4 * This file is part of OpenTTD.
5 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
6 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
7 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
10 /** @file tgp.cpp OTTD Perlin Noise Landscape Generator, aka TerraGenesis Perlin */
14 #include "clear_map.h"
17 #include "core/alloc_func.hpp"
18 #include "core/random_func.hpp"
19 #include "landscape_type.h"
23 * Quickie guide to Perlin Noise
24 * Perlin noise is a predictable pseudo random number sequence. By generating
25 * it in 2 dimensions, it becomes a useful random map that, for a given seed
26 * and starting X & Y, is entirely predictable. On the face of it, that may not
27 * be useful. However, it means that if you want to replay a map in a different
28 * terrain, or just vary the sea level, you just re-run the generator with the
29 * same seed. The seed is an int32, and is randomised on each run of New Game.
30 * The Scenario Generator does not randomise the value, so that you can
31 * experiment with one terrain until you are happy, or click "Random" for a new
34 * Perlin Noise is a series of "octaves" of random noise added together. By
35 * reducing the amplitude of the noise with each octave, the first octave of
36 * noise defines the main terrain sweep, the next the ripples on that, and the
37 * next the ripples on that. I use 6 octaves, with the amplitude controlled by
38 * a power ratio, usually known as a persistence or p value. This I vary by the
39 * smoothness selection, as can be seen in the table below. The closer to 1,
40 * the more of that octave is added. Each octave is however raised to the power
41 * of its position in the list, so the last entry in the "smooth" row, 0.35, is
42 * raised to the power of 6, so can only add 0.001838... of the amplitude to
45 * In other words; the first p value sets the general shape of the terrain, the
46 * second sets the major variations to that, ... until finally the smallest
49 * Usefully, this routine is totally scaleable; so when 32bpp comes along, the
50 * terrain can be as bumpy as you like! It is also infinitely expandable; a
51 * single random seed terrain continues in X & Y as far as you care to
52 * calculate. In theory, we could use just one seed value, but randomly select
53 * where in the Perlin XY space we use for the terrain. Personally I prefer
54 * using a simple (0, 0) to (X, Y), with a varying seed.
57 * Other things i have had to do: mountainous wasnt mountainous enough, and
58 * since we only have 0..15 heights available, I add a second generated map
59 * (with a modified seed), onto the original. This generally raises the
60 * terrain, which then needs scaling back down. Overall effect is a general
63 * However, the values on the top of mountains are then almost guaranteed to go
64 * too high, so large flat plateaus appeared at height 15. To counter this, I
65 * scale all heights above 12 to proportion up to 15. It still makes the
66 * mountains have flatish tops, rather than craggy peaks, but at least they
67 * arent smooth as glass.
70 * For a full discussion of Perlin Noise, please visit:
71 * http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
76 * The algorithm as described in the above link suggests to compute each tile height
77 * as composition of several noise waves. Some of them are computed directly by
78 * noise(x, y) function, some are calculated using linear approximation. Our
79 * first implementation of perlin_noise_2D() used 4 noise(x, y) calls plus
80 * 3 linear interpolations. It was called 6 times for each tile. This was a bit
83 * The following implementation uses optimized algorithm that should produce
84 * the same quality result with much less computations, but more memory accesses.
85 * The overal speedup should be 300% to 800% depending on CPU and memory speed.
87 * I will try to explain it on the example below:
89 * Have a map of 4 x 4 tiles, our simplifiead noise generator produces only two
90 * values -1 and +1, use 3 octaves with wave lenght 1, 2 and 4, with amplitudes
91 * 3, 2, 1. Original algorithm produces:
93 * h00 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 0/4) + lerp(lerp(-2, 2, 0/2), lerp( 2, -2, 0/2), 0/2) + -1 = lerp(-3.0, 3.0, 0/4) + lerp(-2, 2, 0/2) + -1 = -3.0 + -2 + -1 = -6.0
94 * h01 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 0/4) + lerp(lerp(-2, 2, 1/2), lerp( 2, -2, 1/2), 0/2) + 1 = lerp(-1.5, 1.5, 0/4) + lerp( 0, 0, 0/2) + 1 = -1.5 + 0 + 1 = -0.5
