6497440 The comments for IRE forwarding table is not updated with the new code
[opensolaris.git] / usr / src / uts / common / inet / ip / ip_if.c
blob31a67639ed683964e788fac5fc7c590a7414cc7f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
25 /* Copyright (c) 1990 Mentat Inc. */
27 #pragma ident "%Z%%M% %I% %E% SMI"
30 * This file contains the interface control functions for IP.
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/dlpi.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strlog.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/kstat.h>
44 #include <sys/debug.h>
45 #include <sys/zone.h>
46 #include <sys/sunldi.h>
47 #include <sys/file.h>
48 #include <sys/bitmap.h>
50 #include <sys/kmem.h>
51 #include <sys/systm.h>
52 #include <sys/param.h>
53 #include <sys/socket.h>
54 #include <sys/isa_defs.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_types.h>
58 #include <net/if_dl.h>
59 #include <net/route.h>
60 #include <sys/sockio.h>
61 #include <netinet/in.h>
62 #include <netinet/ip6.h>
63 #include <netinet/icmp6.h>
64 #include <netinet/igmp_var.h>
65 #include <sys/strsun.h>
66 #include <sys/policy.h>
67 #include <sys/ethernet.h>
69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */
70 #include <inet/mi.h>
71 #include <inet/nd.h>
72 #include <inet/arp.h>
73 #include <inet/mib2.h>
74 #include <inet/ip.h>
75 #include <inet/ip6.h>
76 #include <inet/ip6_asp.h>
77 #include <inet/tcp.h>
78 #include <inet/ip_multi.h>
79 #include <inet/ip_ire.h>
80 #include <inet/ip_ftable.h>
81 #include <inet/ip_rts.h>
82 #include <inet/ip_ndp.h>
83 #include <inet/ip_if.h>
84 #include <inet/ip_impl.h>
85 #include <inet/tun.h>
86 #include <inet/sctp_ip.h>
87 #include <inet/ip_netinfo.h>
88 #include <inet/mib2.h>
90 #include <net/pfkeyv2.h>
91 #include <inet/ipsec_info.h>
92 #include <inet/sadb.h>
93 #include <inet/ipsec_impl.h>
94 #include <sys/iphada.h>
97 #include <netinet/igmp.h>
98 #include <inet/ip_listutils.h>
99 #include <inet/ipclassifier.h>
100 #include <sys/mac.h>
102 #include <sys/systeminfo.h>
103 #include <sys/bootconf.h>
105 #include <sys/tsol/tndb.h>
106 #include <sys/tsol/tnet.h>
108 /* The character which tells where the ill_name ends */
109 #define IPIF_SEPARATOR_CHAR ':'
111 /* IP ioctl function table entry */
112 typedef struct ipft_s {
113 int ipft_cmd;
114 pfi_t ipft_pfi;
115 int ipft_min_size;
116 int ipft_flags;
117 } ipft_t;
118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */
119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */
121 typedef struct ip_sock_ar_s {
122 union {
123 area_t ip_sock_area;
124 ared_t ip_sock_ared;
125 areq_t ip_sock_areq;
126 } ip_sock_ar_u;
127 queue_t *ip_sock_ar_q;
128 } ip_sock_ar_t;
130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp,
132 char *value, caddr_t cp, cred_t *ioc_cr);
134 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
135 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type);
136 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
137 mblk_t *mp, boolean_t need_up);
138 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
139 mblk_t *mp, boolean_t need_up);
140 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
141 queue_t *q, mblk_t *mp, boolean_t need_up);
142 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
143 mblk_t *mp, boolean_t need_up);
144 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
145 mblk_t *mp);
146 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
147 queue_t *q, mblk_t *mp, boolean_t need_up);
148 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
149 int ioccmd, struct linkblk *li, boolean_t doconsist);
150 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
151 static void ip_wput_ioctl(queue_t *q, mblk_t *mp);
152 static void ipsq_flush(ill_t *ill);
154 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
155 queue_t *q, mblk_t *mp, boolean_t need_up);
156 static void ipsq_delete(ipsq_t *);
158 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type,
159 boolean_t initialize);
160 static void ipif_check_bcast_ires(ipif_t *test_ipif);
161 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
162 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
163 boolean_t isv6);
164 static void ipif_down_delete_ire(ire_t *ire, char *ipif);
165 static void ipif_delete_cache_ire(ire_t *, char *);
166 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
167 static void ipif_free(ipif_t *ipif);
168 static void ipif_free_tail(ipif_t *ipif);
169 static void ipif_mtu_change(ire_t *ire, char *ipif_arg);
170 static void ipif_multicast_down(ipif_t *ipif);
171 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif);
172 static void ipif_set_default(ipif_t *ipif);
173 static int ipif_set_values(queue_t *q, mblk_t *mp,
174 char *interf_name, uint_t *ppa);
175 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
176 queue_t *q);
177 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen,
178 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
179 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *);
180 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp);
181 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp);
183 static int ill_alloc_ppa(ill_if_t *, ill_t *);
184 static int ill_arp_off(ill_t *ill);
185 static int ill_arp_on(ill_t *ill);
186 static void ill_delete_interface_type(ill_if_t *);
187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
188 static void ill_dl_down(ill_t *ill);
189 static void ill_down(ill_t *ill);
190 static void ill_downi(ire_t *ire, char *ill_arg);
191 static void ill_free_mib(ill_t *ill);
192 static void ill_glist_delete(ill_t *);
193 static boolean_t ill_has_usable_ipif(ill_t *);
194 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int);
195 static void ill_nominate_bcast_rcv(ill_group_t *illgrp);
196 static void ill_phyint_free(ill_t *ill);
197 static void ill_phyint_reinit(ill_t *ill);
198 static void ill_set_nce_router_flags(ill_t *, boolean_t);
199 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
200 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t);
201 static boolean_t ill_split_ipsq(ipsq_t *cur_sq);
202 static void ill_stq_cache_delete(ire_t *, char *);
204 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *);
205 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *);
206 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
207 in6_addr_t *);
208 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
209 ipaddr_t *);
210 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *);
211 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
212 in6_addr_t *);
213 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
214 ipaddr_t *);
216 static void ipif_save_ire(ipif_t *, ire_t *);
217 static void ipif_remove_ire(ipif_t *, ire_t *);
218 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *);
219 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
222 * Per-ill IPsec capabilities management.
224 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void);
225 static void ill_ipsec_capab_free(ill_ipsec_capab_t *);
226 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t);
227 static void ill_ipsec_capab_delete(ill_t *, uint_t);
228 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int);
229 static void ill_capability_proto(ill_t *, int, mblk_t *);
230 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *,
231 boolean_t);
232 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
233 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
234 static void ill_capability_mdt_reset(ill_t *, mblk_t **);
235 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
236 static void ill_capability_ipsec_reset(ill_t *, mblk_t **);
237 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
238 static void ill_capability_hcksum_reset(ill_t *, mblk_t **);
239 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
240 dl_capability_sub_t *);
241 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **);
242 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
243 static void ill_capability_lso_reset(ill_t *, mblk_t **);
244 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
245 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *);
246 static void ill_capability_dls_reset(ill_t *, mblk_t **);
247 static void ill_capability_dls_disable(ill_t *);
249 static void illgrp_cache_delete(ire_t *, char *);
250 static void illgrp_delete(ill_t *ill);
251 static void illgrp_reset_schednext(ill_t *ill);
253 static ill_t *ill_prev_usesrc(ill_t *);
254 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
255 static void ill_disband_usesrc_group(ill_t *);
257 static void conn_cleanup_stale_ire(conn_t *, caddr_t);
259 #ifdef DEBUG
260 static void ill_trace_cleanup(const ill_t *);
261 static void ipif_trace_cleanup(const ipif_t *);
262 #endif
265 * if we go over the memory footprint limit more than once in this msec
266 * interval, we'll start pruning aggressively.
268 int ip_min_frag_prune_time = 0;
271 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY
272 * and the IPsec DOI
274 #define MAX_IPSEC_ALGS 256
276 #define BITSPERBYTE 8
277 #define BITS(type) (BITSPERBYTE * (long)sizeof (type))
279 #define IPSEC_ALG_ENABLE(algs, algid) \
280 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \
281 (1 << ((algid) % BITS(ipsec_capab_elem_t))))
283 #define IPSEC_ALG_IS_ENABLED(algid, algs) \
284 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \
285 (1 << ((algid) % BITS(ipsec_capab_elem_t))))
287 typedef uint8_t ipsec_capab_elem_t;
290 * Per-algorithm parameters. Note that at present, only encryption
291 * algorithms have variable keysize (IKE does not provide a way to negotiate
292 * auth algorithm keysize).
294 * All sizes here are in bits.
296 typedef struct
298 uint16_t minkeylen;
299 uint16_t maxkeylen;
300 } ipsec_capab_algparm_t;
303 * Per-ill capabilities.
305 struct ill_ipsec_capab_s {
306 ipsec_capab_elem_t *encr_hw_algs;
307 ipsec_capab_elem_t *auth_hw_algs;
308 uint32_t algs_size; /* size of _hw_algs in bytes */
309 /* algorithm key lengths */
310 ipsec_capab_algparm_t *encr_algparm;
311 uint32_t encr_algparm_size;
312 uint32_t encr_algparm_end;
316 * The field values are larger than strictly necessary for simple
317 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls.
319 static area_t ip_area_template = {
320 AR_ENTRY_ADD, /* area_cmd */
321 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl),
322 /* area_name_offset */
323 /* area_name_length temporarily holds this structure length */
324 sizeof (area_t), /* area_name_length */
325 IP_ARP_PROTO_TYPE, /* area_proto */
326 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */
327 IP_ADDR_LEN, /* area_proto_addr_length */
328 sizeof (ip_sock_ar_t) + IP_ADDR_LEN,
329 /* area_proto_mask_offset */
330 0, /* area_flags */
331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN,
332 /* area_hw_addr_offset */
333 /* Zero length hw_addr_length means 'use your idea of the address' */
334 0 /* area_hw_addr_length */
338 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver
339 * support
341 static area_t ip6_area_template = {
342 AR_ENTRY_ADD, /* area_cmd */
343 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t),
344 /* area_name_offset */
345 /* area_name_length temporarily holds this structure length */
346 sizeof (area_t), /* area_name_length */
347 IP_ARP_PROTO_TYPE, /* area_proto */
348 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */
349 IPV6_ADDR_LEN, /* area_proto_addr_length */
350 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN,
351 /* area_proto_mask_offset */
352 0, /* area_flags */
353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN,
354 /* area_hw_addr_offset */
355 /* Zero length hw_addr_length means 'use your idea of the address' */
356 0 /* area_hw_addr_length */
359 static ared_t ip_ared_template = {
360 AR_ENTRY_DELETE,
361 sizeof (ared_t) + IP_ADDR_LEN,
362 sizeof (ared_t),
363 IP_ARP_PROTO_TYPE,
364 sizeof (ared_t),
365 IP_ADDR_LEN
368 static ared_t ip6_ared_template = {
369 AR_ENTRY_DELETE,
370 sizeof (ared_t) + IPV6_ADDR_LEN,
371 sizeof (ared_t),
372 IP_ARP_PROTO_TYPE,
373 sizeof (ared_t),
374 IPV6_ADDR_LEN
378 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as
379 * as the areq doesn't include an IP address in ill_dl_up() (the only place a
380 * areq is used).
382 static areq_t ip_areq_template = {
383 AR_ENTRY_QUERY, /* cmd */
384 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */
385 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */
386 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */
387 sizeof (areq_t), /* target addr offset */
388 IP_ADDR_LEN, /* target addr_length */
389 0, /* flags */
390 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */
391 IP_ADDR_LEN, /* sender addr length */
392 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */
393 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */
394 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */
395 /* anything else filled in by the code */
398 static arc_t ip_aru_template = {
399 AR_INTERFACE_UP,
400 sizeof (arc_t), /* Name offset */
401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */
404 static arc_t ip_ard_template = {
405 AR_INTERFACE_DOWN,
406 sizeof (arc_t), /* Name offset */
407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */
410 static arc_t ip_aron_template = {
411 AR_INTERFACE_ON,
412 sizeof (arc_t), /* Name offset */
413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */
416 static arc_t ip_aroff_template = {
417 AR_INTERFACE_OFF,
418 sizeof (arc_t), /* Name offset */
419 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */
423 static arma_t ip_arma_multi_template = {
424 AR_MAPPING_ADD,
425 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN,
426 /* Name offset */
427 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */
428 IP_ARP_PROTO_TYPE,
429 sizeof (arma_t), /* proto_addr_offset */
430 IP_ADDR_LEN, /* proto_addr_length */
431 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */
432 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */
433 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */
434 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */
435 IP_MAX_HW_LEN, /* hw_addr_length */
436 0, /* hw_mapping_start */
439 static ipft_t ip_ioctl_ftbl[] = {
440 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
441 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
442 IPFT_F_NO_REPLY },
443 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t),
444 IPFT_F_NO_REPLY },
445 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
446 { 0 }
449 /* Simple ICMP IP Header Template */
450 static ipha_t icmp_ipha = {
451 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
454 /* Flag descriptors for ip_ipif_report */
455 static nv_t ipif_nv_tbl[] = {
456 { IPIF_UP, "UP" },
457 { IPIF_BROADCAST, "BROADCAST" },
458 { ILLF_DEBUG, "DEBUG" },
459 { PHYI_LOOPBACK, "LOOPBACK" },
460 { IPIF_POINTOPOINT, "POINTOPOINT" },
461 { ILLF_NOTRAILERS, "NOTRAILERS" },
462 { PHYI_RUNNING, "RUNNING" },
463 { ILLF_NOARP, "NOARP" },
464 { PHYI_PROMISC, "PROMISC" },
465 { PHYI_ALLMULTI, "ALLMULTI" },
466 { PHYI_INTELLIGENT, "INTELLIGENT" },
467 { ILLF_MULTICAST, "MULTICAST" },
468 { PHYI_MULTI_BCAST, "MULTI_BCAST" },
469 { IPIF_UNNUMBERED, "UNNUMBERED" },
470 { IPIF_DHCPRUNNING, "DHCP" },
471 { IPIF_PRIVATE, "PRIVATE" },
472 { IPIF_NOXMIT, "NOXMIT" },
473 { IPIF_NOLOCAL, "NOLOCAL" },
474 { IPIF_DEPRECATED, "DEPRECATED" },
475 { IPIF_PREFERRED, "PREFERRED" },
476 { IPIF_TEMPORARY, "TEMPORARY" },
477 { IPIF_ADDRCONF, "ADDRCONF" },
478 { PHYI_VIRTUAL, "VIRTUAL" },
479 { ILLF_ROUTER, "ROUTER" },
480 { ILLF_NONUD, "NONUD" },
481 { IPIF_ANYCAST, "ANYCAST" },
482 { ILLF_NORTEXCH, "NORTEXCH" },
483 { ILLF_IPV4, "IPV4" },
484 { ILLF_IPV6, "IPV6" },
485 { IPIF_NOFAILOVER, "NOFAILOVER" },
486 { PHYI_FAILED, "FAILED" },
487 { PHYI_STANDBY, "STANDBY" },
488 { PHYI_INACTIVE, "INACTIVE" },
489 { PHYI_OFFLINE, "OFFLINE" },
492 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
494 static ip_m_t ip_m_tbl[] = {
495 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
496 ip_ether_v6intfid },
497 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
498 ip_nodef_v6intfid },
499 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
500 ip_nodef_v6intfid },
501 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
502 ip_nodef_v6intfid },
503 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
504 ip_ether_v6intfid },
505 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo,
506 ip_ib_v6intfid },
507 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL},
508 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
509 ip_nodef_v6intfid }
512 static ill_t ill_null; /* Empty ILL for init. */
513 char ipif_loopback_name[] = "lo0";
514 static char *ipv4_forward_suffix = ":ip_forwarding";
515 static char *ipv6_forward_suffix = ":ip6_forwarding";
516 static sin6_t sin6_null; /* Zero address for quick clears */
517 static sin_t sin_null; /* Zero address for quick clears */
519 /* When set search for unused ipif_seqid */
520 static ipif_t ipif_zero;
523 * ppa arena is created after these many
524 * interfaces have been plumbed.
526 uint_t ill_no_arena = 12; /* Setable in /etc/system */
529 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout
530 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is
531 * set through platform specific code (Niagara/Ontario).
533 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \
534 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE)
536 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL)
538 static uint_t
539 ipif_rand(ip_stack_t *ipst)
541 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 +
542 12345;
543 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff);
547 * Allocate per-interface mibs.
548 * Returns true if ok. False otherwise.
549 * ipsq may not yet be allocated (loopback case ).
551 static boolean_t
552 ill_allocate_mibs(ill_t *ill)
554 /* Already allocated? */
555 if (ill->ill_ip_mib != NULL) {
556 if (ill->ill_isv6)
557 ASSERT(ill->ill_icmp6_mib != NULL);
558 return (B_TRUE);
561 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
562 KM_NOSLEEP);
563 if (ill->ill_ip_mib == NULL) {
564 return (B_FALSE);
567 /* Setup static information */
568 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
569 sizeof (mib2_ipIfStatsEntry_t));
570 if (ill->ill_isv6) {
571 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
572 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
573 sizeof (mib2_ipv6AddrEntry_t));
574 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
575 sizeof (mib2_ipv6RouteEntry_t));
576 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
577 sizeof (mib2_ipv6NetToMediaEntry_t));
578 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
579 sizeof (ipv6_member_t));
580 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
581 sizeof (ipv6_grpsrc_t));
582 } else {
583 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
584 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
585 sizeof (mib2_ipAddrEntry_t));
586 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
587 sizeof (mib2_ipRouteEntry_t));
588 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
589 sizeof (mib2_ipNetToMediaEntry_t));
590 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
591 sizeof (ip_member_t));
592 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
593 sizeof (ip_grpsrc_t));
596 * For a v4 ill, we are done at this point, because per ill
597 * icmp mibs are only used for v6.
599 return (B_TRUE);
602 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
603 KM_NOSLEEP);
604 if (ill->ill_icmp6_mib == NULL) {
605 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
606 ill->ill_ip_mib = NULL;
607 return (B_FALSE);
609 /* static icmp info */
610 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
611 sizeof (mib2_ipv6IfIcmpEntry_t);
613 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
614 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
615 * -> ill_phyint_reinit
617 return (B_TRUE);
621 * Common code for preparation of ARP commands. Two points to remember:
622 * 1) The ill_name is tacked on at the end of the allocated space so
623 * the templates name_offset field must contain the total space
624 * to allocate less the name length.
626 * 2) The templates name_length field should contain the *template*
627 * length. We use it as a parameter to bcopy() and then write
628 * the real ill_name_length into the name_length field of the copy.
629 * (Always called as writer.)
631 mblk_t *
632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr)
634 arc_t *arc = (arc_t *)template;
635 char *cp;
636 int len;
637 mblk_t *mp;
638 uint_t name_length = ill->ill_name_length;
639 uint_t template_len = arc->arc_name_length;
641 len = arc->arc_name_offset + name_length;
642 mp = allocb(len, BPRI_HI);
643 if (mp == NULL)
644 return (NULL);
645 cp = (char *)mp->b_rptr;
646 mp->b_wptr = (uchar_t *)&cp[len];
647 if (template_len)
648 bcopy(template, cp, template_len);
649 if (len > template_len)
650 bzero(&cp[template_len], len - template_len);
651 mp->b_datap->db_type = M_PROTO;
653 arc = (arc_t *)cp;
654 arc->arc_name_length = name_length;
655 cp = (char *)arc + arc->arc_name_offset;
656 bcopy(ill->ill_name, cp, name_length);
658 if (addr) {
659 area_t *area = (area_t *)mp->b_rptr;
661 cp = (char *)area + area->area_proto_addr_offset;
662 bcopy(addr, cp, area->area_proto_addr_length);
663 if (area->area_cmd == AR_ENTRY_ADD) {
664 cp = (char *)area;
665 len = area->area_proto_addr_length;
666 if (area->area_proto_mask_offset)
667 cp += area->area_proto_mask_offset;
668 else
669 cp += area->area_proto_addr_offset + len;
670 while (len-- > 0)
671 *cp++ = (char)~0;
674 return (mp);
677 mblk_t *
678 ipif_area_alloc(ipif_t *ipif)
680 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template,
681 (char *)&ipif->ipif_lcl_addr));
684 mblk_t *
685 ipif_ared_alloc(ipif_t *ipif)
687 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template,
688 (char *)&ipif->ipif_lcl_addr));
691 mblk_t *
692 ill_ared_alloc(ill_t *ill, ipaddr_t addr)
694 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
695 (char *)&addr));
699 * Completely vaporize a lower level tap and all associated interfaces.
700 * ill_delete is called only out of ip_close when the device control
701 * stream is being closed.
703 void
704 ill_delete(ill_t *ill)
706 ipif_t *ipif;
707 ill_t *prev_ill;
708 ip_stack_t *ipst = ill->ill_ipst;
711 * ill_delete may be forcibly entering the ipsq. The previous
712 * ioctl may not have completed and may need to be aborted.
713 * ipsq_flush takes care of it. If we don't need to enter the
714 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
715 * ill_delete_tail is sufficient.
717 ipsq_flush(ill);
720 * Nuke all interfaces. ipif_free will take down the interface,
721 * remove it from the list, and free the data structure.
722 * Walk down the ipif list and remove the logical interfaces
723 * first before removing the main ipif. We can't unplumb
724 * zeroth interface first in the case of IPv6 as reset_conn_ill
725 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking
726 * POINTOPOINT.
728 * If ill_ipif was not properly initialized (i.e low on memory),
729 * then no interfaces to clean up. In this case just clean up the
730 * ill.
732 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
733 ipif_free(ipif);
736 * Used only by ill_arp_on and ill_arp_off, which are writers.
737 * So nobody can be using this mp now. Free the mp allocated for
738 * honoring ILLF_NOARP
740 freemsg(ill->ill_arp_on_mp);
741 ill->ill_arp_on_mp = NULL;
743 /* Clean up msgs on pending upcalls for mrouted */
744 reset_mrt_ill(ill);
747 * ipif_free -> reset_conn_ipif will remove all multicast
748 * references for IPv4. For IPv6, we need to do it here as
749 * it points only at ills.
751 reset_conn_ill(ill);
754 * ill_down will arrange to blow off any IRE's dependent on this
755 * ILL, and shut down fragmentation reassembly.
757 ill_down(ill);
759 /* Let SCTP know, so that it can remove this from its list. */
760 sctp_update_ill(ill, SCTP_ILL_REMOVE);
763 * If an address on this ILL is being used as a source address then
764 * clear out the pointers in other ILLs that point to this ILL.
766 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
767 if (ill->ill_usesrc_grp_next != NULL) {
768 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
769 ill_disband_usesrc_group(ill);
770 } else { /* consumer of the usesrc ILL */
771 prev_ill = ill_prev_usesrc(ill);
772 prev_ill->ill_usesrc_grp_next =
773 ill->ill_usesrc_grp_next;
776 rw_exit(&ipst->ips_ill_g_usesrc_lock);
779 static void
780 ipif_non_duplicate(ipif_t *ipif)
782 ill_t *ill = ipif->ipif_ill;
783 mutex_enter(&ill->ill_lock);
784 if (ipif->ipif_flags & IPIF_DUPLICATE) {
785 ipif->ipif_flags &= ~IPIF_DUPLICATE;
786 ASSERT(ill->ill_ipif_dup_count > 0);
787 ill->ill_ipif_dup_count--;
789 mutex_exit(&ill->ill_lock);
793 * ill_delete_tail is called from ip_modclose after all references
794 * to the closing ill are gone. The wait is done in ip_modclose
796 void
797 ill_delete_tail(ill_t *ill)
799 mblk_t **mpp;
800 ipif_t *ipif;
801 ip_stack_t *ipst = ill->ill_ipst;
803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
804 ipif_non_duplicate(ipif);
805 ipif_down_tail(ipif);
808 ASSERT(ill->ill_ipif_dup_count == 0 &&
809 ill->ill_arp_down_mp == NULL &&
810 ill->ill_arp_del_mapping_mp == NULL);
813 * If polling capability is enabled (which signifies direct
814 * upcall into IP and driver has ill saved as a handle),
815 * we need to make sure that unbind has completed before we
816 * let the ill disappear and driver no longer has any reference
817 * to this ill.
819 mutex_enter(&ill->ill_lock);
820 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
821 cv_wait(&ill->ill_cv, &ill->ill_lock);
822 mutex_exit(&ill->ill_lock);
825 * Clean up polling and soft ring capabilities
827 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))
828 ill_capability_dls_disable(ill);
830 if (ill->ill_net_type != IRE_LOOPBACK)
831 qprocsoff(ill->ill_rq);
834 * We do an ipsq_flush once again now. New messages could have
835 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
836 * could also have landed up if an ioctl thread had looked up
837 * the ill before we set the ILL_CONDEMNED flag, but not yet
838 * enqueued the ioctl when we did the ipsq_flush last time.
840 ipsq_flush(ill);
843 * Free capabilities.
845 if (ill->ill_ipsec_capab_ah != NULL) {
846 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH);
847 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah);
848 ill->ill_ipsec_capab_ah = NULL;
851 if (ill->ill_ipsec_capab_esp != NULL) {
852 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP);
853 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp);
854 ill->ill_ipsec_capab_esp = NULL;
857 if (ill->ill_mdt_capab != NULL) {
858 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t));
859 ill->ill_mdt_capab = NULL;
862 if (ill->ill_hcksum_capab != NULL) {
863 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
864 ill->ill_hcksum_capab = NULL;
867 if (ill->ill_zerocopy_capab != NULL) {
868 kmem_free(ill->ill_zerocopy_capab,
869 sizeof (ill_zerocopy_capab_t));
870 ill->ill_zerocopy_capab = NULL;
873 if (ill->ill_lso_capab != NULL) {
874 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
875 ill->ill_lso_capab = NULL;
878 if (ill->ill_dls_capab != NULL) {
879 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn);
880 ill->ill_dls_capab->ill_unbind_conn = NULL;
881 kmem_free(ill->ill_dls_capab,
882 sizeof (ill_dls_capab_t) +
883 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS));
884 ill->ill_dls_capab = NULL;
887 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL));
889 while (ill->ill_ipif != NULL)
890 ipif_free_tail(ill->ill_ipif);
893 * We have removed all references to ilm from conn and the ones joined
894 * within the kernel.
896 * We don't walk conns, mrts and ires because
898 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts.
899 * 2) ill_down ->ill_downi walks all the ires and cleans up
900 * ill references.
902 ASSERT(ilm_walk_ill(ill) == 0);
904 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free
905 * could free the phyint. No more reference to the phyint after this
906 * point.
908 (void) ill_glist_delete(ill);
910 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
911 if (ill->ill_ndd_name != NULL)
912 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
913 rw_exit(&ipst->ips_ip_g_nd_lock);
916 if (ill->ill_frag_ptr != NULL) {
917 uint_t count;
919 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
920 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
922 mi_free(ill->ill_frag_ptr);
923 ill->ill_frag_ptr = NULL;
924 ill->ill_frag_hash_tbl = NULL;
927 freemsg(ill->ill_nd_lla_mp);
928 /* Free all retained control messages. */
929 mpp = &ill->ill_first_mp_to_free;
930 do {
931 while (mpp[0]) {
932 mblk_t *mp;
933 mblk_t *mp1;
935 mp = mpp[0];
936 mpp[0] = mp->b_next;
937 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
938 mp1->b_next = NULL;
939 mp1->b_prev = NULL;
941 freemsg(mp);
943 } while (mpp++ != &ill->ill_last_mp_to_free);
945 ill_free_mib(ill);
947 #ifdef DEBUG
948 ill_trace_cleanup(ill);
949 #endif
951 /* Drop refcnt here */
952 netstack_rele(ill->ill_ipst->ips_netstack);
953 ill->ill_ipst = NULL;
956 static void
957 ill_free_mib(ill_t *ill)
959 ip_stack_t *ipst = ill->ill_ipst;
962 * MIB statistics must not be lost, so when an interface
963 * goes away the counter values will be added to the global
964 * MIBs.
966 if (ill->ill_ip_mib != NULL) {
967 if (ill->ill_isv6) {
968 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
969 ill->ill_ip_mib);
970 } else {
971 ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
972 ill->ill_ip_mib);
975 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
976 ill->ill_ip_mib = NULL;
978 if (ill->ill_icmp6_mib != NULL) {
979 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
980 ill->ill_icmp6_mib);
981 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
982 ill->ill_icmp6_mib = NULL;
987 * Concatenate together a physical address and a sap.
989 * Sap_lengths are interpreted as follows:
990 * sap_length == 0 ==> no sap
991 * sap_length > 0 ==> sap is at the head of the dlpi address
992 * sap_length < 0 ==> sap is at the tail of the dlpi address
994 static void
995 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
996 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
998 uint16_t sap_addr = (uint16_t)sap_src;
1000 if (sap_length == 0) {
1001 if (phys_src == NULL)
1002 bzero(dst, phys_length);
1003 else
1004 bcopy(phys_src, dst, phys_length);
1005 } else if (sap_length < 0) {
1006 if (phys_src == NULL)
1007 bzero(dst, phys_length);
1008 else
1009 bcopy(phys_src, dst, phys_length);
1010 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
1011 } else {
1012 bcopy(&sap_addr, dst, sizeof (sap_addr));
1013 if (phys_src == NULL)
1014 bzero((char *)dst + sap_length, phys_length);
1015 else
1016 bcopy(phys_src, (char *)dst + sap_length, phys_length);
1021 * Generate a dl_unitdata_req mblk for the device and address given.
1022 * addr_length is the length of the physical portion of the address.
1023 * If addr is NULL include an all zero address of the specified length.
1024 * TRUE? In any case, addr_length is taken to be the entire length of the
1025 * dlpi address, including the absolute value of sap_length.
1027 mblk_t *
1028 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
1029 t_scalar_t sap_length)
1031 dl_unitdata_req_t *dlur;
1032 mblk_t *mp;
1033 t_scalar_t abs_sap_length; /* absolute value */
1035 abs_sap_length = ABS(sap_length);
1036 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
1037 DL_UNITDATA_REQ);
1038 if (mp == NULL)
1039 return (NULL);
1040 dlur = (dl_unitdata_req_t *)mp->b_rptr;
1041 /* HACK: accomodate incompatible DLPI drivers */
1042 if (addr_length == 8)
1043 addr_length = 6;
1044 dlur->dl_dest_addr_length = addr_length + abs_sap_length;
1045 dlur->dl_dest_addr_offset = sizeof (*dlur);
1046 dlur->dl_priority.dl_min = 0;
1047 dlur->dl_priority.dl_max = 0;
1048 ill_dlur_copy_address(addr, addr_length, sap, sap_length,
1049 (uchar_t *)&dlur[1]);
1050 return (mp);
1054 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp
1055 * Return an error if we already have 1 or more ioctls in progress.
1056 * This is used only for non-exclusive ioctls. Currently this is used
1057 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive
1058 * and thus need to use ipsq_pending_mp_add.
1060 boolean_t
1061 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp)
1063 ASSERT(MUTEX_HELD(&ill->ill_lock));
1064 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1066 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls.
1068 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) ||
1069 (add_mp->b_datap->db_type == M_IOCTL));
1071 ASSERT(MUTEX_HELD(&connp->conn_lock));
1073 * Return error if the conn has started closing. The conn
1074 * could have finished cleaning up the pending mp list,
1075 * If so we should not add another mp to the list negating
1076 * the cleanup.
1078 if (connp->conn_state_flags & CONN_CLOSING)
1079 return (B_FALSE);
1081 * Add the pending mp to the head of the list, chained by b_next.
1082 * Note down the conn on which the ioctl request came, in b_prev.
1083 * This will be used to later get the conn, when we get a response
1084 * on the ill queue, from some other module (typically arp)
1086 add_mp->b_next = (void *)ill->ill_pending_mp;
1087 add_mp->b_queue = CONNP_TO_WQ(connp);
1088 ill->ill_pending_mp = add_mp;
1089 if (connp != NULL)
1090 connp->conn_oper_pending_ill = ill;
1091 return (B_TRUE);
1095 * Retrieve the ill_pending_mp and return it. We have to walk the list
1096 * of mblks starting at ill_pending_mp, and match based on the ioc_id.
1098 mblk_t *
1099 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id)
1101 mblk_t *prev = NULL;
1102 mblk_t *curr = NULL;
1103 uint_t id;
1104 conn_t *connp;
1107 * When the conn closes, conn_ioctl_cleanup needs to clean
1108 * up the pending mp, but it does not know the ioc_id and
1109 * passes in a zero for it.
1111 mutex_enter(&ill->ill_lock);
1112 if (ioc_id != 0)
1113 *connpp = NULL;
1115 /* Search the list for the appropriate ioctl based on ioc_id */
1116 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL;
1117 prev = curr, curr = curr->b_next) {
1118 id = ((struct iocblk *)curr->b_rptr)->ioc_id;
1119 connp = Q_TO_CONN(curr->b_queue);
1120 /* Match based on the ioc_id or based on the conn */
1121 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp))
1122 break;
1125 if (curr != NULL) {
1126 /* Unlink the mblk from the pending mp list */
1127 if (prev != NULL) {
1128 prev->b_next = curr->b_next;
1129 } else {
1130 ASSERT(ill->ill_pending_mp == curr);
1131 ill->ill_pending_mp = curr->b_next;
1135 * conn refcnt must have been bumped up at the start of
1136 * the ioctl. So we can safely access the conn.
1138 ASSERT(CONN_Q(curr->b_queue));
1139 *connpp = Q_TO_CONN(curr->b_queue);
1140 curr->b_next = NULL;
1141 curr->b_queue = NULL;
1144 mutex_exit(&ill->ill_lock);
1146 return (curr);
1150 * Add the pending mp to the list. There can be only 1 pending mp
1151 * in the list. Any exclusive ioctl that needs to wait for a response
1152 * from another module or driver needs to use this function to set
1153 * the ipsq_pending_mp to the ioctl mblk and wait for the response from
1154 * the other module/driver. This is also used while waiting for the
1155 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
1157 boolean_t
1158 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
1159 int waitfor)
1161 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
1163 ASSERT(IAM_WRITER_IPIF(ipif));
1164 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
1165 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1166 ASSERT(ipsq->ipsq_pending_mp == NULL);
1168 * The caller may be using a different ipif than the one passed into
1169 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
1170 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT
1171 * that `ipsq_current_ipif == ipif'.
1173 ASSERT(ipsq->ipsq_current_ipif != NULL);
1176 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls,
1177 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver.
1179 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) ||
1180 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) ||
1181 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO));
1183 if (connp != NULL) {
1184 ASSERT(MUTEX_HELD(&connp->conn_lock));
1186 * Return error if the conn has started closing. The conn
1187 * could have finished cleaning up the pending mp list,
1188 * If so we should not add another mp to the list negating
1189 * the cleanup.
1191 if (connp->conn_state_flags & CONN_CLOSING)
1192 return (B_FALSE);
1194 mutex_enter(&ipsq->ipsq_lock);
1195 ipsq->ipsq_pending_ipif = ipif;
1197 * Note down the queue in b_queue. This will be returned by
1198 * ipsq_pending_mp_get. Caller will then use these values to restart
1199 * the processing
1201 add_mp->b_next = NULL;
1202 add_mp->b_queue = q;
1203 ipsq->ipsq_pending_mp = add_mp;
1204 ipsq->ipsq_waitfor = waitfor;
1206 if (connp != NULL)
1207 connp->conn_oper_pending_ill = ipif->ipif_ill;
1208 mutex_exit(&ipsq->ipsq_lock);
1209 return (B_TRUE);
1213 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp
1214 * queued in the list.
1216 mblk_t *
1217 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
1219 mblk_t *curr = NULL;
1221 mutex_enter(&ipsq->ipsq_lock);
1222 *connpp = NULL;
1223 if (ipsq->ipsq_pending_mp == NULL) {
1224 mutex_exit(&ipsq->ipsq_lock);
1225 return (NULL);
1228 /* There can be only 1 such excl message */
1229 curr = ipsq->ipsq_pending_mp;
1230 ASSERT(curr != NULL && curr->b_next == NULL);
1231 ipsq->ipsq_pending_ipif = NULL;
1232 ipsq->ipsq_pending_mp = NULL;
1233 ipsq->ipsq_waitfor = 0;
1234 mutex_exit(&ipsq->ipsq_lock);
1236 if (CONN_Q(curr->b_queue)) {
1238 * This mp did a refhold on the conn, at the start of the ioctl.
1239 * So we can safely return a pointer to the conn to the caller.
1241 *connpp = Q_TO_CONN(curr->b_queue);
1242 } else {
1243 *connpp = NULL;
1245 curr->b_next = NULL;
1246 curr->b_prev = NULL;
1247 return (curr);
1251 * Cleanup the ioctl mp queued in ipsq_pending_mp
1252 * - Called in the ill_delete path
1253 * - Called in the M_ERROR or M_HANGUP path on the ill.
