASE_YEAR, 0, 0xFFFF), 8, 8);
752 case 0x14: return v->GetServiceInterval();
753 case 0x15: return GB(v->GetServiceInterval(), 8, 8);
754 case 0x16: return v->last_station_visited;
755 case 0x17: return v->tick_counter;
756 case 0x18:
757 case 0x19: {
758 uint max_speed;
759 switch (v->type) {
760 case VEH_AIRCRAFT:
761 max_speed = Aircraft::From(v)->GetSpeedOldUnits(); // Convert to old units.
762 break;
764 default:
765 max_speed = v->vcache.cached_max_speed;
766 break;
768 return (variable - 0x80) == 0x18 ? max_speed : GB(max_speed, 8, 8);
770 case 0x1A: return v->x_pos;
771 case 0x1B: return GB(v->x_pos, 8, 8);
772 case 0x1C: return v->y_pos;
773 case 0x1D: return GB(v->y_pos, 8, 8);
774 case 0x1E: return v->z_pos;
775 case 0x1F: return object->info_view ? DIR_W : v->direction;
776 case 0x28: return 0; // cur_image is a potential desyncer due to Action1 in static NewGRFs.
777 case 0x29: return 0; // cur_image is a potential desyncer due to Action1 in static NewGRFs.
778 case 0x32: return v->vehstatus;
779 case 0x33: return 0; // non-existent high byte of vehstatus
780 case 0x34: return v->type == VEH_AIRCRAFT ? (v->cur_speed * 10) / 128 : v->cur_speed;
781 case 0x35: return GB(v->type == VEH_AIRCRAFT ? (v->cur_speed * 10) / 128 : v->cur_speed, 8, 8);
782 case 0x36: return v->subspeed;
783 case 0x37: return v->acceleration;
784 case 0x39: return v->cargo_type;
785 case 0x3A: return v->cargo_cap;
786 case 0x3B: return GB(v->cargo_cap, 8, 8);
787 case 0x3C: return ClampToU16(v->cargo.StoredCount());
788 case 0x3D: return GB(ClampToU16(v->cargo.StoredCount()), 8, 8);
789 case 0x3E: return v->cargo.Source();
790 case 0x3F: return ClampU(v->cargo.DaysInTransit(), 0, 0xFF);
791 case 0x40: return ClampToU16(v->age);
792 case 0x41: return GB(ClampToU16(v->age), 8, 8);
793 case 0x42: return ClampToU16(v->max_age);
794 case 0x43: return GB(ClampToU16(v->max_age), 8, 8);
795 case 0x44: return Clamp(v->build_year, ORIGINAL_BASE_YEAR, ORIGINAL_MAX_YEAR) - ORIGINAL_BASE_YEAR;
796 case 0x45: return v->unitnumber;
797 case 0x46: return v->GetEngine()->grf_prop.local_id;
798 case 0x47: return GB(v->GetEngine()->grf_prop.local_id, 8, 8);
799 case 0x48:
800 if (v->type != VEH_TRAIN || v->spritenum != 0xFD) return v->spritenum;
801 return HasBit(Train::From(v)->flags, VRF_REVERSE_DIRECTION) ? 0xFE : 0xFD;
803 case 0x49: return v->day_counter;
804 case 0x4A: return v->breakdowns_since_last_service;
805 case 0x4B: return v->breakdown_ctr;
806 case 0x4C: return v->breakdown_delay;
807 case 0x4D: return v->breakdown_chance;
808 case 0x4E: return v->reliability;
809 case 0x4F: return GB(v->reliability, 8, 8);
810 case 0x50: return v->reliability_spd_dec;
811 case 0x51: return GB(v->reliability_spd_dec, 8, 8);
812 case 0x52: return ClampToI32(v->GetDisplayProfitThisYear());
813 case 0x53: return GB(ClampToI32(v->GetDisplayProfitThisYear()), 8, 24);
814 case 0x54: return GB(ClampToI32(v->GetDisplayProfitThisYear()), 16, 16);
815 case 0x55: return GB(ClampToI32(v->GetDisplayProfitThisYear()), 24, 8);
816 case 0x56: return ClampToI32(v->GetDisplayProfitLastYear());
817 case 0x57: return GB(ClampToI32(v->GetDisplayProfitLastYear()), 8, 24);
818 case 0x58: return GB(ClampToI32(v->GetDisplayProfitLastYear()), 16, 16);