95 * h02 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 0/4) + lerp(lerp( 2, -2, 0/2), lerp(-2, 2, 0/2), 0/2) + -1 = lerp( 0, 0, 0/4) + lerp( 2, -2, 0/2) + -1 = 0 + 2 + -1 = 1.0
96 * h03 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 0/4) + lerp(lerp( 2, -2, 1/2), lerp(-2, 2, 1/2), 0/2) + 1 = lerp( 1.5, -1.5, 0/4) + lerp( 0, 0, 0/2) + 1 = 1.5 + 0 + 1 = 2.5
98 * h10 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 1/4) + lerp(lerp(-2, 2, 0/2), lerp( 2, -2, 0/2), 1/2) + 1 = lerp(-3.0, 3.0, 1/4) + lerp(-2, 2, 1/2) + 1 = -1.5 + 0 + 1 = -0.5
99 * h11 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 1/4) + lerp(lerp(-2, 2, 1/2), lerp( 2, -2, 1/2), 1/2) + -1 = lerp(-1.5, 1.5, 1/4) + lerp( 0, 0, 1/2) + -1 = -0.75 + 0 + -1 = -1.75
100 * h12 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 1/4) + lerp(lerp( 2, -2, 0/2), lerp(-2, 2, 0/2), 1/2) + 1 = lerp( 0, 0, 1/4) + lerp( 2, -2, 1/2) + 1 = 0 + 0 + 1 = 1.0
101 * h13 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 1/4) + lerp(lerp( 2, -2, 1/2), lerp(-2, 2, 1/2), 1/2) + -1 = lerp( 1.5, -1.5, 1/4) + lerp( 0, 0, 1/2) + -1 = 0.75 + 0 + -1 = -0.25
106 * 1) we need to allocate a bit more tiles: (size_x + 1) * (size_y + 1) = (5 * 5):
108 * 2) setup corner values using amplitude 3
115 * 3a) interpolate values in the middle
116 * { -3.0 X 0.0 X 3.0 }
118 * { 0.0 X 0.0 X 0.0 }
120 * { 3.0 X 0.0 X -3.0 }
122 * 3b) add patches with amplitude 2 to them
123 * { -5.0 X 2.0 X 1.0 }
125 * { 2.0 X -2.0 X 2.0 }
127 * { 1.0 X 2.0 X -5.0 }
129 * 4a) interpolate values in the middle
130 * { -5.0 -1.5 2.0 1.5 1.0 }
131 * { -1.5 -0.75 0.0 0.75 1.5 }
132 * { 2.0 0.0 -2.0 0.0 2.0 }
133 * { 1.5 0.75 0.0 -0.75 -1.5 }
134 * { 1.0 1.5 2.0 -1.5 -5.0 }
136 * 4b) add patches with amplitude 1 to them
137 * { -6.0 -0.5 1.0 2.5 0.0 }
138 * { -0.5 -1.75 1.0 -0.25 2.5 }
139 * { 1.0 1.0 -3.0 1.0 1.0 }
140 * { 2.5 -0.25 1.0 -1.75 -0.5 }
141 * { 0.0 2.5 1.0 -0.5 -6.0 }
147 * As you can see above, each noise function was called just once. Therefore
148 * we don't need to use noise function that calculates the noise from x, y and
149 * some prime. The same quality result we can obtain using standard Random()
154 /** Fixed point type for heights */
155 typedef int16 height_t
;
156 static const int height_decimal_bits
= 4;
157 static const height_t _invalid_height
= -32768;
159 /** Fixed point array for amplitudes (and percent values) */
160 typedef int amplitude_t
;
161 static const int amplitude_decimal_bits
= 10;
163 /** Height map - allocated array of heights (MapSizeX() + 1) x (MapSizeY() + 1) */
166 height_t
*h
; //< array of heights
167 uint dim_x
; //< height map size_x MapSizeX() + 1
168 uint total_size
; //< height map total size
169 uint size_x
; //< MapSizeX()
170 uint size_y
; //< MapSizeY()
173 * Height map accessor
174 * @param x X position
175 * @param y Y position
176 * @return height as fixed point number
178 inline height_t
&height(uint x
, uint y
)
180 return h
[x
+ y
* dim_x
];
184 /** Global height map instance */
185 static HeightMap _height_map
= {NULL
, 0, 0, 0, 0};
187 /** Conversion: int to height_t */
188 #define I2H(i) ((i) << height_decimal_bits)
189 /** Conversion: height_t to int */
190 #define H2I(i) ((i) >> height_decimal_bits)
192 /** Conversion: int to amplitude_t */
193 #define I2A(i) ((i) << amplitude_decimal_bits)
194 /** Conversion: amplitude_t to int */
195 #define A2I(i) ((i) >> amplitude_decimal_bits)
197 /** Conversion: amplitude_t to height_t */
198 #define A2H(a) ((a) >> (amplitude_decimal_bits - height_decimal_bits))
201 /** Walk through all items of _height_map.h */
202 #define FOR_ALL_TILES_IN_HEIGHT(h) for (h = _height_map.h; h < &_height_map.h[_height_map.total_size]; h++)
204 /** Maximum index into array of noise amplitudes */
205 static const int TGP_FREQUENCY_MAX
= 6;
208 * Noise amplitudes (multiplied by 1024)
209 * - indexed by "smoothness setting" and log2(frequency)
211 static const amplitude_t _amplitudes_by_smoothness_and_frequency
[4][TGP_FREQUENCY_MAX
+ 1] = {
212 /* lowest frequncy.... ...highest (every corner) */
214 {16000, 5600, 1968, 688, 240, 16, 16},
216 {16000, 16000, 6448, 3200, 1024, 128, 16},
218 {16000, 19200, 12800, 8000, 3200, 256, 64},
220 {24000, 16000, 19200, 16000, 8000, 512, 320},
223 /** Desired water percentage (100% == 1024) - indexed by _settings_game.difficulty.quantity_sea_lakes */
224 static const amplitude_t _water_percent
[4] = {20, 80, 250, 400};
226 /** Desired maximum height - indexed by _settings_game.difficulty.terrain_type */
227 static const int8 _max_height
[4] = {
235 * Check if a X/Y set are within the map.