1254 * - Called in the conn close path.
1256 boolean_t
1257 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
1259 mblk_t *mp;
1260 ipsq_t *ipsq;
1261 queue_t *q;
1262 ipif_t *ipif;
1264 ASSERT(IAM_WRITER_ILL(ill));
1265 ipsq = ill->ill_phyint->phyint_ipsq;
1266 mutex_enter(&ipsq->ipsq_lock);
1268 * If connp is null, unconditionally clean up the ipsq_pending_mp.
1269 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
1270 * even if it is meant for another ill, since we have to enqueue
1271 * a new mp now in ipsq_pending_mp to complete the ipif_down.
1272 * If connp is non-null we are called from the conn close path.
1274 mp = ipsq->ipsq_pending_mp;
1275 if (mp == NULL || (connp != NULL &&
1276 mp->b_queue != CONNP_TO_WQ(connp))) {
1277 mutex_exit(&ipsq->ipsq_lock);
1278 return (B_FALSE);
1280 /* Now remove from the ipsq_pending_mp */
1281 ipsq->ipsq_pending_mp = NULL;
1282 q = mp->b_queue;
1283 mp->b_next = NULL;
1284 mp->b_prev = NULL;
1285 mp->b_queue = NULL;
1287 /* If MOVE was in progress, clear the move_in_progress fields also. */
1288 ill = ipsq->ipsq_pending_ipif->ipif_ill;
1289 if (ill->ill_move_in_progress) {
1290 ILL_CLEAR_MOVE(ill);
1291 } else if (ill->ill_up_ipifs) {
1292 ill_group_cleanup(ill);
1295 ipif = ipsq->ipsq_pending_ipif;
1296 ipsq->ipsq_pending_ipif = NULL;
1297 ipsq->ipsq_waitfor = 0;
1298 ipsq->ipsq_current_ipif = NULL;
1299 ipsq->ipsq_current_ioctl = 0;
1300 mutex_exit(&ipsq->ipsq_lock);
1302 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
1303 if (connp == NULL) {
1304 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1305 } else {
1306 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
1307 mutex_enter(&ipif->ipif_ill->ill_lock);
1308 ipif->ipif_state_flags &= ~IPIF_CHANGING;
1309 mutex_exit(&ipif->ipif_ill->ill_lock);
1311 } else {
1313 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
1314 * be just inet_freemsg. we have to restart it
1315 * otherwise the thread will be stuck.
1317 inet_freemsg(mp);
1319 return (B_TRUE);
1323 * The ill is closing. Cleanup all the pending mps. Called exclusively
1324 * towards the end of ill_delete. The refcount has gone to 0. So nobody
1325 * knows this ill, and hence nobody can add an mp to this list
1327 static void
1328 ill_pending_mp_cleanup(ill_t *ill)
1330 mblk_t *mp;
1331 queue_t *q;
1333 ASSERT(IAM_WRITER_ILL(ill));
1335 mutex_enter(&ill->ill_lock);
1337 * Every mp on the pending mp list originating from an ioctl
1338 * added 1 to the conn refcnt, at the start of the ioctl.
1339 * So bump it down now. See comments in ip_wput_nondata()
1341 while (ill->ill_pending_mp != NULL) {
1342 mp = ill->ill_pending_mp;
1343 ill->ill_pending_mp = mp->b_next;
1344 mutex_exit(&ill->ill_lock);
1346 q = mp->b_queue;
1347 ASSERT(CONN_Q(q));
1348 mp->b_next = NULL;
1349 mp->b_prev = NULL;
1350 mp->b_queue = NULL;
1351 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1352 mutex_enter(&ill->ill_lock);
1354 ill->ill_pending_ipif = NULL;
1356 mutex_exit(&ill->ill_lock);
1360 * Called in the conn close path and ill delete path
1362 static void
1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
1365 ipsq_t *ipsq;
1366 mblk_t *prev;
1367 mblk_t *curr;
1368 mblk_t *next;
1369 queue_t *q;
1370 mblk_t *tmp_list = NULL;
1372 ASSERT(IAM_WRITER_ILL(ill));
1373 if (connp != NULL)
1374 q = CONNP_TO_WQ(connp);
1375 else
1376 q = ill->ill_wq;
1378 ipsq = ill->ill_phyint->phyint_ipsq;
1380 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
1381 * In the case of ioctl from a conn, there can be only 1 mp
1382 * queued on the ipsq. If an ill is being unplumbed, only messages
1383 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
1384 * ioctls meant for this ill form conn's are not flushed. They will
1385 * be processed during ipsq_exit and will not find the ill and will
1386 * return error.
1388 mutex_enter(&ipsq->ipsq_lock);
1389 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
1390 curr = next) {
1391 next = curr->b_next;
1392 if (curr->b_queue == q || curr->b_queue == RD(q)) {
1393 /* Unlink the mblk from the pending mp list */
1394 if (prev != NULL) {
1395 prev->b_next = curr->b_next;
1396 } else {
1397 ASSERT(ipsq->ipsq_xopq_mphead == curr);
1398 ipsq->ipsq_xopq_mphead = curr->b_next;
1400 if (ipsq->ipsq_xopq_mptail == curr)
1401 ipsq->ipsq_xopq_mptail = prev;
1403 * Create a temporary list and release the ipsq lock
1404 * New elements are added to the head of the tmp_list
1406 curr->b_next = tmp_list;
1407 tmp_list = curr;
1408 } else {
1409 prev = curr;
1412 mutex_exit(&ipsq->ipsq_lock);
1414 while (tmp_list != NULL) {
1415 curr = tmp_list;
1416 tmp_list = curr->b_next;
1417 curr->b_next = NULL;
1418 curr->b_prev = NULL;
1419 curr->b_queue = NULL;
1420 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1421 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
1422 CONN_CLOSE : NO_COPYOUT, NULL);
1423 } else {
1425 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1426 * this can't be just inet_freemsg. we have to
1427 * restart it otherwise the thread will be stuck.
1429 inet_freemsg(curr);
1435 * This conn has started closing. Cleanup any pending ioctl from this conn.
1436 * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
1438 void
1439 conn_ioctl_cleanup(conn_t *connp)
1441 mblk_t *curr;
1442 ipsq_t *ipsq;
1443 ill_t *ill;
1444 boolean_t refheld;
1447 * Is any exclusive ioctl pending ? If so clean it up. If the
1448 * ioctl has not yet started, the mp is pending in the list headed by
1449 * ipsq_xopq_head. If the ioctl has started the mp could be present in
1450 * ipsq_pending_mp. If the ioctl timed out in the streamhead but
1451 * is currently executing now the mp is not queued anywhere but
1452 * conn_oper_pending_ill is null. The conn close will wait
1453 * till the conn_ref drops to zero.
1455 mutex_enter(&connp->conn_lock);
1456 ill = connp->conn_oper_pending_ill;
1457 if (ill == NULL) {
1458 mutex_exit(&connp->conn_lock);
1459 return;
1462 curr = ill_pending_mp_get(ill, &connp, 0);
1463 if (curr != NULL) {
1464 mutex_exit(&connp->conn_lock);
1465 CONN_DEC_REF(connp);
1466 inet_freemsg(curr);
1467 return;
1470 * We may not be able to refhold the ill if the ill/ipif
1471 * is changing. But we need to make sure that the ill will
1472 * not vanish. So we just bump up the ill_waiter count.
1474 refheld = ill_waiter_inc(ill);
1475 mutex_exit(&connp->conn_lock);
1476 if (refheld) {
1477 if (ipsq_enter(ill, B_TRUE)) {
1478 ill_waiter_dcr(ill);
1480 * Check whether this ioctl has started and is
1481 * pending now in ipsq_pending_mp. If it is not
1482 * found there then check whether this ioctl has
1483 * not even started and is in the ipsq_xopq list.
1485 if (!ipsq_pending_mp_cleanup(ill, connp))
1486 ipsq_xopq_mp_cleanup(ill, connp);
1487 ipsq = ill->ill_phyint->phyint_ipsq;
1488 ipsq_exit(ipsq, B_TRUE, B_TRUE);
1489 return;
1494 * The ill is also closing and we could not bump up the
1495 * ill_waiter_count or we could not enter the ipsq. Leave
1496 * the cleanup to ill_delete
1498 mutex_enter(&connp->conn_lock);
1499 while (connp->conn_oper_pending_ill != NULL)
1500 cv_wait(&connp->conn_refcv, &connp->conn_lock);
1501 mutex_exit(&connp->conn_lock);
1502 if (refheld)
1503 ill_waiter_dcr(ill);
1507 * ipcl_walk function for cleaning up conn_*_ill fields.
1509 static void
1510 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1512 ill_t *ill = (ill_t *)arg;
1513 ire_t *ire;
1515 mutex_enter(&connp->conn_lock);
1516 if (connp->conn_multicast_ill == ill) {
1517 /* Revert to late binding */
1518 connp->conn_multicast_ill = NULL;
1519 connp->conn_orig_multicast_ifindex = 0;
1521 if (connp->conn_incoming_ill == ill)
1522 connp->conn_incoming_ill = NULL;
1523 if (connp->conn_outgoing_ill == ill)
1524 connp->conn_outgoing_ill = NULL;
1525 if (connp->conn_outgoing_pill == ill)
1526 connp->conn_outgoing_pill = NULL;
1527 if (connp->conn_nofailover_ill == ill)
1528 connp->conn_nofailover_ill = NULL;
1529 if (connp->conn_xmit_if_ill == ill)
1530 connp->conn_xmit_if_ill = NULL;
1531 if (connp->conn_ire_cache != NULL) {
1532 ire = connp->conn_ire_cache;
1534 * ip_newroute creates IRE_CACHE with ire_stq coming from
1535 * interface X and ipif coming from interface Y, if interface
1536 * X and Y are part of the same IPMPgroup. Thus whenever
1537 * interface X goes down, remove all references to it by
1538 * checking both on ire_ipif and ire_stq.
1540 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1541 (ire->ire_type == IRE_CACHE &&
1542 ire->ire_stq == ill->ill_wq)) {
1543 connp->conn_ire_cache = NULL;
1544 mutex_exit(&connp->conn_lock);
1545 ire_refrele_notr(ire);
1546 return;
1549 mutex_exit(&connp->conn_lock);
1553 /* ARGSUSED */
1554 void
1555 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1557 ill_t *ill = q->q_ptr;
1558 ipif_t *ipif;
1560 ASSERT(IAM_WRITER_IPSQ(ipsq));
1561 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1562 ipif_non_duplicate(ipif);
1563 ipif_down_tail(ipif);
1565 freemsg(mp);
1566 ipsq_current_finish(ipsq);
1570 * ill_down_start is called when we want to down this ill and bring it up again
1571 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1572 * all interfaces, but don't tear down any plumbing.
1574 boolean_t
1575 ill_down_start(queue_t *q, mblk_t *mp)
1577 ill_t *ill = q->q_ptr;
1578 ipif_t *ipif;
1580 ASSERT(IAM_WRITER_ILL(ill));
1582 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1583 (void) ipif_down(ipif, NULL, NULL);
1585 ill_down(ill);
1587 (void) ipsq_pending_mp_cleanup(ill, NULL);
1589 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1592 * Atomically test and add the pending mp if references are active.
1594 mutex_enter(&ill->ill_lock);
1595 if (!ill_is_quiescent(ill)) {
1596 /* call cannot fail since `conn_t *' argument is NULL */
1597 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1598 mp, ILL_DOWN);
1599 mutex_exit(&ill->ill_lock);
1600 return (B_FALSE);
1602 mutex_exit(&ill->ill_lock);
1603 return (B_TRUE);
1606 static void
1607 ill_down(ill_t *ill)
1609 ip_stack_t *ipst = ill->ill_ipst;
1611 /* Blow off any IREs dependent on this ILL. */
1612 ire_walk(ill_downi, (char *)ill, ipst);
1614 /* Remove any conn_*_ill depending on this ill */
1615 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1617 if (ill->ill_group != NULL) {
1618 illgrp_delete(ill);
1623 * ire_walk routine used to delete every IRE that depends on queues
1624 * associated with 'ill'. (Always called as writer.)
1626 static void
1627 ill_downi(ire_t *ire, char *ill_arg)
1629 ill_t *ill = (ill_t *)ill_arg;
1632 * ip_newroute creates IRE_CACHE with ire_stq coming from
1633 * interface X and ipif coming from interface Y, if interface
1634 * X and Y are part of the same IPMP group. Thus whenever interface
1635 * X goes down, remove all references to it by checking both
1636 * on ire_ipif and ire_stq.
1638 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1639 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) {
1640 ire_delete(ire);
1645 * Remove ire/nce from the fastpath list.
1647 void
1648 ill_fastpath_nack(ill_t *ill)
1650 nce_fastpath_list_dispatch(ill, NULL, NULL);
1653 /* Consume an M_IOCACK of the fastpath probe. */
1654 void
1655 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1657 mblk_t *mp1 = mp;
1660 * If this was the first attempt turn on the fastpath probing.
1662 mutex_enter(&ill->ill_lock);
1663 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1664 ill->ill_dlpi_fastpath_state = IDS_OK;
1665 mutex_exit(&ill->ill_lock);
1667 /* Free the M_IOCACK mblk, hold on to the data */
1668 mp = mp->b_cont;
1669 freeb(mp1);
1670 if (mp == NULL)
1671 return;
1672 if (mp->b_cont != NULL) {
1674 * Update all IRE's or NCE's that are waiting for
1675 * fastpath update.
1677 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp);
1678 mp1 = mp->b_cont;
1679 freeb(mp);
1680 mp = mp1;
1681 } else {
1682 ip0dbg(("ill_fastpath_ack: no b_cont\n"));
1685 freeb(mp);
1689 * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1690 * The data portion of the request is a dl_unitdata_req_t template for
1691 * what we would send downstream in the absence of a fastpath confirmation.
1694 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1696 struct iocblk *ioc;
1697 mblk_t *mp;
1699 if (dlur_mp == NULL)
1700 return (EINVAL);
1702 mutex_enter(&ill->ill_lock);
1703 switch (ill->ill_dlpi_fastpath_state) {
1704 case IDS_FAILED:
1706 * Driver NAKed the first fastpath ioctl - assume it doesn't
1707 * support it.
1709 mutex_exit(&ill->ill_lock);
1710 return (ENOTSUP);
1711 case IDS_UNKNOWN:
1712 /* This is the first probe */
1713 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1714 break;
1715 default:
1716 break;
1718 mutex_exit(&ill->ill_lock);
1720 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1721 return (EAGAIN);
1723 mp->b_cont = copyb(dlur_mp);
1724 if (mp->b_cont == NULL) {
1725 freeb(mp);
1726 return (EAGAIN);
1729 ioc = (struct iocblk *)mp->b_rptr;
1730 ioc->ioc_count = msgdsize(mp->b_cont);
1732 putnext(ill->ill_wq, mp);
1733 return (0);
1736 void
1737 ill_capability_probe(ill_t *ill)
1740 * Do so only if capabilities are still unknown.
1742 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN)
1743 return;
1745 ill->ill_dlpi_capab_state = IDS_INPROGRESS;
1746 ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1747 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL);
1750 void
1751 ill_capability_reset(ill_t *ill)
1753 mblk_t *sc_mp = NULL;
1754 mblk_t *tmp;
1757 * Note here that we reset the state to UNKNOWN, and later send
1758 * down the DL_CAPABILITY_REQ without first setting the state to
1759 * INPROGRESS. We do this in order to distinguish the
1760 * DL_CAPABILITY_ACK response which may come back in response to
1761 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would
1762 * also handle the case where the driver doesn't send us back
1763 * a DL_CAPABILITY_ACK in response, since the "probe" routine
1764 * requires the state to be in UNKNOWN anyway. In any case, all
1765 * features are turned off until the state reaches IDS_OK.
1767 ill->ill_dlpi_capab_state = IDS_UNKNOWN;
1768 ill->ill_capab_reneg = B_FALSE;
1771 * Disable sub-capabilities and request a list of sub-capability
1772 * messages which will be sent down to the driver. Each handler
1773 * allocates the corresponding dl_capability_sub_t inside an
1774 * mblk, and links it to the existing sc_mp mblk, or return it
1775 * as sc_mp if it's the first sub-capability (the passed in
1776 * sc_mp is NULL). Upon returning from all capability handlers,
1777 * sc_mp will be pulled-up, before passing it downstream.
1779 ill_capability_mdt_reset(ill, &sc_mp);
1780 ill_capability_hcksum_reset(ill, &sc_mp);
1781 ill_capability_zerocopy_reset(ill, &sc_mp);
1782 ill_capability_ipsec_reset(ill, &sc_mp);
1783 ill_capability_dls_reset(ill, &sc_mp);
1784 ill_capability_lso_reset(ill, &sc_mp);
1786 /* Nothing to send down in order to disable the capabilities? */
1787 if (sc_mp == NULL)
1788 return;
1790 tmp = msgpullup(sc_mp, -1);
1791 freemsg(sc_mp);
1792 if ((sc_mp = tmp) == NULL) {
1793 cmn_err(CE_WARN, "ill_capability_reset: unable to send down "
1794 "DL_CAPABILITY_REQ (ENOMEM)\n");
1795 return;
1798 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n"));
1799 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp);
1803 * Request or set new-style hardware capabilities supported by DLS provider.
1805 static void
1806 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp)
1808 mblk_t *mp;
1809 dl_capability_req_t *capb;
1810 size_t size = 0;
1811 uint8_t *ptr;
1813 if (reqp != NULL)
1814 size = MBLKL(reqp);
1816 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type);
1817 if (mp == NULL) {
1818 freemsg(reqp);
1819 return;
1821 ptr = mp->b_rptr;
1823 capb = (dl_capability_req_t *)ptr;
1824 ptr += sizeof (dl_capability_req_t);
1826 if (reqp != NULL) {
1827 capb->dl_sub_offset = sizeof (dl_capability_req_t);
1828 capb->dl_sub_length = size;
1829 bcopy(reqp->b_rptr, ptr, size);
1830 ptr += size;
1831 mp->b_cont = reqp->b_cont;
1832 freeb(reqp);
1834 ASSERT(ptr == mp->b_wptr);
1836 ill_dlpi_send(ill, mp);
1839 static void
1840 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1842 dl_capab_id_t *id_ic;
1843 uint_t sub_dl_cap = outers->dl_cap;
1844 dl_capability_sub_t *inners;
1845 uint8_t *capend;
1847 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1850 * Note: range checks here are not absolutely sufficient to
1851 * make us robust against malformed messages sent by drivers;
1852 * this is in keeping with the rest of IP's dlpi handling.
1853 * (Remember, it's coming from something else in the kernel
1854 * address space)
1857 capend = (uint8_t *)(outers + 1) + outers->dl_length;
1858 if (capend > mp->b_wptr) {
1859 cmn_err(CE_WARN, "ill_capability_id_ack: "
1860 "malformed sub-capability too long for mblk");
1861 return;
1864 id_ic = (dl_capab_id_t *)(outers + 1);
1866 if (outers->dl_length < sizeof (*id_ic) ||
1867 (inners = &id_ic->id_subcap,
1868 inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1869 cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1870 "encapsulated capab type %d too long for mblk",
1871 inners->dl_cap);
1872 return;
1875 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1876 ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1877 "isn't as expected; pass-thru module(s) detected, "
1878 "discarding capability\n", inners->dl_cap));
1879 return;
1882 /* Process the encapsulated sub-capability */
1883 ill_capability_dispatch(ill, mp, inners, B_TRUE);
1887 * Process Multidata Transmit capability negotiation ack received from a
1888 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a
1889 * DL_CAPABILITY_ACK message.
1891 static void
1892 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1894 mblk_t *nmp = NULL;
1895 dl_capability_req_t *oc;
1896 dl_capab_mdt_t *mdt_ic, *mdt_oc;
1897 ill_mdt_capab_t **ill_mdt_capab;
1898 uint_t sub_dl_cap = isub->dl_cap;
1899 uint8_t *capend;
1901 ASSERT(sub_dl_cap == DL_CAPAB_MDT);
1903 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab;
1906 * Note: range checks here are not absolutely sufficient to
1907 * make us robust against malformed messages sent by drivers;
1908 * this is in keeping with the rest of IP's dlpi handling.
1909 * (Remember, it's coming from something else in the kernel
1910 * address space)
1913 capend = (uint8_t *)(isub + 1) + isub->dl_length;
1914 if (capend > mp->b_wptr) {
1915 cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1916 "malformed sub-capability too long for mblk");
1917 return;
1920 mdt_ic = (dl_capab_mdt_t *)(isub + 1);
1922 if (mdt_ic->mdt_version != MDT_VERSION_2) {
1923 cmn_err(CE_CONT, "ill_capability_mdt_ack: "
1924 "unsupported MDT sub-capability (version %d, expected %d)",
1925 mdt_ic->mdt_version, MDT_VERSION_2);
1926 return;
1929 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) {
1930 ip1dbg(("ill_capability_mdt_ack: mid token for MDT "
1931 "capability isn't as expected; pass-thru module(s) "
1932 "detected, discarding capability\n"));
1933 return;
1936 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) {
1938 if (*ill_mdt_capab == NULL) {
1939 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t),
1940 KM_NOSLEEP);
1942 if (*ill_mdt_capab == NULL) {
1943 cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1944 "could not enable MDT version %d "
1945 "for %s (ENOMEM)\n", MDT_VERSION_2,
1946 ill->ill_name);
1947 return;
1951 ip1dbg(("ill_capability_mdt_ack: interface %s supports "
1952 "MDT version %d (%d bytes leading, %d bytes trailing "
1953 "header spaces, %d max pld bufs, %d span limit)\n",
1954 ill->ill_name, MDT_VERSION_2,
1955 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail,
1956 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit));
1958 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2;
1959 (*ill_mdt_capab)->ill_mdt_on = 1;
1961 * Round the following values to the nearest 32-bit; ULP
1962 * may further adjust them to accomodate for additional
1963 * protocol headers. We pass these values to ULP during
1964 * bind time.
1966 (*ill_mdt_capab)->ill_mdt_hdr_head =
1967 roundup(mdt_ic->mdt_hdr_head, 4);
1968 (*ill_mdt_capab)->ill_mdt_hdr_tail =
1969 roundup(mdt_ic->mdt_hdr_tail, 4);
1970 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld;
1971 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit;
1973 ill->ill_capabilities |= ILL_CAPAB_MDT;
1974 } else {
1975 uint_t size;
1976 uchar_t *rptr;
1978 size = sizeof (dl_capability_req_t) +
1979 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
1981 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
1982 cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1983 "could not enable MDT for %s (ENOMEM)\n",
1984 ill->ill_name);
1985 return;
1988 rptr = nmp->b_rptr;
1989 /* initialize dl_capability_req_t */
1990 oc = (dl_capability_req_t *)nmp->b_rptr;
1991 oc->dl_sub_offset = sizeof (dl_capability_req_t);
1992 oc->dl_sub_length = sizeof (dl_capability_sub_t) +
1993 sizeof (dl_capab_mdt_t);
1994 nmp->b_rptr += sizeof (dl_capability_req_t);
1996 /* initialize dl_capability_sub_t */
1997 bcopy(isub, nmp->b_rptr, sizeof (*isub));
1998 nmp->b_rptr += sizeof (*isub);
2000 /* initialize dl_capab_mdt_t */
2001 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr;
2002 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic));
2004 nmp->b_rptr = rptr;
2006 ip1dbg(("ill_capability_mdt_ack: asking interface %s "
2007 "to enable MDT version %d\n", ill->ill_name,
2008 MDT_VERSION_2));
2010 /* set ENABLE flag */
2011 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE;
2013 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */
2014 ill_dlpi_send(ill, nmp);
2018 static void
2019 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp)
2021 mblk_t *mp;
2022 dl_capab_mdt_t *mdt_subcap;
2023 dl_capability_sub_t *dl_subcap;
2024 int size;
2026 if (!ILL_MDT_CAPABLE(ill))
2027 return;
2029 ASSERT(ill->ill_mdt_capab != NULL);
2031 * Clear the capability flag for MDT but retain the ill_mdt_capab
2032 * structure since it's possible that another thread is still
2033 * referring to it. The structure only gets deallocated when
2034 * we destroy the ill.
2036 ill->ill_capabilities &= ~ILL_CAPAB_MDT;
2038 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap);
2040 mp = allocb(size, BPRI_HI);
2041 if (mp == NULL) {
2042 ip1dbg(("ill_capability_mdt_reset: unable to allocate "
2043 "request to disable MDT\n"));
2044 return;
2047 mp->b_wptr = mp->b_rptr + size;
2049 dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2050 dl_subcap->dl_cap = DL_CAPAB_MDT;
2051 dl_subcap->dl_length = sizeof (*mdt_subcap);
2053 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1);
2054 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version;
2055 mdt_subcap->mdt_flags = 0;
2056 mdt_subcap->mdt_hdr_head = 0;
2057 mdt_subcap->mdt_hdr_tail = 0;
2059 if (*sc_mp != NULL)
2060 linkb(*sc_mp, mp);
2061 else
2062 *sc_mp = mp;
2066 * Send a DL_NOTIFY_REQ to the specified ill to enable
2067 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications.
2068 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware
2069 * acceleration.
2070 * Returns B_TRUE on success, B_FALSE if the message could not be sent.
2072 static boolean_t
2073 ill_enable_promisc_notify(ill_t *ill)
2075 mblk_t *mp;
2076 dl_notify_req_t *req;
2078 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n"));
2080 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ);
2081 if (mp == NULL)
2082 return (B_FALSE);
2084 req = (dl_notify_req_t *)mp->b_rptr;
2085 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS |
2086 DL_NOTE_PROMISC_OFF_PHYS;
2088 ill_dlpi_send(ill, mp);
2090 return (B_TRUE);
2095 * Allocate an IPsec capability request which will be filled by our
2096 * caller to turn on support for one or more algorithms.
2098 static mblk_t *
2099 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub)
2101 mblk_t *nmp;
2102 dl_capability_req_t *ocap;
2103 dl_capab_ipsec_t *ocip;
2104 dl_capab_ipsec_t *icip;
2105 uint8_t *ptr;
2106 icip = (dl_capab_ipsec_t *)(isub + 1);
2109 * The first time around, we send a DL_NOTIFY_REQ to enable
2110 * PROMISC_ON/OFF notification from the provider. We need to
2111 * do this before enabling the algorithms to avoid leakage of
2112 * cleartext packets.
2115 if (!ill_enable_promisc_notify(ill))
2116 return (NULL);
2119 * Allocate new mblk which will contain a new capability
2120 * request to enable the capabilities.
2123 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) +
2124 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ);
2125 if (nmp == NULL)
2126 return (NULL);
2128 ptr = nmp->b_rptr;
2130 /* initialize dl_capability_req_t */
2131 ocap = (dl_capability_req_t *)ptr;
2132 ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2133 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2134 ptr += sizeof (dl_capability_req_t);
2136 /* initialize dl_capability_sub_t */
2137 bcopy(isub, ptr, sizeof (*isub));
2138 ptr += sizeof (*isub);
2140 /* initialize dl_capab_ipsec_t */
2141 ocip = (dl_capab_ipsec_t *)ptr;
2142 bcopy(icip, ocip, sizeof (*icip));
2144 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]);
2145 return (nmp);
2149 * Process an IPsec capability negotiation ack received from a DLS Provider.
2150 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or
2151 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message.
2153 static void
2154 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2156 dl_capab_ipsec_t *icip;
2157 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */
2158 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */
2159 uint_t cipher, nciphers;
2160 mblk_t *nmp;
2161 uint_t alg_len;
2162 boolean_t need_sadb_dump;
2163 uint_t sub_dl_cap = isub->dl_cap;
2164 ill_ipsec_capab_t **ill_capab;
2165 uint64_t ill_capab_flag;
2166 uint8_t *capend, *ciphend;
2167 boolean_t sadb_resync;
2169 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH ||
2170 sub_dl_cap == DL_CAPAB_IPSEC_ESP);
2172 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) {
2173 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah;
2174 ill_capab_flag = ILL_CAPAB_AH;
2175 } else {
2176 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp;
2177 ill_capab_flag = ILL_CAPAB_ESP;
2181 * If the ill capability structure exists, then this incoming
2182 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle.
2183 * If this is so, then we'd need to resynchronize the SADB
2184 * after re-enabling the offloaded ciphers.
2186 sadb_resync = (*ill_capab != NULL);
2189 * Note: range checks here are not absolutely sufficient to
2190 * make us robust against malformed messages sent by drivers;
2191 * this is in keeping with the rest of IP's dlpi handling.
2192 * (Remember, it's coming from something else in the kernel
2193 * address space)
2196 capend = (uint8_t *)(isub + 1) + isub->dl_length;
2197 if (capend > mp->b_wptr) {
2198 cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2199 "malformed sub-capability too long for mblk");
2200 return;
2204 * There are two types of acks we process here:
2205 * 1. acks in reply to a (first form) generic capability req
2206 * (no ENABLE flag set)
2207 * 2. acks in reply to a ENABLE capability req.
2208 * (ENABLE flag set)
2210 * We process the subcapability passed as argument as follows:
2211 * 1 do initializations
2212 * 1.1 initialize nmp = NULL
2213 * 1.2 set need_sadb_dump to B_FALSE
2214 * 2 for each cipher in subcapability:
2215 * 2.1 if ENABLE flag is set:
2216 * 2.1.1 update per-ill ipsec capabilities info
2217 * 2.1.2 set need_sadb_dump to B_TRUE
2218 * 2.2 if ENABLE flag is not set:
2219 * 2.2.1 if nmp is NULL:
2220 * 2.2.1.1 allocate and initialize nmp
2221 * 2.2.1.2 init current pos in nmp
2222 * 2.2.2 copy current cipher to current pos in nmp
2223 * 2.2.3 set ENABLE flag in nmp
2224 * 2.2.4 update current pos
2225 * 3 if nmp is not equal to NULL, send enable request
2226 * 3.1 send capability request
2227 * 4 if need_sadb_dump is B_TRUE
2228 * 4.1 enable promiscuous on/off notifications
2229 * 4.2 call ill_dlpi_send(isub->dlcap) to send all
2230 * AH or ESP SA's to interface.
2233 nmp = NULL;
2234 oalg = NULL;
2235 need_sadb_dump = B_FALSE;
2236 icip = (dl_capab_ipsec_t *)(isub + 1);
2237 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]);
2239 nciphers = icip->cip_nciphers;
2240 ciphend = (uint8_t *)(ialg + icip->cip_nciphers);
2242 if (ciphend > capend) {
2243 cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2244 "too many ciphers for sub-capability len");
2245 return;
2248 for (cipher = 0; cipher < nciphers; cipher++) {
2249 alg_len = sizeof (dl_capab_ipsec_alg_t);
2251 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) {
2253 * TBD: when we provide a way to disable capabilities
2254 * from above, need to manage the request-pending state
2255 * and fail if we were not expecting this ACK.
2257 IPSECHW_DEBUG(IPSECHW_CAPAB,
2258 ("ill_capability_ipsec_ack: got ENABLE ACK\n"));
2261 * Update IPsec capabilities for this ill
2264 if (*ill_capab == NULL) {
2265 IPSECHW_DEBUG(IPSECHW_CAPAB,
2266 ("ill_capability_ipsec_ack: "
2267 "allocating ipsec_capab for ill\n"));
2268 *ill_capab = ill_ipsec_capab_alloc();
2270 if (*ill_capab == NULL) {
2271 cmn_err(CE_WARN,
2272 "ill_capability_ipsec_ack: "
2273 "could not enable IPsec Hardware "
2274 "acceleration for %s (ENOMEM)\n",
2275 ill->ill_name);
2276 return;
2280 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH ||
2281 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR);
2283 if (ialg->alg_prim >= MAX_IPSEC_ALGS) {
2284 cmn_err(CE_WARN,
2285 "ill_capability_ipsec_ack: "
2286 "malformed IPsec algorithm id %d",
2287 ialg->alg_prim);
2288 continue;
2291 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) {
2292 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs,
2293 ialg->alg_prim);
2294 } else {
2295 ipsec_capab_algparm_t *alp;
2297 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs,
2298 ialg->alg_prim);
2299 if (!ill_ipsec_capab_resize_algparm(*ill_capab,
2300 ialg->alg_prim)) {
2301 cmn_err(CE_WARN,
2302 "ill_capability_ipsec_ack: "
2303 "no space for IPsec alg id %d",
2304 ialg->alg_prim);
2305 continue;
2307 alp = &((*ill_capab)->encr_algparm[
2308 ialg->alg_prim]);
2309 alp->minkeylen = ialg->alg_minbits;
2310 alp->maxkeylen = ialg->alg_maxbits;
2312 ill->ill_capabilities |= ill_capab_flag;
2314 * indicate that a capability was enabled, which
2315 * will be used below to kick off a SADB dump
2316 * to the ill.
2318 need_sadb_dump = B_TRUE;
2319 } else {
2320 IPSECHW_DEBUG(IPSECHW_CAPAB,
2321 ("ill_capability_ipsec_ack: enabling alg 0x%x\n",
2322 ialg->alg_prim));
2324 if (nmp == NULL) {
2325 nmp = ill_alloc_ipsec_cap_req(ill, isub);
2326 if (nmp == NULL) {
2328 * Sending the PROMISC_ON/OFF
2329 * notification request failed.
2330 * We cannot enable the algorithms
2331 * since the Provider will not
2332 * notify IP of promiscous mode
2333 * changes, which could lead
2334 * to leakage of packets.
2336 cmn_err(CE_WARN,
2337 "ill_capability_ipsec_ack: "
2338 "could not enable IPsec Hardware "
2339 "acceleration for %s (ENOMEM)\n",
2340 ill->ill_name);
2341 return;
2343 /* ptr to current output alg specifier */
2344 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2348 * Copy current alg specifier, set ENABLE
2349 * flag, and advance to next output alg.
2350 * For now we enable all IPsec capabilities.
2352 ASSERT(oalg != NULL);
2353 bcopy(ialg, oalg, alg_len);
2354 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE;
2355 nmp->b_wptr += alg_len;
2356 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2359 /* move to next input algorithm specifier */
2360 ialg = (dl_capab_ipsec_alg_t *)
2361 ((char *)ialg + alg_len);
2364 if (nmp != NULL)
2366 * nmp points to a DL_CAPABILITY_REQ message to enable
2367 * IPsec hardware acceleration.
2369 ill_dlpi_send(ill, nmp);
2371 if (need_sadb_dump)
2373 * An acknowledgement corresponding to a request to
2374 * enable acceleration was received, notify SADB.
2376 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync);
2380 * Given an mblk with enough space in it, create sub-capability entries for
2381 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised
2382 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared,
2383 * in preparation for the reset the DL_CAPABILITY_REQ message.
2385 static void
2386 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen,
2387 ill_ipsec_capab_t *ill_cap, mblk_t *mp)
2389 dl_capab_ipsec_t *oipsec;
2390 dl_capab_ipsec_alg_t *oalg;
2391 dl_capability_sub_t *dl_subcap;
2392 int i, k;
2394 ASSERT(nciphers > 0);
2395 ASSERT(ill_cap != NULL);
2396 ASSERT(mp != NULL);
2397 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen);
2399 /* dl_capability_sub_t for "stype" */
2400 dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2401 dl_subcap->dl_cap = stype;
2402 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen;
2403 mp->b_wptr += sizeof (dl_capability_sub_t);
2405 /* dl_capab_ipsec_t for "stype" */
2406 oipsec = (dl_capab_ipsec_t *)mp->b_wptr;
2407 oipsec->cip_version = 1;
2408 oipsec->cip_nciphers = nciphers;
2409 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0];
2411 /* create entries for "stype" AUTH ciphers */
2412 for (i = 0; i < ill_cap->algs_size; i++) {
2413 for (k = 0; k < BITSPERBYTE; k++) {
2414 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0)
2415 continue;
2417 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2418 bzero((void *)oalg, sizeof (*oalg));
2419 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH;
2420 oalg->alg_prim = k + (BITSPERBYTE * i);
2421 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2424 /* create entries for "stype" ENCR ciphers */
2425 for (i = 0; i < ill_cap->algs_size; i++) {
2426 for (k = 0; k < BITSPERBYTE; k++) {
2427 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0)
2428 continue;
2430 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2431 bzero((void *)oalg, sizeof (*oalg));
2432 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR;
2433 oalg->alg_prim = k + (BITSPERBYTE * i);
2434 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2440 * Macro to count number of 1s in a byte (8-bit word). The total count is
2441 * accumulated into the passed-in argument (sum). We could use SPARCv9's
2442 * POPC instruction, but our macro is more flexible for an arbitrary length
2443 * of bytes, such as {auth,encr}_hw_algs. These variables are currently
2444 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length
2445 * stays that way, we can reduce the number of iterations required.