819 case 0x59: return GB(ClampToI32(v->GetDisplayProfitLastYear()), 24, 8);
820 case 0x5A: return v->Next() == NULL ? INVALID_VEHICLE : v->Next()->index;
821 case 0x5C: return ClampToI32(v->value);
822 case 0x5D: return GB(ClampToI32(v->value), 8, 24);
823 case 0x5E: return GB(ClampToI32(v->value), 16, 16);
824 case 0x5F: return GB(ClampToI32(v->value), 24, 8);
825 case 0x72: return v->cargo_subtype;
826 case 0x7A: return v->random_bits;
827 case 0x7B: return v->waiting_triggers;
830 /* Vehicle specific properties */
831 switch (v->type) {
832 case VEH_TRAIN: {
833 Train *t = Train::From(v);
834 switch (variable - 0x80) {
835 case 0x62: return (t->trackdir < TRACKDIR_END) ? TrackToTrackBits(TrackdirToTrack(t->trackdir)) : (TrackBits)(uint)t->trackdir;
836 case 0x66: return t->railtype;
837 case 0x73: return 0x80 + VEHICLE_LENGTH - t->gcache.cached_veh_length;
838 case 0x74: return t->gcache.cached_power;
839 case 0x75: return GB(t->gcache.cached_power, 8, 24);
840 case 0x76: return GB(t->gcache.cached_power, 16, 16);
841 case 0x77: return GB(t->gcache.cached_power, 24, 8);
842 case 0x7C: return t->First()->index;
843 case 0x7D: return GB(t->First()->index, 8, 8);
844 case 0x7F: return 0; // Used for vehicle reversing hack in TTDP
846 break;
849 case VEH_ROAD: {
850 RoadVehicle *rv = RoadVehicle::From(v);
851 switch (variable - 0x80) {
852 case 0x62: return rv->state;
853 case 0x64: return rv->blocked_ctr;
854 case 0x65: return GB(rv->blocked_ctr, 8, 8);
855 case 0x66: return rv->overtaking;
856 case 0x67: return rv->overtaking_ctr;
857 case 0x68: return rv->crashed_ctr;
858 case 0x69: return GB(rv->crashed_ctr, 8, 8);
860 break;
863 case VEH_SHIP: {
864 Ship *s = Ship::From(v);
865 switch (variable - 0x80) {
866 case 0x62: return (s->trackdir < TRACKDIR_END) ? TrackToTrackBits(TrackdirToTrack(s->trackdir)) : (TrackBits)(uint)s->trackdir;
868 break;
871 case VEH_AIRCRAFT: {
872 Aircraft *a = Aircraft::From(v);
873 switch (variable - 0x80) {
874 case 0x62: return MapAircraftMovementState(a); // Current movement state
875 case 0x63: return a->targetairport; // Airport to which the action refers
876 case 0x66: return MapAircraftMovementAction(a); // Current movement action
878 break;
881 default: break;
884 DEBUG(grf, 1, "Unhandled vehicle variable 0x%X, type 0x%X", variable, (uint)v->type);
886 *available = false;
887 return UINT_MAX;
890 /* virtual */ uint32 VehicleScopeResolver::GetVariable(byte variable, uint32 parameter, bool *available) const
892 if (this->v == NULL) {
893 /* Vehicle does not exist, so we're in a purchase list */
894 switch (variable) {
895 case 0x43: return GetCompanyInfo(_current_company, LiveryHelper(this->self_type, NULL)); // Owner information
896 case 0x46: return 0; // Motion counter
897 case 0x47: { // Vehicle cargo info
898 const Engine *e = Engine::Get(this->self_type);
899 CargoID cargo_type = e->GetDefaultCargoType();
900 if (cargo_type != CT_INVALID) {
901 const CargoSpec *cs = CargoSpec::Get(cargo_type);
902 return (cs->classes << 16) | (cs->weight << 8) | e->GetGRF()->cargo_map[cargo_type];
903 } else {
904 return 0x000000FF;
907 case 0x48: return Engine::Get(this->self_type)->flags; // Vehicle Type Info
908 case 0x49: return _cur_year; // 'Long' format build year
909 case 0x4B: return _date; // Long date of last service