236 * @param x coordinate x
237 * @param y coordinate y
238 * @return true if within the map
240 static inline bool IsValidXY(uint x
, uint y
)
242 return ((int)x
) >= 0 && x
< _height_map
.size_x
&& ((int)y
) >= 0 && y
< _height_map
.size_y
;
247 * Allocate array of (MapSizeX()+1)*(MapSizeY()+1) heights and init the _height_map structure members
248 * @return true on success
250 static inline bool AllocHeightMap()
254 _height_map
.size_x
= MapSizeX();
255 _height_map
.size_y
= MapSizeY();
257 /* Allocate memory block for height map row pointers */
258 _height_map
.total_size
= (_height_map
.size_x
+ 1) * (_height_map
.size_y
+ 1);
259 _height_map
.dim_x
= _height_map
.size_x
+ 1;
260 _height_map
.h
= CallocT
<height_t
>(_height_map
.total_size
);
262 /* Iterate through height map initialize values */
263 FOR_ALL_TILES_IN_HEIGHT(h
) *h
= _invalid_height
;
268 /** Free height map */
269 static inline void FreeHeightMap()
271 if (_height_map
.h
== NULL
) return;
273 _height_map
.h
= NULL
;
277 * Generates new random height in given amplitude (generated numbers will range from - amplitude to + amplitude)
278 * @param rMax Limit of result
279 * @return generated height
281 static inline height_t
RandomHeight(amplitude_t rMax
)
283 amplitude_t ra
= (Random() << 16) | (Random() & 0x0000FFFF);
285 /* Spread height into range -rMax..+rMax */
286 rh
= A2H(ra
% (2 * rMax
+ 1) - rMax
);
291 * One interpolation and noise round
293 * The heights on the map are generated in an iterative process.
294 * We start off with a frequency of 1 (log_frequency == 0), and generate heights only for corners on the most coarsly mesh
295 * (i.e. only for x/y coordinates which are multiples of the minimum edge length).
297 * After this initial step the frequency is doubled (log_frequency incremented) each iteration to generate corners on the next finer mesh.
298 * The heights of the newly added corners are first set by interpolating the heights from the previous iteration.
299 * Finally noise with the given amplitude is applied to all corners of the new mesh.
301 * Generation terminates, when the frequency has reached the map size. I.e. the mesh is as fine as the map, and every corner height
304 * @param log_frequency frequency (logarithmic) to apply noise for
305 * @param amplitude Amplitude for the noise
306 * @return false if we are finished (reached the minimal step size / highest frequency)
308 static bool ApplyNoise(uint log_frequency
, amplitude_t amplitude
)
310 uint size_min
= min(_height_map
.size_x
, _height_map
.size_y
);
311 uint step
= size_min
>> log_frequency
;
314 /* Trying to apply noise to uninitialized height map */
315 assert(_height_map
.h
!= NULL
);
317 /* Are we finished? */
318 if (step
== 0) return false;
320 if (log_frequency
== 0) {
321 /* This is first round, we need to establish base heights with step = size_min */
322 for (y
= 0; y
<= _height_map
.size_y
; y
+= step
) {
323 for (x
= 0; x
<= _height_map
.size_x
; x
+= step
) {
324 height_t height
= (amplitude
> 0) ? RandomHeight(amplitude
) : 0;
325 _height_map
.height(x
, y
) = height
;
331 /* It is regular iteration round.
332 * Interpolate height values at odd x, even y tiles */
333 for (y
= 0; y
<= _height_map
.size_y
; y
+= 2 * step
) {
334 for (x
= 0; x
< _height_map
.size_x
; x
+= 2 * step
) {
335 height_t h00
= _height_map
.height(x
+ 0 * step
, y
);
336 height_t h02
= _height_map
.height(x
+ 2 * step
, y
);
337 height_t h01
= (h00
+ h02
) / 2;
338 _height_map
.height(x
+ 1 * step
, y
) = h01
;
342 /* Interpolate height values at odd y tiles */
343 for (y
= 0; y
< _height_map
.size_y
; y
+= 2 * step
) {
344 for (x
= 0; x
<= _height_map
.size_x
; x
+= step
) {
345 height_t h00
= _height_map
.height(x
, y
+ 0 * step
);
346 height_t h20
= _height_map
.height(x
, y
+ 2 * step
);
347 height_t h10
= (h00
+ h20
) / 2;
348 _height_map
.height(x
, y
+ 1 * step
) = h10
;
352 /* Add noise for next higher frequency (smaller steps) */
353 for (y
= 0; y
<= _height_map
.size_y
; y
+= step
) {
354 for (x
= 0; x
<= _height_map
.size_x
; x
+= step
) {
355 _height_map
.height(x
, y
) += RandomHeight(amplitude
);
362 /** Base Perlin noise generator - fills height map with raw Perlin noise */
363 static void HeightMapGenerate()
365 uint size_min
= min(_height_map
.size_x
, _height_map
.size_y
);
366 uint iteration_round
= 0;
367 amplitude_t amplitude
;
368 bool continue_iteration
;
369 int log_size_min
, log_frequency_min
;
372 /* Find first power of two that fits, so that later log_frequency == TGP_FREQUENCY_MAX in the last iteration */