2447 #define COUNT_1S(val, sum) { \
2448 uint8_t x = val & 0xff; \
2449 x = (x & 0x55) + ((x >> 1) & 0x55); \
2450 x = (x & 0x33) + ((x >> 2) & 0x33); \
2451 sum += (x & 0xf) + ((x >> 4) & 0xf); \
2454 /* ARGSUSED */
2455 static void
2456 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp)
2458 mblk_t *mp;
2459 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2460 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2461 uint64_t ill_capabilities = ill->ill_capabilities;
2462 int ah_cnt = 0, esp_cnt = 0;
2463 int ah_len = 0, esp_len = 0;
2464 int i, size = 0;
2466 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)))
2467 return;
2469 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH));
2470 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP));
2472 /* Find out the number of ciphers for AH */
2473 if (cap_ah != NULL) {
2474 for (i = 0; i < cap_ah->algs_size; i++) {
2475 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt);
2476 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt);
2478 if (ah_cnt > 0) {
2479 size += sizeof (dl_capability_sub_t) +
2480 sizeof (dl_capab_ipsec_t);
2481 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2482 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2483 size += ah_len;
2487 /* Find out the number of ciphers for ESP */
2488 if (cap_esp != NULL) {
2489 for (i = 0; i < cap_esp->algs_size; i++) {
2490 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt);
2491 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt);
2493 if (esp_cnt > 0) {
2494 size += sizeof (dl_capability_sub_t) +
2495 sizeof (dl_capab_ipsec_t);
2496 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2497 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2498 size += esp_len;
2502 if (size == 0) {
2503 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but "
2504 "there's nothing to reset\n"));
2505 return;
2508 mp = allocb(size, BPRI_HI);
2509 if (mp == NULL) {
2510 ip1dbg(("ill_capability_ipsec_reset: unable to allocate "
2511 "request to disable IPSEC Hardware Acceleration\n"));
2512 return;
2516 * Clear the capability flags for IPsec HA but retain the ill
2517 * capability structures since it's possible that another thread
2518 * is still referring to them. The structures only get deallocated
2519 * when we destroy the ill.
2521 * Various places check the flags to see if the ill is capable of
2522 * hardware acceleration, and by clearing them we ensure that new
2523 * outbound IPsec packets are sent down encrypted.
2525 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP);
2527 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */
2528 if (ah_cnt > 0) {
2529 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len,
2530 cap_ah, mp);
2531 ASSERT(mp->b_rptr + size >= mp->b_wptr);
2534 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */
2535 if (esp_cnt > 0) {
2536 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len,
2537 cap_esp, mp);
2538 ASSERT(mp->b_rptr + size >= mp->b_wptr);
2542 * At this point we've composed a bunch of sub-capabilities to be
2543 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream
2544 * by the caller. Upon receiving this reset message, the driver
2545 * must stop inbound decryption (by destroying all inbound SAs)
2546 * and let the corresponding packets come in encrypted.
2549 if (*sc_mp != NULL)
2550 linkb(*sc_mp, mp);
2551 else
2552 *sc_mp = mp;
2555 static void
2556 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp,
2557 boolean_t encapsulated)
2559 boolean_t legacy = B_FALSE;
2562 * If this DL_CAPABILITY_ACK came in as a response to our "reset"
2563 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just
2564 * instructed the driver to disable its advertised capabilities,
2565 * so there's no point in accepting any response at this moment.
2567 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN)
2568 return;
2571 * Note that only the following two sub-capabilities may be
2572 * considered as "legacy", since their original definitions
2573 * do not incorporate the dl_mid_t module ID token, and hence
2574 * may require the use of the wrapper sub-capability.
2576 switch (subp->dl_cap) {
2577 case DL_CAPAB_IPSEC_AH:
2578 case DL_CAPAB_IPSEC_ESP:
2579 legacy = B_TRUE;
2580 break;
2584 * For legacy sub-capabilities which don't incorporate a queue_t
2585 * pointer in their structures, discard them if we detect that
2586 * there are intermediate modules in between IP and the driver.
2588 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) {
2589 ip1dbg(("ill_capability_dispatch: unencapsulated capab type "
2590 "%d discarded; %d module(s) present below IP\n",
2591 subp->dl_cap, ill->ill_lmod_cnt));
2592 return;
2595 switch (subp->dl_cap) {
2596 case DL_CAPAB_IPSEC_AH:
2597 case DL_CAPAB_IPSEC_ESP:
2598 ill_capability_ipsec_ack(ill, mp, subp);
2599 break;
2600 case DL_CAPAB_MDT:
2601 ill_capability_mdt_ack(ill, mp, subp);
2602 break;
2603 case DL_CAPAB_HCKSUM:
2604 ill_capability_hcksum_ack(ill, mp, subp);
2605 break;
2606 case DL_CAPAB_ZEROCOPY:
2607 ill_capability_zerocopy_ack(ill, mp, subp);
2608 break;
2609 case DL_CAPAB_POLL:
2610 if (!SOFT_RINGS_ENABLED())
2611 ill_capability_dls_ack(ill, mp, subp);
2612 break;
2613 case DL_CAPAB_SOFT_RING:
2614 if (SOFT_RINGS_ENABLED())
2615 ill_capability_dls_ack(ill, mp, subp);
2616 break;
2617 case DL_CAPAB_LSO:
2618 ill_capability_lso_ack(ill, mp, subp);
2619 break;
2620 default:
2621 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
2622 subp->dl_cap));
2627 * As part of negotiating polling capability, the driver tells us
2628 * the default (or normal) blanking interval and packet threshold
2629 * (the receive timer fires if blanking interval is reached or
2630 * the packet threshold is reached).
2632 * As part of manipulating the polling interval, we always use our
2633 * estimated interval (avg service time * number of packets queued
2634 * on the squeue) but we try to blank for a minimum of
2635 * rr_normal_blank_time * rr_max_blank_ratio. We disable the
2636 * packet threshold during this time. When we are not in polling mode
2637 * we set the blank interval typically lower, rr_normal_pkt_cnt *
2638 * rr_min_blank_ratio but up the packet cnt by a ratio of
2639 * rr_min_pkt_cnt_ratio so that we are still getting chains if
2640 * possible although for a shorter interval.
2642 #define RR_MAX_BLANK_RATIO 20
2643 #define RR_MIN_BLANK_RATIO 10
2644 #define RR_MAX_PKT_CNT_RATIO 3
2645 #define RR_MIN_PKT_CNT_RATIO 3
2648 * These can be tuned via /etc/system.
2650 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO;
2651 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO;
2652 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO;
2653 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO;
2655 static mac_resource_handle_t
2656 ill_ring_add(void *arg, mac_resource_t *mrp)
2658 ill_t *ill = (ill_t *)arg;
2659 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp;
2660 ill_rx_ring_t *rx_ring;
2661 int ip_rx_index;
2663 ASSERT(mrp != NULL);
2664 if (mrp->mr_type != MAC_RX_FIFO) {
2665 return (NULL);
2667 ASSERT(ill != NULL);
2668 ASSERT(ill->ill_dls_capab != NULL);
2670 mutex_enter(&ill->ill_lock);
2671 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) {
2672 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index];
2673 ASSERT(rx_ring != NULL);
2675 if (rx_ring->rr_ring_state == ILL_RING_FREE) {
2676 time_t normal_blank_time =
2677 mrfp->mrf_normal_blank_time;
2678 uint_t normal_pkt_cnt =
2679 mrfp->mrf_normal_pkt_count;
2681 bzero(rx_ring, sizeof (ill_rx_ring_t));
2683 rx_ring->rr_blank = mrfp->mrf_blank;
2684 rx_ring->rr_handle = mrfp->mrf_arg;
2685 rx_ring->rr_ill = ill;
2686 rx_ring->rr_normal_blank_time = normal_blank_time;
2687 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt;
2689 rx_ring->rr_max_blank_time =
2690 normal_blank_time * rr_max_blank_ratio;
2691 rx_ring->rr_min_blank_time =
2692 normal_blank_time * rr_min_blank_ratio;
2693 rx_ring->rr_max_pkt_cnt =
2694 normal_pkt_cnt * rr_max_pkt_cnt_ratio;
2695 rx_ring->rr_min_pkt_cnt =
2696 normal_pkt_cnt * rr_min_pkt_cnt_ratio;
2698 rx_ring->rr_ring_state = ILL_RING_INUSE;
2699 mutex_exit(&ill->ill_lock);
2701 DTRACE_PROBE2(ill__ring__add, (void *), ill,
2702 (int), ip_rx_index);
2703 return ((mac_resource_handle_t)rx_ring);
2708 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If
2709 * we have devices which can overwhelm this limit, ILL_MAX_RING
2710 * should be made configurable. Meanwhile it cause no panic because
2711 * driver will pass ip_input a NULL handle which will make
2712 * IP allocate the default squeue and Polling mode will not
2713 * be used for this ring.
2715 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) "
2716 "for %s\n", ILL_MAX_RINGS, ill->ill_name);
2718 mutex_exit(&ill->ill_lock);
2719 return (NULL);
2722 static boolean_t
2723 ill_capability_dls_init(ill_t *ill)
2725 ill_dls_capab_t *ill_dls = ill->ill_dls_capab;
2726 conn_t *connp;
2727 size_t sz;
2728 ip_stack_t *ipst = ill->ill_ipst;
2730 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) {
2731 if (ill_dls == NULL) {
2732 cmn_err(CE_PANIC, "ill_capability_dls_init: "
2733 "soft_ring enabled for ill=%s (%p) but data "
2734 "structs uninitialized\n", ill->ill_name,
2735 (void *)ill);
2737 return (B_TRUE);
2738 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) {
2739 if (ill_dls == NULL) {
2740 cmn_err(CE_PANIC, "ill_capability_dls_init: "
2741 "polling enabled for ill=%s (%p) but data "
2742 "structs uninitialized\n", ill->ill_name,
2743 (void *)ill);
2745 return (B_TRUE);
2748 if (ill_dls != NULL) {
2749 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl;
2750 /* Soft_Ring or polling is being re-enabled */
2752 connp = ill_dls->ill_unbind_conn;
2753 ASSERT(rx_ring != NULL);
2754 bzero((void *)ill_dls, sizeof (ill_dls_capab_t));
2755 bzero((void *)rx_ring,
2756 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS);
2757 ill_dls->ill_ring_tbl = rx_ring;
2758 ill_dls->ill_unbind_conn = connp;
2759 return (B_TRUE);
2762 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
2763 ipst->ips_netstack)) == NULL)
2764 return (B_FALSE);
2766 sz = sizeof (ill_dls_capab_t);
2767 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS;
2769 ill_dls = kmem_zalloc(sz, KM_NOSLEEP);
2770 if (ill_dls == NULL) {
2771 cmn_err(CE_WARN, "ill_capability_dls_init: could not "
2772 "allocate dls_capab for %s (%p)\n", ill->ill_name,
2773 (void *)ill);
2774 CONN_DEC_REF(connp);
2775 return (B_FALSE);
2778 /* Allocate space to hold ring table */
2779 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1];
2780 ill->ill_dls_capab = ill_dls;
2781 ill_dls->ill_unbind_conn = connp;
2782 return (B_TRUE);
2786 * ill_capability_dls_disable: disable soft_ring and/or polling
2787 * capability. Since any of the rings might already be in use, need
2788 * to call ip_squeue_clean_all() which gets behind the squeue to disable
2789 * direct calls if necessary.
2791 static void
2792 ill_capability_dls_disable(ill_t *ill)
2794 ill_dls_capab_t *ill_dls = ill->ill_dls_capab;
2796 if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2797 ip_squeue_clean_all(ill);
2798 ill_dls->ill_tx = NULL;
2799 ill_dls->ill_tx_handle = NULL;
2800 ill_dls->ill_dls_change_status = NULL;
2801 ill_dls->ill_dls_bind = NULL;
2802 ill_dls->ill_dls_unbind = NULL;
2805 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS));
2808 static void
2809 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls,
2810 dl_capability_sub_t *isub)
2812 uint_t size;
2813 uchar_t *rptr;
2814 dl_capab_dls_t dls, *odls;
2815 ill_dls_capab_t *ill_dls;
2816 mblk_t *nmp = NULL;
2817 dl_capability_req_t *ocap;
2818 uint_t sub_dl_cap = isub->dl_cap;
2820 if (!ill_capability_dls_init(ill))
2821 return;
2822 ill_dls = ill->ill_dls_capab;
2824 /* Copy locally to get the members aligned */
2825 bcopy((void *)idls, (void *)&dls,
2826 sizeof (dl_capab_dls_t));
2828 /* Get the tx function and handle from dld */
2829 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx;
2830 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle;
2832 if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2833 ill_dls->ill_dls_change_status =
2834 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status;
2835 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind;
2836 ill_dls->ill_dls_unbind =
2837 (ip_dls_unbind_t)dls.dls_ring_unbind;
2838 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt;
2841 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) +
2842 isub->dl_length;
2844 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2845 cmn_err(CE_WARN, "ill_capability_dls_capable: could "
2846 "not allocate memory for CAPAB_REQ for %s (%p)\n",
2847 ill->ill_name, (void *)ill);
2848 return;
2851 /* initialize dl_capability_req_t */
2852 rptr = nmp->b_rptr;
2853 ocap = (dl_capability_req_t *)rptr;
2854 ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2855 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2856 rptr += sizeof (dl_capability_req_t);
2858 /* initialize dl_capability_sub_t */
2859 bcopy(isub, rptr, sizeof (*isub));
2860 rptr += sizeof (*isub);
2862 odls = (dl_capab_dls_t *)rptr;
2863 rptr += sizeof (dl_capab_dls_t);
2865 /* initialize dl_capab_dls_t to be sent down */
2866 dls.dls_rx_handle = (uintptr_t)ill;
2867 dls.dls_rx = (uintptr_t)ip_input;
2868 dls.dls_ring_add = (uintptr_t)ill_ring_add;
2870 if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2871 dls.dls_ring_cnt = ip_soft_rings_cnt;
2872 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment;
2873 dls.dls_flags = SOFT_RING_ENABLE;
2874 } else {
2875 dls.dls_flags = POLL_ENABLE;
2876 ip1dbg(("ill_capability_dls_capable: asking interface %s "
2877 "to enable polling\n", ill->ill_name));
2879 bcopy((void *)&dls, (void *)odls,
2880 sizeof (dl_capab_dls_t));
2881 ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
2883 * nmp points to a DL_CAPABILITY_REQ message to
2884 * enable either soft_ring or polling
2886 ill_dlpi_send(ill, nmp);
2889 static void
2890 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp)
2892 mblk_t *mp;
2893 dl_capab_dls_t *idls;
2894 dl_capability_sub_t *dl_subcap;
2895 int size;
2897 if (!(ill->ill_capabilities & ILL_CAPAB_DLS))
2898 return;
2900 ASSERT(ill->ill_dls_capab != NULL);
2902 size = sizeof (*dl_subcap) + sizeof (*idls);
2904 mp = allocb(size, BPRI_HI);
2905 if (mp == NULL) {
2906 ip1dbg(("ill_capability_dls_reset: unable to allocate "
2907 "request to disable soft_ring\n"));
2908 return;
2911 mp->b_wptr = mp->b_rptr + size;
2913 dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2914 dl_subcap->dl_length = sizeof (*idls);
2915 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
2916 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING;
2917 else
2918 dl_subcap->dl_cap = DL_CAPAB_POLL;
2920 idls = (dl_capab_dls_t *)(dl_subcap + 1);
2921 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
2922 idls->dls_flags = SOFT_RING_DISABLE;
2923 else
2924 idls->dls_flags = POLL_DISABLE;
2926 if (*sc_mp != NULL)
2927 linkb(*sc_mp, mp);
2928 else
2929 *sc_mp = mp;
2933 * Process a soft_ring/poll capability negotiation ack received
2934 * from a DLS Provider.isub must point to the sub-capability
2935 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message.
2937 static void
2938 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2940 dl_capab_dls_t *idls;
2941 uint_t sub_dl_cap = isub->dl_cap;
2942 uint8_t *capend;
2944 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING ||
2945 sub_dl_cap == DL_CAPAB_POLL);
2947 if (ill->ill_isv6)
2948 return;
2951 * Note: range checks here are not absolutely sufficient to
2952 * make us robust against malformed messages sent by drivers;
2953 * this is in keeping with the rest of IP's dlpi handling.
2954 * (Remember, it's coming from something else in the kernel
2955 * address space)
2957 capend = (uint8_t *)(isub + 1) + isub->dl_length;
2958 if (capend > mp->b_wptr) {
2959 cmn_err(CE_WARN, "ill_capability_dls_ack: "
2960 "malformed sub-capability too long for mblk");
2961 return;
2965 * There are two types of acks we process here:
2966 * 1. acks in reply to a (first form) generic capability req
2967 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE)
2968 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE
2969 * capability req.
2971 idls = (dl_capab_dls_t *)(isub + 1);
2973 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) {
2974 ip1dbg(("ill_capability_dls_ack: mid token for dls "
2975 "capability isn't as expected; pass-thru "
2976 "module(s) detected, discarding capability\n"));
2977 if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2979 * This is a capability renegotitation case.
2980 * The interface better be unusable at this
2981 * point other wise bad things will happen
2982 * if we disable direct calls on a running
2983 * and up interface.
2985 ill_capability_dls_disable(ill);
2987 return;
2990 switch (idls->dls_flags) {
2991 default:
2992 /* Disable if unknown flag */
2993 case SOFT_RING_DISABLE:
2994 case POLL_DISABLE:
2995 ill_capability_dls_disable(ill);
2996 break;
2997 case SOFT_RING_CAPABLE:
2998 case POLL_CAPABLE:
3000 * If the capability was already enabled, its safe
3001 * to disable it first to get rid of stale information
3002 * and then start enabling it again.
3004 ill_capability_dls_disable(ill);
3005 ill_capability_dls_capable(ill, idls, isub);
3006 break;
3007 case SOFT_RING_ENABLE:
3008 case POLL_ENABLE:
3009 mutex_enter(&ill->ill_lock);
3010 if (sub_dl_cap == DL_CAPAB_SOFT_RING &&
3011 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) {
3012 ASSERT(ill->ill_dls_capab != NULL);
3013 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING;
3015 if (sub_dl_cap == DL_CAPAB_POLL &&
3016 !(ill->ill_capabilities & ILL_CAPAB_POLL)) {
3017 ASSERT(ill->ill_dls_capab != NULL);
3018 ill->ill_capabilities |= ILL_CAPAB_POLL;
3019 ip1dbg(("ill_capability_dls_ack: interface %s "
3020 "has enabled polling\n", ill->ill_name));
3022 mutex_exit(&ill->ill_lock);
3023 break;
3028 * Process a hardware checksum offload capability negotiation ack received
3029 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
3030 * of a DL_CAPABILITY_ACK message.
3032 static void
3033 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3035 dl_capability_req_t *ocap;
3036 dl_capab_hcksum_t *ihck, *ohck;
3037 ill_hcksum_capab_t **ill_hcksum;
3038 mblk_t *nmp = NULL;
3039 uint_t sub_dl_cap = isub->dl_cap;
3040 uint8_t *capend;
3042 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
3044 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
3047 * Note: range checks here are not absolutely sufficient to
3048 * make us robust against malformed messages sent by drivers;
3049 * this is in keeping with the rest of IP's dlpi handling.
3050 * (Remember, it's coming from something else in the kernel
3051 * address space)
3053 capend = (uint8_t *)(isub + 1) + isub->dl_length;
3054 if (capend > mp->b_wptr) {
3055 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3056 "malformed sub-capability too long for mblk");
3057 return;
3061 * There are two types of acks we process here:
3062 * 1. acks in reply to a (first form) generic capability req
3063 * (no ENABLE flag set)
3064 * 2. acks in reply to a ENABLE capability req.
3065 * (ENABLE flag set)
3067 ihck = (dl_capab_hcksum_t *)(isub + 1);
3069 if (ihck->hcksum_version != HCKSUM_VERSION_1) {
3070 cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
3071 "unsupported hardware checksum "
3072 "sub-capability (version %d, expected %d)",
3073 ihck->hcksum_version, HCKSUM_VERSION_1);
3074 return;
3077 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
3078 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
3079 "checksum capability isn't as expected; pass-thru "
3080 "module(s) detected, discarding capability\n"));
3081 return;
3084 #define CURR_HCKSUM_CAPAB \
3085 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \
3086 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
3088 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
3089 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
3090 /* do ENABLE processing */
3091 if (*ill_hcksum == NULL) {
3092 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
3093 KM_NOSLEEP);
3095 if (*ill_hcksum == NULL) {
3096 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3097 "could not enable hcksum version %d "
3098 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
3099 ill->ill_name);
3100 return;
3104 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
3105 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
3106 ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
3107 ip1dbg(("ill_capability_hcksum_ack: interface %s "
3108 "has enabled hardware checksumming\n ",
3109 ill->ill_name));
3110 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
3112 * Enabling hardware checksum offload
3113 * Currently IP supports {TCP,UDP}/IPv4
3114 * partial and full cksum offload and
3115 * IPv4 header checksum offload.
3116 * Allocate new mblk which will
3117 * contain a new capability request
3118 * to enable hardware checksum offload.
3120 uint_t size;
3121 uchar_t *rptr;
3123 size = sizeof (dl_capability_req_t) +
3124 sizeof (dl_capability_sub_t) + isub->dl_length;
3126 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3127 cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3128 "could not enable hardware cksum for %s (ENOMEM)\n",
3129 ill->ill_name);
3130 return;
3133 rptr = nmp->b_rptr;
3134 /* initialize dl_capability_req_t */
3135 ocap = (dl_capability_req_t *)nmp->b_rptr;
3136 ocap->dl_sub_offset =
3137 sizeof (dl_capability_req_t);
3138 ocap->dl_sub_length =
3139 sizeof (dl_capability_sub_t) +
3140 isub->dl_length;
3141 nmp->b_rptr += sizeof (dl_capability_req_t);
3143 /* initialize dl_capability_sub_t */
3144 bcopy(isub, nmp->b_rptr, sizeof (*isub));
3145 nmp->b_rptr += sizeof (*isub);
3147 /* initialize dl_capab_hcksum_t */
3148 ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
3149 bcopy(ihck, ohck, sizeof (*ihck));
3151 nmp->b_rptr = rptr;
3152 ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3154 /* Set ENABLE flag */
3155 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
3156 ohck->hcksum_txflags |= HCKSUM_ENABLE;
3159 * nmp points to a DL_CAPABILITY_REQ message to enable
3160 * hardware checksum acceleration.
3162 ill_dlpi_send(ill, nmp);
3163 } else {
3164 ip1dbg(("ill_capability_hcksum_ack: interface %s has "
3165 "advertised %x hardware checksum capability flags\n",
3166 ill->ill_name, ihck->hcksum_txflags));
3170 static void
3171 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp)
3173 mblk_t *mp;
3174 dl_capab_hcksum_t *hck_subcap;
3175 dl_capability_sub_t *dl_subcap;
3176 int size;
3178 if (!ILL_HCKSUM_CAPABLE(ill))
3179 return;
3181 ASSERT(ill->ill_hcksum_capab != NULL);
3183 * Clear the capability flag for hardware checksum offload but
3184 * retain the ill_hcksum_capab structure since it's possible that
3185 * another thread is still referring to it. The structure only
3186 * gets deallocated when we destroy the ill.
3188 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM;
3190 size = sizeof (*dl_subcap) + sizeof (*hck_subcap);
3192 mp = allocb(size, BPRI_HI);
3193 if (mp == NULL) {
3194 ip1dbg(("ill_capability_hcksum_reset: unable to allocate "
3195 "request to disable hardware checksum offload\n"));
3196 return;
3199 mp->b_wptr = mp->b_rptr + size;
3201 dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3202 dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
3203 dl_subcap->dl_length = sizeof (*hck_subcap);
3205 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
3206 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
3207 hck_subcap->hcksum_txflags = 0;
3209 if (*sc_mp != NULL)
3210 linkb(*sc_mp, mp);
3211 else
3212 *sc_mp = mp;
3215 static void
3216 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3218 mblk_t *nmp = NULL;
3219 dl_capability_req_t *oc;
3220 dl_capab_zerocopy_t *zc_ic, *zc_oc;
3221 ill_zerocopy_capab_t **ill_zerocopy_capab;
3222 uint_t sub_dl_cap = isub->dl_cap;
3223 uint8_t *capend;
3225 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
3227 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
3230 * Note: range checks here are not absolutely sufficient to
3231 * make us robust against malformed messages sent by drivers;
3232 * this is in keeping with the rest of IP's dlpi handling.
3233 * (Remember, it's coming from something else in the kernel
3234 * address space)
3236 capend = (uint8_t *)(isub + 1) + isub->dl_length;
3237 if (capend > mp->b_wptr) {
3238 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3239 "malformed sub-capability too long for mblk");
3240 return;
3243 zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
3244 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
3245 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
3246 "unsupported ZEROCOPY sub-capability (version %d, "
3247 "expected %d)", zc_ic->zerocopy_version,
3248 ZEROCOPY_VERSION_1);
3249 return;
3252 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
3253 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
3254 "capability isn't as expected; pass-thru module(s) "
3255 "detected, discarding capability\n"));
3256 return;
3259 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
3260 if (*ill_zerocopy_capab == NULL) {
3261 *ill_zerocopy_capab =
3262 kmem_zalloc(sizeof (ill_zerocopy_capab_t),
3263 KM_NOSLEEP);
3265 if (*ill_zerocopy_capab == NULL) {
3266 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3267 "could not enable Zero-copy version %d "
3268 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
3269 ill->ill_name);
3270 return;
3274 ip1dbg(("ill_capability_zerocopy_ack: interface %s "
3275 "supports Zero-copy version %d\n", ill->ill_name,
3276 ZEROCOPY_VERSION_1));
3278 (*ill_zerocopy_capab)->ill_zerocopy_version =
3279 zc_ic->zerocopy_version;
3280 (*ill_zerocopy_capab)->ill_zerocopy_flags =
3281 zc_ic->zerocopy_flags;
3283 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
3284 } else {
3285 uint_t size;
3286 uchar_t *rptr;
3288 size = sizeof (dl_capability_req_t) +
3289 sizeof (dl_capability_sub_t) +
3290 sizeof (dl_capab_zerocopy_t);
3292 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3293 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3294 "could not enable zerocopy for %s (ENOMEM)\n",
3295 ill->ill_name);
3296 return;
3299 rptr = nmp->b_rptr;
3300 /* initialize dl_capability_req_t */
3301 oc = (dl_capability_req_t *)rptr;
3302 oc->dl_sub_offset = sizeof (dl_capability_req_t);
3303 oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3304 sizeof (dl_capab_zerocopy_t);
3305 rptr += sizeof (dl_capability_req_t);
3307 /* initialize dl_capability_sub_t */
3308 bcopy(isub, rptr, sizeof (*isub));
3309 rptr += sizeof (*isub);
3311 /* initialize dl_capab_zerocopy_t */
3312 zc_oc = (dl_capab_zerocopy_t *)rptr;
3313 *zc_oc = *zc_ic;
3315 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
3316 "to enable zero-copy version %d\n", ill->ill_name,
3317 ZEROCOPY_VERSION_1));
3319 /* set VMSAFE_MEM flag */
3320 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
3322 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
3323 ill_dlpi_send(ill, nmp);
3327 static void
3328 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp)
3330 mblk_t *mp;
3331 dl_capab_zerocopy_t *zerocopy_subcap;
3332 dl_capability_sub_t *dl_subcap;
3333 int size;
3335 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
3336 return;
3338 ASSERT(ill->ill_zerocopy_capab != NULL);
3340 * Clear the capability flag for Zero-copy but retain the
3341 * ill_zerocopy_capab structure since it's possible that another
3342 * thread is still referring to it. The structure only gets
3343 * deallocated when we destroy the ill.
3345 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY;
3347 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
3349 mp = allocb(size, BPRI_HI);
3350 if (mp == NULL) {
3351 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate "
3352 "request to disable Zero-copy\n"));
3353 return;
3356 mp->b_wptr = mp->b_rptr + size;
3358 dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3359 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
3360 dl_subcap->dl_length = sizeof (*zerocopy_subcap);
3362 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
3363 zerocopy_subcap->zerocopy_version =
3364 ill->ill_zerocopy_capab->ill_zerocopy_version;
3365 zerocopy_subcap->zerocopy_flags = 0;
3367 if (*sc_mp != NULL)
3368 linkb(*sc_mp, mp);
3369 else
3370 *sc_mp = mp;
3374 * Process Large Segment Offload capability negotiation ack received from a
3375 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a
3376 * DL_CAPABILITY_ACK message.
3378 static void
3379 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3381 mblk_t *nmp = NULL;
3382 dl_capability_req_t *oc;
3383 dl_capab_lso_t *lso_ic, *lso_oc;
3384 ill_lso_capab_t **ill_lso_capab;
3385 uint_t sub_dl_cap = isub->dl_cap;
3386 uint8_t *capend;
3388 ASSERT(sub_dl_cap == DL_CAPAB_LSO);
3390 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab;
3393 * Note: range checks here are not absolutely sufficient to
3394 * make us robust against malformed messages sent by drivers;
3395 * this is in keeping with the rest of IP's dlpi handling.
3396 * (Remember, it's coming from something else in the kernel
3397 * address space)
3399 capend = (uint8_t *)(isub + 1) + isub->dl_length;
3400 if (capend > mp->b_wptr) {
3401 cmn_err(CE_WARN, "ill_capability_lso_ack: "
3402 "malformed sub-capability too long for mblk");
3403 return;
3406 lso_ic = (dl_capab_lso_t *)(isub + 1);
3408 if (lso_ic->lso_version != LSO_VERSION_1) {
3409 cmn_err(CE_CONT, "ill_capability_lso_ack: "
3410 "unsupported LSO sub-capability (version %d, expected %d)",
3411 lso_ic->lso_version, LSO_VERSION_1);
3412 return;
3415 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) {
3416 ip1dbg(("ill_capability_lso_ack: mid token for LSO "
3417 "capability isn't as expected; pass-thru module(s) "
3418 "detected, discarding capability\n"));
3419 return;
3422 if ((lso_ic->lso_flags & LSO_TX_ENABLE) &&
3423 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) {
3424 if (*ill_lso_capab == NULL) {
3425 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
3426 KM_NOSLEEP);
3428 if (*ill_lso_capab == NULL) {
3429 cmn_err(CE_WARN, "ill_capability_lso_ack: "
3430 "could not enable LSO version %d "
3431 "for %s (ENOMEM)\n", LSO_VERSION_1,
3432 ill->ill_name);
3433 return;
3437 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version;
3438 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags;
3439 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max;
3440 ill->ill_capabilities |= ILL_CAPAB_LSO;
3442 ip1dbg(("ill_capability_lso_ack: interface %s "
3443 "has enabled LSO\n ", ill->ill_name));
3444 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) {
3445 uint_t size;
3446 uchar_t *rptr;
3448 size = sizeof (dl_capability_req_t) +
3449 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t);
3451 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3452 cmn_err(CE_WARN, "ill_capability_lso_ack: "
3453 "could not enable LSO for %s (ENOMEM)\n",
3454 ill->ill_name);
3455 return;
3458 rptr = nmp->b_rptr;
3459 /* initialize dl_capability_req_t */
3460 oc = (dl_capability_req_t *)nmp->b_rptr;
3461 oc->dl_sub_offset = sizeof (dl_capability_req_t);
3462 oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3463 sizeof (dl_capab_lso_t);
3464 nmp->b_rptr += sizeof (dl_capability_req_t);
3466 /* initialize dl_capability_sub_t */
3467 bcopy(isub, nmp->b_rptr, sizeof (*isub));
3468 nmp->b_rptr += sizeof (*isub);
3470 /* initialize dl_capab_lso_t */
3471 lso_oc = (dl_capab_lso_t *)nmp->b_rptr;
3472 bcopy(lso_ic, lso_oc, sizeof (*lso_ic));
3474 nmp->b_rptr = rptr;
3475 ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3477 /* set ENABLE flag */
3478 lso_oc->lso_flags |= LSO_TX_ENABLE;
3480 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */
3481 ill_dlpi_send(ill, nmp);
3482 } else {
3483 ip1dbg(("ill_capability_lso_ack: interface %s has "
3484 "advertised %x LSO capability flags\n",
3485 ill->ill_name, lso_ic->lso_flags));
3490 static void
3491 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp)
3493 mblk_t *mp;
3494 dl_capab_lso_t *lso_subcap;
3495 dl_capability_sub_t *dl_subcap;
3496 int size;
3498 if (!(ill->ill_capabilities & ILL_CAPAB_LSO))
3499 return;
3501 ASSERT(ill->ill_lso_capab != NULL);
3503 * Clear the capability flag for LSO but retain the
3504 * ill_lso_capab structure since it's possible that another
3505 * thread is still referring to it. The structure only gets
3506 * deallocated when we destroy the ill.
3508 ill->ill_capabilities &= ~ILL_CAPAB_LSO;
3510 size = sizeof (*dl_subcap) + sizeof (*lso_subcap);
3512 mp = allocb(size, BPRI_HI);
3513 if (mp == NULL) {
3514 ip1dbg(("ill_capability_lso_reset: unable to allocate "
3515 "request to disable LSO\n"));
3516 return;
3519 mp->b_wptr = mp->b_rptr + size;
3521 dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3522 dl_subcap->dl_cap = DL_CAPAB_LSO;
3523 dl_subcap->dl_length = sizeof (*lso_subcap);
3525 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1);
3526 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version;
3527 lso_subcap->lso_flags = 0;
3529 if (*sc_mp != NULL)
3530 linkb(*sc_mp, mp);
3531 else
3532 *sc_mp = mp;
3536 * Consume a new-style hardware capabilities negotiation ack.
3537 * Called from ip_rput_dlpi_writer().
3539 void
3540 ill_capability_ack(ill_t *ill, mblk_t *mp)
3542 dl_capability_ack_t *capp;
3543 dl_capability_sub_t *subp, *endp;
3545 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS)
3546 ill->ill_dlpi_capab_state = IDS_OK;
3548 capp = (dl_capability_ack_t *)mp->b_rptr;
3550 if (capp->dl_sub_length == 0)
3551 /* no new-style capabilities */
3552 return;
3554 /* make sure the driver supplied correct dl_sub_length */
3555 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
3556 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
3557 "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
3558 return;
3561 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
3563 * There are sub-capabilities. Process the ones we know about.
3564 * Loop until we don't have room for another sub-cap header..
3566 for (subp = SC(capp, capp->dl_sub_offset),
3567 endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
3568 subp <= endp;
3569 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
3571 switch (subp->dl_cap) {
3572 case DL_CAPAB_ID_WRAPPER:
3573 ill_capability_id_ack(ill, mp, subp);
3574 break;
3575 default:
3576 ill_capability_dispatch(ill, mp, subp, B_FALSE);
3577 break;
3580 #undef SC
3584 * This routine is called to scan the fragmentation reassembly table for
3585 * the specified ILL for any packets that are starting to smell.
3586 * dead_interval is the maximum time in seconds that will be tolerated. It
3587 * will either be the value specified in ip_g_frag_timeout, or zero if the
3588 * ILL is shutting down and it is time to blow everything off.
3590 * It returns the number of seconds (as a time_t) that the next frag timer
3591 * should be scheduled for, 0 meaning that the timer doesn't need to be
3592 * re-started. Note that the method of calculating next_timeout isn't
3593 * entirely accurate since time will flow between the time we grab
3594 * current_time and the time we schedule the next timeout. This isn't a
3595 * big problem since this is the timer for sending an ICMP reassembly time
3596 * exceeded messages, and it doesn't have to be exactly accurate.
3598 * This function is
3599 * sometimes called as writer, although this is not required.
3601 time_t
3602 ill_frag_timeout(ill_t *ill, time_t dead_interval)
3604 ipfb_t *ipfb;
3605 ipfb_t *endp;
3606 ipf_t *ipf;
3607 ipf_t *ipfnext;
3608 mblk_t *mp;
3609 time_t current_time = gethrestime_sec();
3610 time_t next_timeout = 0;
3611 uint32_t hdr_length;
3612 mblk_t *send_icmp_head;
3613 mblk_t *send_icmp_head_v6;
3614 zoneid_t zoneid;
3615 ip_stack_t *ipst = ill->ill_ipst;
3617 ipfb = ill->ill_frag_hash_tbl;
3618 if (ipfb == NULL)
3619 return (B_FALSE);
3620 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
3621 /* Walk the frag hash table. */
3622 for (; ipfb < endp; ipfb++) {
3623 send_icmp_head = NULL;
3624 send_icmp_head_v6 = NULL;
3625 mutex_enter(&ipfb->ipfb_lock);
3626 while ((ipf = ipfb->ipfb_ipf) != 0) {
3627 time_t frag_time = current_time - ipf->ipf_timestamp;
3628 time_t frag_timeout;
3630 if (frag_time < dead_interval) {
3632 * There are some outstanding fragments
3633 * that will timeout later. Make note of
3634 * the time so that we can reschedule the
3635 * next timeout appropriately.