910 case 0x92: return Clamp(_date - DAYS_TILL_ORIGINAL_BASE_YEAR, 0, 0xFFFF); // Date of last service
911 case 0x93: return GB(Clamp(_date - DAYS_TILL_ORIGINAL_BASE_YEAR, 0, 0xFFFF), 8, 8);
912 case 0xC4: return Clamp(_cur_year, ORIGINAL_BASE_YEAR, ORIGINAL_MAX_YEAR) - ORIGINAL_BASE_YEAR; // Build year
913 case 0xDA: return INVALID_VEHICLE; // Next vehicle
914 case 0xF2: return 0; // Cargo subtype
917 *available = false;
918 return UINT_MAX;
921 return VehicleGetVariable(const_cast<Vehicle*>(this->v), this, variable, parameter, available);
925 /* virtual */ const SpriteGroup *VehicleResolverObject::ResolveReal(const RealSpriteGroup *group) const
927 const Vehicle *v = this->self_scope.v;
929 if (v == NULL) {
930 if (group->num_loading > 0) return group->loading[0];
931 if (group->num_loaded > 0) return group->loaded[0];
932 return NULL;
935 bool in_motion = !v->First()->current_order.IsType(OT_LOADING);
937 uint totalsets = in_motion ? group->num_loaded : group->num_loading;
939 if (totalsets == 0) return NULL;
941 uint set = (v->cargo.StoredCount() * totalsets) / max((uint16)1, v->cargo_cap);
942 set = min(set, totalsets - 1);
944 return in_motion ? group->loaded[set] : group->loading[set];
948 * Scope resolver of a single vehicle.
949 * @param ro Surrounding resolver.
950 * @param engine_type Engine type
951 * @param v %Vehicle being resolved.
952 * @param info_view Indicates if the item is being drawn in an info window.
954 VehicleScopeResolver::VehicleScopeResolver(ResolverObject &ro, EngineID engine_type, const Vehicle *v, bool info_view)
955 : ScopeResolver(ro)
957 this->v = v;
958 this->self_type = engine_type;
959 this->info_view = info_view;
963 * Get the grf file associated with an engine type.
964 * @param engine_type Engine to query.
965 * @return grf file associated with the engine.
967 static const GRFFile *GetEngineGrfFile(EngineID engine_type)
969 const Engine *e = Engine::Get(engine_type);
970 return (e != NULL) ? e->GetGRF() : NULL;
974 * Resolver of a vehicle (chain).
975 * @param engine_type Engine type
976 * @param v %Vehicle being resolved.
977 * @param info_view Indicates if the item is being drawn in an info window.
978 * @param callback Callback ID.
979 * @param callback_param1 First parameter (var 10) of the callback.
980 * @param callback_param2 Second parameter (var 18) of the callback.
982 VehicleResolverObject::VehicleResolverObject(EngineID engine_type, const Vehicle *v, bool info_view,
983 CallbackID callback, uint32 callback_param1, uint32 callback_param2)
984 : ResolverObject(GetEngineGrfFile(engine_type), callback, callback_param1, callback_param2),
985 self_scope(*this, engine_type, v, info_view),
986 parent_scope(*this, engine_type, ((v != NULL) ? v->First() : v), info_view),
987 relative_scope(*this, engine_type, v, info_view),
988 cached_relative_count(0)
993 * Retrieve the SpriteGroup for the specified vehicle.
994 * If the vehicle is not specified, the purchase list group for the engine is
995 * chosen. For trains, an additional engine override lookup is performed.
996 * @param engine Engine type of the vehicle.
997 * @param v The vehicle itself.
998 * @param use_cache Use cached override
999 * @returns The selected SpriteGroup for the vehicle.