373 for (log_size_min
= TGP_FREQUENCY_MAX
; (1U << log_size_min
) < size_min
; log_size_min
++) { }
374 log_frequency_min
= log_size_min
- TGP_FREQUENCY_MAX
;
376 /* Zero must be part of the iteration, else initialization will fail. */
377 assert(log_frequency_min
>= 0);
379 /* Keep increasing the frequency until we reach the step size equal to one tile */
381 log_frequency
= iteration_round
- log_frequency_min
;
382 if (log_frequency
>= 0) {
383 /* Apply noise for the next frequency */
384 assert(log_frequency
<= TGP_FREQUENCY_MAX
);
385 amplitude
= _amplitudes_by_smoothness_and_frequency
[_settings_game
.game_creation
.tgen_smoothness
][log_frequency
];
387 /* Amplitude for the low frequencies on big maps is 0, i.e. initialise with zero height */
390 continue_iteration
= ApplyNoise(iteration_round
, amplitude
);
392 } while (continue_iteration
);
393 assert(log_frequency
== TGP_FREQUENCY_MAX
);
396 /** Returns min, max and average height from height map */
397 static void HeightMapGetMinMaxAvg(height_t
*min_ptr
, height_t
*max_ptr
, height_t
*avg_ptr
)
399 height_t h_min
, h_max
, h_avg
, *h
;
401 h_min
= h_max
= _height_map
.height(0, 0);
403 /* Get h_min, h_max and accumulate heights into h_accu */
404 FOR_ALL_TILES_IN_HEIGHT(h
) {
405 if (*h
< h_min
) h_min
= *h
;
406 if (*h
> h_max
) h_max
= *h
;
410 /* Get average height */
411 h_avg
= (height_t
)(h_accu
/ (_height_map
.size_x
* _height_map
.size_y
));
413 /* Return required results */
414 if (min_ptr
!= NULL
) *min_ptr
= h_min
;
415 if (max_ptr
!= NULL
) *max_ptr
= h_max
;
416 if (avg_ptr
!= NULL
) *avg_ptr
= h_avg
;
419 /** Dill histogram and return pointer to its base point - to the count of zero heights */
420 static int *HeightMapMakeHistogram(height_t h_min
, height_t h_max
, int *hist_buf
)
422 int *hist
= hist_buf
- h_min
;
425 /* Count the heights and fill the histogram */
426 FOR_ALL_TILES_IN_HEIGHT(h
) {
434 /** Applies sine wave redistribution onto height map */
435 static void HeightMapSineTransform(height_t h_min
, height_t h_max
)
439 FOR_ALL_TILES_IN_HEIGHT(h
) {
442 if (*h
< h_min
) continue;
444 /* Transform height into 0..1 space */
445 fheight
= (double)(*h
- h_min
) / (double)(h_max
- h_min
);
446 /* Apply sine transform depending on landscape type */
447 switch (_settings_game
.game_creation
.landscape
) {
450 /* Move and scale 0..1 into -1..+1 */
451 fheight
= 2 * fheight
- 1;
453 fheight
= sin(fheight
* M_PI_2
);
454 /* Transform it back from -1..1 into 0..1 space */
455 fheight
= 0.5 * (fheight
+ 1);
460 /* Arctic terrain needs special height distribution.
461 * Redistribute heights to have more tiles at highest (75%..100%) range */
462 double sine_upper_limit
= 0.75;
463 double linear_compression
= 2;
464 if (fheight
>= sine_upper_limit
) {
465 /* Over the limit we do linear compression up */
466 fheight
= 1.0 - (1.0 - fheight
) / linear_compression
;
468 double m
= 1.0 - (1.0 - sine_upper_limit
) / linear_compression
;
469 /* Get 0..sine_upper_limit into -1..1 */
470 fheight
= 2.0 * fheight
/ sine_upper_limit
- 1.0;
471 /* Sine wave transform */
472 fheight
= sin(fheight
* M_PI_2
);
473 /* Get -1..1 back to 0..(1 - (1 - sine_upper_limit) / linear_compression) == 0.0..m */
474 fheight
= 0.5 * (fheight
+ 1.0) * m
;
481 /* Desert terrain needs special height distribution.
482 * Half of tiles should be at lowest (0..25%) heights */
483 double sine_lower_limit
= 0.5;
484 double linear_compression
= 2;
485 if (fheight
<= sine_lower_limit
) {
486 /* Under the limit we do linear compression down */
487 fheight
= fheight
/ linear_compression
;
489 double m
= sine_lower_limit
/ linear_compression
;
490 /* Get sine_lower_limit..1 into -1..1 */
491 fheight
= 2.0 * ((fheight
- sine_lower_limit
) / (1.0 - sine_lower_limit
)) - 1.0;
492 /* Sine wave transform */
493 fheight
= sin(fheight
* M_PI_2
);
494 /* Get -1..1 back to (sine_lower_limit / linear_compression)..1.0 */
495 fheight
= 0.5 * ((1.0 - m
) * fheight
+ (1.0 + m
));
504 /* Transform it back into h_min..h_max space */
505 *h
= (height_t
)(fheight
* (h_max
- h_min
) + h_min
);
506 if (*h
< 0) *h
= I2H(0);
507 if (*h
>= h_max
) *h
= h_max
- 1;
511 /* Additional map variety is provided by applying different curve maps
512 * to different parts of the map. A randomized low resolution grid contains
513 * which curve map to use on each part of the make. This filtered non-linearly
514 * to smooth out transitions between curves, so each tile could have between
515 * 100% of one map applied or 25% of four maps.