3637 frag_timeout = dead_interval - frag_time;
3638 if (next_timeout == 0 ||
3639 frag_timeout < next_timeout) {
3640 next_timeout = frag_timeout;
3642 break;
3644 /* Time's up. Get it out of here. */
3645 hdr_length = ipf->ipf_nf_hdr_len;
3646 ipfnext = ipf->ipf_hash_next;
3647 if (ipfnext)
3648 ipfnext->ipf_ptphn = ipf->ipf_ptphn;
3649 *ipf->ipf_ptphn = ipfnext;
3650 mp = ipf->ipf_mp->b_cont;
3651 for (; mp; mp = mp->b_cont) {
3652 /* Extra points for neatness. */
3653 IP_REASS_SET_START(mp, 0);
3654 IP_REASS_SET_END(mp, 0);
3656 mp = ipf->ipf_mp->b_cont;
3657 ill->ill_frag_count -= ipf->ipf_count;
3658 ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
3659 ipfb->ipfb_count -= ipf->ipf_count;
3660 ASSERT(ipfb->ipfb_frag_pkts > 0);
3661 ipfb->ipfb_frag_pkts--;
3663 * We do not send any icmp message from here because
3664 * we currently are holding the ipfb_lock for this
3665 * hash chain. If we try and send any icmp messages
3666 * from here we may end up via a put back into ip
3667 * trying to get the same lock, causing a recursive
3668 * mutex panic. Instead we build a list and send all
3669 * the icmp messages after we have dropped the lock.
3671 if (ill->ill_isv6) {
3672 if (hdr_length != 0) {
3673 mp->b_next = send_icmp_head_v6;
3674 send_icmp_head_v6 = mp;
3675 } else {
3676 freemsg(mp);
3678 } else {
3679 if (hdr_length != 0) {
3680 mp->b_next = send_icmp_head;
3681 send_icmp_head = mp;
3682 } else {
3683 freemsg(mp);
3686 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3687 freeb(ipf->ipf_mp);
3689 mutex_exit(&ipfb->ipfb_lock);
3691 * Now need to send any icmp messages that we delayed from
3692 * above.
3694 while (send_icmp_head_v6 != NULL) {
3695 ip6_t *ip6h;
3697 mp = send_icmp_head_v6;
3698 send_icmp_head_v6 = send_icmp_head_v6->b_next;
3699 mp->b_next = NULL;
3700 if (mp->b_datap->db_type == M_CTL)
3701 ip6h = (ip6_t *)mp->b_cont->b_rptr;
3702 else
3703 ip6h = (ip6_t *)mp->b_rptr;
3704 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
3705 ill, ipst);
3706 if (zoneid == ALL_ZONES) {
3707 freemsg(mp);
3708 } else {
3709 icmp_time_exceeded_v6(ill->ill_wq, mp,
3710 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
3711 B_FALSE, zoneid, ipst);
3714 while (send_icmp_head != NULL) {
3715 ipaddr_t dst;
3717 mp = send_icmp_head;
3718 send_icmp_head = send_icmp_head->b_next;
3719 mp->b_next = NULL;
3721 if (mp->b_datap->db_type == M_CTL)
3722 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst;
3723 else
3724 dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
3726 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
3727 if (zoneid == ALL_ZONES) {
3728 freemsg(mp);
3729 } else {
3730 icmp_time_exceeded(ill->ill_wq, mp,
3731 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid,
3732 ipst);
3737 * A non-dying ILL will use the return value to decide whether to
3738 * restart the frag timer, and for how long.
3740 return (next_timeout);
3744 * This routine is called when the approximate count of mblk memory used
3745 * for the specified ILL has exceeded max_count.
3747 void
3748 ill_frag_prune(ill_t *ill, uint_t max_count)
3750 ipfb_t *ipfb;
3751 ipf_t *ipf;
3752 size_t count;
3755 * If we are here within ip_min_frag_prune_time msecs remove
3756 * ill_frag_free_num_pkts oldest packets from each bucket and increment
3757 * ill_frag_free_num_pkts.
3759 mutex_enter(&ill->ill_lock);
3760 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <=
3761 (ip_min_frag_prune_time != 0 ?
3762 ip_min_frag_prune_time : msec_per_tick)) {
3764 ill->ill_frag_free_num_pkts++;
3766 } else {
3767 ill->ill_frag_free_num_pkts = 0;
3769 ill->ill_last_frag_clean_time = lbolt;
3770 mutex_exit(&ill->ill_lock);
3773 * free ill_frag_free_num_pkts oldest packets from each bucket.
3775 if (ill->ill_frag_free_num_pkts != 0) {
3776 int ix;
3778 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3779 ipfb = &ill->ill_frag_hash_tbl[ix];
3780 mutex_enter(&ipfb->ipfb_lock);
3781 if (ipfb->ipfb_ipf != NULL) {
3782 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
3783 ill->ill_frag_free_num_pkts);
3785 mutex_exit(&ipfb->ipfb_lock);
3789 * While the reassembly list for this ILL is too big, prune a fragment
3790 * queue by age, oldest first. Note that the per ILL count is
3791 * approximate, while the per frag hash bucket counts are accurate.
3793 while (ill->ill_frag_count > max_count) {
3794 int ix;
3795 ipfb_t *oipfb = NULL;
3796 uint_t oldest = UINT_MAX;
3798 count = 0;
3799 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3800 ipfb = &ill->ill_frag_hash_tbl[ix];
3801 mutex_enter(&ipfb->ipfb_lock);
3802 ipf = ipfb->ipfb_ipf;
3803 if (ipf != NULL && ipf->ipf_gen < oldest) {
3804 oldest = ipf->ipf_gen;
3805 oipfb = ipfb;
3807 count += ipfb->ipfb_count;
3808 mutex_exit(&ipfb->ipfb_lock);
3810 /* Refresh the per ILL count */
3811 ill->ill_frag_count = count;
3812 if (oipfb == NULL) {
3813 ill->ill_frag_count = 0;
3814 break;
3816 if (count <= max_count)
3817 return; /* Somebody beat us to it, nothing to do */
3818 mutex_enter(&oipfb->ipfb_lock);
3819 ipf = oipfb->ipfb_ipf;
3820 if (ipf != NULL) {
3821 ill_frag_free_pkts(ill, oipfb, ipf, 1);
3823 mutex_exit(&oipfb->ipfb_lock);
3828 * free 'free_cnt' fragmented packets starting at ipf.
3830 void
3831 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
3833 size_t count;
3834 mblk_t *mp;
3835 mblk_t *tmp;
3836 ipf_t **ipfp = ipf->ipf_ptphn;
3838 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
3839 ASSERT(ipfp != NULL);
3840 ASSERT(ipf != NULL);
3842 while (ipf != NULL && free_cnt-- > 0) {
3843 count = ipf->ipf_count;
3844 mp = ipf->ipf_mp;
3845 ipf = ipf->ipf_hash_next;
3846 for (tmp = mp; tmp; tmp = tmp->b_cont) {
3847 IP_REASS_SET_START(tmp, 0);
3848 IP_REASS_SET_END(tmp, 0);
3850 ill->ill_frag_count -= count;
3851 ASSERT(ipfb->ipfb_count >= count);
3852 ipfb->ipfb_count -= count;
3853 ASSERT(ipfb->ipfb_frag_pkts > 0);
3854 ipfb->ipfb_frag_pkts--;
3855 freemsg(mp);
3856 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3859 if (ipf)
3860 ipf->ipf_ptphn = ipfp;
3861 ipfp[0] = ipf;
3864 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \
3865 "obsolete and may be removed in a future release of Solaris. Use " \
3866 "ifconfig(1M) to manipulate the forwarding status of an interface."
3869 * For obsolete per-interface forwarding configuration;
3870 * called in response to ND_GET.
3872 /* ARGSUSED */
3873 static int
3874 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
3876 ill_t *ill = (ill_t *)cp;
3878 cmn_err(CE_WARN, ND_FORWARD_WARNING);
3880 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
3881 return (0);
3885 * For obsolete per-interface forwarding configuration;
3886 * called in response to ND_SET.
3888 /* ARGSUSED */
3889 static int
3890 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
3891 cred_t *ioc_cr)
3893 long value;
3894 int retval;
3895 ip_stack_t *ipst = CONNQ_TO_IPST(q);
3897 cmn_err(CE_WARN, ND_FORWARD_WARNING);
3899 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
3900 value < 0 || value > 1) {
3901 return (EINVAL);
3904 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3905 retval = ill_forward_set((ill_t *)cp, (value != 0));
3906 rw_exit(&ipst->ips_ill_g_lock);
3907 return (retval);
3911 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an
3912 * IPMP group, make sure all ill's in the group adopt the new policy. Send
3913 * up RTS_IFINFO routing socket messages for each interface whose flags we
3914 * change.
3917 ill_forward_set(ill_t *ill, boolean_t enable)
3919 ill_group_t *illgrp;
3920 ip_stack_t *ipst = ill->ill_ipst;
3922 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
3924 if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
3925 (!enable && !(ill->ill_flags & ILLF_ROUTER)))
3926 return (0);
3928 if (IS_LOOPBACK(ill))
3929 return (EINVAL);
3932 * If the ill is in an IPMP group, set the forwarding policy on all
3933 * members of the group to the same value.
3935 illgrp = ill->ill_group;
3936 if (illgrp != NULL) {
3937 ill_t *tmp_ill;
3939 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL;
3940 tmp_ill = tmp_ill->ill_group_next) {
3941 ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3942 (enable ? "Enabling" : "Disabling"),
3943 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"),
3944 tmp_ill->ill_name));
3945 mutex_enter(&tmp_ill->ill_lock);
3946 if (enable)
3947 tmp_ill->ill_flags |= ILLF_ROUTER;
3948 else
3949 tmp_ill->ill_flags &= ~ILLF_ROUTER;
3950 mutex_exit(&tmp_ill->ill_lock);
3951 if (tmp_ill->ill_isv6)
3952 ill_set_nce_router_flags(tmp_ill, enable);
3953 /* Notify routing socket listeners of this change. */
3954 ip_rts_ifmsg(tmp_ill->ill_ipif);
3956 } else {
3957 ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3958 (enable ? "Enabling" : "Disabling"),
3959 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
3960 mutex_enter(&ill->ill_lock);
3961 if (enable)
3962 ill->ill_flags |= ILLF_ROUTER;
3963 else
3964 ill->ill_flags &= ~ILLF_ROUTER;
3965 mutex_exit(&ill->ill_lock);
3966 if (ill->ill_isv6)
3967 ill_set_nce_router_flags(ill, enable);
3968 /* Notify routing socket listeners of this change. */
3969 ip_rts_ifmsg(ill->ill_ipif);
3972 return (0);
3976 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
3977 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
3978 * set or clear.
3980 static void
3981 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
3983 ipif_t *ipif;
3984 nce_t *nce;
3986 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
3987 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE);
3988 if (nce != NULL) {
3989 mutex_enter(&nce->nce_lock);
3990 if (enable)
3991 nce->nce_flags |= NCE_F_ISROUTER;
3992 else
3993 nce->nce_flags &= ~NCE_F_ISROUTER;
3994 mutex_exit(&nce->nce_lock);
3995 NCE_REFRELE(nce);
4001 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
4002 * for this ill. Make sure the v6/v4 question has been answered about this
4003 * ill. The creation of this ndd variable is only for backwards compatibility.
4004 * The preferred way to control per-interface IP forwarding is through the
4005 * ILLF_ROUTER interface flag.
4007 static int
4008 ill_set_ndd_name(ill_t *ill)
4010 char *suffix;
4011 ip_stack_t *ipst = ill->ill_ipst;
4013 ASSERT(IAM_WRITER_ILL(ill));
4015 if (ill->ill_isv6)
4016 suffix = ipv6_forward_suffix;
4017 else
4018 suffix = ipv4_forward_suffix;
4020 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
4021 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
4023 * Copies over the '\0'.
4024 * Note that strlen(suffix) is always bounded.
4026 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
4027 strlen(suffix) + 1);
4030 * Use of the nd table requires holding the reader lock.
4031 * Modifying the nd table thru nd_load/nd_unload requires
4032 * the writer lock.
4034 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
4035 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
4036 nd_ill_forward_set, (caddr_t)ill)) {
4038 * If the nd_load failed, it only meant that it could not
4039 * allocate a new bunch of room for further NDD expansion.
4040 * Because of that, the ill_ndd_name will be set to 0, and
4041 * this interface is at the mercy of the global ip_forwarding
4042 * variable.
4044 rw_exit(&ipst->ips_ip_g_nd_lock);
4045 ill->ill_ndd_name = NULL;
4046 return (ENOMEM);
4048 rw_exit(&ipst->ips_ip_g_nd_lock);
4049 return (0);
4053 * Intializes the context structure and returns the first ill in the list
4054 * cuurently start_list and end_list can have values:
4055 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists.
4056 * IP_V4_G_HEAD Traverse IPV4 list only.
4057 * IP_V6_G_HEAD Traverse IPV6 list only.
4061 * We don't check for CONDEMNED ills here. Caller must do that if
4062 * necessary under the ill lock.
4064 ill_t *
4065 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
4066 ip_stack_t *ipst)
4068 ill_if_t *ifp;
4069 ill_t *ill;
4070 avl_tree_t *avl_tree;
4072 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4073 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
4076 * setup the lists to search
4078 if (end_list != MAX_G_HEADS) {
4079 ctx->ctx_current_list = start_list;
4080 ctx->ctx_last_list = end_list;
4081 } else {
4082 ctx->ctx_last_list = MAX_G_HEADS - 1;
4083 ctx->ctx_current_list = 0;
4086 while (ctx->ctx_current_list <= ctx->ctx_last_list) {
4087 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4088 if (ifp != (ill_if_t *)
4089 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4090 avl_tree = &ifp->illif_avl_by_ppa;
4091 ill = avl_first(avl_tree);
4093 * ill is guaranteed to be non NULL or ifp should have
4094 * not existed.
4096 ASSERT(ill != NULL);
4097 return (ill);
4099 ctx->ctx_current_list++;
4102 return (NULL);
4106 * returns the next ill in the list. ill_first() must have been called
4107 * before calling ill_next() or bad things will happen.
4111 * We don't check for CONDEMNED ills here. Caller must do that if
4112 * necessary under the ill lock.
4114 ill_t *
4115 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
4117 ill_if_t *ifp;
4118 ill_t *ill;
4119 ip_stack_t *ipst = lastill->ill_ipst;
4121 ASSERT(lastill->ill_ifptr != (ill_if_t *)
4122 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
4123 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
4124 AVL_AFTER)) != NULL) {
4125 return (ill);
4128 /* goto next ill_ifp in the list. */
4129 ifp = lastill->ill_ifptr->illif_next;
4131 /* make sure not at end of circular list */
4132 while (ifp ==
4133 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4134 if (++ctx->ctx_current_list > ctx->ctx_last_list)
4135 return (NULL);
4136 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4139 return (avl_first(&ifp->illif_avl_by_ppa));
4143 * Check interface name for correct format which is name+ppa.
4144 * name can contain characters and digits, the right most digits
4145 * make up the ppa number. use of octal is not allowed, name must contain
4146 * a ppa, return pointer to the start of ppa.
4147 * In case of error return NULL.
4149 static char *
4150 ill_get_ppa_ptr(char *name)
4152 int namelen = mi_strlen(name);
4154 int len = namelen;
4156 name += len;
4157 while (len > 0) {
4158 name--;
4159 if (*name < '0' || *name > '9')
4160 break;
4161 len--;
4164 /* empty string, all digits, or no trailing digits */
4165 if (len == 0 || len == (int)namelen)
4166 return (NULL);
4168 name++;
4169 /* check for attempted use of octal */
4170 if (*name == '0' && len != (int)namelen - 1)
4171 return (NULL);
4172 return (name);
4176 * use avl tree to locate the ill.
4178 static ill_t *
4179 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp,
4180 ipsq_func_t func, int *error, ip_stack_t *ipst)
4182 char *ppa_ptr = NULL;
4183 int len;
4184 uint_t ppa;
4185 ill_t *ill = NULL;
4186 ill_if_t *ifp;
4187 int list;
4188 ipsq_t *ipsq;
4190 if (error != NULL)
4191 *error = 0;
4194 * get ppa ptr
4196 if (isv6)
4197 list = IP_V6_G_HEAD;
4198 else
4199 list = IP_V4_G_HEAD;
4201 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
4202 if (error != NULL)
4203 *error = ENXIO;
4204 return (NULL);
4207 len = ppa_ptr - name + 1;
4209 ppa = stoi(&ppa_ptr);
4211 ifp = IP_VX_ILL_G_LIST(list, ipst);
4213 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4215 * match is done on len - 1 as the name is not null
4216 * terminated it contains ppa in addition to the interface
4217 * name.
4219 if ((ifp->illif_name_len == len) &&
4220 bcmp(ifp->illif_name, name, len - 1) == 0) {
4221 break;
4222 } else {
4223 ifp = ifp->illif_next;
4228 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4230 * Even the interface type does not exist.
4232 if (error != NULL)
4233 *error = ENXIO;
4234 return (NULL);
4237 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
4238 if (ill != NULL) {
4240 * The block comment at the start of ipif_down
4241 * explains the use of the macros used below
4243 GRAB_CONN_LOCK(q);
4244 mutex_enter(&ill->ill_lock);
4245 if (ILL_CAN_LOOKUP(ill)) {
4246 ill_refhold_locked(ill);
4247 mutex_exit(&ill->ill_lock);
4248 RELEASE_CONN_LOCK(q);
4249 return (ill);
4250 } else if (ILL_CAN_WAIT(ill, q)) {
4251 ipsq = ill->ill_phyint->phyint_ipsq;
4252 mutex_enter(&ipsq->ipsq_lock);
4253 mutex_exit(&ill->ill_lock);
4254 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
4255 mutex_exit(&ipsq->ipsq_lock);
4256 RELEASE_CONN_LOCK(q);
4257 if (error != NULL)
4258 *error = EINPROGRESS;
4259 return (NULL);
4261 mutex_exit(&ill->ill_lock);
4262 RELEASE_CONN_LOCK(q);
4264 if (error != NULL)
4265 *error = ENXIO;
4266 return (NULL);
4270 * comparison function for use with avl.
4272 static int
4273 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
4275 uint_t ppa;
4276 uint_t ill_ppa;
4278 ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
4280 ppa = *((uint_t *)ppa_ptr);
4281 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
4283 * We want the ill with the lowest ppa to be on the
4284 * top.
4286 if (ill_ppa < ppa)
4287 return (1);
4288 if (ill_ppa > ppa)
4289 return (-1);
4290 return (0);
4294 * remove an interface type from the global list.
4296 static void
4297 ill_delete_interface_type(ill_if_t *interface)
4299 ASSERT(interface != NULL);
4300 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
4302 avl_destroy(&interface->illif_avl_by_ppa);
4303 if (interface->illif_ppa_arena != NULL)
4304 vmem_destroy(interface->illif_ppa_arena);
4306 remque(interface);
4308 mi_free(interface);
4311 /* Defined in ip_netinfo.c */
4312 extern ddi_taskq_t *eventq_queue_nic;
4315 * remove ill from the global list.
4317 static void
4318 ill_glist_delete(ill_t *ill)
4320 char *nicname;
4321 size_t nicnamelen;
4322 hook_nic_event_t *info;
4323 ip_stack_t *ipst;
4325 if (ill == NULL)
4326 return;
4327 ipst = ill->ill_ipst;
4328 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4330 if (ill->ill_name != NULL) {
4331 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP);
4332 if (nicname != NULL) {
4333 bcopy(ill->ill_name, nicname, ill->ill_name_length);
4334 nicnamelen = ill->ill_name_length;
4336 } else {
4337 nicname = NULL;
4338 nicnamelen = 0;
4342 * If the ill was never inserted into the AVL tree
4343 * we skip the if branch.
4345 if (ill->ill_ifptr != NULL) {
4347 * remove from AVL tree and free ppa number
4349 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
4351 if (ill->ill_ifptr->illif_ppa_arena != NULL) {
4352 vmem_free(ill->ill_ifptr->illif_ppa_arena,
4353 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4355 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
4356 ill_delete_interface_type(ill->ill_ifptr);
4360 * Indicate ill is no longer in the list.
4362 ill->ill_ifptr = NULL;
4363 ill->ill_name_length = 0;
4364 ill->ill_name[0] = '\0';
4365 ill->ill_ppa = UINT_MAX;
4369 * Run the unplumb hook after the NIC has disappeared from being
4370 * visible so that attempts to revalidate its existance will fail.
4372 * This needs to be run inside the ill_g_lock perimeter to ensure
4373 * that the ordering of delivered events to listeners matches the
4374 * order of them in the kernel.
4376 if ((info = ill->ill_nic_event_info) != NULL) {
4377 if (info->hne_event != NE_DOWN) {
4378 ip2dbg(("ill_glist_delete: unexpected nic event %d "
4379 "attached for %s\n", info->hne_event,
4380 ill->ill_name));
4381 if (info->hne_data != NULL)
4382 kmem_free(info->hne_data, info->hne_datalen);
4383 kmem_free(info, sizeof (hook_nic_event_t));
4384 } else {
4385 if (ddi_taskq_dispatch(eventq_queue_nic,
4386 ip_ne_queue_func, (void *)info, DDI_SLEEP)
4387 == DDI_FAILURE) {
4388 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch "
4389 "failed\n"));
4390 if (info->hne_data != NULL)
4391 kmem_free(info->hne_data,
4392 info->hne_datalen);
4393 kmem_free(info, sizeof (hook_nic_event_t));
4398 /* Generate NE_UNPLUMB event for ill_name. */
4399 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
4400 if (info != NULL) {
4401 info->hne_nic = ill->ill_phyint->phyint_ifindex;
4402 info->hne_lif = 0;
4403 info->hne_event = NE_UNPLUMB;
4404 info->hne_data = nicname;
4405 info->hne_datalen = nicnamelen;
4406 info->hne_family = ill->ill_isv6 ?
4407 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
4408 } else {
4409 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event "
4410 "information for %s (ENOMEM)\n", ill->ill_name));
4411 if (nicname != NULL)
4412 kmem_free(nicname, nicnamelen);
4415 ill->ill_nic_event_info = info;
4417 ill_phyint_free(ill);
4418 rw_exit(&ipst->ips_ill_g_lock);
4422 * allocate a ppa, if the number of plumbed interfaces of this type are
4423 * less than ill_no_arena do a linear search to find a unused ppa.
4424 * When the number goes beyond ill_no_arena switch to using an arena.
4425 * Note: ppa value of zero cannot be allocated from vmem_arena as it
4426 * is the return value for an error condition, so allocation starts at one
4427 * and is decremented by one.
4429 static int
4430 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
4432 ill_t *tmp_ill;
4433 uint_t start, end;
4434 int ppa;
4436 if (ifp->illif_ppa_arena == NULL &&
4437 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
4439 * Create an arena.
4441 ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
4442 (void *)1, UINT_MAX - 1, 1, NULL, NULL,
4443 NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
4444 /* allocate what has already been assigned */
4445 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
4446 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
4447 tmp_ill, AVL_AFTER)) {
4448 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4449 1, /* size */
4450 1, /* align/quantum */
4451 0, /* phase */
4452 0, /* nocross */
4453 /* minaddr */
4454 (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
4455 /* maxaddr */
4456 (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
4457 VM_NOSLEEP|VM_FIRSTFIT);
4458 if (ppa == 0) {
4459 ip1dbg(("ill_alloc_ppa: ppa allocation"
4460 " failed while switching"));
4461 vmem_destroy(ifp->illif_ppa_arena);
4462 ifp->illif_ppa_arena = NULL;
4463 break;
4468 if (ifp->illif_ppa_arena != NULL) {
4469 if (ill->ill_ppa == UINT_MAX) {
4470 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
4471 1, VM_NOSLEEP|VM_FIRSTFIT);
4472 if (ppa == 0)
4473 return (EAGAIN);
4474 ill->ill_ppa = --ppa;
4475 } else {
4476 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4477 1, /* size */
4478 1, /* align/quantum */
4479 0, /* phase */
4480 0, /* nocross */
4481 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
4482 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
4483 VM_NOSLEEP|VM_FIRSTFIT);
4485 * Most likely the allocation failed because
4486 * the requested ppa was in use.
4488 if (ppa == 0)
4489 return (EEXIST);
4491 return (0);
4495 * No arena is in use and not enough (>ill_no_arena) interfaces have
4496 * been plumbed to create one. Do a linear search to get a unused ppa.
4498 if (ill->ill_ppa == UINT_MAX) {
4499 end = UINT_MAX - 1;
4500 start = 0;
4501 } else {
4502 end = start = ill->ill_ppa;
4505 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
4506 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
4507 if (start++ >= end) {
4508 if (ill->ill_ppa == UINT_MAX)
4509 return (EAGAIN);
4510 else
4511 return (EEXIST);
4513 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
4515 ill->ill_ppa = start;
4516 return (0);
4520 * Insert ill into the list of configured ill's. Once this function completes,
4521 * the ill is globally visible and is available through lookups. More precisely
4522 * this happens after the caller drops the ill_g_lock.
4524 static int
4525 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
4527 ill_if_t *ill_interface;
4528 avl_index_t where = 0;
4529 int error;
4530 int name_length;
4531 int index;
4532 boolean_t check_length = B_FALSE;
4533 ip_stack_t *ipst = ill->ill_ipst;
4535 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
4537 name_length = mi_strlen(name) + 1;
4539 if (isv6)
4540 index = IP_V6_G_HEAD;
4541 else
4542 index = IP_V4_G_HEAD;
4544 ill_interface = IP_VX_ILL_G_LIST(index, ipst);
4546 * Search for interface type based on name
4548 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4549 if ((ill_interface->illif_name_len == name_length) &&
4550 (strcmp(ill_interface->illif_name, name) == 0)) {
4551 break;
4553 ill_interface = ill_interface->illif_next;
4557 * Interface type not found, create one.
4559 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4561 ill_g_head_t ghead;
4564 * allocate ill_if_t structure
4567 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
4568 if (ill_interface == NULL) {
4569 return (ENOMEM);
4574 (void) strcpy(ill_interface->illif_name, name);
4575 ill_interface->illif_name_len = name_length;
4577 avl_create(&ill_interface->illif_avl_by_ppa,
4578 ill_compare_ppa, sizeof (ill_t),
4579 offsetof(struct ill_s, ill_avl_byppa));
4582 * link the structure in the back to maintain order
4583 * of configuration for ifconfig output.
4585 ghead = ipst->ips_ill_g_heads[index];
4586 insque(ill_interface, ghead.ill_g_list_tail);
4590 if (ill->ill_ppa == UINT_MAX)
4591 check_length = B_TRUE;
4593 error = ill_alloc_ppa(ill_interface, ill);
4594 if (error != 0) {
4595 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4596 ill_delete_interface_type(ill->ill_ifptr);
4597 return (error);
4601 * When the ppa is choosen by the system, check that there is
4602 * enough space to insert ppa. if a specific ppa was passed in this
4603 * check is not required as the interface name passed in will have
4604 * the right ppa in it.
4606 if (check_length) {
4608 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
4610 char buf[sizeof (uint_t) * 3];
4613 * convert ppa to string to calculate the amount of space
4614 * required for it in the name.
4616 numtos(ill->ill_ppa, buf);
4618 /* Do we have enough space to insert ppa ? */
4620 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
4621 /* Free ppa and interface type struct */
4622 if (ill_interface->illif_ppa_arena != NULL) {
4623 vmem_free(ill_interface->illif_ppa_arena,
4624 (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4626 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) ==
4627 0) {
4628 ill_delete_interface_type(ill->ill_ifptr);
4631 return (EINVAL);
4635 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
4636 ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
4638 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
4639 &where);
4640 ill->ill_ifptr = ill_interface;
4641 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
4643 ill_phyint_reinit(ill);
4644 return (0);
4647 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */
4648 static boolean_t
4649 ipsq_init(ill_t *ill)
4651 ipsq_t *ipsq;
4653 /* Init the ipsq and impicitly enter as writer */
4654 ill->ill_phyint->phyint_ipsq =
4655 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
4656 if (ill->ill_phyint->phyint_ipsq == NULL)
4657 return (B_FALSE);
4658 ipsq = ill->ill_phyint->phyint_ipsq;
4659 ipsq->ipsq_phyint_list = ill->ill_phyint;
4660 ill->ill_phyint->phyint_ipsq_next = NULL;
4661 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
4662 ipsq->ipsq_refs = 1;
4663 ipsq->ipsq_writer = curthread;
4664 ipsq->ipsq_reentry_cnt = 1;
4665 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */
4666 #ifdef DEBUG
4667 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack,
4668 IPSQ_STACK_DEPTH);
4669 #endif
4670 (void) strcpy(ipsq->ipsq_name, ill->ill_name);
4671 return (B_TRUE);
4675 * ill_init is called by ip_open when a device control stream is opened.
4676 * It does a few initializations, and shoots a DL_INFO_REQ message down
4677 * to the driver. The response is later picked up in ip_rput_dlpi and
4678 * used to set up default mechanisms for talking to the driver. (Always
4679 * called as writer.)
4681 * If this function returns error, ip_open will call ip_close which in
4682 * turn will call ill_delete to clean up any memory allocated here that
4683 * is not yet freed.
4686 ill_init(queue_t *q, ill_t *ill)
4688 int count;
4689 dl_info_req_t *dlir;
4690 mblk_t *info_mp;
4691 uchar_t *frag_ptr;
4694 * The ill is initialized to zero by mi_alloc*(). In addition
4695 * some fields already contain valid values, initialized in
4696 * ip_open(), before we reach here.
4698 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
4700 ill->ill_rq = q;
4701 ill->ill_wq = WR(q);
4703 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
4704 BPRI_HI);
4705 if (info_mp == NULL)
4706 return (ENOMEM);
4709 * Allocate sufficient space to contain our fragment hash table and
4710 * the device name.
4712 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
4713 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix));
4714 if (frag_ptr == NULL) {
4715 freemsg(info_mp);
4716 return (ENOMEM);
4718 ill->ill_frag_ptr = frag_ptr;
4719 ill->ill_frag_free_num_pkts = 0;
4720 ill->ill_last_frag_clean_time = 0;
4721 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
4722 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
4723 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
4724 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
4725 NULL, MUTEX_DEFAULT, NULL);
4728 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4729 if (ill->ill_phyint == NULL) {
4730 freemsg(info_mp);
4731 mi_free(frag_ptr);
4732 return (ENOMEM);
4735 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4737 * For now pretend this is a v4 ill. We need to set phyint_ill*
4738 * at this point because of the following reason. If we can't
4739 * enter the ipsq at some point and cv_wait, the writer that
4740 * wakes us up tries to locate us using the list of all phyints
4741 * in an ipsq and the ills from the phyint thru the phyint_ill*.
4742 * If we don't set it now, we risk a missed wakeup.
4744 ill->ill_phyint->phyint_illv4 = ill;
4745 ill->ill_ppa = UINT_MAX;
4746 ill->ill_fastpath_list = &ill->ill_fastpath_list;
4748 if (!ipsq_init(ill)) {
4749 freemsg(info_mp);
4750 mi_free(frag_ptr);
4751 mi_free(ill->ill_phyint);
4752 return (ENOMEM);
4755 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
4758 /* Frag queue limit stuff */
4759 ill->ill_frag_count = 0;
4760 ill->ill_ipf_gen = 0;
4762 ill->ill_global_timer = INFINITY;
4763 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4764 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4765 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4766 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4769 * Initialize IPv6 configuration variables. The IP module is always
4770 * opened as an IPv4 module. Instead tracking down the cases where
4771 * it switches to do ipv6, we'll just initialize the IPv6 configuration
4772 * here for convenience, this has no effect until the ill is set to do
4773 * IPv6.
4775 ill->ill_reachable_time = ND_REACHABLE_TIME;
4776 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
4777 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
4778 ill->ill_max_buf = ND_MAX_Q;
4779 ill->ill_refcnt = 0;
4781 /* Send down the Info Request to the driver. */
4782 info_mp->b_datap->db_type = M_PCPROTO;
4783 dlir = (dl_info_req_t *)info_mp->b_rptr;
4784 info_mp->b_wptr = (uchar_t *)&dlir[1];
4785 dlir->dl_primitive = DL_INFO_REQ;
4787 ill->ill_dlpi_pending = DL_PRIM_INVAL;
4789 qprocson(q);
4790 ill_dlpi_send(ill, info_mp);
4792 return (0);
4796 * ill_dls_info
4797 * creates datalink socket info from the device.
4800 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif)
4802 size_t len;
4803 ill_t *ill = ipif->ipif_ill;
4805 sdl->sdl_family = AF_LINK;
4806 sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4807 sdl->sdl_type = ill->ill_type;
4808 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4809 len = strlen(sdl->sdl_data);
4810 ASSERT(len < 256);
4811 sdl->sdl_nlen = (uchar_t)len;
4812 sdl->sdl_alen = ill->ill_phys_addr_length;
4813 sdl->sdl_slen = 0;
4814 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
4815 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
4817 return (sizeof (struct sockaddr_dl));
4821 * ill_xarp_info
4822 * creates xarp info from the device.
4824 static int
4825 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
4827 sdl->sdl_family = AF_LINK;
4828 sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4829 sdl->sdl_type = ill->ill_type;
4830 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4831 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
4832 sdl->sdl_alen = ill->ill_phys_addr_length;
4833 sdl->sdl_slen = 0;
4834 return (sdl->sdl_nlen);
4837 static int
4838 loopback_kstat_update(kstat_t *ksp, int rw)
4840 kstat_named_t *kn;
4841 netstackid_t stackid;
4842 netstack_t *ns;
4843 ip_stack_t *ipst;
4845 if (ksp == NULL || ksp->ks_data == NULL)
4846 return (EIO);
4848 if (rw == KSTAT_WRITE)
4849 return (EACCES);
4851 kn = KSTAT_NAMED_PTR(ksp);
4852 stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
4854 ns = netstack_find_by_stackid(stackid);
4855 if (ns == NULL)
4856 return (-1);
4858 ipst = ns->netstack_ip;
4859 if (ipst == NULL) {
4860 netstack_rele(ns);
4861 return (-1);
4863 kn[0].value.ui32 = ipst->ips_loopback_packets;
4864 kn[1].value.ui32 = ipst->ips_loopback_packets;
4865 netstack_rele(ns);
4866 return (0);
4871 * Has ifindex been plumbed already.
4872 * Compares both phyint_ifindex and phyint_group_ifindex.
4874 static boolean_t
4875 phyint_exists(uint_t index, ip_stack_t *ipst)
4877 phyint_t *phyi;
4879 ASSERT(index != 0);
4880 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4882 * Indexes are stored in the phyint - a common structure
4883 * to both IPv4 and IPv6.
4885 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
4886 for (; phyi != NULL;
4887 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4888 phyi, AVL_AFTER)) {
4889 if (phyi->phyint_ifindex == index ||
4890 phyi->phyint_group_ifindex == index)
4891 return (B_TRUE);
4893 return (B_FALSE);
4896 /* Pick a unique ifindex */
4897 boolean_t
4898 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
4900 uint_t starting_index;
4902 if (!ipst->ips_ill_index_wrap) {
4903 *indexp = ipst->ips_ill_index++;
4904 if (ipst->ips_ill_index == 0) {
4905 /* Reached the uint_t limit Next time wrap */
4906 ipst->ips_ill_index_wrap = B_TRUE;
4908 return (B_TRUE);
4912 * Start reusing unused indexes. Note that we hold the ill_g_lock
4913 * at this point and don't want to call any function that attempts
4914 * to get the lock again.
4916 starting_index = ipst->ips_ill_index++;
4917 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
4918 if (ipst->ips_ill_index != 0 &&
4919 !phyint_exists(ipst->ips_ill_index, ipst)) {
4920 /* found unused index - use it */
4921 *indexp = ipst->ips_ill_index;
4922 return (B_TRUE);
4927 * all interface indicies are inuse.
4929 return (B_FALSE);
4933 * Assign a unique interface index for the phyint.
4935 static boolean_t
4936 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
4938 ASSERT(phyi->phyint_ifindex == 0);
4939 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
4943 * Return a pointer to the ill which matches the supplied name. Note that
4944 * the ill name length includes the null termination character. (May be
4945 * called as writer.)
4946 * If do_alloc and the interface is "lo0" it will be automatically created.
4947 * Cannot bump up reference on condemned ills. So dup detect can't be done
4948 * using this func.