1001 static const SpriteGroup *GetVehicleSpriteGroup(EngineID engine, const Vehicle *v, bool use_cache = true)
1003 const SpriteGroup *group;
1004 CargoID cargo;
1006 if (v == NULL) {
1007 cargo = CT_PURCHASE;
1008 } else {
1009 cargo = v->cargo_type;
1011 if (v->IsGroundVehicle()) {
1012 /* For trains we always use cached value, except for callbacks because the override spriteset
1013 * to use may be different than the one cached. It happens for callback 0x15 (refit engine),
1014 * as v->cargo_type is temporary changed to the new type */
1015 if (use_cache && v->type == VEH_TRAIN) {
1016 group = Train::From(v)->tcache.cached_override;
1017 } else {
1018 group = GetWagonOverrideSpriteSet(v->engine_type, v->cargo_type, v->GetGroundVehicleCache()->first_engine);
1020 if (group != NULL) return group;
1024 const Engine *e = Engine::Get(engine);
1026 assert(cargo < lengthof(e->grf_prop.spritegroup));
1027 group = e->grf_prop.spritegroup[cargo];
1028 if (group != NULL) return group;
1030 /* Fall back to the default set if the selected cargo type is not defined */
1031 return e->grf_prop.spritegroup[CT_DEFAULT];
1035 SpriteID GetCustomEngineSprite(EngineID engine, const Vehicle *v, Direction direction, EngineImageType image_type)
1037 VehicleResolverObject object(engine, v, false, CBID_NO_CALLBACK, image_type);
1038 const SpriteGroup *group = SpriteGroup::Resolve(GetVehicleSpriteGroup(engine, v), object);
1039 if (group == NULL || group->GetNumResults() == 0) return 0;
1041 return group->GetResult() + (direction % group->GetNumResults());
1045 SpriteID GetRotorOverrideSprite(EngineID engine, const Aircraft *v, bool info_view, EngineImageType image_type)
1047 const Engine *e = Engine::Get(engine);
1049 /* Only valid for helicopters */
1050 assert(e->type == VEH_AIRCRAFT);
1051 assert(!(e->u.air.subtype & AIR_CTOL));
1053 VehicleResolverObject object(engine, v, info_view, CBID_NO_CALLBACK, image_type);
1054 const SpriteGroup *group = GetWagonOverrideSpriteSet(engine, CT_DEFAULT, engine);
1055 group = SpriteGroup::Resolve(group, object);
1057 if (group == NULL || group->GetNumResults() == 0) return 0;
1059 if (v == NULL) return group->GetResult();
1061 return group->GetResult() + (info_view ? 0 : (v->Next()->Next()->state % group->GetNumResults()));
1066 * Check if a wagon is currently using a wagon override
1067 * @param v The wagon to check
1068 * @return true if it is using an override, false otherwise
1070 bool UsesWagonOverride(const Vehicle *v)
1072 assert(v->type == VEH_TRAIN);
1073 return Train::From(v)->tcache.cached_override != NULL;
1077 * Evaluate a newgrf callback for vehicles
1078 * @param callback The callback to evaluate
1079 * @param param1 First parameter of the callback
1080 * @param param2 Second parameter of the callback
1081 * @param engine Engine type of the vehicle to evaluate the callback for
1082 * @param v The vehicle to evaluate the callback for, or NULL if it doesnt exist yet
1083 * @return The value the callback returned, or CALLBACK_FAILED if it failed
1085 uint16 GetVehicleCallback(CallbackID callback, uint32 param1, uint32 param2, EngineID engine, const Vehicle *v)
1087 VehicleResolverObject object(engine, v, false, callback, param1, param2);
1088 const SpriteGroup *group = SpriteGroup::Resolve(GetVehicleSpriteGroup(engine, v, false), object);
1089 if (group == NULL) return CALLBACK_FAILED;
1091 return group->GetCallbackResult();
1095 * Evaluate a newgrf callback for vehicles with a different vehicle for parent scope.