517 * The curve maps define different land styles, i.e. lakes, low-lands, hills
518 * and mountain ranges, although these are dependent on the landscape style
521 * The level parameter dictates the resolution of the grid. A low resolution
522 * grid will result in larger continuous areas of a land style, a higher
523 * resolution grid splits the style into smaller areas.
525 * At this point in map generation, all height data has been normalized to 0
528 struct control_point_t
{
533 struct control_point_list_t
{
535 const control_point_t
*list
;
538 static const control_point_t _curve_map_1
[] = {
539 { 0, 0 }, { 48, 24 }, { 192, 32 }, { 240, 96 }
542 static const control_point_t _curve_map_2
[] = {
543 { 0, 0 }, { 16, 24 }, { 128, 32 }, { 192, 64 }, { 240, 144 }
546 static const control_point_t _curve_map_3
[] = {
547 { 0, 0 }, { 16, 24 }, { 128, 64 }, { 192, 144 }, { 240, 192 }
550 static const control_point_t _curve_map_4
[] = {
551 { 0, 0 }, { 16, 24 }, { 96, 72 }, { 160, 192 }, { 220, 239 }, { 240, 239 }
554 static const control_point_list_t _curve_maps
[] = {
555 { lengthof(_curve_map_1
), _curve_map_1
},
556 { lengthof(_curve_map_2
), _curve_map_2
},
557 { lengthof(_curve_map_3
), _curve_map_3
},
558 { lengthof(_curve_map_4
), _curve_map_4
},
561 static void HeightMapCurves(uint level
)
563 height_t ht
[lengthof(_curve_maps
)];
565 /* Set up a grid to choose curve maps based on location */
566 uint sx
= Clamp(1 << level
, 2, 32);
567 uint sy
= Clamp(1 << level
, 2, 32);
568 byte
*c
= (byte
*)alloca(sx
* sy
);
570 for (uint i
= 0; i
< sx
* sy
; i
++) {
571 c
[i
] = Random() % lengthof(_curve_maps
);
575 for (uint x
= 0; x
< _height_map
.size_x
; x
++) {
577 /* Get our X grid positions and bi-linear ratio */
578 float fx
= (float)(sx
* x
) / _height_map
.size_x
+ 0.5f
;
581 float xr
= 2.0f
* (fx
- x1
) - 1.0f
;
582 xr
= sin(xr
* M_PI_2
);
583 xr
= sin(xr
* M_PI_2
);
584 xr
= 0.5f
* (xr
+ 1.0f
);
585 float xri
= 1.0f
- xr
;
592 for (uint y
= 0; y
< _height_map
.size_y
; y
++) {
594 /* Get our Y grid position and bi-linear ratio */
595 float fy
= (float)(sy
* y
) / _height_map
.size_y
+ 0.5f
;
598 float yr
= 2.0f
* (fy
- y1
) - 1.0f
;
599 yr
= sin(yr
* M_PI_2
);
600 yr
= sin(yr
* M_PI_2
);
601 yr
= 0.5f
* (yr
+ 1.0f
);
602 float yri
= 1.0f
- yr
;
609 uint corner_a
= c
[x1
+ sx
* y1
];
610 uint corner_b
= c
[x1
+ sx
* y2
];
611 uint corner_c
= c
[x2
+ sx
* y1
];
612 uint corner_d
= c
[x2
+ sx
* y2
];
614 /* Bitmask of which curve maps are chosen, so that we do not bother
615 * calculating a curve which won't be used. */
616 uint corner_bits
= 0;
617 corner_bits
|= 1 << corner_a
;
618 corner_bits
|= 1 << corner_b
;
619 corner_bits
|= 1 << corner_c
;
620 corner_bits
|= 1 << corner_d
;
622 height_t
*h
= &_height_map
.height(x
, y
);
624 /* Apply all curve maps that are used on this tile. */
625 for (uint t
= 0; t
< lengthof(_curve_maps
); t
++) {
626 if (!HasBit(corner_bits
, t
)) continue;
628 const control_point_t
*cm
= _curve_maps
[t
].list
;
629 for (uint i
= 0; i
< _curve_maps
[t
].length
- 1; i
++) {
630 const control_point_t
&p1
= cm
[i
];
631 const control_point_t
&p2
= cm
[i
+ 1];
633 if (*h
>= p1
.x
&& *h
< p2
.x
) {
634 ht
[t
] = p1
.y
+ (*h
- p1
.x
) * (p2
.y
- p1
.y
) / (p2
.x
- p1
.x
);
640 /* Apply interpolation of curve map results. */
641 *h
= (height_t
)((ht
[corner_a
] * yri
+ ht
[corner_b
] * yr
) * xri
+ (ht
[corner_c
] * yri
+ ht
[corner_d
] * yr
) * xr
);
646 /** Adjusts heights in height map to contain required amount of water tiles */
647 static void HeightMapAdjustWaterLevel(amplitude_t water_percent
, height_t h_max_new
)
649 height_t h_min
, h_max
, h_avg
, h_water_level
;
650 int64 water_tiles
, desired_water_tiles
;
654 HeightMapGetMinMaxAvg(&h_min
, &h_max
, &h_avg
);
656 /* Allocate histogram buffer and clear its cells */
657 int *hist_buf
= CallocT
<int>(h_max
- h_min
+ 1);
659 hist
= HeightMapMakeHistogram(h_min
, h_max
, hist_buf
);
661 /* How many water tiles do we want? */
662 desired_water_tiles
= A2I(((int64
)water_percent
) * (int64
)(_height_map
.size_x
* _height_map
.size_y
));
664 /* Raise water_level and accumulate values from histogram until we reach required number of water tiles */
665 for (h_water_level
= h_min
, water_tiles
= 0; h_water_level
< h_max
; h_water_level
++) {
666 water_tiles
+= hist
[h_water_level
];
667 if (water_tiles
>= desired_water_tiles
) break;
670 /* We now have the proper water level value.