4950 ill_t *
4951 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
4952 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc,
4953 ip_stack_t *ipst)
4955 ill_t *ill;
4956 ipif_t *ipif;
4957 kstat_named_t *kn;
4958 boolean_t isloopback;
4959 ipsq_t *old_ipsq;
4960 in6_addr_t ov6addr;
4962 isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
4964 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4965 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4966 rw_exit(&ipst->ips_ill_g_lock);
4967 if (ill != NULL || (error != NULL && *error == EINPROGRESS))
4968 return (ill);
4971 * Couldn't find it. Does this happen to be a lookup for the
4972 * loopback device and are we allowed to allocate it?
4974 if (!isloopback || !do_alloc)
4975 return (NULL);
4977 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4979 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4980 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) {
4981 rw_exit(&ipst->ips_ill_g_lock);
4982 return (ill);
4985 /* Create the loopback device on demand */
4986 ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
4987 sizeof (ipif_loopback_name), BPRI_MED));
4988 if (ill == NULL)
4989 goto done;
4991 *ill = ill_null;
4992 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
4993 ill->ill_ipst = ipst;
4994 netstack_hold(ipst->ips_netstack);
4996 * For exclusive stacks we set the zoneid to zero
4997 * to make IP operate as if in the global zone.
4999 ill->ill_zoneid = GLOBAL_ZONEID;
5001 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
5002 if (ill->ill_phyint == NULL)
5003 goto done;
5005 if (isv6)
5006 ill->ill_phyint->phyint_illv6 = ill;
5007 else
5008 ill->ill_phyint->phyint_illv4 = ill;
5009 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
5010 ill->ill_max_frag = IP_LOOPBACK_MTU;
5011 /* Add room for tcp+ip headers */
5012 if (isv6) {
5013 ill->ill_isv6 = B_TRUE;
5014 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */
5015 } else {
5016 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20;
5018 if (!ill_allocate_mibs(ill))
5019 goto done;
5020 ill->ill_max_mtu = ill->ill_max_frag;
5022 * ipif_loopback_name can't be pointed at directly because its used
5023 * by both the ipv4 and ipv6 interfaces. When the ill is removed
5024 * from the glist, ill_glist_delete() sets the first character of
5025 * ill_name to '\0'.
5027 ill->ill_name = (char *)ill + sizeof (*ill);
5028 (void) strcpy(ill->ill_name, ipif_loopback_name);
5029 ill->ill_name_length = sizeof (ipif_loopback_name);
5030 /* Set ill_name_set for ill_phyint_reinit to work properly */
5032 ill->ill_global_timer = INFINITY;
5033 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
5034 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
5035 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
5036 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
5038 /* No resolver here. */
5039 ill->ill_net_type = IRE_LOOPBACK;
5041 /* Initialize the ipsq */
5042 if (!ipsq_init(ill))
5043 goto done;
5045 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL;
5046 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--;
5047 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0);
5048 #ifdef DEBUG
5049 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0;
5050 #endif
5051 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE);
5052 if (ipif == NULL)
5053 goto done;
5055 ill->ill_flags = ILLF_MULTICAST;
5057 ov6addr = ipif->ipif_v6lcl_addr;
5058 /* Set up default loopback address and mask. */
5059 if (!isv6) {
5060 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
5062 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
5063 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5064 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
5065 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5066 ipif->ipif_v6subnet);
5067 ill->ill_flags |= ILLF_IPV4;
5068 } else {
5069 ipif->ipif_v6lcl_addr = ipv6_loopback;
5070 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5071 ipif->ipif_v6net_mask = ipv6_all_ones;
5072 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5073 ipif->ipif_v6subnet);
5074 ill->ill_flags |= ILLF_IPV6;
5078 * Chain us in at the end of the ill list. hold the ill
5079 * before we make it globally visible. 1 for the lookup.
5081 ill->ill_refcnt = 0;
5082 ill_refhold(ill);
5084 ill->ill_frag_count = 0;
5085 ill->ill_frag_free_num_pkts = 0;
5086 ill->ill_last_frag_clean_time = 0;
5088 old_ipsq = ill->ill_phyint->phyint_ipsq;
5090 if (ill_glist_insert(ill, "lo", isv6) != 0)
5091 cmn_err(CE_PANIC, "cannot insert loopback interface");
5093 /* Let SCTP know so that it can add this to its list */
5094 sctp_update_ill(ill, SCTP_ILL_INSERT);
5097 * We have already assigned ipif_v6lcl_addr above, but we need to
5098 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
5099 * requires to be after ill_glist_insert() since we need the
5100 * ill_index set. Pass on ipv6_loopback as the old address.
5102 sctp_update_ipif_addr(ipif, ov6addr);
5105 * If the ipsq was changed in ill_phyint_reinit free the old ipsq.
5107 if (old_ipsq != ill->ill_phyint->phyint_ipsq) {
5108 /* Loopback ills aren't in any IPMP group */
5109 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP));
5110 ipsq_delete(old_ipsq);
5114 * Delay this till the ipif is allocated as ipif_allocate
5115 * de-references ill_phyint for getting the ifindex. We
5116 * can't do this before ipif_allocate because ill_phyint_reinit
5117 * -> phyint_assign_ifindex expects ipif to be present.
5119 mutex_enter(&ill->ill_phyint->phyint_lock);
5120 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL;
5121 mutex_exit(&ill->ill_phyint->phyint_lock);
5123 if (ipst->ips_loopback_ksp == NULL) {
5124 /* Export loopback interface statistics */
5125 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
5126 ipif_loopback_name, "net",
5127 KSTAT_TYPE_NAMED, 2, 0,
5128 ipst->ips_netstack->netstack_stackid);
5129 if (ipst->ips_loopback_ksp != NULL) {
5130 ipst->ips_loopback_ksp->ks_update =
5131 loopback_kstat_update;
5132 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
5133 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
5134 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
5135 ipst->ips_loopback_ksp->ks_private =
5136 (void *)(uintptr_t)ipst->ips_netstack->
5137 netstack_stackid;
5138 kstat_install(ipst->ips_loopback_ksp);
5142 if (error != NULL)
5143 *error = 0;
5144 *did_alloc = B_TRUE;
5145 rw_exit(&ipst->ips_ill_g_lock);
5146 return (ill);
5147 done:
5148 if (ill != NULL) {
5149 if (ill->ill_phyint != NULL) {
5150 ipsq_t *ipsq;
5152 ipsq = ill->ill_phyint->phyint_ipsq;
5153 if (ipsq != NULL) {
5154 ipsq->ipsq_ipst = NULL;
5155 kmem_free(ipsq, sizeof (ipsq_t));
5157 mi_free(ill->ill_phyint);
5159 ill_free_mib(ill);
5160 if (ill->ill_ipst != NULL)
5161 netstack_rele(ill->ill_ipst->ips_netstack);
5162 mi_free(ill);
5164 rw_exit(&ipst->ips_ill_g_lock);
5165 if (error != NULL)
5166 *error = ENOMEM;
5167 return (NULL);
5171 * For IPP calls - use the ip_stack_t for global stack.
5173 ill_t *
5174 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6,
5175 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err)
5177 ip_stack_t *ipst;
5178 ill_t *ill;
5180 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
5181 if (ipst == NULL) {
5182 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
5183 return (NULL);
5186 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
5187 netstack_rele(ipst->ips_netstack);
5188 return (ill);
5192 * Return a pointer to the ill which matches the index and IP version type.
5194 ill_t *
5195 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp,
5196 ipsq_func_t func, int *err, ip_stack_t *ipst)
5198 ill_t *ill;
5199 ipsq_t *ipsq;
5200 phyint_t *phyi;
5202 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
5203 (q != NULL && mp != NULL && func != NULL && err != NULL));
5205 if (err != NULL)
5206 *err = 0;
5209 * Indexes are stored in the phyint - a common structure
5210 * to both IPv4 and IPv6.
5212 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5213 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5214 (void *) &index, NULL);
5215 if (phyi != NULL) {
5216 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
5217 if (ill != NULL) {
5219 * The block comment at the start of ipif_down
5220 * explains the use of the macros used below
5222 GRAB_CONN_LOCK(q);
5223 mutex_enter(&ill->ill_lock);
5224 if (ILL_CAN_LOOKUP(ill)) {
5225 ill_refhold_locked(ill);
5226 mutex_exit(&ill->ill_lock);
5227 RELEASE_CONN_LOCK(q);
5228 rw_exit(&ipst->ips_ill_g_lock);
5229 return (ill);
5230 } else if (ILL_CAN_WAIT(ill, q)) {
5231 ipsq = ill->ill_phyint->phyint_ipsq;
5232 mutex_enter(&ipsq->ipsq_lock);
5233 rw_exit(&ipst->ips_ill_g_lock);
5234 mutex_exit(&ill->ill_lock);
5235 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
5236 mutex_exit(&ipsq->ipsq_lock);
5237 RELEASE_CONN_LOCK(q);
5238 if (err != NULL)
5239 *err = EINPROGRESS;
5240 return (NULL);
5242 RELEASE_CONN_LOCK(q);
5243 mutex_exit(&ill->ill_lock);
5246 rw_exit(&ipst->ips_ill_g_lock);
5247 if (err != NULL)
5248 *err = ENXIO;
5249 return (NULL);
5253 * Return the ifindex next in sequence after the passed in ifindex.
5254 * If there is no next ifindex for the given protocol, return 0.
5256 uint_t
5257 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
5259 phyint_t *phyi;
5260 phyint_t *phyi_initial;
5261 uint_t ifindex;
5263 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5265 if (index == 0) {
5266 phyi = avl_first(
5267 &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
5268 } else {
5269 phyi = phyi_initial = avl_find(
5270 &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5271 (void *) &index, NULL);
5274 for (; phyi != NULL;
5275 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5276 phyi, AVL_AFTER)) {
5278 * If we're not returning the first interface in the tree
5279 * and we still haven't moved past the phyint_t that
5280 * corresponds to index, avl_walk needs to be called again
5282 if (!((index != 0) && (phyi == phyi_initial))) {
5283 if (isv6) {
5284 if ((phyi->phyint_illv6) &&
5285 ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
5286 (phyi->phyint_illv6->ill_isv6 == 1))
5287 break;
5288 } else {
5289 if ((phyi->phyint_illv4) &&
5290 ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
5291 (phyi->phyint_illv4->ill_isv6 == 0))
5292 break;
5297 rw_exit(&ipst->ips_ill_g_lock);
5299 if (phyi != NULL)
5300 ifindex = phyi->phyint_ifindex;
5301 else
5302 ifindex = 0;
5304 return (ifindex);
5309 * Return the ifindex for the named interface.
5310 * If there is no next ifindex for the interface, return 0.
5312 uint_t
5313 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
5315 phyint_t *phyi;
5316 avl_index_t where = 0;
5317 uint_t ifindex;
5319 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5321 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
5322 name, &where)) == NULL) {
5323 rw_exit(&ipst->ips_ill_g_lock);
5324 return (0);
5327 ifindex = phyi->phyint_ifindex;
5329 rw_exit(&ipst->ips_ill_g_lock);
5331 return (ifindex);
5336 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
5337 * that gives a running thread a reference to the ill. This reference must be
5338 * released by the thread when it is done accessing the ill and related
5339 * objects. ill_refcnt can not be used to account for static references
5340 * such as other structures pointing to an ill. Callers must generally
5341 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
5342 * or be sure that the ill is not being deleted or changing state before
5343 * calling the refhold functions. A non-zero ill_refcnt ensures that the
5344 * ill won't change any of its critical state such as address, netmask etc.
5346 void
5347 ill_refhold(ill_t *ill)
5349 mutex_enter(&ill->ill_lock);
5350 ill->ill_refcnt++;
5351 ILL_TRACE_REF(ill);
5352 mutex_exit(&ill->ill_lock);
5355 void
5356 ill_refhold_locked(ill_t *ill)
5358 ASSERT(MUTEX_HELD(&ill->ill_lock));
5359 ill->ill_refcnt++;
5360 ILL_TRACE_REF(ill);
5364 ill_check_and_refhold(ill_t *ill)
5366 mutex_enter(&ill->ill_lock);
5367 if (ILL_CAN_LOOKUP(ill)) {
5368 ill_refhold_locked(ill);
5369 mutex_exit(&ill->ill_lock);
5370 return (0);
5372 mutex_exit(&ill->ill_lock);
5373 return (ILL_LOOKUP_FAILED);
5377 * Must not be called while holding any locks. Otherwise if this is
5378 * the last reference to be released, there is a chance of recursive mutex
5379 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5380 * to restart an ioctl.
5382 void
5383 ill_refrele(ill_t *ill)
5385 mutex_enter(&ill->ill_lock);
5386 ASSERT(ill->ill_refcnt != 0);
5387 ill->ill_refcnt--;
5388 ILL_UNTRACE_REF(ill);
5389 if (ill->ill_refcnt != 0) {
5390 /* Every ire pointing to the ill adds 1 to ill_refcnt */
5391 mutex_exit(&ill->ill_lock);
5392 return;
5395 /* Drops the ill_lock */
5396 ipif_ill_refrele_tail(ill);
5400 * Obtain a weak reference count on the ill. This reference ensures the
5401 * ill won't be freed, but the ill may change any of its critical state
5402 * such as netmask, address etc. Returns an error if the ill has started
5403 * closing.
5405 boolean_t
5406 ill_waiter_inc(ill_t *ill)
5408 mutex_enter(&ill->ill_lock);
5409 if (ill->ill_state_flags & ILL_CONDEMNED) {
5410 mutex_exit(&ill->ill_lock);
5411 return (B_FALSE);
5413 ill->ill_waiters++;
5414 mutex_exit(&ill->ill_lock);
5415 return (B_TRUE);
5418 void
5419 ill_waiter_dcr(ill_t *ill)
5421 mutex_enter(&ill->ill_lock);
5422 ill->ill_waiters--;
5423 if (ill->ill_waiters == 0)
5424 cv_broadcast(&ill->ill_cv);
5425 mutex_exit(&ill->ill_lock);
5429 * Named Dispatch routine to produce a formatted report on all ILLs.
5430 * This report is accessed by using the ndd utility to "get" ND variable
5431 * "ip_ill_status".
5433 /* ARGSUSED */
5435 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5437 ill_t *ill;
5438 ill_walk_context_t ctx;
5439 ip_stack_t *ipst;
5441 ipst = CONNQ_TO_IPST(q);
5443 (void) mi_mpprintf(mp,
5444 "ILL " MI_COL_HDRPAD_STR
5445 /* 01234567[89ABCDEF] */
5446 "rq " MI_COL_HDRPAD_STR
5447 /* 01234567[89ABCDEF] */
5448 "wq " MI_COL_HDRPAD_STR
5449 /* 01234567[89ABCDEF] */
5450 "upcnt mxfrg err name");
5451 /* 12345 12345 123 xxxxxxxx */
5453 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5454 ill = ILL_START_WALK_ALL(&ctx, ipst);
5455 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5456 (void) mi_mpprintf(mp,
5457 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
5458 "%05u %05u %03d %s",
5459 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq,
5460 ill->ill_ipif_up_count,
5461 ill->ill_max_frag, ill->ill_error, ill->ill_name);
5463 rw_exit(&ipst->ips_ill_g_lock);
5465 return (0);
5469 * Named Dispatch routine to produce a formatted report on all IPIFs.
5470 * This report is accessed by using the ndd utility to "get" ND variable
5471 * "ip_ipif_status".
5473 /* ARGSUSED */
5475 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5477 char buf1[INET6_ADDRSTRLEN];
5478 char buf2[INET6_ADDRSTRLEN];
5479 char buf3[INET6_ADDRSTRLEN];
5480 char buf4[INET6_ADDRSTRLEN];
5481 char buf5[INET6_ADDRSTRLEN];
5482 char buf6[INET6_ADDRSTRLEN];
5483 char buf[LIFNAMSIZ];
5484 ill_t *ill;
5485 ipif_t *ipif;
5486 nv_t *nvp;
5487 uint64_t flags;
5488 zoneid_t zoneid;
5489 ill_walk_context_t ctx;
5490 ip_stack_t *ipst = CONNQ_TO_IPST(q);
5492 (void) mi_mpprintf(mp,
5493 "IPIF metric mtu in/out/forward name zone flags...\n"
5494 "\tlocal address\n"
5495 "\tsrc address\n"
5496 "\tsubnet\n"
5497 "\tmask\n"
5498 "\tbroadcast\n"
5499 "\tp-p-dst");
5501 ASSERT(q->q_next == NULL);
5502 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */
5504 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5505 ill = ILL_START_WALK_ALL(&ctx, ipst);
5506 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5507 for (ipif = ill->ill_ipif; ipif != NULL;
5508 ipif = ipif->ipif_next) {
5509 if (zoneid != GLOBAL_ZONEID &&
5510 zoneid != ipif->ipif_zoneid &&
5511 ipif->ipif_zoneid != ALL_ZONES)
5512 continue;
5514 ipif_get_name(ipif, buf, sizeof (buf));
5515 (void) mi_mpprintf(mp,
5516 MI_COL_PTRFMT_STR
5517 "%04u %05u %u/%u/%u %s %d",
5518 (void *)ipif,
5519 ipif->ipif_metric, ipif->ipif_mtu,
5520 ipif->ipif_ib_pkt_count,
5521 ipif->ipif_ob_pkt_count,
5522 ipif->ipif_fo_pkt_count,
5523 buf,
5524 ipif->ipif_zoneid);
5526 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags |
5527 ipif->ipif_ill->ill_phyint->phyint_flags;
5529 /* Tack on text strings for any flags. */
5530 nvp = ipif_nv_tbl;
5531 for (; nvp < A_END(ipif_nv_tbl); nvp++) {
5532 if (nvp->nv_value & flags)
5533 (void) mi_mpprintf_nr(mp, " %s",
5534 nvp->nv_name);
5536 (void) mi_mpprintf(mp,
5537 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s",
5538 inet_ntop(AF_INET6,
5539 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)),
5540 inet_ntop(AF_INET6,
5541 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)),
5542 inet_ntop(AF_INET6,
5543 &ipif->ipif_v6subnet, buf3, sizeof (buf3)),
5544 inet_ntop(AF_INET6,
5545 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)),
5546 inet_ntop(AF_INET6,
5547 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)),
5548 inet_ntop(AF_INET6,
5549 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6)));
5552 rw_exit(&ipst->ips_ill_g_lock);
5553 return (0);
5557 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
5558 * driver. We construct best guess defaults for lower level information that
5559 * we need. If an interface is brought up without injection of any overriding
5560 * information from outside, we have to be ready to go with these defaults.
5561 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
5562 * we primarely want the dl_provider_style.
5563 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
5564 * at which point we assume the other part of the information is valid.
5566 void
5567 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
5569 uchar_t *brdcst_addr;
5570 uint_t brdcst_addr_length, phys_addr_length;
5571 t_scalar_t sap_length;
5572 dl_info_ack_t *dlia;
5573 ip_m_t *ipm;
5574 dl_qos_cl_sel1_t *sel1;
5576 ASSERT(IAM_WRITER_ILL(ill));
5579 * Till the ill is fully up ILL_CHANGING will be set and
5580 * the ill is not globally visible. So no need for a lock.
5582 dlia = (dl_info_ack_t *)mp->b_rptr;
5583 ill->ill_mactype = dlia->dl_mac_type;
5585 ipm = ip_m_lookup(dlia->dl_mac_type);
5586 if (ipm == NULL) {
5587 ipm = ip_m_lookup(DL_OTHER);
5588 ASSERT(ipm != NULL);
5590 ill->ill_media = ipm;
5593 * When the new DLPI stuff is ready we'll pull lengths
5594 * from dlia.
5596 if (dlia->dl_version == DL_VERSION_2) {
5597 brdcst_addr_length = dlia->dl_brdcst_addr_length;
5598 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
5599 brdcst_addr_length);
5600 if (brdcst_addr == NULL) {
5601 brdcst_addr_length = 0;
5603 sap_length = dlia->dl_sap_length;
5604 phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
5605 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
5606 brdcst_addr_length, sap_length, phys_addr_length));
5607 } else {
5608 brdcst_addr_length = 6;
5609 brdcst_addr = ip_six_byte_all_ones;
5610 sap_length = -2;
5611 phys_addr_length = brdcst_addr_length;
5614 ill->ill_bcast_addr_length = brdcst_addr_length;
5615 ill->ill_phys_addr_length = phys_addr_length;
5616 ill->ill_sap_length = sap_length;
5617 ill->ill_max_frag = dlia->dl_max_sdu;
5618 ill->ill_max_mtu = ill->ill_max_frag;
5620 ill->ill_type = ipm->ip_m_type;
5622 if (!ill->ill_dlpi_style_set) {
5623 if (dlia->dl_provider_style == DL_STYLE2)
5624 ill->ill_needs_attach = 1;
5627 * Allocate the first ipif on this ill. We don't delay it
5628 * further as ioctl handling assumes atleast one ipif to
5629 * be present.
5631 * At this point we don't know whether the ill is v4 or v6.
5632 * We will know this whan the SIOCSLIFNAME happens and
5633 * the correct value for ill_isv6 will be assigned in
5634 * ipif_set_values(). We need to hold the ill lock and
5635 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
5636 * the wakeup.
5638 (void) ipif_allocate(ill, 0, IRE_LOCAL,
5639 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE);
5640 mutex_enter(&ill->ill_lock);
5641 ASSERT(ill->ill_dlpi_style_set == 0);
5642 ill->ill_dlpi_style_set = 1;
5643 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
5644 cv_broadcast(&ill->ill_cv);
5645 mutex_exit(&ill->ill_lock);
5646 freemsg(mp);
5647 return;
5649 ASSERT(ill->ill_ipif != NULL);
5651 * We know whether it is IPv4 or IPv6 now, as this is the
5652 * second DL_INFO_ACK we are recieving in response to the
5653 * DL_INFO_REQ sent in ipif_set_values.
5655 if (ill->ill_isv6)
5656 ill->ill_sap = IP6_DL_SAP;
5657 else
5658 ill->ill_sap = IP_DL_SAP;
5660 * Set ipif_mtu which is used to set the IRE's
5661 * ire_max_frag value. The driver could have sent
5662 * a different mtu from what it sent last time. No
5663 * need to call ipif_mtu_change because IREs have
5664 * not yet been created.
5666 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu;
5668 * Clear all the flags that were set based on ill_bcast_addr_length
5669 * and ill_phys_addr_length (in ipif_set_values) as these could have
5670 * changed now and we need to re-evaluate.
5672 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
5673 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
5676 * Free ill_resolver_mp and ill_bcast_mp as things could have
5677 * changed now.
5679 if (ill->ill_bcast_addr_length == 0) {
5680 if (ill->ill_resolver_mp != NULL)
5681 freemsg(ill->ill_resolver_mp);
5682 if (ill->ill_bcast_mp != NULL)
5683 freemsg(ill->ill_bcast_mp);
5684 if (ill->ill_flags & ILLF_XRESOLV)
5685 ill->ill_net_type = IRE_IF_RESOLVER;
5686 else
5687 ill->ill_net_type = IRE_IF_NORESOLVER;
5688 ill->ill_resolver_mp = ill_dlur_gen(NULL,
5689 ill->ill_phys_addr_length,
5690 ill->ill_sap,
5691 ill->ill_sap_length);
5692 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp);
5694 if (ill->ill_isv6)
5696 * Note: xresolv interfaces will eventually need NOARP
5697 * set here as well, but that will require those
5698 * external resolvers to have some knowledge of
5699 * that flag and act appropriately. Not to be changed
5700 * at present.
5702 ill->ill_flags |= ILLF_NONUD;
5703 else
5704 ill->ill_flags |= ILLF_NOARP;
5706 if (ill->ill_phys_addr_length == 0) {
5707 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
5708 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
5709 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL;
5710 } else {
5711 /* pt-pt supports multicast. */
5712 ill->ill_flags |= ILLF_MULTICAST;
5713 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
5716 } else {
5717 ill->ill_net_type = IRE_IF_RESOLVER;
5718 if (ill->ill_bcast_mp != NULL)
5719 freemsg(ill->ill_bcast_mp);
5720 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
5721 ill->ill_bcast_addr_length, ill->ill_sap,
5722 ill->ill_sap_length);
5724 * Later detect lack of DLPI driver multicast
5725 * capability by catching DL_ENABMULTI errors in
5726 * ip_rput_dlpi.
5728 ill->ill_flags |= ILLF_MULTICAST;
5729 if (!ill->ill_isv6)
5730 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
5732 /* By default an interface does not support any CoS marking */
5733 ill->ill_flags &= ~ILLF_COS_ENABLED;
5736 * If we get QoS information in DL_INFO_ACK, the device supports
5737 * some form of CoS marking, set ILLF_COS_ENABLED.
5739 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
5740 dlia->dl_qos_length);
5741 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
5742 ill->ill_flags |= ILLF_COS_ENABLED;
5745 /* Clear any previous error indication. */
5746 ill->ill_error = 0;
5747 freemsg(mp);
5751 * Perform various checks to verify that an address would make sense as a
5752 * local, remote, or subnet interface address.
5754 static boolean_t
5755 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
5757 ipaddr_t net_mask;
5760 * Don't allow all zeroes, all ones or experimental address, but allow
5761 * all ones netmask.
5763 if ((net_mask = ip_net_mask(addr)) == 0)
5764 return (B_FALSE);
5765 /* A given netmask overrides the "guess" netmask */
5766 if (subnet_mask != 0)
5767 net_mask = subnet_mask;
5768 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
5769 (addr == (addr | ~net_mask)))) {
5770 return (B_FALSE);
5772 if (CLASSD(addr))
5773 return (B_FALSE);
5775 return (B_TRUE);
5778 #define V6_IPIF_LINKLOCAL(p) \
5779 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
5782 * Compare two given ipifs and check if the second one is better than
5783 * the first one using the order of preference (not taking deprecated
5784 * into acount) specified in ipif_lookup_multicast().
5786 static boolean_t
5787 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
5789 /* Check the least preferred first. */
5790 if (IS_LOOPBACK(old_ipif->ipif_ill)) {
5791 /* If both ipifs are the same, use the first one. */
5792 if (IS_LOOPBACK(new_ipif->ipif_ill))
5793 return (B_FALSE);
5794 else
5795 return (B_TRUE);
5798 /* For IPv6, check for link local address. */
5799 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
5800 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5801 V6_IPIF_LINKLOCAL(new_ipif)) {
5802 /* The second one is equal or less preferred. */
5803 return (B_FALSE);
5804 } else {
5805 return (B_TRUE);
5809 /* Then check for point to point interface. */
5810 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
5811 if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5812 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
5813 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
5814 return (B_FALSE);
5815 } else {
5816 return (B_TRUE);
5820 /* old_ipif is a normal interface, so no need to use the new one. */
5821 return (B_FALSE);
5825 * Find any non-virtual, not condemned, and up multicast capable interface
5826 * given an IP instance and zoneid. Order of preference is:
5828 * 1. normal
5829 * 1.1 normal, but deprecated
5830 * 2. point to point
5831 * 2.1 point to point, but deprecated
5832 * 3. link local
5833 * 3.1 link local, but deprecated
5834 * 4. loopback.
5836 ipif_t *
5837 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
5839 ill_t *ill;
5840 ill_walk_context_t ctx;
5841 ipif_t *ipif;
5842 ipif_t *saved_ipif = NULL;
5843 ipif_t *dep_ipif = NULL;
5845 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5846 if (isv6)
5847 ill = ILL_START_WALK_V6(&ctx, ipst);
5848 else
5849 ill = ILL_START_WALK_V4(&ctx, ipst);
5851 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5852 mutex_enter(&ill->ill_lock);
5853 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) ||
5854 !(ill->ill_flags & ILLF_MULTICAST)) {
5855 mutex_exit(&ill->ill_lock);
5856 continue;
5858 for (ipif = ill->ill_ipif; ipif != NULL;
5859 ipif = ipif->ipif_next) {
5860 if (zoneid != ipif->ipif_zoneid &&
5861 zoneid != ALL_ZONES &&
5862 ipif->ipif_zoneid != ALL_ZONES) {
5863 continue;
5865 if (!(ipif->ipif_flags & IPIF_UP) ||
5866 !IPIF_CAN_LOOKUP(ipif)) {
5867 continue;
5871 * Found one candidate. If it is deprecated,
5872 * remember it in dep_ipif. If it is not deprecated,
5873 * remember it in saved_ipif.
5875 if (ipif->ipif_flags & IPIF_DEPRECATED) {
5876 if (dep_ipif == NULL) {
5877 dep_ipif = ipif;
5878 } else if (ipif_comp_multi(dep_ipif, ipif,
5879 isv6)) {
5881 * If the previous dep_ipif does not
5882 * belong to the same ill, we've done
5883 * a ipif_refhold() on it. So we need
5884 * to release it.
5886 if (dep_ipif->ipif_ill != ill)
5887 ipif_refrele(dep_ipif);
5888 dep_ipif = ipif;
5890 continue;
5892 if (saved_ipif == NULL) {
5893 saved_ipif = ipif;
5894 } else {
5895 if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
5896 if (saved_ipif->ipif_ill != ill)
5897 ipif_refrele(saved_ipif);
5898 saved_ipif = ipif;
5903 * Before going to the next ill, do a ipif_refhold() on the
5904 * saved ones.
5906 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
5907 ipif_refhold_locked(saved_ipif);
5908 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
5909 ipif_refhold_locked(dep_ipif);
5910 mutex_exit(&ill->ill_lock);
5912 rw_exit(&ipst->ips_ill_g_lock);
5915 * If we have only the saved_ipif, return it. But if we have both
5916 * saved_ipif and dep_ipif, check to see which one is better.
5918 if (saved_ipif != NULL) {
5919 if (dep_ipif != NULL) {
5920 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
5921 ipif_refrele(saved_ipif);
5922 return (dep_ipif);
5923 } else {
5924 ipif_refrele(dep_ipif);
5925 return (saved_ipif);
5928 return (saved_ipif);
5929 } else {
5930 return (dep_ipif);
5935 * This function is called when an application does not specify an interface
5936 * to be used for multicast traffic (joining a group/sending data). It
5937 * calls ire_lookup_multi() to look for an interface route for the
5938 * specified multicast group. Doing this allows the administrator to add
5939 * prefix routes for multicast to indicate which interface to be used for
5940 * multicast traffic in the above scenario. The route could be for all
5941 * multicast (224.0/4), for a single multicast group (a /32 route) or
5942 * anything in between. If there is no such multicast route, we just find
5943 * any multicast capable interface and return it. The returned ipif
5944 * is refhold'ed.
5946 ipif_t *
5947 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst)
5949 ire_t *ire;
5950 ipif_t *ipif;
5952 ire = ire_lookup_multi(group, zoneid, ipst);
5953 if (ire != NULL) {
5954 ipif = ire->ire_ipif;
5955 ipif_refhold(ipif);
5956 ire_refrele(ire);
5957 return (ipif);
5960 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE));
5964 * Look for an ipif with the specified interface address and destination.
5965 * The destination address is used only for matching point-to-point interfaces.
5967 ipif_t *
5968 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp,
5969 ipsq_func_t func, int *error, ip_stack_t *ipst)
5971 ipif_t *ipif;
5972 ill_t *ill;
5973 ill_walk_context_t ctx;
5974 ipsq_t *ipsq;
5976 if (error != NULL)
5977 *error = 0;
5980 * First match all the point-to-point interfaces
5981 * before looking at non-point-to-point interfaces.
5982 * This is done to avoid returning non-point-to-point
5983 * ipif instead of unnumbered point-to-point ipif.
5985 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5986 ill = ILL_START_WALK_V4(&ctx, ipst);
5987 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5988 GRAB_CONN_LOCK(q);
5989 mutex_enter(&ill->ill_lock);
5990 for (ipif = ill->ill_ipif; ipif != NULL;
5991 ipif = ipif->ipif_next) {
5992 /* Allow the ipif to be down */
5993 if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5994 (ipif->ipif_lcl_addr == if_addr) &&
5995 (ipif->ipif_pp_dst_addr == dst)) {
5997 * The block comment at the start of ipif_down
5998 * explains the use of the macros used below
6000 if (IPIF_CAN_LOOKUP(ipif)) {
6001 ipif_refhold_locked(ipif);
6002 mutex_exit(&ill->ill_lock);
6003 RELEASE_CONN_LOCK(q);
6004 rw_exit(&ipst->ips_ill_g_lock);
6005 return (ipif);
6006 } else if (IPIF_CAN_WAIT(ipif, q)) {
6007 ipsq = ill->ill_phyint->phyint_ipsq;
6008 mutex_enter(&ipsq->ipsq_lock);
6009 mutex_exit(&ill->ill_lock);
6010 rw_exit(&ipst->ips_ill_g_lock);
6011 ipsq_enq(ipsq, q, mp, func, NEW_OP,
6012 ill);
6013 mutex_exit(&ipsq->ipsq_lock);
6014 RELEASE_CONN_LOCK(q);
6015 if (error != NULL)
6016 *error = EINPROGRESS;
6017 return (NULL);
6021 mutex_exit(&ill->ill_lock);
6022 RELEASE_CONN_LOCK(q);
6024 rw_exit(&ipst->ips_ill_g_lock);
6026 /* lookup the ipif based on interface address */
6027 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error,
6028 ipst);
6029 ASSERT(ipif == NULL || !ipif->ipif_isv6);
6030 return (ipif);
6034 * Look for an ipif with the specified address. For point-point links
6035 * we look for matches on either the destination address and the local
6036 * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6037 * is set.
6038 * Matches on a specific ill if match_ill is set.
6040 ipif_t *
6041 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q,
6042 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
6044 ipif_t *ipif;
6045 ill_t *ill;
6046 boolean_t ptp = B_FALSE;
6047 ipsq_t *ipsq;
6048 ill_walk_context_t ctx;
6050 if (error != NULL)
6051 *error = 0;
6053 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6055 * Repeat twice, first based on local addresses and
6056 * next time for pointopoint.
6058 repeat:
6059 ill = ILL_START_WALK_V4(&ctx, ipst);
6060 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6061 if (match_ill != NULL && ill != match_ill) {
6062 continue;
6064 GRAB_CONN_LOCK(q);
6065 mutex_enter(&ill->ill_lock);
6066 for (ipif = ill->ill_ipif; ipif != NULL;
6067 ipif = ipif->ipif_next) {
6068 if (zoneid != ALL_ZONES &&
6069 zoneid != ipif->ipif_zoneid &&
6070 ipif->ipif_zoneid != ALL_ZONES)
6071 continue;
6072 /* Allow the ipif to be down */
6073 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6074 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6075 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6076 (ipif->ipif_pp_dst_addr == addr))) {
6078 * The block comment at the start of ipif_down
6079 * explains the use of the macros used below
6081 if (IPIF_CAN_LOOKUP(ipif)) {
6082 ipif_refhold_locked(ipif);
6083 mutex_exit(&ill->ill_lock);
6084 RELEASE_CONN_LOCK(q);
6085 rw_exit(&ipst->ips_ill_g_lock);
6086 return (ipif);
6087 } else if (IPIF_CAN_WAIT(ipif, q)) {
6088 ipsq = ill->ill_phyint->phyint_ipsq;
6089 mutex_enter(&ipsq->ipsq_lock);
6090 mutex_exit(&ill->ill_lock);
6091 rw_exit(&ipst->ips_ill_g_lock);
6092 ipsq_enq(ipsq, q, mp, func, NEW_OP,
6093 ill);
6094 mutex_exit(&ipsq->ipsq_lock);
6095 RELEASE_CONN_LOCK(q);
6096 if (error != NULL)
6097 *error = EINPROGRESS;
6098 return (NULL);
6102 mutex_exit(&ill->ill_lock);
6103 RELEASE_CONN_LOCK(q);
6106 /* If we already did the ptp case, then we are done */
6107 if (ptp) {
6108 rw_exit(&ipst->ips_ill_g_lock);
6109 if (error != NULL)
6110 *error = ENXIO;
6111 return (NULL);
6113 ptp = B_TRUE;
6114 goto repeat;
6118 * Look for an ipif with the specified address. For point-point links
6119 * we look for matches on either the destination address and the local
6120 * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6121 * is set.
6122 * Matches on a specific ill if match_ill is set.
6123 * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
6125 zoneid_t
6126 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
6128 zoneid_t zoneid;
6129 ipif_t *ipif;
6130 ill_t *ill;
6131 boolean_t ptp = B_FALSE;
6132 ill_walk_context_t ctx;
6134 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6136 * Repeat twice, first based on local addresses and
6137 * next time for pointopoint.
6139 repeat:
6140 ill = ILL_START_WALK_V4(&ctx, ipst);
6141 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6142 if (match_ill != NULL && ill != match_ill) {
6143 continue;
6145 mutex_enter(&ill->ill_lock);
6146 for (ipif = ill->ill_ipif; ipif != NULL;
6147 ipif = ipif->ipif_next) {
6148 /* Allow the ipif to be down */
6149 if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6150 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6151 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6152 (ipif->ipif_pp_dst_addr == addr)) &&
6153 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
6154 zoneid = ipif->ipif_zoneid;
6155 mutex_exit(&ill->ill_lock);
6156 rw_exit(&ipst->ips_ill_g_lock);
6158 * If ipif_zoneid was ALL_ZONES then we have
6159 * a trusted extensions shared IP address.