1096 * @param callback The callback to evaluate
1097 * @param param1 First parameter of the callback
1098 * @param param2 Second parameter of the callback
1099 * @param engine Engine type of the vehicle to evaluate the callback for
1100 * @param v The vehicle to evaluate the callback for, or NULL if it doesn't exist yet
1101 * @param parent The vehicle to use for parent scope
1102 * @return The value the callback returned, or CALLBACK_FAILED if it failed
1104 uint16 GetVehicleCallbackParent(CallbackID callback, uint32 param1, uint32 param2, EngineID engine, const Vehicle *v, const Vehicle *parent)
1106 VehicleResolverObject object(engine, v, false, callback, param1, param2);
1107 object.parent_scope.SetVehicle(parent);
1109 const SpriteGroup *group = SpriteGroup::Resolve(GetVehicleSpriteGroup(engine, v, false), object);
1110 if (group == NULL) return CALLBACK_FAILED;
1112 return group->GetCallbackResult();
1116 /* Callback 36 handlers */
1117 uint GetVehicleProperty(const Vehicle *v, PropertyID property, uint orig_value)
1119 return GetEngineProperty(v->engine_type, property, orig_value, v);
1123 uint GetEngineProperty(EngineID engine, PropertyID property, uint orig_value, const Vehicle *v)
1125 uint16 callback = GetVehicleCallback(CBID_VEHICLE_MODIFY_PROPERTY, property, 0, engine, v);
1126 if (callback != CALLBACK_FAILED) return callback;
1128 return orig_value;
1132 static void DoTriggerVehicle(Vehicle *v, VehicleTrigger trigger, byte base_random_bits, bool first)
1134 /* We can't trigger a non-existent vehicle... */
1135 assert(v != NULL);
1137 VehicleResolverObject object(v->engine_type, v, false, CBID_RANDOM_TRIGGER);
1138 object.trigger = trigger;
1140 const SpriteGroup *group = SpriteGroup::Resolve(GetVehicleSpriteGroup(v->engine_type, v), object);
1141 if (group == NULL) return;
1143 byte new_random_bits = Random();
1144 uint32 reseed = object.GetReseedSum(); // The scope only affects triggers, not the reseeding
1145 v->random_bits &= ~reseed;
1146 v->random_bits |= (first ? new_random_bits : base_random_bits) & reseed;
1148 switch (trigger) {
1149 case VEHICLE_TRIGGER_NEW_CARGO:
1150 /* All vehicles in chain get ANY_NEW_CARGO trigger now.
1151 * So we call it for the first one and they will recurse.
1152 * Indexing part of vehicle random bits needs to be
1153 * same for all triggered vehicles in the chain (to get
1154 * all the random-cargo wagons carry the same cargo,
1155 * i.e.), so we give them all the NEW_CARGO triggered
1156 * vehicle's portion of random bits. */
1157 assert(first);
1158 DoTriggerVehicle(v->First(), VEHICLE_TRIGGER_ANY_NEW_CARGO, new_random_bits, false);
1159 break;
1161 case VEHICLE_TRIGGER_DEPOT:
1162 /* We now trigger the next vehicle in chain recursively.
1163 * The random bits portions may be different for each
1164 * vehicle in chain. */
1165 if (v->Next() != NULL) DoTriggerVehicle(v->Next(), trigger, 0, true);
1166 break;
1168 case VEHICLE_TRIGGER_EMPTY:
1169 /* We now trigger the next vehicle in chain
1170 * recursively. The random bits portions must be same
1171 * for each vehicle in chain, so we give them all
1172 * first chained vehicle's portion of random bits. */
1173 if (v->Next() != NULL) DoTriggerVehicle(v->Next(), trigger, first ? new_random_bits : base_random_bits, false);
1174 break;
1176 case VEHICLE_TRIGGER_ANY_NEW_CARGO:
1177 /* Now pass the trigger recursively to the next vehicle
1178 * in chain. */
1179 assert(!first);
1180 if (v->Next() != NULL) DoTriggerVehicle(v->Next(), VEHICLE_TRIGGER_ANY_NEW_CARGO, base_random_bits, false);
1181 break;
1183 case VEHICLE_TRIGGER_CALLBACK_32:
1184 /* Do not do any recursion */
1185 break;
1189 void TriggerVehicle(Vehicle *v, VehicleTrigger trigger)
1191 if (trigger == VEHICLE_TRIGGER_DEPOT) {
1192 /* store that the vehicle entered a depot this tick */
1193 VehicleEnteredDepotThisTick(v);
1196 v->InvalidateNewGRFCacheOfChain();
1197 DoTriggerVehicle(v, trigger, 0, true);
1198 v->InvalidateNewGRFCacheOfChain();
1201 /* Functions for changing the order of vehicle purchase lists */
1203 struct ListOrderChange {
1204 EngineID engine;
1205 uint target; ///< local ID
1208 static SmallVector<ListOrderChange, 16> _list_order_changes;
1211 * Record a vehicle ListOrderChange.
1212 * @param engine Engine to move
1213 * @param target Local engine ID to move \a engine in front of
1214 * @note All sorting is done later in CommitVehicleListOrderChanges
1216 void AlterVehicleListOrder(EngineID engine, uint target)
1218 /* Add the list order change to a queue */
1219 ListOrderChange *loc = _list_order_changes.Append();
1220 loc->engine = engine;
1221 loc->target = target;
1225 * Comparator function to sort engines via scope-GRFID and local ID.