671 * Transform the height map into new (normalized) height map:
672 * values from range: h_min..h_water_level will become negative so it will be clamped to 0
673 * values from range: h_water_level..h_max are transformed into 0..h_max_new
674 * where h_max_new is 4, 8, 12 or 16 depending on terrain type (very flat, flat, hilly, mountains)
676 FOR_ALL_TILES_IN_HEIGHT(h
) {
677 /* Transform height from range h_water_level..h_max into 0..h_max_new range */
678 *h
= (height_t
)(((int)h_max_new
) * (*h
- h_water_level
) / (h_max
- h_water_level
)) + I2H(1);
679 /* Make sure all values are in the proper range (0..h_max_new) */
680 if (*h
< 0) *h
= I2H(0);
681 if (*h
>= h_max_new
) *h
= h_max_new
- 1;
687 static double perlin_coast_noise_2D(const double x
, const double y
, const double p
, const int prime
);
690 * This routine sculpts in from the edge a random amount, again a Perlin
691 * sequence, to avoid the rigid flat-edge slopes that were present before. The
692 * Perlin noise map doesnt know where we are going to slice across, and so we
693 * often cut straight through high terrain. the smoothing routine makes it
694 * legal, gradually increasing up from the edge to the original terrain height.
695 * By cutting parts of this away, it gives a far more irregular edge to the
696 * map-edge. Sometimes it works beautifully with the existing sea & lakes, and
697 * creates a very realistic coastline. Other times the variation is less, and
698 * the map-edge shows its cliff-like roots.
700 * This routine may be extended to randomly sculpt the height of the terrain
701 * near the edge. This will have the coast edge at low level (1-3), rising in
702 * smoothed steps inland to about 15 tiles in. This should make it look as
703 * though the map has been built for the map size, rather than a slice through
706 * Please note that all the small numbers; 53, 101, 167, etc. are small primes
707 * to help give the perlin noise a bit more of a random feel.
709 static void HeightMapCoastLines(uint8 water_borders
)
711 int smallest_size
= min(_settings_game
.game_creation
.map_x
, _settings_game
.game_creation
.map_y
);
712 const int margin
= 4;
717 /* Lower to sea level */
718 for (y
= 0; y
<= _height_map
.size_y
; y
++) {
719 if (HasBit(water_borders
, BORDER_NE
)) {
721 max_x
= abs((perlin_coast_noise_2D(_height_map
.size_y
- y
, y
, 0.9, 53) + 0.25) * 5 + (perlin_coast_noise_2D(y
, y
, 0.35, 179) + 1) * 12);
722 max_x
= max((smallest_size
* smallest_size
/ 16) + max_x
, (smallest_size
* smallest_size
/ 16) + margin
- max_x
);
723 if (smallest_size
< 8 && max_x
> 5) max_x
/= 1.5;
724 for (x
= 0; x
< max_x
; x
++) {
725 _height_map
.height(x
, y
) = 0;
729 if (HasBit(water_borders
, BORDER_SW
)) {
731 max_x
= abs((perlin_coast_noise_2D(_height_map
.size_y
- y
, y
, 0.85, 101) + 0.3) * 6 + (perlin_coast_noise_2D(y
, y
, 0.45, 67) + 0.75) * 8);
732 max_x
= max((smallest_size
* smallest_size
/ 16) + max_x
, (smallest_size
* smallest_size
/ 16) + margin
- max_x
);
733 if (smallest_size
< 8 && max_x
> 5) max_x
/= 1.5;
734 for (x
= _height_map
.size_x
; x
> (_height_map
.size_x
- 1 - max_x
); x
--) {
735 _height_map
.height(x
, y
) = 0;
740 /* Lower to sea level */
741 for (x
= 0; x
<= _height_map
.size_x
; x
++) {
742 if (HasBit(water_borders
, BORDER_NW
)) {
744 max_y
= abs((perlin_coast_noise_2D(x
, _height_map
.size_y
/ 2, 0.9, 167) + 0.4) * 5 + (perlin_coast_noise_2D(x
, _height_map
.size_y
/ 3, 0.4, 211) + 0.7) * 9);
745 max_y
= max((smallest_size
* smallest_size
/ 16) + max_y
, (smallest_size
* smallest_size
/ 16) + margin
- max_y
);
746 if (smallest_size
< 8 && max_y
> 5) max_y
/= 1.5;
747 for (y
= 0; y
< max_y
; y
++) {
748 _height_map
.height(x
, y
) = 0;
752 if (HasBit(water_borders
, BORDER_SE
)) {
754 max_y
= abs((perlin_coast_noise_2D(x
, _height_map
.size_y
/ 3, 0.85, 71) + 0.25) * 6 + (perlin_coast_noise_2D(x
, _height_map
.size_y
/ 3, 0.35, 193) + 0.75) * 12);
755 max_y
= max((smallest_size
* smallest_size
/ 16) + max_y
, (smallest_size
* smallest_size
/ 16) + margin
- max_y
);
756 if (smallest_size
< 8 && max_y
> 5) max_y
/= 1.5;
757 for (y
= _height_map
.size_y
; y
> (_height_map
.size_y
- 1 - max_y
); y
--) {
758 _height_map
.height(x
, y
) = 0;
764 /** Start at given point, move in given direction, find and Smooth coast in that direction */
765 static void HeightMapSmoothCoastInDirection(int org_x
, int org_y
, int dir_x
, int dir_y
)