6160 * In that case GLOBAL_ZONEID works to send.
6162 if (zoneid == ALL_ZONES)
6163 zoneid = GLOBAL_ZONEID;
6164 return (zoneid);
6167 mutex_exit(&ill->ill_lock);
6170 /* If we already did the ptp case, then we are done */
6171 if (ptp) {
6172 rw_exit(&ipst->ips_ill_g_lock);
6173 return (ALL_ZONES);
6175 ptp = B_TRUE;
6176 goto repeat;
6180 * Look for an ipif that matches the specified remote address i.e. the
6181 * ipif that would receive the specified packet.
6182 * First look for directly connected interfaces and then do a recursive
6183 * IRE lookup and pick the first ipif corresponding to the source address in the
6184 * ire.
6185 * Returns: held ipif
6187 ipif_t *
6188 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
6190 ipif_t *ipif;
6191 ire_t *ire;
6192 ip_stack_t *ipst = ill->ill_ipst;
6194 ASSERT(!ill->ill_isv6);
6197 * Someone could be changing this ipif currently or change it
6198 * after we return this. Thus a few packets could use the old
6199 * old values. However structure updates/creates (ire, ilg, ilm etc)
6200 * will atomically be updated or cleaned up with the new value
6201 * Thus we don't need a lock to check the flags or other attrs below.
6203 mutex_enter(&ill->ill_lock);
6204 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6205 if (!IPIF_CAN_LOOKUP(ipif))
6206 continue;
6207 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
6208 ipif->ipif_zoneid != ALL_ZONES)
6209 continue;
6210 /* Allow the ipif to be down */
6211 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
6212 if ((ipif->ipif_pp_dst_addr == addr) ||
6213 (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
6214 ipif->ipif_lcl_addr == addr)) {
6215 ipif_refhold_locked(ipif);
6216 mutex_exit(&ill->ill_lock);
6217 return (ipif);
6219 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
6220 ipif_refhold_locked(ipif);
6221 mutex_exit(&ill->ill_lock);
6222 return (ipif);
6225 mutex_exit(&ill->ill_lock);
6226 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid,
6227 NULL, MATCH_IRE_RECURSIVE, ipst);
6228 if (ire != NULL) {
6230 * The callers of this function wants to know the
6231 * interface on which they have to send the replies
6232 * back. For IRE_CACHES that have ire_stq and ire_ipif
6233 * derived from different ills, we really don't care
6234 * what we return here.
6236 ipif = ire->ire_ipif;
6237 if (ipif != NULL) {
6238 ipif_refhold(ipif);
6239 ire_refrele(ire);
6240 return (ipif);
6242 ire_refrele(ire);
6244 /* Pick the first interface */
6245 ipif = ipif_get_next_ipif(NULL, ill);
6246 return (ipif);
6250 * This func does not prevent refcnt from increasing. But if
6251 * the caller has taken steps to that effect, then this func
6252 * can be used to determine whether the ill has become quiescent
6254 boolean_t
6255 ill_is_quiescent(ill_t *ill)
6257 ipif_t *ipif;
6259 ASSERT(MUTEX_HELD(&ill->ill_lock));
6261 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6262 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6263 return (B_FALSE);
6266 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 ||
6267 ill->ill_nce_cnt != 0) {
6268 return (B_FALSE);
6270 return (B_TRUE);
6274 * This func does not prevent refcnt from increasing. But if
6275 * the caller has taken steps to that effect, then this func
6276 * can be used to determine whether the ipif has become quiescent
6278 static boolean_t
6279 ipif_is_quiescent(ipif_t *ipif)
6281 ill_t *ill;
6283 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6285 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6286 return (B_FALSE);
6289 ill = ipif->ipif_ill;
6290 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
6291 ill->ill_logical_down) {
6292 return (B_TRUE);
6295 /* This is the last ipif going down or being deleted on this ill */
6296 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
6297 return (B_FALSE);
6300 return (B_TRUE);
6304 * This func does not prevent refcnt from increasing. But if
6305 * the caller has taken steps to that effect, then this func
6306 * can be used to determine whether the ipifs marked with IPIF_MOVING
6307 * have become quiescent and can be moved in a failover/failback.
6309 static ipif_t *
6310 ill_quiescent_to_move(ill_t *ill)
6312 ipif_t *ipif;
6314 ASSERT(MUTEX_HELD(&ill->ill_lock));
6316 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6317 if (ipif->ipif_state_flags & IPIF_MOVING) {
6318 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6319 return (ipif);
6323 return (NULL);
6327 * The ipif/ill/ire has been refreled. Do the tail processing.
6328 * Determine if the ipif or ill in question has become quiescent and if so
6329 * wakeup close and/or restart any queued pending ioctl that is waiting
6330 * for the ipif_down (or ill_down)
6332 void
6333 ipif_ill_refrele_tail(ill_t *ill)
6335 mblk_t *mp;
6336 conn_t *connp;
6337 ipsq_t *ipsq;
6338 ipif_t *ipif;
6339 dl_notify_ind_t *dlindp;
6341 ASSERT(MUTEX_HELD(&ill->ill_lock));
6343 if ((ill->ill_state_flags & ILL_CONDEMNED) &&
6344 ill_is_quiescent(ill)) {
6345 /* ill_close may be waiting */
6346 cv_broadcast(&ill->ill_cv);
6349 /* ipsq can't change because ill_lock is held */
6350 ipsq = ill->ill_phyint->phyint_ipsq;
6351 if (ipsq->ipsq_waitfor == 0) {
6352 /* Not waiting for anything, just return. */
6353 mutex_exit(&ill->ill_lock);
6354 return;
6356 ASSERT(ipsq->ipsq_pending_mp != NULL &&
6357 ipsq->ipsq_pending_ipif != NULL);
6359 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF.
6360 * Last ipif going down needs to down the ill, so ill_ire_cnt must
6361 * be zero for restarting an ioctl that ends up downing the ill.
6363 ipif = ipsq->ipsq_pending_ipif;
6364 if (ipif->ipif_ill != ill) {
6365 /* The ioctl is pending on some other ill. */
6366 mutex_exit(&ill->ill_lock);
6367 return;
6370 switch (ipsq->ipsq_waitfor) {
6371 case IPIF_DOWN:
6372 case IPIF_FREE:
6373 if (!ipif_is_quiescent(ipif)) {
6374 mutex_exit(&ill->ill_lock);
6375 return;
6377 break;
6379 case ILL_DOWN:
6380 case ILL_FREE:
6382 * case ILL_FREE arises only for loopback. otherwise ill_delete
6383 * waits synchronously in ip_close, and no message is queued in
6384 * ipsq_pending_mp at all in this case
6386 if (!ill_is_quiescent(ill)) {
6387 mutex_exit(&ill->ill_lock);
6388 return;
6391 break;
6393 case ILL_MOVE_OK:
6394 if (ill_quiescent_to_move(ill) != NULL) {
6395 mutex_exit(&ill->ill_lock);
6396 return;
6399 break;
6400 default:
6401 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n",
6402 (void *)ipsq, ipsq->ipsq_waitfor);
6406 * Incr refcnt for the qwriter_ip call below which
6407 * does a refrele
6409 ill_refhold_locked(ill);
6410 mutex_exit(&ill->ill_lock);
6412 mp = ipsq_pending_mp_get(ipsq, &connp);
6413 ASSERT(mp != NULL);
6416 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
6417 * we can only get here when the current operation decides it
6418 * it needs to quiesce via ipsq_pending_mp_add().
6420 switch (mp->b_datap->db_type) {
6421 case M_PCPROTO:
6422 case M_PROTO:
6424 * For now, only DL_NOTIFY_IND messages can use this facility.
6426 dlindp = (dl_notify_ind_t *)mp->b_rptr;
6427 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
6429 switch (dlindp->dl_notification) {
6430 case DL_NOTE_PHYS_ADDR:
6431 qwriter_ip(ill, ill->ill_rq, mp,
6432 ill_set_phys_addr_tail, CUR_OP, B_TRUE);
6433 return;
6434 default:
6435 ASSERT(0);
6437 break;
6439 case M_ERROR:
6440 case M_HANGUP:
6441 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
6442 B_TRUE);
6443 return;
6445 case M_IOCTL:
6446 case M_IOCDATA:
6447 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
6448 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
6449 return;
6451 default:
6452 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
6453 "db_type %d\n", (void *)mp, mp->b_datap->db_type);
6457 #ifdef DEBUG
6458 /* Reuse trace buffer from beginning (if reached the end) and record trace */
6459 static void
6460 th_trace_rrecord(th_trace_t *th_trace)
6462 tr_buf_t *tr_buf;
6463 uint_t lastref;
6465 lastref = th_trace->th_trace_lastref;
6466 lastref++;
6467 if (lastref == TR_BUF_MAX)
6468 lastref = 0;
6469 th_trace->th_trace_lastref = lastref;
6470 tr_buf = &th_trace->th_trbuf[lastref];
6471 tr_buf->tr_time = lbolt;
6472 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
6475 static void
6476 th_trace_free(void *value)
6478 th_trace_t *th_trace = value;
6480 ASSERT(th_trace->th_refcnt == 0);
6481 kmem_free(th_trace, sizeof (*th_trace));
6485 * Find or create the per-thread hash table used to track object references.
6486 * The ipst argument is NULL if we shouldn't allocate.
6488 * Accesses per-thread data, so there's no need to lock here.
6490 static mod_hash_t *
6491 th_trace_gethash(ip_stack_t *ipst)
6493 th_hash_t *thh;
6495 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
6496 mod_hash_t *mh;
6497 char name[256];
6498 size_t objsize, rshift;
6499 int retv;
6501 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
6502 return (NULL);
6503 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread);
6506 * We use mod_hash_create_extended here rather than the more
6507 * obvious mod_hash_create_ptrhash because the latter has a
6508 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
6509 * block.
6511 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
6512 MAX(sizeof (ire_t), sizeof (nce_t)));
6513 rshift = highbit(objsize);
6514 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
6515 th_trace_free, mod_hash_byptr, (void *)rshift,
6516 mod_hash_ptrkey_cmp, KM_NOSLEEP);
6517 if (mh == NULL) {
6518 kmem_free(thh, sizeof (*thh));
6519 return (NULL);
6521 thh->thh_hash = mh;
6522 thh->thh_ipst = ipst;
6524 * We trace ills, ipifs, ires, and nces. All of these are
6525 * per-IP-stack, so the lock on the thread list is as well.
6527 rw_enter(&ip_thread_rwlock, RW_WRITER);
6528 list_insert_tail(&ip_thread_list, thh);
6529 rw_exit(&ip_thread_rwlock);
6530 retv = tsd_set(ip_thread_data, thh);
6531 ASSERT(retv == 0);
6533 return (thh != NULL ? thh->thh_hash : NULL);
6536 boolean_t
6537 th_trace_ref(const void *obj, ip_stack_t *ipst)
6539 th_trace_t *th_trace;
6540 mod_hash_t *mh;
6541 mod_hash_val_t val;
6543 if ((mh = th_trace_gethash(ipst)) == NULL)
6544 return (B_FALSE);
6547 * Attempt to locate the trace buffer for this obj and thread.
6548 * If it does not exist, then allocate a new trace buffer and
6549 * insert into the hash.
6551 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
6552 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
6553 if (th_trace == NULL)
6554 return (B_FALSE);
6556 th_trace->th_id = curthread;
6557 if (mod_hash_insert(mh, (mod_hash_key_t)obj,
6558 (mod_hash_val_t)th_trace) != 0) {
6559 kmem_free(th_trace, sizeof (th_trace_t));
6560 return (B_FALSE);
6562 } else {
6563 th_trace = (th_trace_t *)val;
6566 ASSERT(th_trace->th_refcnt >= 0 &&
6567 th_trace->th_refcnt < TR_BUF_MAX - 1);
6569 th_trace->th_refcnt++;
6570 th_trace_rrecord(th_trace);
6571 return (B_TRUE);
6575 * For the purpose of tracing a reference release, we assume that global
6576 * tracing is always on and that the same thread initiated the reference hold
6577 * is releasing.
6579 void
6580 th_trace_unref(const void *obj)
6582 int retv;
6583 mod_hash_t *mh;
6584 th_trace_t *th_trace;
6585 mod_hash_val_t val;
6587 mh = th_trace_gethash(NULL);
6588 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
6589 ASSERT(retv == 0);
6590 th_trace = (th_trace_t *)val;
6592 ASSERT(th_trace->th_refcnt > 0);
6593 th_trace->th_refcnt--;
6594 th_trace_rrecord(th_trace);
6598 * If tracing has been disabled, then we assume that the reference counts are
6599 * now useless, and we clear them out before destroying the entries.
6601 void
6602 th_trace_cleanup(const void *obj, boolean_t trace_disable)
6604 th_hash_t *thh;
6605 mod_hash_t *mh;
6606 mod_hash_val_t val;
6607 th_trace_t *th_trace;
6608 int retv;
6610 rw_enter(&ip_thread_rwlock, RW_READER);
6611 for (thh = list_head(&ip_thread_list); thh != NULL;
6612 thh = list_next(&ip_thread_list, thh)) {
6613 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
6614 &val) == 0) {
6615 th_trace = (th_trace_t *)val;
6616 if (trace_disable)
6617 th_trace->th_refcnt = 0;
6618 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
6619 ASSERT(retv == 0);
6622 rw_exit(&ip_thread_rwlock);
6625 void
6626 ipif_trace_ref(ipif_t *ipif)
6628 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6630 if (ipif->ipif_trace_disable)
6631 return;
6633 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
6634 ipif->ipif_trace_disable = B_TRUE;
6635 ipif_trace_cleanup(ipif);
6639 void
6640 ipif_untrace_ref(ipif_t *ipif)
6642 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6644 if (!ipif->ipif_trace_disable)
6645 th_trace_unref(ipif);
6648 void
6649 ill_trace_ref(ill_t *ill)
6651 ASSERT(MUTEX_HELD(&ill->ill_lock));
6653 if (ill->ill_trace_disable)
6654 return;
6656 if (!th_trace_ref(ill, ill->ill_ipst)) {
6657 ill->ill_trace_disable = B_TRUE;
6658 ill_trace_cleanup(ill);
6662 void
6663 ill_untrace_ref(ill_t *ill)
6665 ASSERT(MUTEX_HELD(&ill->ill_lock));
6667 if (!ill->ill_trace_disable)
6668 th_trace_unref(ill);
6672 * Called when ipif is unplumbed or when memory alloc fails. Note that on
6673 * failure, ipif_trace_disable is set.
6675 static void
6676 ipif_trace_cleanup(const ipif_t *ipif)
6678 th_trace_cleanup(ipif, ipif->ipif_trace_disable);
6682 * Called when ill is unplumbed or when memory alloc fails. Note that on
6683 * failure, ill_trace_disable is set.
6685 static void
6686 ill_trace_cleanup(const ill_t *ill)
6688 th_trace_cleanup(ill, ill->ill_trace_disable);
6690 #endif /* DEBUG */
6692 void
6693 ipif_refhold_locked(ipif_t *ipif)
6695 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6696 ipif->ipif_refcnt++;
6697 IPIF_TRACE_REF(ipif);
6700 void
6701 ipif_refhold(ipif_t *ipif)
6703 ill_t *ill;
6705 ill = ipif->ipif_ill;
6706 mutex_enter(&ill->ill_lock);
6707 ipif->ipif_refcnt++;
6708 IPIF_TRACE_REF(ipif);
6709 mutex_exit(&ill->ill_lock);
6713 * Must not be called while holding any locks. Otherwise if this is
6714 * the last reference to be released there is a chance of recursive mutex
6715 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
6716 * to restart an ioctl.
6718 void
6719 ipif_refrele(ipif_t *ipif)
6721 ill_t *ill;
6723 ill = ipif->ipif_ill;
6725 mutex_enter(&ill->ill_lock);
6726 ASSERT(ipif->ipif_refcnt != 0);
6727 ipif->ipif_refcnt--;
6728 IPIF_UNTRACE_REF(ipif);
6729 if (ipif->ipif_refcnt != 0) {
6730 mutex_exit(&ill->ill_lock);
6731 return;
6734 /* Drops the ill_lock */
6735 ipif_ill_refrele_tail(ill);
6738 ipif_t *
6739 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
6741 ipif_t *ipif;
6743 mutex_enter(&ill->ill_lock);
6744 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
6745 ipif != NULL; ipif = ipif->ipif_next) {
6746 if (!IPIF_CAN_LOOKUP(ipif))
6747 continue;
6748 ipif_refhold_locked(ipif);
6749 mutex_exit(&ill->ill_lock);
6750 return (ipif);
6752 mutex_exit(&ill->ill_lock);
6753 return (NULL);
6757 * TODO: make this table extendible at run time
6758 * Return a pointer to the mac type info for 'mac_type'
6760 static ip_m_t *
6761 ip_m_lookup(t_uscalar_t mac_type)
6763 ip_m_t *ipm;
6765 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
6766 if (ipm->ip_m_mac_type == mac_type)
6767 return (ipm);
6768 return (NULL);
6772 * ip_rt_add is called to add an IPv4 route to the forwarding table.
6773 * ipif_arg is passed in to associate it with the correct interface.
6774 * We may need to restart this operation if the ipif cannot be looked up
6775 * due to an exclusive operation that is currently in progress. The restart
6776 * entry point is specified by 'func'
6779 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6780 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg,
6781 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func,
6782 struct rtsa_s *sp, ip_stack_t *ipst)
6784 ire_t *ire;
6785 ire_t *gw_ire = NULL;
6786 ipif_t *ipif = NULL;
6787 boolean_t ipif_refheld = B_FALSE;
6788 uint_t type;
6789 int match_flags = MATCH_IRE_TYPE;
6790 int error;
6791 tsol_gc_t *gc = NULL;
6792 tsol_gcgrp_t *gcgrp = NULL;
6793 boolean_t gcgrp_xtraref = B_FALSE;
6795 ip1dbg(("ip_rt_add:"));
6797 if (ire_arg != NULL)
6798 *ire_arg = NULL;
6801 * If this is the case of RTF_HOST being set, then we set the netmask
6802 * to all ones (regardless if one was supplied).
6804 if (flags & RTF_HOST)
6805 mask = IP_HOST_MASK;
6808 * Prevent routes with a zero gateway from being created (since
6809 * interfaces can currently be plumbed and brought up no assigned
6810 * address).
6812 if (gw_addr == 0)
6813 return (ENETUNREACH);
6815 * Get the ipif, if any, corresponding to the gw_addr
6817 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error,
6818 ipst);
6819 if (ipif != NULL) {
6820 if (IS_VNI(ipif->ipif_ill)) {
6821 ipif_refrele(ipif);
6822 return (EINVAL);
6824 ipif_refheld = B_TRUE;
6825 } else if (error == EINPROGRESS) {
6826 ip1dbg(("ip_rt_add: null and EINPROGRESS"));
6827 return (EINPROGRESS);
6828 } else {
6829 error = 0;
6832 if (ipif != NULL) {
6833 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull"));
6834 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6835 } else {
6836 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null"));
6840 * GateD will attempt to create routes with a loopback interface
6841 * address as the gateway and with RTF_GATEWAY set. We allow
6842 * these routes to be added, but create them as interface routes
6843 * since the gateway is an interface address.
6845 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
6846 flags &= ~RTF_GATEWAY;
6847 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
6848 mask == IP_HOST_MASK) {
6849 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
6850 ALL_ZONES, NULL, match_flags, ipst);
6851 if (ire != NULL) {
6852 ire_refrele(ire);
6853 if (ipif_refheld)
6854 ipif_refrele(ipif);
6855 return (EEXIST);
6857 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x"
6858 "for 0x%x\n", (void *)ipif,
6859 ipif->ipif_ire_type,
6860 ntohl(ipif->ipif_lcl_addr)));
6861 ire = ire_create(
6862 (uchar_t *)&dst_addr, /* dest address */
6863 (uchar_t *)&mask, /* mask */
6864 (uchar_t *)&ipif->ipif_src_addr,
6865 NULL, /* no gateway */
6866 &ipif->ipif_mtu,
6867 NULL,
6868 ipif->ipif_rq, /* recv-from queue */
6869 NULL, /* no send-to queue */
6870 ipif->ipif_ire_type, /* LOOPBACK */
6871 ipif,
6875 (ipif->ipif_flags & IPIF_PRIVATE) ?
6876 RTF_PRIVATE : 0,
6877 &ire_uinfo_null,
6878 NULL,
6879 NULL,
6880 ipst);
6882 if (ire == NULL) {
6883 if (ipif_refheld)
6884 ipif_refrele(ipif);
6885 return (ENOMEM);
6887 error = ire_add(&ire, q, mp, func, B_FALSE);
6888 if (error == 0)
6889 goto save_ire;
6890 if (ipif_refheld)
6891 ipif_refrele(ipif);
6892 return (error);
6898 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
6899 * and the gateway address provided is one of the system's interface
6900 * addresses. By using the routing socket interface and supplying an
6901 * RTA_IFP sockaddr with an interface index, an alternate method of
6902 * specifying an interface route to be created is available which uses
6903 * the interface index that specifies the outgoing interface rather than
6904 * the address of an outgoing interface (which may not be able to
6905 * uniquely identify an interface). When coupled with the RTF_GATEWAY
6906 * flag, routes can be specified which not only specify the next-hop to
6907 * be used when routing to a certain prefix, but also which outgoing
6908 * interface should be used.
6910 * Previously, interfaces would have unique addresses assigned to them
6911 * and so the address assigned to a particular interface could be used
6912 * to identify a particular interface. One exception to this was the
6913 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
6915 * With the advent of IPv6 and its link-local addresses, this
6916 * restriction was relaxed and interfaces could share addresses between
6917 * themselves. In fact, typically all of the link-local interfaces on
6918 * an IPv6 node or router will have the same link-local address. In
6919 * order to differentiate between these interfaces, the use of an
6920 * interface index is necessary and this index can be carried inside a
6921 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction
6922 * of using the interface index, however, is that all of the ipif's that
6923 * are part of an ill have the same index and so the RTA_IFP sockaddr
6924 * cannot be used to differentiate between ipif's (or logical
6925 * interfaces) that belong to the same ill (physical interface).
6927 * For example, in the following case involving IPv4 interfaces and
6928 * logical interfaces
6930 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0
6931 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1
6932 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2
6934 * the ipif's corresponding to each of these interface routes can be
6935 * uniquely identified by the "gateway" (actually interface address).
6937 * In this case involving multiple IPv6 default routes to a particular
6938 * link-local gateway, the use of RTA_IFP is necessary to specify which
6939 * default route is of interest:
6941 * default fe80::123:4567:89ab:cdef U if0
6942 * default fe80::123:4567:89ab:cdef U if1
6945 /* RTF_GATEWAY not set */
6946 if (!(flags & RTF_GATEWAY)) {
6947 queue_t *stq;
6949 if (sp != NULL) {
6950 ip2dbg(("ip_rt_add: gateway security attributes "
6951 "cannot be set with interface route\n"));
6952 if (ipif_refheld)
6953 ipif_refrele(ipif);
6954 return (EINVAL);
6958 * As the interface index specified with the RTA_IFP sockaddr is
6959 * the same for all ipif's off of an ill, the matching logic
6960 * below uses MATCH_IRE_ILL if such an index was specified.
6961 * This means that routes sharing the same prefix when added
6962 * using a RTA_IFP sockaddr must have distinct interface
6963 * indices (namely, they must be on distinct ill's).
6965 * On the other hand, since the gateway address will usually be
6966 * different for each ipif on the system, the matching logic
6967 * uses MATCH_IRE_IPIF in the case of a traditional interface
6968 * route. This means that interface routes for the same prefix
6969 * can be created if they belong to distinct ipif's and if a
6970 * RTA_IFP sockaddr is not present.
6972 if (ipif_arg != NULL) {
6973 if (ipif_refheld) {
6974 ipif_refrele(ipif);
6975 ipif_refheld = B_FALSE;
6977 ipif = ipif_arg;
6978 match_flags |= MATCH_IRE_ILL;
6979 } else {
6981 * Check the ipif corresponding to the gw_addr
6983 if (ipif == NULL)
6984 return (ENETUNREACH);
6985 match_flags |= MATCH_IRE_IPIF;
6987 ASSERT(ipif != NULL);
6990 * We check for an existing entry at this point.
6992 * Since a netmask isn't passed in via the ioctl interface
6993 * (SIOCADDRT), we don't check for a matching netmask in that
6994 * case.
6996 if (!ioctl_msg)
6997 match_flags |= MATCH_IRE_MASK;
6998 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif,
6999 NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
7000 if (ire != NULL) {
7001 ire_refrele(ire);
7002 if (ipif_refheld)
7003 ipif_refrele(ipif);
7004 return (EEXIST);
7007 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
7008 ? ipif->ipif_rq : ipif->ipif_wq;
7011 * Create a copy of the IRE_LOOPBACK,
7012 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with
7013 * the modified address and netmask.
7015 ire = ire_create(
7016 (uchar_t *)&dst_addr,
7017 (uint8_t *)&mask,
7018 (uint8_t *)&ipif->ipif_src_addr,
7019 NULL,
7020 &ipif->ipif_mtu,
7021 NULL,
7022 NULL,
7023 stq,
7024 ipif->ipif_net_type,
7025 ipif,
7029 flags,
7030 &ire_uinfo_null,
7031 NULL,
7032 NULL,
7033 ipst);
7034 if (ire == NULL) {
7035 if (ipif_refheld)
7036 ipif_refrele(ipif);
7037 return (ENOMEM);
7041 * Some software (for example, GateD and Sun Cluster) attempts
7042 * to create (what amount to) IRE_PREFIX routes with the
7043 * loopback address as the gateway. This is primarily done to
7044 * set up prefixes with the RTF_REJECT flag set (for example,
7045 * when generating aggregate routes.)
7047 * If the IRE type (as defined by ipif->ipif_net_type) is
7048 * IRE_LOOPBACK, then we map the request into a
7049 * IRE_IF_NORESOLVER.
7051 * Needless to say, the real IRE_LOOPBACK is NOT created by this
7052 * routine, but rather using ire_create() directly.
7055 if (ipif->ipif_net_type == IRE_LOOPBACK)
7056 ire->ire_type = IRE_IF_NORESOLVER;
7058 error = ire_add(&ire, q, mp, func, B_FALSE);
7059 if (error == 0)
7060 goto save_ire;
7063 * In the result of failure, ire_add() will have already
7064 * deleted the ire in question, so there is no need to
7065 * do that here.
7067 if (ipif_refheld)
7068 ipif_refrele(ipif);
7069 return (error);
7071 if (ipif_refheld) {
7072 ipif_refrele(ipif);
7073 ipif_refheld = B_FALSE;
7077 * Get an interface IRE for the specified gateway.
7078 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
7079 * gateway, it is currently unreachable and we fail the request
7080 * accordingly.
7082 ipif = ipif_arg;
7083 if (ipif_arg != NULL)
7084 match_flags |= MATCH_IRE_ILL;
7085 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL,
7086 ALL_ZONES, 0, NULL, match_flags, ipst);
7087 if (gw_ire == NULL)
7088 return (ENETUNREACH);
7091 * We create one of three types of IREs as a result of this request
7092 * based on the netmask. A netmask of all ones (which is automatically
7093 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
7094 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
7095 * created. Otherwise, an IRE_PREFIX route is created for the
7096 * destination prefix.
7098 if (mask == IP_HOST_MASK)
7099 type = IRE_HOST;
7100 else if (mask == 0)
7101 type = IRE_DEFAULT;
7102 else
7103 type = IRE_PREFIX;
7105 /* check for a duplicate entry */
7106 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7107 NULL, ALL_ZONES, 0, NULL,
7108 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst);
7109 if (ire != NULL) {
7110 ire_refrele(gw_ire);
7111 ire_refrele(ire);
7112 return (EEXIST);
7115 /* Security attribute exists */
7116 if (sp != NULL) {
7117 tsol_gcgrp_addr_t ga;
7119 /* find or create the gateway credentials group */
7120 ga.ga_af = AF_INET;
7121 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
7123 /* we hold reference to it upon success */
7124 gcgrp = gcgrp_lookup(&ga, B_TRUE);
7125 if (gcgrp == NULL) {
7126 ire_refrele(gw_ire);
7127 return (ENOMEM);
7131 * Create and add the security attribute to the group; a
7132 * reference to the group is made upon allocating a new
7133 * entry successfully. If it finds an already-existing
7134 * entry for the security attribute in the group, it simply
7135 * returns it and no new reference is made to the group.
7137 gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
7138 if (gc == NULL) {
7139 /* release reference held by gcgrp_lookup */
7140 GCGRP_REFRELE(gcgrp);
7141 ire_refrele(gw_ire);
7142 return (ENOMEM);
7146 /* Create the IRE. */
7147 ire = ire_create(
7148 (uchar_t *)&dst_addr, /* dest address */
7149 (uchar_t *)&mask, /* mask */
7150 /* src address assigned by the caller? */
7151 (uchar_t *)(((src_addr != INADDR_ANY) &&
7152 (flags & RTF_SETSRC)) ? &src_addr : NULL),
7153 (uchar_t *)&gw_addr, /* gateway address */
7154 &gw_ire->ire_max_frag,
7155 NULL, /* no src nce */
7156 NULL, /* no recv-from queue */
7157 NULL, /* no send-to queue */
7158 (ushort_t)type, /* IRE type */
7159 ipif_arg,
7163 flags,
7164 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */
7165 gc, /* security attribute */
7166 NULL,
7167 ipst);
7170 * The ire holds a reference to the 'gc' and the 'gc' holds a
7171 * reference to the 'gcgrp'. We can now release the extra reference
7172 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
7174 if (gcgrp_xtraref)
7175 GCGRP_REFRELE(gcgrp);
7176 if (ire == NULL) {
7177 if (gc != NULL)
7178 GC_REFRELE(gc);
7179 ire_refrele(gw_ire);
7180 return (ENOMEM);
7184 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
7185 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
7188 /* Add the new IRE. */
7189 error = ire_add(&ire, q, mp, func, B_FALSE);
7190 if (error != 0) {
7192 * In the result of failure, ire_add() will have already
7193 * deleted the ire in question, so there is no need to
7194 * do that here.
7196 ire_refrele(gw_ire);
7197 return (error);
7200 if (flags & RTF_MULTIRT) {
7202 * Invoke the CGTP (multirouting) filtering module
7203 * to add the dst address in the filtering database.
7204 * Replicated inbound packets coming from that address
7205 * will be filtered to discard the duplicates.
7206 * It is not necessary to call the CGTP filter hook
7207 * when the dst address is a broadcast or multicast,
7208 * because an IP source address cannot be a broadcast
7209 * or a multicast.
7211 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0,
7212 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
7213 if (ire_dst != NULL) {
7214 ip_cgtp_bcast_add(ire, ire_dst, ipst);
7215 ire_refrele(ire_dst);
7216 goto save_ire;
7218 if (ipst->ips_ip_cgtp_filter_ops != NULL &&
7219 !CLASSD(ire->ire_addr)) {
7220 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4(
7221 ipst->ips_netstack->netstack_stackid,
7222 ire->ire_addr,
7223 ire->ire_gateway_addr,
7224 ire->ire_src_addr,
7225 gw_ire->ire_src_addr);
7226 if (res != 0) {
7227 ire_refrele(gw_ire);
7228 ire_delete(ire);
7229 return (res);
7235 * Now that the prefix IRE entry has been created, delete any
7236 * existing gateway IRE cache entries as well as any IRE caches
7237 * using the gateway, and force them to be created through
7238 * ip_newroute.
7240 if (gc != NULL) {
7241 ASSERT(gcgrp != NULL);
7242 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst);
7245 save_ire:
7246 if (gw_ire != NULL) {
7247 ire_refrele(gw_ire);
7249 if (ipif != NULL) {
7251 * Save enough information so that we can recreate the IRE if
7252 * the interface goes down and then up. The metrics associated
7253 * with the route will be saved as well when rts_setmetrics() is
7254 * called after the IRE has been created. In the case where
7255 * memory cannot be allocated, none of this information will be
7256 * saved.
7258 ipif_save_ire(ipif, ire);
7260 if (ioctl_msg)
7261 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
7262 if (ire_arg != NULL) {
7264 * Store the ire that was successfully added into where ire_arg
7265 * points to so that callers don't have to look it up
7266 * themselves (but they are responsible for ire_refrele()ing
7267 * the ire when they are finished with it).
7269 *ire_arg = ire;
7270 } else {
7271 ire_refrele(ire); /* Held in ire_add */
7273 if (ipif_refheld)
7274 ipif_refrele(ipif);
7275 return (0);
7279 * ip_rt_delete is called to delete an IPv4 route.
7280 * ipif_arg is passed in to associate it with the correct interface.
7281 * We may need to restart this operation if the ipif cannot be looked up
7282 * due to an exclusive operation that is currently in progress. The restart
7283 * entry point is specified by 'func'
7285 /* ARGSUSED4 */
7287 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
7288 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg,
7289 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst)
7291 ire_t *ire = NULL;
7292 ipif_t *ipif;
7293 boolean_t ipif_refheld = B_FALSE;
7294 uint_t type;
7295 uint_t match_flags = MATCH_IRE_TYPE;
7296 int err = 0;
7298 ip1dbg(("ip_rt_delete:"));
7300 * If this is the case of RTF_HOST being set, then we set the netmask
7301 * to all ones. Otherwise, we use the netmask if one was supplied.
7303 if (flags & RTF_HOST) {
7304 mask = IP_HOST_MASK;
7305 match_flags |= MATCH_IRE_MASK;
7306 } else if (rtm_addrs & RTA_NETMASK) {
7307 match_flags |= MATCH_IRE_MASK;
7311 * Note that RTF_GATEWAY is never set on a delete, therefore
7312 * we check if the gateway address is one of our interfaces first,
7313 * and fall back on RTF_GATEWAY routes.
7315 * This makes it possible to delete an original
7316 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
7318 * As the interface index specified with the RTA_IFP sockaddr is the
7319 * same for all ipif's off of an ill, the matching logic below uses
7320 * MATCH_IRE_ILL if such an index was specified. This means a route
7321 * sharing the same prefix and interface index as the the route
7322 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
7323 * is specified in the request.
7325 * On the other hand, since the gateway address will usually be
7326 * different for each ipif on the system, the matching logic
7327 * uses MATCH_IRE_IPIF in the case of a traditional interface
7328 * route. This means that interface routes for the same prefix can be
7329 * uniquely identified if they belong to distinct ipif's and if a
7330 * RTA_IFP sockaddr is not present.
7332 * For more detail on specifying routes by gateway address and by
7333 * interface index, see the comments in ip_rt_add().
7335 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err,
7336 ipst);
7337 if (ipif != NULL)
7338 ipif_refheld = B_TRUE;
7339 else if (err == EINPROGRESS)
7340 return (err);
7341 else
7342 err = 0;
7343 if (ipif != NULL) {
7344 if (ipif_arg != NULL) {
7345 if (ipif_refheld) {
7346 ipif_refrele(ipif);
7347 ipif_refheld = B_FALSE;
7349 ipif = ipif_arg;
7350 match_flags |= MATCH_IRE_ILL;
7351 } else {
7352 match_flags |= MATCH_IRE_IPIF;
7354 if (ipif->ipif_ire_type == IRE_LOOPBACK) {
7355 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
7356 ALL_ZONES, NULL, match_flags, ipst);
7358 if (ire == NULL) {
7359 ire = ire_ftable_lookup(dst_addr, mask, 0,
7360 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
7361 match_flags, ipst);
7365 if (ire == NULL) {
7367 * At this point, the gateway address is not one of our own
7368 * addresses or a matching interface route was not found. We
7369 * set the IRE type to lookup based on whether
7370 * this is a host route, a default route or just a prefix.
7372 * If an ipif_arg was passed in, then the lookup is based on an
7373 * interface index so MATCH_IRE_ILL is added to match_flags.
7374 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
7375 * set as the route being looked up is not a traditional
7376 * interface route.
7378 match_flags &= ~MATCH_IRE_IPIF;
7379 match_flags |= MATCH_IRE_GW;
7380 if (ipif_arg != NULL)
7381 match_flags |= MATCH_IRE_ILL;
7382 if (mask == IP_HOST_MASK)
7383 type = IRE_HOST;
7384 else if (mask == 0)
7385 type = IRE_DEFAULT;
7386 else
7387 type = IRE_PREFIX;
7388 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7389 NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
7392 if (ipif_refheld)
7393 ipif_refrele(ipif);
7395 /* ipif is not refheld anymore */
7396 if (ire == NULL)
7397 return (ESRCH);
7399 if (ire->ire_flags & RTF_MULTIRT) {
7401 * Invoke the CGTP (multirouting) filtering module
7402 * to remove the dst address from the filtering database.