1226 * @param a left side
1227 * @param b right side
1228 * @return comparison result
1230 static int CDECL EnginePreSort(const EngineID *a, const EngineID *b)
1232 const EngineIDMapping *id_a = _engine_mngr.Get(*a);
1233 const EngineIDMapping *id_b = _engine_mngr.Get(*b);
1235 /* 1. Sort by engine type */
1236 if (id_a->type != id_b->type) return (int)id_a->type - (int)id_b->type;
1238 /* 2. Sort by scope-GRFID */
1239 if (id_a->grfid != id_b->grfid) return id_a->grfid < id_b->grfid ? -1 : 1;
1241 /* 3. Sort by local ID */
1242 return (int)id_a->internal_id - (int)id_b->internal_id;
1246 * Deternine default engine sorting and execute recorded ListOrderChanges from AlterVehicleListOrder.
1248 void CommitVehicleListOrderChanges()
1250 /* Pre-sort engines by scope-grfid and local index */
1251 SmallVector<EngineID, 16> ordering;
1252 Engine *e;
1253 FOR_ALL_ENGINES(e) {
1254 *ordering.Append() = e->index;
1256 QSortT(ordering.Begin(), ordering.Length(), EnginePreSort);
1258 /* Apply Insertion-Sort operations */
1259 const ListOrderChange *end = _list_order_changes.End();
1260 for (const ListOrderChange *it = _list_order_changes.Begin(); it != end; ++it) {
1261 EngineID source = it->engine;
1262 uint local_target = it->target;
1264 const EngineIDMapping *id_source = _engine_mngr.Get(source);
1265 if (id_source->internal_id == local_target) continue;
1267 EngineID target = _engine_mngr.GetID(id_source->type, local_target, id_source->grfid);
1268 if (target == INVALID_ENGINE) continue;
1270 int source_index = ordering.FindIndex(source);
1271 int target_index = ordering.FindIndex(target);
1273 assert(source_index >= 0 && target_index >= 0);
1274 assert(source_index != target_index);
1276 EngineID *list = ordering.Begin();
1277 if (source_index < target_index) {
1278 --target_index;
1279 for (int i = source_index; i < target_index; ++i) list[i] = list[i + 1];
1280 list[target_index] = source;
1281 } else {
1282 for (int i = source_index; i > target_index; --i) list[i] = list[i - 1];
1283 list[target_index] = source;
1287 /* Store final sort-order */
1288 const EngineID *idend = ordering.End();
1289 uint index = 0;
1290 for (const EngineID *it = ordering.Begin(); it != idend; ++it, ++index) {
1291 Engine::Get(*it)->list_position = index;
1294 /* Clear out the queue */
1295 _list_order_changes.Reset();
1299 * Fill the grf_cache of the given vehicle.
1300 * @param v The vehicle to fill the cache for.
1302 void FillNewGRFVehicleCache(const Vehicle *v)
1304 VehicleResolverObject ro(v->engine_type, v);
1306 /* These variables we have to check; these are the ones with a cache. */
1307 static const int cache_entries[][2] = {
1308 { 0x40, NCVV_POSITION_CONSIST_LENGTH },
1309 { 0x41, NCVV_POSITION_SAME_ID_LENGTH },
1310 { 0x42, NCVV_CONSIST_CARGO_INFORMATION },
1311 { 0x43, NCVV_COMPANY_INFORMATION },
1312 { 0x4D, NCVV_POSITION_IN_VEHICLE },
1314 assert_compile(NCVV_END == lengthof(cache_entries));
1316 /* Resolve all the variables, so their caches are set. */
1317 for (size_t i = 0; i < lengthof(cache_entries); i++) {
1318 /* Only resolve when the cache isn't valid. */
1319 if (HasBit(v->grf_cache.cache_valid, cache_entries[i][1])) continue;
1320 bool stub;
1321 ro.GetScope(VSG_SCOPE_SELF)->GetVariable(cache_entries[i][0], 0, &stub);
1324 /* Make sure really all bits are set. */
1325 assert(v->grf_cache.cache_valid == (1 << NCVV_END) - 1);