767 const int max_coast_dist_from_edge
= 35;
768 const int max_coast_Smooth_depth
= 35;
771 int ed
; // coast distance from edge
774 height_t h_prev
= 16;
777 assert(IsValidXY(org_x
, org_y
));
779 /* Search for the coast (first non-water tile) */
780 for (x
= org_x
, y
= org_y
, ed
= 0; IsValidXY(x
, y
) && ed
< max_coast_dist_from_edge
; x
+= dir_x
, y
+= dir_y
, ed
++) {
782 if (_height_map
.height(x
, y
) > 15) break;
784 /* Coast found in the neighborhood? */
785 if (IsValidXY(x
+ dir_y
, y
+ dir_x
) && _height_map
.height(x
+ dir_y
, y
+ dir_x
) > 0) break;
787 /* Coast found in the neighborhood on the other side */
788 if (IsValidXY(x
- dir_y
, y
- dir_x
) && _height_map
.height(x
- dir_y
, y
- dir_x
) > 0) break;
791 /* Coast found or max_coast_dist_from_edge has been reached.
792 * Soften the coast slope */
793 for (depth
= 0; IsValidXY(x
, y
) && depth
<= max_coast_Smooth_depth
; depth
++, x
+= dir_x
, y
+= dir_y
) {
794 h
= _height_map
.height(x
, y
);
795 h
= min(h
, h_prev
+ (4 + depth
)); // coast softening formula
796 _height_map
.height(x
, y
) = h
;
801 /** Smooth coasts by modulating height of tiles close to map edges with cosine of distance from edge */
802 static void HeightMapSmoothCoasts(uint8 water_borders
)
805 /* First Smooth NW and SE coasts (y close to 0 and y close to size_y) */
806 for (x
= 0; x
< _height_map
.size_x
; x
++) {
807 if (HasBit(water_borders
, BORDER_NW
)) HeightMapSmoothCoastInDirection(x
, 0, 0, 1);
808 if (HasBit(water_borders
, BORDER_SE
)) HeightMapSmoothCoastInDirection(x
, _height_map
.size_y
- 1, 0, -1);
810 /* First Smooth NE and SW coasts (x close to 0 and x close to size_x) */
811 for (y
= 0; y
< _height_map
.size_y
; y
++) {
812 if (HasBit(water_borders
, BORDER_NE
)) HeightMapSmoothCoastInDirection(0, y
, 1, 0);
813 if (HasBit(water_borders
, BORDER_SW
)) HeightMapSmoothCoastInDirection(_height_map
.size_x
- 1, y
, -1, 0);
818 * This routine provides the essential cleanup necessary before OTTD can
819 * display the terrain. When generated, the terrain heights can jump more than
820 * one level between tiles. This routine smooths out those differences so that
821 * the most it can change is one level. When OTTD can support cliffs, this
822 * routine may not be necessary.
824 static void HeightMapSmoothSlopes(height_t dh_max
)
827 for (y
= 0; y
<= (int)_height_map
.size_y
; y
++) {
828 for (x
= 0; x
<= (int)_height_map
.size_x
; x
++) {
829 height_t h_max
= min(_height_map
.height(x
> 0 ? x
- 1 : x
, y
), _height_map
.height(x
, y
> 0 ? y
- 1 : y
)) + dh_max
;
830 if (_height_map
.height(x
, y
) > h_max
) _height_map
.height(x
, y
) = h_max
;
833 for (y
= _height_map
.size_y
; y
>= 0; y
--) {
834 for (x
= _height_map
.size_x
; x
>= 0; x
--) {
835 height_t h_max
= min(_height_map
.height((uint
)x
< _height_map
.size_x
? x
+ 1 : x
, y
), _height_map
.height(x
, (uint
)y
< _height_map
.size_y
? y
+ 1 : y
)) + dh_max
;
836 if (_height_map
.height(x
, y
) > h_max
) _height_map
.height(x
, y
) = h_max
;
842 * Height map terraform post processing:
843 * - water level adjusting
846 * - height histogram redistribution by sine wave transform
848 static void HeightMapNormalize()
850 int sea_level_setting
= _settings_game
.difficulty
.quantity_sea_lakes
;
851 const amplitude_t water_percent
= sea_level_setting
!= (int)CUSTOM_SEA_LEVEL_NUMBER_DIFFICULTY
? _water_percent
[sea_level_setting
] : _settings_game
.game_creation
.custom_sea_level
* 1024 / 100;
852 const height_t h_max_new
= I2H(_max_height
[_settings_game
.difficulty
.terrain_type
]);
853 const height_t roughness
= 7 + 3 * _settings_game
.game_creation
.tgen_smoothness
;
855 HeightMapAdjustWaterLevel(water_percent
, h_max_new
);
857 byte water_borders
= _settings_game
.construction
.freeform_edges
? _settings_game
.game_creation
.water_borders
: 0xF;
858 if (water_borders
== BORDERS_RANDOM
) water_borders
= GB(Random(), 0, 4);
860 HeightMapCoastLines(water_borders
);
861 HeightMapSmoothSlopes(roughness
);
863 HeightMapSmoothCoasts(water_borders
);
864 HeightMapSmoothSlopes(roughness
);
866 HeightMapSineTransform(12, h_max_new
);
868 if (_settings_game
.game_creation
.variety
> 0) {
869 HeightMapCurves(_settings_game
.game_creation
.variety
);
872 HeightMapSmoothSlopes(16);
876 * The Perlin Noise calculation using large primes
877 * The initial number is adjusted by two values; the generation_seed, and the
878 * passed parameter; prime.