7403 * Packets coming from that address will no longer be
7404 * filtered to remove duplicates.
7406 if (ipst->ips_ip_cgtp_filter_ops != NULL) {
7407 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
7408 ipst->ips_netstack->netstack_stackid,
7409 ire->ire_addr, ire->ire_gateway_addr);
7411 ip_cgtp_bcast_delete(ire, ipst);
7414 ipif = ire->ire_ipif;
7415 if (ipif != NULL)
7416 ipif_remove_ire(ipif, ire);
7417 if (ioctl_msg)
7418 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
7419 ire_delete(ire);
7420 ire_refrele(ire);
7421 return (err);
7425 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
7427 /* ARGSUSED */
7429 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7430 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7432 ipaddr_t dst_addr;
7433 ipaddr_t gw_addr;
7434 ipaddr_t mask;
7435 int error = 0;
7436 mblk_t *mp1;
7437 struct rtentry *rt;
7438 ipif_t *ipif = NULL;
7439 ip_stack_t *ipst;
7441 ASSERT(q->q_next == NULL);
7442 ipst = CONNQ_TO_IPST(q);
7444 ip1dbg(("ip_siocaddrt:"));
7445 /* Existence of mp1 verified in ip_wput_nondata */
7446 mp1 = mp->b_cont->b_cont;
7447 rt = (struct rtentry *)mp1->b_rptr;
7449 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7450 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7453 * If the RTF_HOST flag is on, this is a request to assign a gateway
7454 * to a particular host address. In this case, we set the netmask to
7455 * all ones for the particular destination address. Otherwise,
7456 * determine the netmask to be used based on dst_addr and the interfaces
7457 * in use.
7459 if (rt->rt_flags & RTF_HOST) {
7460 mask = IP_HOST_MASK;
7461 } else {
7463 * Note that ip_subnet_mask returns a zero mask in the case of
7464 * default (an all-zeroes address).
7466 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7469 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
7470 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst);
7471 if (ipif != NULL)
7472 ipif_refrele(ipif);
7473 return (error);
7477 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
7479 /* ARGSUSED */
7481 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7482 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7484 ipaddr_t dst_addr;
7485 ipaddr_t gw_addr;
7486 ipaddr_t mask;
7487 int error;
7488 mblk_t *mp1;
7489 struct rtentry *rt;
7490 ipif_t *ipif = NULL;
7491 ip_stack_t *ipst;
7493 ASSERT(q->q_next == NULL);
7494 ipst = CONNQ_TO_IPST(q);
7496 ip1dbg(("ip_siocdelrt:"));
7497 /* Existence of mp1 verified in ip_wput_nondata */
7498 mp1 = mp->b_cont->b_cont;
7499 rt = (struct rtentry *)mp1->b_rptr;
7501 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7502 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7505 * If the RTF_HOST flag is on, this is a request to delete a gateway
7506 * to a particular host address. In this case, we set the netmask to
7507 * all ones for the particular destination address. Otherwise,
7508 * determine the netmask to be used based on dst_addr and the interfaces
7509 * in use.
7511 if (rt->rt_flags & RTF_HOST) {
7512 mask = IP_HOST_MASK;
7513 } else {
7515 * Note that ip_subnet_mask returns a zero mask in the case of
7516 * default (an all-zeroes address).
7518 mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7521 error = ip_rt_delete(dst_addr, mask, gw_addr,
7522 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q,
7523 mp, ip_process_ioctl, ipst);
7524 if (ipif != NULL)
7525 ipif_refrele(ipif);
7526 return (error);
7530 * Enqueue the mp onto the ipsq, chained by b_next.
7531 * b_prev stores the function to be executed later, and b_queue the queue
7532 * where this mp originated.
7534 void
7535 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7536 ill_t *pending_ill)
7538 conn_t *connp = NULL;
7540 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7541 ASSERT(func != NULL);
7543 mp->b_queue = q;
7544 mp->b_prev = (void *)func;
7545 mp->b_next = NULL;
7547 switch (type) {
7548 case CUR_OP:
7549 if (ipsq->ipsq_mptail != NULL) {
7550 ASSERT(ipsq->ipsq_mphead != NULL);
7551 ipsq->ipsq_mptail->b_next = mp;
7552 } else {
7553 ASSERT(ipsq->ipsq_mphead == NULL);
7554 ipsq->ipsq_mphead = mp;
7556 ipsq->ipsq_mptail = mp;
7557 break;
7559 case NEW_OP:
7560 if (ipsq->ipsq_xopq_mptail != NULL) {
7561 ASSERT(ipsq->ipsq_xopq_mphead != NULL);
7562 ipsq->ipsq_xopq_mptail->b_next = mp;
7563 } else {
7564 ASSERT(ipsq->ipsq_xopq_mphead == NULL);
7565 ipsq->ipsq_xopq_mphead = mp;
7567 ipsq->ipsq_xopq_mptail = mp;
7568 break;
7569 default:
7570 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
7573 if (CONN_Q(q) && pending_ill != NULL) {
7574 connp = Q_TO_CONN(q);
7576 ASSERT(MUTEX_HELD(&connp->conn_lock));
7577 connp->conn_oper_pending_ill = pending_ill;
7582 * Return the mp at the head of the ipsq. After emptying the ipsq
7583 * look at the next ioctl, if this ioctl is complete. Otherwise
7584 * return, we will resume when we complete the current ioctl.
7585 * The current ioctl will wait till it gets a response from the
7586 * driver below.
7588 static mblk_t *
7589 ipsq_dq(ipsq_t *ipsq)
7591 mblk_t *mp;
7593 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7595 mp = ipsq->ipsq_mphead;
7596 if (mp != NULL) {
7597 ipsq->ipsq_mphead = mp->b_next;
7598 if (ipsq->ipsq_mphead == NULL)
7599 ipsq->ipsq_mptail = NULL;
7600 mp->b_next = NULL;
7601 return (mp);
7603 if (ipsq->ipsq_current_ipif != NULL)
7604 return (NULL);
7605 mp = ipsq->ipsq_xopq_mphead;
7606 if (mp != NULL) {
7607 ipsq->ipsq_xopq_mphead = mp->b_next;
7608 if (ipsq->ipsq_xopq_mphead == NULL)
7609 ipsq->ipsq_xopq_mptail = NULL;
7610 mp->b_next = NULL;
7611 return (mp);
7613 return (NULL);
7617 * Enter the ipsq corresponding to ill, by waiting synchronously till
7618 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
7619 * will have to drain completely before ipsq_enter returns success.
7620 * ipsq_current_ipif will be set if some exclusive ioctl is in progress,
7621 * and the ipsq_exit logic will start the next enqueued ioctl after
7622 * completion of the current ioctl. If 'force' is used, we don't wait
7623 * for the enqueued ioctls. This is needed when a conn_close wants to
7624 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
7625 * of an ill can also use this option. But we dont' use it currently.
7627 #define ENTER_SQ_WAIT_TICKS 100
7628 boolean_t
7629 ipsq_enter(ill_t *ill, boolean_t force)
7631 ipsq_t *ipsq;
7632 boolean_t waited_enough = B_FALSE;
7635 * Holding the ill_lock prevents <ill-ipsq> assocs from changing.
7636 * Since the <ill-ipsq> assocs could change while we wait for the
7637 * writer, it is easier to wait on a fixed global rather than try to
7638 * cv_wait on a changing ipsq.
7640 mutex_enter(&ill->ill_lock);
7641 for (;;) {
7642 if (ill->ill_state_flags & ILL_CONDEMNED) {
7643 mutex_exit(&ill->ill_lock);
7644 return (B_FALSE);
7647 ipsq = ill->ill_phyint->phyint_ipsq;
7648 mutex_enter(&ipsq->ipsq_lock);
7649 if (ipsq->ipsq_writer == NULL &&
7650 (ipsq->ipsq_current_ipif == NULL || waited_enough)) {
7651 break;
7652 } else if (ipsq->ipsq_writer != NULL) {
7653 mutex_exit(&ipsq->ipsq_lock);
7654 cv_wait(&ill->ill_cv, &ill->ill_lock);
7655 } else {
7656 mutex_exit(&ipsq->ipsq_lock);
7657 if (force) {
7658 (void) cv_timedwait(&ill->ill_cv,
7659 &ill->ill_lock,
7660 lbolt + ENTER_SQ_WAIT_TICKS);
7661 waited_enough = B_TRUE;
7662 continue;
7663 } else {
7664 cv_wait(&ill->ill_cv, &ill->ill_lock);
7669 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL);
7670 ASSERT(ipsq->ipsq_reentry_cnt == 0);
7671 ipsq->ipsq_writer = curthread;
7672 ipsq->ipsq_reentry_cnt++;
7673 #ifdef DEBUG
7674 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH);
7675 #endif
7676 mutex_exit(&ipsq->ipsq_lock);
7677 mutex_exit(&ill->ill_lock);
7678 return (B_TRUE);
7682 * The ipsq_t (ipsq) is the synchronization data structure used to serialize
7683 * certain critical operations like plumbing (i.e. most set ioctls),
7684 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP
7685 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per
7686 * IPMP group. The ipsq serializes exclusive ioctls issued by applications
7687 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple
7688 * threads executing in the ipsq. Responses from the driver pertain to the
7689 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated
7690 * as part of bringing up the interface) and are enqueued in ipsq_mphead.
7692 * If a thread does not want to reenter the ipsq when it is already writer,
7693 * it must make sure that the specified reentry point to be called later
7694 * when the ipsq is empty, nor any code path starting from the specified reentry
7695 * point must never ever try to enter the ipsq again. Otherwise it can lead
7696 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
7697 * When the thread that is currently exclusive finishes, it (ipsq_exit)
7698 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls
7699 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit
7700 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
7701 * ioctl if the current ioctl has completed. If the current ioctl is still
7702 * in progress it simply returns. The current ioctl could be waiting for
7703 * a response from another module (arp_ or the driver or could be waiting for
7704 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp
7705 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the
7706 * execution of the ioctl and ipsq_exit does not start the next ioctl unless
7707 * ipsq_current_ipif is clear which happens only on ioctl completion.
7711 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7712 * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7713 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7714 * completion.
7716 ipsq_t *
7717 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7718 ipsq_func_t func, int type, boolean_t reentry_ok)
7720 ipsq_t *ipsq;
7722 /* Only 1 of ipif or ill can be specified */
7723 ASSERT((ipif != NULL) ^ (ill != NULL));
7724 if (ipif != NULL)
7725 ill = ipif->ipif_ill;
7728 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
7729 * ipsq of an ill can't change when ill_lock is held.
7731 GRAB_CONN_LOCK(q);
7732 mutex_enter(&ill->ill_lock);
7733 ipsq = ill->ill_phyint->phyint_ipsq;
7734 mutex_enter(&ipsq->ipsq_lock);
7737 * 1. Enter the ipsq if we are already writer and reentry is ok.
7738 * (Note: If the caller does not specify reentry_ok then neither
7739 * 'func' nor any of its callees must ever attempt to enter the ipsq
7740 * again. Otherwise it can lead to an infinite loop
7741 * 2. Enter the ipsq if there is no current writer and this attempted
7742 * entry is part of the current ioctl or operation
7743 * 3. Enter the ipsq if there is no current writer and this is a new
7744 * ioctl (or operation) and the ioctl (or operation) queue is
7745 * empty and there is no ioctl (or operation) currently in progress
7747 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) ||
7748 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL &&
7749 ipsq->ipsq_current_ipif == NULL))) ||
7750 (ipsq->ipsq_writer == curthread && reentry_ok)) {
7751 /* Success. */
7752 ipsq->ipsq_reentry_cnt++;
7753 ipsq->ipsq_writer = curthread;
7754 mutex_exit(&ipsq->ipsq_lock);
7755 mutex_exit(&ill->ill_lock);
7756 RELEASE_CONN_LOCK(q);
7757 #ifdef DEBUG
7758 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack,
7759 IPSQ_STACK_DEPTH);
7760 #endif
7761 return (ipsq);
7764 ipsq_enq(ipsq, q, mp, func, type, ill);
7766 mutex_exit(&ipsq->ipsq_lock);
7767 mutex_exit(&ill->ill_lock);
7768 RELEASE_CONN_LOCK(q);
7769 return (NULL);
7773 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures
7774 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ
7775 * cannot be entered, the mp is queued for completion.
7777 void
7778 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7779 boolean_t reentry_ok)
7781 ipsq_t *ipsq;
7783 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
7786 * Drop the caller's refhold on the ill. This is safe since we either
7787 * entered the IPSQ (and thus are exclusive), or failed to enter the
7788 * IPSQ, in which case we return without accessing ill anymore. This
7789 * is needed because func needs to see the correct refcount.
7790 * e.g. removeif can work only then.
7792 ill_refrele(ill);
7793 if (ipsq != NULL) {
7794 (*func)(ipsq, q, mp, NULL);
7795 ipsq_exit(ipsq, B_TRUE, B_TRUE);
7800 * If there are more than ILL_GRP_CNT ills in a group,
7801 * we use kmem alloc'd buffers, else use the stack
7803 #define ILL_GRP_CNT 14
7805 * Drain the ipsq, if there are messages on it, and then leave the ipsq.
7806 * Called by a thread that is currently exclusive on this ipsq.
7808 void
7809 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer)
7811 queue_t *q;
7812 mblk_t *mp;
7813 ipsq_func_t func;
7814 int next;
7815 ill_t **ill_list = NULL;
7816 size_t ill_list_size = 0;
7817 int cnt = 0;
7818 boolean_t need_ipsq_free = B_FALSE;
7819 ip_stack_t *ipst = ipsq->ipsq_ipst;
7821 ASSERT(IAM_WRITER_IPSQ(ipsq));
7822 mutex_enter(&ipsq->ipsq_lock);
7823 ASSERT(ipsq->ipsq_reentry_cnt >= 1);
7824 if (ipsq->ipsq_reentry_cnt != 1) {
7825 ipsq->ipsq_reentry_cnt--;
7826 mutex_exit(&ipsq->ipsq_lock);
7827 return;
7830 mp = ipsq_dq(ipsq);
7831 while (mp != NULL) {
7832 again:
7833 mutex_exit(&ipsq->ipsq_lock);
7834 func = (ipsq_func_t)mp->b_prev;
7835 q = (queue_t *)mp->b_queue;
7836 mp->b_prev = NULL;
7837 mp->b_queue = NULL;
7840 * If 'q' is an conn queue, it is valid, since we did a
7841 * a refhold on the connp, at the start of the ioctl.
7842 * If 'q' is an ill queue, it is valid, since close of an
7843 * ill will clean up the 'ipsq'.
7845 (*func)(ipsq, q, mp, NULL);
7847 mutex_enter(&ipsq->ipsq_lock);
7848 mp = ipsq_dq(ipsq);
7851 mutex_exit(&ipsq->ipsq_lock);
7854 * Need to grab the locks in the right order. Need to
7855 * atomically check (under ipsq_lock) that there are no
7856 * messages before relinquishing the ipsq. Also need to
7857 * atomically wakeup waiters on ill_cv while holding ill_lock.
7858 * Holding ill_g_lock ensures that ipsq list of ills is stable.
7859 * If we need to call ill_split_ipsq and change <ill-ipsq> we need
7860 * to grab ill_g_lock as writer.
7862 rw_enter(&ipst->ips_ill_g_lock,
7863 ipsq->ipsq_split ? RW_WRITER : RW_READER);
7865 /* ipsq_refs can't change while ill_g_lock is held as reader */
7866 if (ipsq->ipsq_refs != 0) {
7867 /* At most 2 ills v4/v6 per phyint */
7868 cnt = ipsq->ipsq_refs << 1;
7869 ill_list_size = cnt * sizeof (ill_t *);
7871 * If memory allocation fails, we will do the split
7872 * the next time ipsq_exit is called for whatever reason.
7873 * As long as the ipsq_split flag is set the need to
7874 * split is remembered.
7876 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
7877 if (ill_list != NULL)
7878 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt);
7880 mutex_enter(&ipsq->ipsq_lock);
7881 mp = ipsq_dq(ipsq);
7882 if (mp != NULL) {
7883 /* oops, some message has landed up, we can't get out */
7884 if (ill_list != NULL)
7885 ill_unlock_ills(ill_list, cnt);
7886 rw_exit(&ipst->ips_ill_g_lock);
7887 if (ill_list != NULL)
7888 kmem_free(ill_list, ill_list_size);
7889 ill_list = NULL;
7890 ill_list_size = 0;
7891 cnt = 0;
7892 goto again;
7896 * Split only if no ioctl is pending and if memory alloc succeeded
7897 * above.
7899 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL &&
7900 ill_list != NULL) {
7902 * No new ill can join this ipsq since we are holding the
7903 * ill_g_lock. Hence ill_split_ipsq can safely traverse the
7904 * ipsq. ill_split_ipsq may fail due to memory shortage.
7905 * If so we will retry on the next ipsq_exit.
7907 ipsq->ipsq_split = ill_split_ipsq(ipsq);
7911 * We are holding the ipsq lock, hence no new messages can
7912 * land up on the ipsq, and there are no messages currently.
7913 * Now safe to get out. Wake up waiters and relinquish ipsq
7914 * atomically while holding ill locks.
7916 ipsq->ipsq_writer = NULL;
7917 ipsq->ipsq_reentry_cnt--;
7918 ASSERT(ipsq->ipsq_reentry_cnt == 0);
7919 #ifdef DEBUG
7920 ipsq->ipsq_depth = 0;
7921 #endif
7922 mutex_exit(&ipsq->ipsq_lock);
7924 * For IPMP this should wake up all ills in this ipsq.
7925 * We need to hold the ill_lock while waking up waiters to
7926 * avoid missed wakeups. But there is no need to acquire all
7927 * the ill locks and then wakeup. If we have not acquired all
7928 * the locks (due to memory failure above) ill_signal_ipsq_ills
7929 * wakes up ills one at a time after getting the right ill_lock
7931 ill_signal_ipsq_ills(ipsq, ill_list != NULL);
7932 if (ill_list != NULL)
7933 ill_unlock_ills(ill_list, cnt);
7934 if (ipsq->ipsq_refs == 0)
7935 need_ipsq_free = B_TRUE;
7936 rw_exit(&ipst->ips_ill_g_lock);
7937 if (ill_list != 0)
7938 kmem_free(ill_list, ill_list_size);
7940 if (need_ipsq_free) {
7942 * Free the ipsq. ipsq_refs can't increase because ipsq can't be
7943 * looked up. ipsq can be looked up only thru ill or phyint
7944 * and there are no ills/phyint on this ipsq.
7946 ipsq_delete(ipsq);
7949 * Now start any igmp or mld timers that could not be started
7950 * while inside the ipsq. The timers can't be started while inside
7951 * the ipsq, since igmp_start_timers may need to call untimeout()
7952 * which can't be done while holding a lock i.e. the ipsq. Otherwise
7953 * there could be a deadlock since the timeout handlers
7954 * mld_timeout_handler / igmp_timeout_handler also synchronously
7955 * wait in ipsq_enter() trying to get the ipsq.
7957 * However there is one exception to the above. If this thread is
7958 * itself the igmp/mld timeout handler thread, then we don't want
7959 * to start any new timer until the current handler is done. The
7960 * handler thread passes in B_FALSE for start_igmp/mld_timers, while
7961 * all others pass B_TRUE.
7963 if (start_igmp_timer) {
7964 mutex_enter(&ipst->ips_igmp_timer_lock);
7965 next = ipst->ips_igmp_deferred_next;
7966 ipst->ips_igmp_deferred_next = INFINITY;
7967 mutex_exit(&ipst->ips_igmp_timer_lock);
7969 if (next != INFINITY)
7970 igmp_start_timers(next, ipst);
7973 if (start_mld_timer) {
7974 mutex_enter(&ipst->ips_mld_timer_lock);
7975 next = ipst->ips_mld_deferred_next;
7976 ipst->ips_mld_deferred_next = INFINITY;
7977 mutex_exit(&ipst->ips_mld_timer_lock);
7979 if (next != INFINITY)
7980 mld_start_timers(next, ipst);
7985 * Start the current exclusive operation on `ipsq'; associate it with `ipif'
7986 * and `ioccmd'.
7988 void
7989 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
7991 ASSERT(IAM_WRITER_IPSQ(ipsq));
7993 mutex_enter(&ipsq->ipsq_lock);
7994 ASSERT(ipsq->ipsq_current_ipif == NULL);
7995 ASSERT(ipsq->ipsq_current_ioctl == 0);
7996 ipsq->ipsq_current_ipif = ipif;
7997 ipsq->ipsq_current_ioctl = ioccmd;
7998 mutex_exit(&ipsq->ipsq_lock);
8002 * Finish the current exclusive operation on `ipsq'. Note that other
8003 * operations will not be able to proceed until an ipsq_exit() is done.
8005 void
8006 ipsq_current_finish(ipsq_t *ipsq)
8008 ipif_t *ipif = ipsq->ipsq_current_ipif;
8010 ASSERT(IAM_WRITER_IPSQ(ipsq));
8013 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away
8014 * (but we're careful to never set IPIF_CHANGING in that case).
8016 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) {
8017 mutex_enter(&ipif->ipif_ill->ill_lock);
8018 ipif->ipif_state_flags &= ~IPIF_CHANGING;
8020 /* Send any queued event */
8021 ill_nic_info_dispatch(ipif->ipif_ill);
8022 mutex_exit(&ipif->ipif_ill->ill_lock);
8025 mutex_enter(&ipsq->ipsq_lock);
8026 ASSERT(ipsq->ipsq_current_ipif != NULL);
8027 ipsq->ipsq_current_ipif = NULL;
8028 ipsq->ipsq_current_ioctl = 0;
8029 mutex_exit(&ipsq->ipsq_lock);
8033 * The ill is closing. Flush all messages on the ipsq that originated
8034 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
8035 * for this ill since ipsq_enter could not have entered until then.
8036 * New messages can't be queued since the CONDEMNED flag is set.
8038 static void
8039 ipsq_flush(ill_t *ill)
8041 queue_t *q;
8042 mblk_t *prev;
8043 mblk_t *mp;
8044 mblk_t *mp_next;
8045 ipsq_t *ipsq;
8047 ASSERT(IAM_WRITER_ILL(ill));
8048 ipsq = ill->ill_phyint->phyint_ipsq;
8050 * Flush any messages sent up by the driver.
8052 mutex_enter(&ipsq->ipsq_lock);
8053 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) {
8054 mp_next = mp->b_next;
8055 q = mp->b_queue;
8056 if (q == ill->ill_rq || q == ill->ill_wq) {
8057 /* Remove the mp from the ipsq */
8058 if (prev == NULL)
8059 ipsq->ipsq_mphead = mp->b_next;
8060 else
8061 prev->b_next = mp->b_next;
8062 if (ipsq->ipsq_mptail == mp) {
8063 ASSERT(mp_next == NULL);
8064 ipsq->ipsq_mptail = prev;
8066 inet_freemsg(mp);
8067 } else {
8068 prev = mp;
8071 mutex_exit(&ipsq->ipsq_lock);
8072 (void) ipsq_pending_mp_cleanup(ill, NULL);
8073 ipsq_xopq_mp_cleanup(ill, NULL);
8074 ill_pending_mp_cleanup(ill);
8077 /* ARGSUSED */
8079 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8080 ip_ioctl_cmd_t *ipip, void *ifreq)
8082 ill_t *ill;
8083 struct lifreq *lifr = (struct lifreq *)ifreq;
8084 boolean_t isv6;
8085 conn_t *connp;
8086 ip_stack_t *ipst;
8088 connp = Q_TO_CONN(q);
8089 ipst = connp->conn_netstack->netstack_ip;
8090 isv6 = connp->conn_af_isv6;
8092 * Set original index.
8093 * Failover and failback move logical interfaces
8094 * from one physical interface to another. The
8095 * original index indicates the parent of a logical
8096 * interface, in other words, the physical interface
8097 * the logical interface will be moved back to on
8098 * failback.
8102 * Don't allow the original index to be changed
8103 * for non-failover addresses, autoconfigured
8104 * addresses, or IPv6 link local addresses.
8106 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) ||
8107 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) {
8108 return (EINVAL);
8111 * The new original index must be in use by some
8112 * physical interface.
8114 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL,
8115 NULL, NULL, ipst);
8116 if (ill == NULL)
8117 return (ENXIO);
8118 ill_refrele(ill);
8120 ipif->ipif_orig_ifindex = lifr->lifr_index;
8122 * When this ipif gets failed back, don't
8123 * preserve the original id, as it is no
8124 * longer applicable.
8126 ipif->ipif_orig_ipifid = 0;
8128 * For IPv4, change the original index of any
8129 * multicast addresses associated with the
8130 * ipif to the new value.
8132 if (!isv6) {
8133 ilm_t *ilm;
8135 mutex_enter(&ipif->ipif_ill->ill_lock);
8136 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL;
8137 ilm = ilm->ilm_next) {
8138 if (ilm->ilm_ipif == ipif) {
8139 ilm->ilm_orig_ifindex = lifr->lifr_index;
8142 mutex_exit(&ipif->ipif_ill->ill_lock);
8144 return (0);
8147 /* ARGSUSED */
8149 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8150 ip_ioctl_cmd_t *ipip, void *ifreq)
8152 struct lifreq *lifr = (struct lifreq *)ifreq;
8155 * Get the original interface index i.e the one
8156 * before FAILOVER if it ever happened.
8158 lifr->lifr_index = ipif->ipif_orig_ifindex;
8159 return (0);
8163 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls,
8164 * refhold and return the associated ipif
8166 /* ARGSUSED */
8168 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8169 cmd_info_t *ci, ipsq_func_t func)
8171 boolean_t exists;
8172 struct iftun_req *ta;
8173 ipif_t *ipif;
8174 ill_t *ill;
8175 boolean_t isv6;
8176 mblk_t *mp1;
8177 int error;
8178 conn_t *connp;
8179 ip_stack_t *ipst;
8181 /* Existence verified in ip_wput_nondata */
8182 mp1 = mp->b_cont->b_cont;
8183 ta = (struct iftun_req *)mp1->b_rptr;
8185 * Null terminate the string to protect against buffer
8186 * overrun. String was generated by user code and may not
8187 * be trusted.
8189 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0';
8191 connp = Q_TO_CONN(q);
8192 isv6 = connp->conn_af_isv6;
8193 ipst = connp->conn_netstack->netstack_ip;
8195 /* Disallows implicit create */
8196 ipif = ipif_lookup_on_name(ta->ifta_lifr_name,
8197 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6,
8198 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst);
8199 if (ipif == NULL)
8200 return (error);
8202 if (ipif->ipif_id != 0) {
8204 * We really don't want to set/get tunnel parameters
8205 * on virtual tunnel interfaces. Only allow the
8206 * base tunnel to do these.
8208 ipif_refrele(ipif);
8209 return (EINVAL);
8213 * Send down to tunnel mod for ioctl processing.
8214 * Will finish ioctl in ip_rput_other().
8216 ill = ipif->ipif_ill;
8217 if (ill->ill_net_type == IRE_LOOPBACK) {
8218 ipif_refrele(ipif);
8219 return (EOPNOTSUPP);
8222 if (ill->ill_wq == NULL) {
8223 ipif_refrele(ipif);
8224 return (ENXIO);
8227 * Mark the ioctl as coming from an IPv6 interface for
8228 * tun's convenience.
8230 if (ill->ill_isv6)
8231 ta->ifta_flags |= 0x80000000;
8232 ci->ci_ipif = ipif;
8233 return (0);
8237 * Parse an ifreq or lifreq struct coming down ioctls and refhold
8238 * and return the associated ipif.
8239 * Return value:
8240 * Non zero: An error has occurred. ci may not be filled out.
8241 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and
8242 * a held ipif in ci.ci_ipif.
8245 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8246 cmd_info_t *ci, ipsq_func_t func)
8248 sin_t *sin;
8249 sin6_t *sin6;
8250 char *name;
8251 struct ifreq *ifr;
8252 struct lifreq *lifr;
8253 ipif_t *ipif = NULL;
8254 ill_t *ill;
8255 conn_t *connp;
8256 boolean_t isv6;
8257 boolean_t exists;
8258 int err;
8259 mblk_t *mp1;
8260 zoneid_t zoneid;
8261 ip_stack_t *ipst;
8263 if (q->q_next != NULL) {
8264 ill = (ill_t *)q->q_ptr;
8265 isv6 = ill->ill_isv6;
8266 connp = NULL;
8267 zoneid = ALL_ZONES;
8268 ipst = ill->ill_ipst;
8269 } else {
8270 ill = NULL;
8271 connp = Q_TO_CONN(q);
8272 isv6 = connp->conn_af_isv6;
8273 zoneid = connp->conn_zoneid;
8274 if (zoneid == GLOBAL_ZONEID) {
8275 /* global zone can access ipifs in all zones */
8276 zoneid = ALL_ZONES;
8278 ipst = connp->conn_netstack->netstack_ip;
8281 /* Has been checked in ip_wput_nondata */
8282 mp1 = mp->b_cont->b_cont;
8284 if (ipip->ipi_cmd_type == IF_CMD) {
8285 /* This a old style SIOC[GS]IF* command */
8286 ifr = (struct ifreq *)mp1->b_rptr;
8288 * Null terminate the string to protect against buffer
8289 * overrun. String was generated by user code and may not
8290 * be trusted.
8292 ifr->ifr_name[IFNAMSIZ - 1] = '\0';
8293 sin = (sin_t *)&ifr->ifr_addr;
8294 name = ifr->ifr_name;
8295 ci->ci_sin = sin;
8296 ci->ci_sin6 = NULL;
8297 ci->ci_lifr = (struct lifreq *)ifr;
8298 } else {
8299 /* This a new style SIOC[GS]LIF* command */
8300 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
8301 lifr = (struct lifreq *)mp1->b_rptr;
8303 * Null terminate the string to protect against buffer
8304 * overrun. String was generated by user code and may not
8305 * be trusted.
8307 lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
8308 name = lifr->lifr_name;
8309 sin = (sin_t *)&lifr->lifr_addr;
8310 sin6 = (sin6_t *)&lifr->lifr_addr;
8311 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) {
8312 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname,
8313 LIFNAMSIZ);
8315 ci->ci_sin = sin;
8316 ci->ci_sin6 = sin6;
8317 ci->ci_lifr = lifr;
8320 if (ipip->ipi_cmd == SIOCSLIFNAME) {
8322 * The ioctl will be failed if the ioctl comes down
8323 * an conn stream
8325 if (ill == NULL) {
8327 * Not an ill queue, return EINVAL same as the
8328 * old error code.
8330 return (ENXIO);
8332 ipif = ill->ill_ipif;
8333 ipif_refhold(ipif);
8334 } else {
8335 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
8336 &exists, isv6, zoneid,
8337 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err,
8338 ipst);
8339 if (ipif == NULL) {
8340 if (err == EINPROGRESS)
8341 return (err);
8342 if (ipip->ipi_cmd == SIOCLIFFAILOVER ||
8343 ipip->ipi_cmd == SIOCLIFFAILBACK) {
8345 * Need to try both v4 and v6 since this
8346 * ioctl can come down either v4 or v6
8347 * socket. The lifreq.lifr_family passed
8348 * down by this ioctl is AF_UNSPEC.
8350 ipif = ipif_lookup_on_name(name,
8351 mi_strlen(name), B_FALSE, &exists, !isv6,
8352 zoneid, (connp == NULL) ? q :
8353 CONNP_TO_WQ(connp), mp, func, &err, ipst);
8354 if (err == EINPROGRESS)
8355 return (err);
8357 err = 0; /* Ensure we don't use it below */
8362 * Old style [GS]IFCMD does not admit IPv6 ipif
8364 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
8365 ipif_refrele(ipif);
8366 return (ENXIO);
8369 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
8370 name[0] == '\0') {
8372 * Handle a or a SIOC?IF* with a null name
8373 * during plumb (on the ill queue before the I_PLINK).
8375 ipif = ill->ill_ipif;
8376 ipif_refhold(ipif);
8379 if (ipif == NULL)
8380 return (ENXIO);
8383 * Allow only GET operations if this ipif has been created
8384 * temporarily due to a MOVE operation.
8386 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) {
8387 ipif_refrele(ipif);
8388 return (EINVAL);
8391 ci->ci_ipif = ipif;
8392 return (0);
8396 * Return the total number of ipifs.
8398 static uint_t
8399 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
8401 uint_t numifs = 0;
8402 ill_t *ill;
8403 ill_walk_context_t ctx;
8404 ipif_t *ipif;
8406 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8407 ill = ILL_START_WALK_V4(&ctx, ipst);
8409 while (ill != NULL) {
8410 for (ipif = ill->ill_ipif; ipif != NULL;
8411 ipif = ipif->ipif_next) {
8412 if (ipif->ipif_zoneid == zoneid ||
8413 ipif->ipif_zoneid == ALL_ZONES)
8414 numifs++;
8416 ill = ill_next(&ctx, ill);
8418 rw_exit(&ipst->ips_ill_g_lock);
8419 return (numifs);
8423 * Return the total number of ipifs.
8425 static uint_t
8426 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
8428 uint_t numifs = 0;
8429 ill_t *ill;
8430 ipif_t *ipif;
8431 ill_walk_context_t ctx;
8433 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
8435 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8436 if (family == AF_INET)
8437 ill = ILL_START_WALK_V4(&ctx, ipst);
8438 else if (family == AF_INET6)
8439 ill = ILL_START_WALK_V6(&ctx, ipst);
8440 else
8441 ill = ILL_START_WALK_ALL(&ctx, ipst);
8443 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8444 for (ipif = ill->ill_ipif; ipif != NULL;
8445 ipif = ipif->ipif_next) {
8446 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8447 !(lifn_flags & LIFC_NOXMIT))
8448 continue;
8449 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8450 !(lifn_flags & LIFC_TEMPORARY))
8451 continue;
8452 if (((ipif->ipif_flags &
8453 (IPIF_NOXMIT|IPIF_NOLOCAL|
8454 IPIF_DEPRECATED)) ||
8455 IS_LOOPBACK(ill) ||
8456 !(ipif->ipif_flags & IPIF_UP)) &&
8457 (lifn_flags & LIFC_EXTERNAL_SOURCE))
8458 continue;
8460 if (zoneid != ipif->ipif_zoneid &&
8461 ipif->ipif_zoneid != ALL_ZONES &&
8462 (zoneid != GLOBAL_ZONEID ||
8463 !(lifn_flags & LIFC_ALLZONES)))
8464 continue;
8466 numifs++;
8469 rw_exit(&ipst->ips_ill_g_lock);
8470 return (numifs);
8473 uint_t
8474 ip_get_lifsrcofnum(ill_t *ill)
8476 uint_t numifs = 0;
8477 ill_t *ill_head = ill;
8478 ip_stack_t *ipst = ill->ill_ipst;
8481 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
8482 * other thread may be trying to relink the ILLs in this usesrc group
8483 * and adjusting the ill_usesrc_grp_next pointers
8485 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8486 if ((ill->ill_usesrc_ifindex == 0) &&
8487 (ill->ill_usesrc_grp_next != NULL)) {
8488 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
8489 ill = ill->ill_usesrc_grp_next)
8490 numifs++;
8492 rw_exit(&ipst->ips_ill_g_usesrc_lock);
8494 return (numifs);
8497 /* Null values are passed in for ipif, sin, and ifreq */
8498 /* ARGSUSED */
8500 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8501 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8503 int *nump;
8504 conn_t *connp = Q_TO_CONN(q);
8506 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8508 /* Existence of b_cont->b_cont checked in ip_wput_nondata */
8509 nump = (int *)mp->b_cont->b_cont->b_rptr;
8511 *nump = ip_get_numifs(connp->conn_zoneid,
8512 connp->conn_netstack->netstack_ip);
8513 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
8514 return (0);
8517 /* Null values are passed in for ipif, sin, and ifreq */
8518 /* ARGSUSED */
8520 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
8521 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8523 struct lifnum *lifn;
8524 mblk_t *mp1;
8525 conn_t *connp = Q_TO_CONN(q);
8527 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8529 /* Existence checked in ip_wput_nondata */
8530 mp1 = mp->b_cont->b_cont;
8532 lifn = (struct lifnum *)mp1->b_rptr;
8533 switch (lifn->lifn_family) {
8534 case AF_UNSPEC:
8535 case AF_INET:
8536 case AF_INET6:
8537 break;
8538 default:
8539 return (EAFNOSUPPORT);
8542 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
8543 connp->conn_zoneid, connp->conn_netstack->netstack_ip);
8544 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
8545 return (0);
8548 /* ARGSUSED */
8550 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8551 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8553 STRUCT_HANDLE(ifconf, ifc);
8554 mblk_t *mp1;
8555 struct iocblk *iocp;
8556 struct ifreq *ifr;
8557 ill_walk_context_t ctx;
8558 ill_t *ill;
8559 ipif_t *ipif;
8560 struct sockaddr_in *sin;
8561 int32_t ifclen;
8562 zoneid_t zoneid;
8563 ip_stack_t *ipst = CONNQ_TO_IPST(q);
8565 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
8567 ip1dbg(("ip_sioctl_get_ifconf"));
8568 /* Existence verified in ip_wput_nondata */
8569 mp1 = mp->b_cont->b_cont;
8570 iocp = (struct iocblk *)mp->b_rptr;
8571 zoneid = Q_TO_CONN(q)->conn_zoneid;
8574 * The original SIOCGIFCONF passed in a struct ifconf which specified
8575 * the user buffer address and length into which the list of struct
8576 * ifreqs was to be copied. Since AT&T Streams does not seem to
8577 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
8578 * the SIOCGIFCONF operation was redefined to simply provide
8579 * a large output buffer into which we are supposed to jam the ifreq
8580 * array. The same ioctl command code was used, despite the fact that
8581 * both the applications and the kernel code had to change, thus making
8582 * it impossible to support both interfaces.