879 * prime is used to allow the perlin noise generator to create useful random
880 * numbers from slightly different series.
882 static double int_noise(const long x
, const long y
, const int prime
)
884 long n
= x
+ y
* prime
+ _settings_game
.game_creation
.generation_seed
;
888 /* Pseudo-random number generator, using several large primes */
889 return 1.0 - (double)((n
* (n
* n
* 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0;
894 * This routine determines the interpolated value between a and b
896 static inline double linear_interpolate(const double a
, const double b
, const double x
)
898 return a
+ x
* (b
- a
);
903 * This routine returns the smoothed interpolated noise for an x and y, using
904 * the values from the surrounding positions.
906 static double interpolated_noise(const double x
, const double y
, const int prime
)
908 const int integer_X
= (int)x
;
909 const int integer_Y
= (int)y
;
911 const double fractional_X
= x
- (double)integer_X
;
912 const double fractional_Y
= y
- (double)integer_Y
;
914 const double v1
= int_noise(integer_X
, integer_Y
, prime
);
915 const double v2
= int_noise(integer_X
+ 1, integer_Y
, prime
);
916 const double v3
= int_noise(integer_X
, integer_Y
+ 1, prime
);
917 const double v4
= int_noise(integer_X
+ 1, integer_Y
+ 1, prime
);
919 const double i1
= linear_interpolate(v1
, v2
, fractional_X
);
920 const double i2
= linear_interpolate(v3
, v4
, fractional_X
);
922 return linear_interpolate(i1
, i2
, fractional_Y
);
927 * This is a similar function to the main perlin noise calculation, but uses
928 * the value p passed as a parameter rather than selected from the predefined
929 * sequences. as you can guess by its title, i use this to create the indented
930 * coastline, which is just another perlin sequence.
932 static double perlin_coast_noise_2D(const double x
, const double y
, const double p
, const int prime
)
937 for (i
= 0; i
< 6; i
++) {
938 const double frequency
= (double)(1 << i
);
939 const double amplitude
= pow(p
, (double)i
);
941 total
+= interpolated_noise((x
* frequency
) / 64.0, (y
* frequency
) / 64.0, prime
) * amplitude
;
948 /** A small helper function to initialize the terrain */
949 static void TgenSetTileHeight(TileIndex tile
, int height
)
951 SetTileHeight(tile
, height
);
953 /* Only clear the tiles within the map area. */
954 if (TileX(tile
) != MapMaxX() && TileY(tile
) != MapMaxY() &&
955 (!_settings_game
.construction
.freeform_edges
|| (TileX(tile
) != 0 && TileY(tile
) != 0))) {
956 MakeClear(tile
, CLEAR_GRASS
, 3);
961 * The main new land generator using Perlin noise. Desert landscape is handled
962 * different to all others to give a desert valley between two high mountains.
963 * Clearly if a low height terrain (flat/very flat) is chosen, then the tropic
964 * areas wont be high enough, and there will be very little tropic on the map.
965 * Thus Tropic works best on Hilly or Mountainous.
967 void GenerateTerrainPerlin()
971 if (!AllocHeightMap()) return;
972 GenerateWorldSetAbortCallback(FreeHeightMap
);
976 IncreaseGeneratingWorldProgress(GWP_LANDSCAPE
);
978 HeightMapNormalize();
980 IncreaseGeneratingWorldProgress(GWP_LANDSCAPE
);
982 /* First make sure the tiles at the north border are void tiles if needed. */
983 if (_settings_game
.construction
.freeform_edges
) {
984 for (y
= 0; y
< _height_map
.size_y
- 1; y
++) MakeVoid(_height_map
.size_x
* y
);
985 for (x
= 0; x
< _height_map
.size_x
; x
++) MakeVoid(x
);
988 /* Transfer height map into OTTD map */
989 for (y
= 0; y
< _height_map
.size_y
; y
++) {
990 for (x
= 0; x
< _height_map
.size_x
; x
++) {
991 int height
= H2I(_height_map
.height(x
, y
));
992 if (height
< 0) height
= 0;
993 if (height
> 15) height
= 15;
994 TgenSetTileHeight(TileXY(x
, y
), height
);
998 IncreaseGeneratingWorldProgress(GWP_LANDSCAPE
);
1001 GenerateWorldSetAbortCallback(NULL
);