8584 * For reasons not good enough to try to explain, the following
8585 * algorithm is used for deciding what to do with one of these:
8586 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
8587 * form with the output buffer coming down as the continuation message.
8588 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
8589 * and we have to copy in the ifconf structure to find out how big the
8590 * output buffer is and where to copy out to. Sure no problem...
8593 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
8594 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
8595 int numifs = 0;
8596 size_t ifc_bufsize;
8599 * Must be (better be!) continuation of a TRANSPARENT
8600 * IOCTL. We just copied in the ifconf structure.
8602 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
8603 (struct ifconf *)mp1->b_rptr);
8606 * Allocate a buffer to hold requested information.
8608 * If ifc_len is larger than what is needed, we only
8609 * allocate what we will use.
8611 * If ifc_len is smaller than what is needed, return
8612 * EINVAL.
8614 * XXX: the ill_t structure can hava 2 counters, for
8615 * v4 and v6 (not just ill_ipif_up_count) to store the
8616 * number of interfaces for a device, so we don't need
8617 * to count them here...
8619 numifs = ip_get_numifs(zoneid, ipst);
8621 ifclen = STRUCT_FGET(ifc, ifc_len);
8622 ifc_bufsize = numifs * sizeof (struct ifreq);
8623 if (ifc_bufsize > ifclen) {
8624 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8625 /* old behaviour */
8626 return (EINVAL);
8627 } else {
8628 ifc_bufsize = ifclen;
8632 mp1 = mi_copyout_alloc(q, mp,
8633 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
8634 if (mp1 == NULL)
8635 return (ENOMEM);
8637 mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
8639 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8641 * the SIOCGIFCONF ioctl only knows about
8642 * IPv4 addresses, so don't try to tell
8643 * it about interfaces with IPv6-only
8644 * addresses. (Last parm 'isv6' is B_FALSE)
8647 ifr = (struct ifreq *)mp1->b_rptr;
8649 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8650 ill = ILL_START_WALK_V4(&ctx, ipst);
8651 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8652 for (ipif = ill->ill_ipif; ipif != NULL;
8653 ipif = ipif->ipif_next) {
8654 if (zoneid != ipif->ipif_zoneid &&
8655 ipif->ipif_zoneid != ALL_ZONES)
8656 continue;
8657 if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
8658 if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8659 /* old behaviour */
8660 rw_exit(&ipst->ips_ill_g_lock);
8661 return (EINVAL);
8662 } else {
8663 goto if_copydone;
8666 ipif_get_name(ipif, ifr->ifr_name,
8667 sizeof (ifr->ifr_name));
8668 sin = (sin_t *)&ifr->ifr_addr;
8669 *sin = sin_null;
8670 sin->sin_family = AF_INET;
8671 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8672 ifr++;
8675 if_copydone:
8676 rw_exit(&ipst->ips_ill_g_lock);
8677 mp1->b_wptr = (uchar_t *)ifr;
8679 if (STRUCT_BUF(ifc) != NULL) {
8680 STRUCT_FSET(ifc, ifc_len,
8681 (int)((uchar_t *)ifr - mp1->b_rptr));
8683 return (0);
8687 * Get the interfaces using the address hosted on the interface passed in,
8688 * as a source adddress
8690 /* ARGSUSED */
8692 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8693 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8695 mblk_t *mp1;
8696 ill_t *ill, *ill_head;
8697 ipif_t *ipif, *orig_ipif;
8698 int numlifs = 0;
8699 size_t lifs_bufsize, lifsmaxlen;
8700 struct lifreq *lifr;
8701 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8702 uint_t ifindex;
8703 zoneid_t zoneid;
8704 int err = 0;
8705 boolean_t isv6 = B_FALSE;
8706 struct sockaddr_in *sin;
8707 struct sockaddr_in6 *sin6;
8708 STRUCT_HANDLE(lifsrcof, lifs);
8709 ip_stack_t *ipst;
8711 ipst = CONNQ_TO_IPST(q);
8713 ASSERT(q->q_next == NULL);
8715 zoneid = Q_TO_CONN(q)->conn_zoneid;
8717 /* Existence verified in ip_wput_nondata */
8718 mp1 = mp->b_cont->b_cont;
8721 * Must be (better be!) continuation of a TRANSPARENT
8722 * IOCTL. We just copied in the lifsrcof structure.
8724 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
8725 (struct lifsrcof *)mp1->b_rptr);
8727 if (MBLKL(mp1) != STRUCT_SIZE(lifs))
8728 return (EINVAL);
8730 ifindex = STRUCT_FGET(lifs, lifs_ifindex);
8731 isv6 = (Q_TO_CONN(q))->conn_af_isv6;
8732 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp,
8733 ip_process_ioctl, &err, ipst);
8734 if (ipif == NULL) {
8735 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
8736 ifindex));
8737 return (err);
8741 /* Allocate a buffer to hold requested information */
8742 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
8743 lifs_bufsize = numlifs * sizeof (struct lifreq);
8744 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen);
8745 /* The actual size needed is always returned in lifs_len */
8746 STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
8748 /* If the amount we need is more than what is passed in, abort */
8749 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
8750 ipif_refrele(ipif);
8751 return (0);
8754 mp1 = mi_copyout_alloc(q, mp,
8755 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
8756 if (mp1 == NULL) {
8757 ipif_refrele(ipif);
8758 return (ENOMEM);
8761 mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
8762 bzero(mp1->b_rptr, lifs_bufsize);
8764 lifr = (struct lifreq *)mp1->b_rptr;
8766 ill = ill_head = ipif->ipif_ill;
8767 orig_ipif = ipif;
8769 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */
8770 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8771 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8773 ill = ill->ill_usesrc_grp_next; /* start from next ill */
8774 for (; (ill != NULL) && (ill != ill_head);
8775 ill = ill->ill_usesrc_grp_next) {
8777 if ((uchar_t *)&lifr[1] > mp1->b_wptr)
8778 break;
8780 ipif = ill->ill_ipif;
8781 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
8782 if (ipif->ipif_isv6) {
8783 sin6 = (sin6_t *)&lifr->lifr_addr;
8784 *sin6 = sin6_null;
8785 sin6->sin6_family = AF_INET6;
8786 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
8787 lifr->lifr_addrlen = ip_mask_to_plen_v6(
8788 &ipif->ipif_v6net_mask);
8789 } else {
8790 sin = (sin_t *)&lifr->lifr_addr;
8791 *sin = sin_null;
8792 sin->sin_family = AF_INET;
8793 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8794 lifr->lifr_addrlen = ip_mask_to_plen(
8795 ipif->ipif_net_mask);
8797 lifr++;
8799 rw_exit(&ipst->ips_ill_g_usesrc_lock);
8800 rw_exit(&ipst->ips_ill_g_lock);
8801 ipif_refrele(orig_ipif);
8802 mp1->b_wptr = (uchar_t *)lifr;
8803 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
8805 return (0);
8808 /* ARGSUSED */
8810 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8811 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8813 mblk_t *mp1;
8814 int list;
8815 ill_t *ill;
8816 ipif_t *ipif;
8817 int flags;
8818 int numlifs = 0;
8819 size_t lifc_bufsize;
8820 struct lifreq *lifr;
8821 sa_family_t family;
8822 struct sockaddr_in *sin;
8823 struct sockaddr_in6 *sin6;
8824 ill_walk_context_t ctx;
8825 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8826 int32_t lifclen;
8827 zoneid_t zoneid;
8828 STRUCT_HANDLE(lifconf, lifc);
8829 ip_stack_t *ipst = CONNQ_TO_IPST(q);
8831 ip1dbg(("ip_sioctl_get_lifconf"));
8833 ASSERT(q->q_next == NULL);
8835 zoneid = Q_TO_CONN(q)->conn_zoneid;
8837 /* Existence verified in ip_wput_nondata */
8838 mp1 = mp->b_cont->b_cont;
8841 * An extended version of SIOCGIFCONF that takes an
8842 * additional address family and flags field.
8843 * AF_UNSPEC retrieve both IPv4 and IPv6.
8844 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
8845 * interfaces are omitted.
8846 * Similarly, IPIF_TEMPORARY interfaces are omitted
8847 * unless LIFC_TEMPORARY is specified.
8848 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
8849 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
8850 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
8851 * has priority over LIFC_NOXMIT.
8853 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
8855 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
8856 return (EINVAL);
8859 * Must be (better be!) continuation of a TRANSPARENT
8860 * IOCTL. We just copied in the lifconf structure.
8862 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
8864 family = STRUCT_FGET(lifc, lifc_family);
8865 flags = STRUCT_FGET(lifc, lifc_flags);
8867 switch (family) {
8868 case AF_UNSPEC:
8870 * walk all ILL's.
8872 list = MAX_G_HEADS;
8873 break;
8874 case AF_INET:
8876 * walk only IPV4 ILL's.
8878 list = IP_V4_G_HEAD;
8879 break;
8880 case AF_INET6:
8882 * walk only IPV6 ILL's.
8884 list = IP_V6_G_HEAD;
8885 break;
8886 default:
8887 return (EAFNOSUPPORT);
8891 * Allocate a buffer to hold requested information.
8893 * If lifc_len is larger than what is needed, we only
8894 * allocate what we will use.
8896 * If lifc_len is smaller than what is needed, return
8897 * EINVAL.
8899 numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
8900 lifc_bufsize = numlifs * sizeof (struct lifreq);
8901 lifclen = STRUCT_FGET(lifc, lifc_len);
8902 if (lifc_bufsize > lifclen) {
8903 if (iocp->ioc_cmd == O_SIOCGLIFCONF)
8904 return (EINVAL);
8905 else
8906 lifc_bufsize = lifclen;
8909 mp1 = mi_copyout_alloc(q, mp,
8910 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
8911 if (mp1 == NULL)
8912 return (ENOMEM);
8914 mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
8915 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8917 lifr = (struct lifreq *)mp1->b_rptr;
8919 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8920 ill = ill_first(list, list, &ctx, ipst);
8921 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8922 for (ipif = ill->ill_ipif; ipif != NULL;
8923 ipif = ipif->ipif_next) {
8924 if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8925 !(flags & LIFC_NOXMIT))
8926 continue;
8928 if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8929 !(flags & LIFC_TEMPORARY))
8930 continue;
8932 if (((ipif->ipif_flags &
8933 (IPIF_NOXMIT|IPIF_NOLOCAL|
8934 IPIF_DEPRECATED)) ||
8935 IS_LOOPBACK(ill) ||
8936 !(ipif->ipif_flags & IPIF_UP)) &&
8937 (flags & LIFC_EXTERNAL_SOURCE))
8938 continue;
8940 if (zoneid != ipif->ipif_zoneid &&
8941 ipif->ipif_zoneid != ALL_ZONES &&
8942 (zoneid != GLOBAL_ZONEID ||
8943 !(flags & LIFC_ALLZONES)))
8944 continue;
8946 if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
8947 if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
8948 rw_exit(&ipst->ips_ill_g_lock);
8949 return (EINVAL);
8950 } else {
8951 goto lif_copydone;
8955 ipif_get_name(ipif, lifr->lifr_name,
8956 sizeof (lifr->lifr_name));
8957 if (ipif->ipif_isv6) {
8958 sin6 = (sin6_t *)&lifr->lifr_addr;
8959 *sin6 = sin6_null;
8960 sin6->sin6_family = AF_INET6;
8961 sin6->sin6_addr =
8962 ipif->ipif_v6lcl_addr;
8963 lifr->lifr_addrlen =
8964 ip_mask_to_plen_v6(
8965 &ipif->ipif_v6net_mask);
8966 } else {
8967 sin = (sin_t *)&lifr->lifr_addr;
8968 *sin = sin_null;
8969 sin->sin_family = AF_INET;
8970 sin->sin_addr.s_addr =
8971 ipif->ipif_lcl_addr;
8972 lifr->lifr_addrlen =
8973 ip_mask_to_plen(
8974 ipif->ipif_net_mask);
8976 lifr++;
8979 lif_copydone:
8980 rw_exit(&ipst->ips_ill_g_lock);
8982 mp1->b_wptr = (uchar_t *)lifr;
8983 if (STRUCT_BUF(lifc) != NULL) {
8984 STRUCT_FSET(lifc, lifc_len,
8985 (int)((uchar_t *)lifr - mp1->b_rptr));
8987 return (0);
8990 /* ARGSUSED */
8992 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin,
8993 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8995 ip_stack_t *ipst;
8997 if (q->q_next == NULL)
8998 ipst = CONNQ_TO_IPST(q);
8999 else
9000 ipst = ILLQ_TO_IPST(q);
9002 /* Existence of b_cont->b_cont checked in ip_wput_nondata */
9003 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr;
9004 return (0);
9007 static void
9008 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
9010 ip6_asp_t *table;
9011 size_t table_size;
9012 mblk_t *data_mp;
9013 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9014 ip_stack_t *ipst;
9016 if (q->q_next == NULL)
9017 ipst = CONNQ_TO_IPST(q);
9018 else
9019 ipst = ILLQ_TO_IPST(q);
9021 /* These two ioctls are I_STR only */
9022 if (iocp->ioc_count == TRANSPARENT) {
9023 miocnak(q, mp, 0, EINVAL);
9024 return;
9027 data_mp = mp->b_cont;
9028 if (data_mp == NULL) {
9029 /* The user passed us a NULL argument */
9030 table = NULL;
9031 table_size = iocp->ioc_count;
9032 } else {
9034 * The user provided a table. The stream head
9035 * may have copied in the user data in chunks,
9036 * so make sure everything is pulled up
9037 * properly.
9039 if (MBLKL(data_mp) < iocp->ioc_count) {
9040 mblk_t *new_data_mp;
9041 if ((new_data_mp = msgpullup(data_mp, -1)) ==
9042 NULL) {
9043 miocnak(q, mp, 0, ENOMEM);
9044 return;
9046 freemsg(data_mp);
9047 data_mp = new_data_mp;
9048 mp->b_cont = data_mp;
9050 table = (ip6_asp_t *)data_mp->b_rptr;
9051 table_size = iocp->ioc_count;
9054 switch (iocp->ioc_cmd) {
9055 case SIOCGIP6ADDRPOLICY:
9056 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
9057 if (iocp->ioc_rval == -1)
9058 iocp->ioc_error = EINVAL;
9059 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9060 else if (table != NULL &&
9061 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
9062 ip6_asp_t *src = table;
9063 ip6_asp32_t *dst = (void *)table;
9064 int count = table_size / sizeof (ip6_asp_t);
9065 int i;
9068 * We need to do an in-place shrink of the array
9069 * to match the alignment attributes of the
9070 * 32-bit ABI looking at it.
9072 /* LINTED: logical expression always true: op "||" */
9073 ASSERT(sizeof (*src) > sizeof (*dst));
9074 for (i = 1; i < count; i++)
9075 bcopy(src + i, dst + i, sizeof (*dst));
9077 #endif
9078 break;
9080 case SIOCSIP6ADDRPOLICY:
9081 ASSERT(mp->b_prev == NULL);
9082 mp->b_prev = (void *)q;
9083 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9085 * We pass in the datamodel here so that the ip6_asp_replace()
9086 * routine can handle converting from 32-bit to native formats
9087 * where necessary.
9089 * A better way to handle this might be to convert the inbound
9090 * data structure here, and hang it off a new 'mp'; thus the
9091 * ip6_asp_replace() logic would always be dealing with native
9092 * format data structures..
9094 * (An even simpler way to handle these ioctls is to just
9095 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
9096 * and just recompile everything that depends on it.)
9098 #endif
9099 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
9100 iocp->ioc_flag & IOC_MODELS);
9101 return;
9104 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
9105 qreply(q, mp);
9108 static void
9109 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
9111 mblk_t *data_mp;
9112 struct dstinforeq *dir;
9113 uint8_t *end, *cur;
9114 in6_addr_t *daddr, *saddr;
9115 ipaddr_t v4daddr;
9116 ire_t *ire;
9117 char *slabel, *dlabel;
9118 boolean_t isipv4;
9119 int match_ire;
9120 ill_t *dst_ill;
9121 ipif_t *src_ipif, *ire_ipif;
9122 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9123 zoneid_t zoneid;
9124 ip_stack_t *ipst = CONNQ_TO_IPST(q);
9126 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9127 zoneid = Q_TO_CONN(q)->conn_zoneid;
9130 * This ioctl is I_STR only, and must have a
9131 * data mblk following the M_IOCTL mblk.
9133 data_mp = mp->b_cont;
9134 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
9135 miocnak(q, mp, 0, EINVAL);
9136 return;
9139 if (MBLKL(data_mp) < iocp->ioc_count) {
9140 mblk_t *new_data_mp;
9142 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
9143 miocnak(q, mp, 0, ENOMEM);
9144 return;
9146 freemsg(data_mp);
9147 data_mp = new_data_mp;
9148 mp->b_cont = data_mp;
9150 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT;
9152 for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
9153 end - cur >= sizeof (struct dstinforeq);
9154 cur += sizeof (struct dstinforeq)) {
9155 dir = (struct dstinforeq *)cur;
9156 daddr = &dir->dir_daddr;
9157 saddr = &dir->dir_saddr;
9160 * ip_addr_scope_v6() and ip6_asp_lookup() handle
9161 * v4 mapped addresses; ire_ftable_lookup[_v6]()
9162 * and ipif_select_source[_v6]() do not.
9164 dir->dir_dscope = ip_addr_scope_v6(daddr);
9165 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
9167 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
9168 if (isipv4) {
9169 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
9170 ire = ire_ftable_lookup(v4daddr, NULL, NULL,
9171 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9172 } else {
9173 ire = ire_ftable_lookup_v6(daddr, NULL, NULL,
9174 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9176 if (ire == NULL) {
9177 dir->dir_dreachable = 0;
9179 /* move on to next dst addr */
9180 continue;
9182 dir->dir_dreachable = 1;
9184 ire_ipif = ire->ire_ipif;
9185 if (ire_ipif == NULL)
9186 goto next_dst;
9189 * We expect to get back an interface ire or a
9190 * gateway ire cache entry. For both types, the
9191 * output interface is ire_ipif->ipif_ill.
9193 dst_ill = ire_ipif->ipif_ill;
9194 dir->dir_dmactype = dst_ill->ill_mactype;
9196 if (isipv4) {
9197 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid);
9198 } else {
9199 src_ipif = ipif_select_source_v6(dst_ill,
9200 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT,
9201 zoneid);
9203 if (src_ipif == NULL)
9204 goto next_dst;
9206 *saddr = src_ipif->ipif_v6lcl_addr;
9207 dir->dir_sscope = ip_addr_scope_v6(saddr);
9208 slabel = ip6_asp_lookup(saddr, NULL, ipst);
9209 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
9210 dir->dir_sdeprecated =
9211 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
9212 ipif_refrele(src_ipif);
9213 next_dst:
9214 ire_refrele(ire);
9216 miocack(q, mp, iocp->ioc_count, 0);
9221 * Check if this is an address assigned to this machine.
9222 * Skips interfaces that are down by using ire checks.
9223 * Translates mapped addresses to v4 addresses and then
9224 * treats them as such, returning true if the v4 address
9225 * associated with this mapped address is configured.
9226 * Note: Applications will have to be careful what they do
9227 * with the response; use of mapped addresses limits
9228 * what can be done with the socket, especially with
9229 * respect to socket options and ioctls - neither IPv4
9230 * options nor IPv6 sticky options/ancillary data options
9231 * may be used.
9233 /* ARGSUSED */
9235 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9236 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9238 struct sioc_addrreq *sia;
9239 sin_t *sin;
9240 ire_t *ire;
9241 mblk_t *mp1;
9242 zoneid_t zoneid;
9243 ip_stack_t *ipst;
9245 ip1dbg(("ip_sioctl_tmyaddr"));
9247 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9248 zoneid = Q_TO_CONN(q)->conn_zoneid;
9249 ipst = CONNQ_TO_IPST(q);
9251 /* Existence verified in ip_wput_nondata */
9252 mp1 = mp->b_cont->b_cont;
9253 sia = (struct sioc_addrreq *)mp1->b_rptr;
9254 sin = (sin_t *)&sia->sa_addr;
9255 switch (sin->sin_family) {
9256 case AF_INET6: {
9257 sin6_t *sin6 = (sin6_t *)sin;
9259 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9260 ipaddr_t v4_addr;
9262 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9263 v4_addr);
9264 ire = ire_ctable_lookup(v4_addr, 0,
9265 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9266 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9267 } else {
9268 in6_addr_t v6addr;
9270 v6addr = sin6->sin6_addr;
9271 ire = ire_ctable_lookup_v6(&v6addr, 0,
9272 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9273 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9275 break;
9277 case AF_INET: {
9278 ipaddr_t v4addr;
9280 v4addr = sin->sin_addr.s_addr;
9281 ire = ire_ctable_lookup(v4addr, 0,
9282 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9283 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9284 break;
9286 default:
9287 return (EAFNOSUPPORT);
9289 if (ire != NULL) {
9290 sia->sa_res = 1;
9291 ire_refrele(ire);
9292 } else {
9293 sia->sa_res = 0;
9295 return (0);
9299 * Check if this is an address assigned on-link i.e. neighbor,
9300 * and makes sure it's reachable from the current zone.
9301 * Returns true for my addresses as well.
9302 * Translates mapped addresses to v4 addresses and then
9303 * treats them as such, returning true if the v4 address
9304 * associated with this mapped address is configured.
9305 * Note: Applications will have to be careful what they do
9306 * with the response; use of mapped addresses limits
9307 * what can be done with the socket, especially with
9308 * respect to socket options and ioctls - neither IPv4
9309 * options nor IPv6 sticky options/ancillary data options
9310 * may be used.
9312 /* ARGSUSED */
9314 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9315 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
9317 struct sioc_addrreq *sia;
9318 sin_t *sin;
9319 mblk_t *mp1;
9320 ire_t *ire = NULL;
9321 zoneid_t zoneid;
9322 ip_stack_t *ipst;
9324 ip1dbg(("ip_sioctl_tonlink"));
9326 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9327 zoneid = Q_TO_CONN(q)->conn_zoneid;
9328 ipst = CONNQ_TO_IPST(q);
9330 /* Existence verified in ip_wput_nondata */
9331 mp1 = mp->b_cont->b_cont;
9332 sia = (struct sioc_addrreq *)mp1->b_rptr;
9333 sin = (sin_t *)&sia->sa_addr;
9336 * Match addresses with a zero gateway field to avoid
9337 * routes going through a router.
9338 * Exclude broadcast and multicast addresses.
9340 switch (sin->sin_family) {
9341 case AF_INET6: {
9342 sin6_t *sin6 = (sin6_t *)sin;
9344 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9345 ipaddr_t v4_addr;
9347 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9348 v4_addr);
9349 if (!CLASSD(v4_addr)) {
9350 ire = ire_route_lookup(v4_addr, 0, 0, 0,
9351 NULL, NULL, zoneid, NULL,
9352 MATCH_IRE_GW, ipst);
9354 } else {
9355 in6_addr_t v6addr;
9356 in6_addr_t v6gw;
9358 v6addr = sin6->sin6_addr;
9359 v6gw = ipv6_all_zeros;
9360 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
9361 ire = ire_route_lookup_v6(&v6addr, 0,
9362 &v6gw, 0, NULL, NULL, zoneid,
9363 NULL, MATCH_IRE_GW, ipst);
9366 break;
9368 case AF_INET: {
9369 ipaddr_t v4addr;
9371 v4addr = sin->sin_addr.s_addr;
9372 if (!CLASSD(v4addr)) {
9373 ire = ire_route_lookup(v4addr, 0, 0, 0,
9374 NULL, NULL, zoneid, NULL,
9375 MATCH_IRE_GW, ipst);
9377 break;
9379 default:
9380 return (EAFNOSUPPORT);
9382 sia->sa_res = 0;
9383 if (ire != NULL) {
9384 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE|
9385 IRE_LOCAL|IRE_LOOPBACK)) {
9386 sia->sa_res = 1;
9388 ire_refrele(ire);
9390 return (0);
9394 * TBD: implement when kernel maintaines a list of site prefixes.
9396 /* ARGSUSED */
9398 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9399 ip_ioctl_cmd_t *ipip, void *ifreq)
9401 return (ENXIO);
9404 /* ARGSUSED */
9406 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9407 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9409 ill_t *ill;
9410 mblk_t *mp1;
9411 conn_t *connp;
9412 boolean_t success;
9414 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n",
9415 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9416 /* ioctl comes down on an conn */
9417 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9418 connp = Q_TO_CONN(q);
9420 mp->b_datap->db_type = M_IOCTL;
9423 * Send down a copy. (copymsg does not copy b_next/b_prev).
9424 * The original mp contains contaminated b_next values due to 'mi',
9425 * which is needed to do the mi_copy_done. Unfortunately if we
9426 * send down the original mblk itself and if we are popped due to an
9427 * an unplumb before the response comes back from tunnel,
9428 * the streamhead (which does a freemsg) will see this contaminated
9429 * message and the assertion in freemsg about non-null b_next/b_prev
9430 * will panic a DEBUG kernel.
9432 mp1 = copymsg(mp);
9433 if (mp1 == NULL)
9434 return (ENOMEM);
9436 ill = ipif->ipif_ill;
9437 mutex_enter(&connp->conn_lock);
9438 mutex_enter(&ill->ill_lock);
9439 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) {
9440 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9441 mp, 0);
9442 } else {
9443 success = ill_pending_mp_add(ill, connp, mp);
9445 mutex_exit(&ill->ill_lock);
9446 mutex_exit(&connp->conn_lock);
9448 if (success) {
9449 ip1dbg(("sending down tunparam request "));
9450 putnext(ill->ill_wq, mp1);
9451 return (EINPROGRESS);
9452 } else {
9453 /* The conn has started closing */
9454 freemsg(mp1);
9455 return (EINTR);
9460 * ARP IOCTLs.
9461 * How does IP get in the business of fronting ARP configuration/queries?
9462 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP)
9463 * are by tradition passed in through a datagram socket. That lands in IP.
9464 * As it happens, this is just as well since the interface is quite crude in
9465 * that it passes in no information about protocol or hardware types, or
9466 * interface association. After making the protocol assumption, IP is in
9467 * the position to look up the name of the ILL, which ARP will need, and
9468 * format a request that can be handled by ARP. The request is passed up
9469 * stream to ARP, and the original IOCTL is completed by IP when ARP passes
9470 * back a response. ARP supports its own set of more general IOCTLs, in
9471 * case anyone is interested.
9473 /* ARGSUSED */
9475 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9476 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9478 mblk_t *mp1;
9479 mblk_t *mp2;
9480 mblk_t *pending_mp;
9481 ipaddr_t ipaddr;
9482 area_t *area;
9483 struct iocblk *iocp;
9484 conn_t *connp;
9485 struct arpreq *ar;
9486 struct xarpreq *xar;
9487 int flags, alength;
9488 char *lladdr;
9489 ip_stack_t *ipst;
9490 ill_t *ill = ipif->ipif_ill;
9491 boolean_t if_arp_ioctl = B_FALSE;
9493 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9494 connp = Q_TO_CONN(q);
9495 ipst = connp->conn_netstack->netstack_ip;
9497 if (ipip->ipi_cmd_type == XARP_CMD) {
9498 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
9499 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
9500 ar = NULL;
9502 flags = xar->xarp_flags;
9503 lladdr = LLADDR(&xar->xarp_ha);
9504 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
9506 * Validate against user's link layer address length
9507 * input and name and addr length limits.
9509 alength = ill->ill_phys_addr_length;
9510 if (ipip->ipi_cmd == SIOCSXARP) {
9511 if (alength != xar->xarp_ha.sdl_alen ||
9512 (alength + xar->xarp_ha.sdl_nlen >
9513 sizeof (xar->xarp_ha.sdl_data)))
9514 return (EINVAL);
9516 } else {
9517 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
9518 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
9519 xar = NULL;
9521 flags = ar->arp_flags;
9522 lladdr = ar->arp_ha.sa_data;
9524 * Theoretically, the sa_family could tell us what link
9525 * layer type this operation is trying to deal with. By
9526 * common usage AF_UNSPEC means ethernet. We'll assume
9527 * any attempt to use the SIOC?ARP ioctls is for ethernet,
9528 * for now. Our new SIOC*XARP ioctls can be used more
9529 * generally.
9531 * If the underlying media happens to have a non 6 byte
9532 * address, arp module will fail set/get, but the del
9533 * operation will succeed.
9535 alength = 6;
9536 if ((ipip->ipi_cmd != SIOCDARP) &&
9537 (alength != ill->ill_phys_addr_length)) {
9538 return (EINVAL);
9543 * We are going to pass up to ARP a packet chain that looks
9544 * like:
9546 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
9548 * Get a copy of the original IOCTL mblk to head the chain,
9549 * to be sent up (in mp1). Also get another copy to store
9550 * in the ill_pending_mp list, for matching the response
9551 * when it comes back from ARP.
9553 mp1 = copyb(mp);
9554 pending_mp = copymsg(mp);
9555 if (mp1 == NULL || pending_mp == NULL) {
9556 if (mp1 != NULL)
9557 freeb(mp1);
9558 if (pending_mp != NULL)
9559 inet_freemsg(pending_mp);
9560 return (ENOMEM);
9563 ipaddr = sin->sin_addr.s_addr;
9565 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
9566 (caddr_t)&ipaddr);
9567 if (mp2 == NULL) {
9568 freeb(mp1);
9569 inet_freemsg(pending_mp);
9570 return (ENOMEM);
9572 /* Put together the chain. */
9573 mp1->b_cont = mp2;
9574 mp1->b_datap->db_type = M_IOCTL;
9575 mp2->b_cont = mp;
9576 mp2->b_datap->db_type = M_DATA;
9578 iocp = (struct iocblk *)mp1->b_rptr;
9581 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an
9582 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a
9583 * cp_private field (or cp_rval on 32-bit systems) in place of the
9584 * ioc_count field; set ioc_count to be correct.
9586 iocp->ioc_count = MBLKL(mp1->b_cont);
9589 * Set the proper command in the ARP message.
9590 * Convert the SIOC{G|S|D}ARP calls into our
9591 * AR_ENTRY_xxx calls.
9593 area = (area_t *)mp2->b_rptr;
9594 switch (iocp->ioc_cmd) {
9595 case SIOCDARP:
9596 case SIOCDXARP:
9598 * We defer deleting the corresponding IRE until
9599 * we return from arp.
9601 area->area_cmd = AR_ENTRY_DELETE;
9602 area->area_proto_mask_offset = 0;
9603 break;
9604 case SIOCGARP:
9605 case SIOCGXARP:
9606 area->area_cmd = AR_ENTRY_SQUERY;
9607 area->area_proto_mask_offset = 0;
9608 break;
9609 case SIOCSARP:
9610 case SIOCSXARP:
9612 * Delete the corresponding ire to make sure IP will
9613 * pick up any change from arp.
9615 if (!if_arp_ioctl) {
9616 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst);
9617 } else {
9618 ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
9619 if (ipif != NULL) {
9620 (void) ip_ire_clookup_and_delete(ipaddr, ipif,
9621 ipst);
9622 ipif_refrele(ipif);
9625 break;
9627 iocp->ioc_cmd = area->area_cmd;
9630 * Fill in the rest of the ARP operation fields.
9632 area->area_hw_addr_length = alength;
9633 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength);
9635 /* Translate the flags. */
9636 if (flags & ATF_PERM)
9637 area->area_flags |= ACE_F_PERMANENT;
9638 if (flags & ATF_PUBL)
9639 area->area_flags |= ACE_F_PUBLISH;
9640 if (flags & ATF_AUTHORITY)
9641 area->area_flags |= ACE_F_AUTHORITY;
9644 * Before sending 'mp' to ARP, we have to clear the b_next
9645 * and b_prev. Otherwise if STREAMS encounters such a message
9646 * in freemsg(), (because ARP can close any time) it can cause
9647 * a panic. But mi code needs the b_next and b_prev values of
9648 * mp->b_cont, to complete the ioctl. So we store it here
9649 * in pending_mp->bcont, and restore it in ip_sioctl_iocack()
9650 * when the response comes down from ARP.
9652 pending_mp->b_cont->b_next = mp->b_cont->b_next;
9653 pending_mp->b_cont->b_prev = mp->b_cont->b_prev;
9654 mp->b_cont->b_next = NULL;
9655 mp->b_cont->b_prev = NULL;
9657 mutex_enter(&connp->conn_lock);
9658 mutex_enter(&ill->ill_lock);
9659 /* conn has not yet started closing, hence this can't fail */
9660 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0);
9661 mutex_exit(&ill->ill_lock);
9662 mutex_exit(&connp->conn_lock);
9665 * Up to ARP it goes. The response will come back in ip_wput() as an
9666 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion.
9668 putnext(ill->ill_rq, mp1);
9669 return (EINPROGRESS);
9673 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
9674 * the associated sin and refhold and return the associated ipif via `ci'.
9677 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
9678 cmd_info_t *ci, ipsq_func_t func)
9680 mblk_t *mp1;
9681 int err;
9682 sin_t *sin;
9683 conn_t *connp;
9684 ipif_t *ipif;
9685 ire_t *ire = NULL;
9686 ill_t *ill = NULL;
9687 boolean_t exists;
9688 ip_stack_t *ipst;
9689 struct arpreq *ar;
9690 struct xarpreq *xar;
9691 struct sockaddr_dl *sdl;
9693 /* ioctl comes down on a conn */
9694 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9695 connp = Q_TO_CONN(q);
9696 if (connp->conn_af_isv6)
9697 return (ENXIO);
9699 ipst = connp->conn_netstack->netstack_ip;
9701 /* Verified in ip_wput_nondata */
9702 mp1 = mp->b_cont->b_cont;
9704 if (ipip->ipi_cmd_type == XARP_CMD) {
9705 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
9706 xar = (struct xarpreq *)mp1->b_rptr;
9707 sin = (sin_t *)&xar->xarp_pa;
9708 sdl = &xar->xarp_ha;
9710 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
9711 return (ENXIO);
9712 if (sdl->sdl_nlen >= LIFNAMSIZ)
9713 return (EINVAL);
9714 } else {
9715 ASSERT(ipip->ipi_cmd_type == ARP_CMD);
9716 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
9717 ar = (struct arpreq *)mp1->b_rptr;
9718 sin = (sin_t *)&ar->arp_pa;
9721 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
9722 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
9723 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp),
9724 mp, func, &err, ipst);
9725 if (ipif == NULL)
9726 return (err);
9727 if (ipif->ipif_id != 0 ||
9728 ipif->ipif_net_type != IRE_IF_RESOLVER) {
9729 ipif_refrele(ipif);
9730 return (ENXIO);
9732 } else {
9734 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen ==
9735 * 0: use the IP address to figure out the ill. In the IPMP
9736 * case, a simple forwarding table lookup will return the
9737 * IRE_IF_RESOLVER for the first interface in the group, which
9738 * might not be the interface on which the requested IP
9739 * address was resolved due to the ill selection algorithm
9740 * (see ip_newroute_get_dst_ill()). So we do a cache table
9741 * lookup first: if the IRE cache entry for the IP address is
9742 * still there, it will contain the ill pointer for the right
9743 * interface, so we use that. If the cache entry has been
9744 * flushed, we fall back to the forwarding table lookup. This
9745 * should be rare enough since IRE cache entries have a longer
9746 * life expectancy than ARP cache entries.
9748 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL,
9749 ipst);
9750 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
9751 ((ill = ire_to_ill(ire)) == NULL) ||
9752 (ill->ill_net_type != IRE_IF_RESOLVER)) {
9753 if (ire != NULL)
9754 ire_refrele(ire);
9755 ire = ire_ftable_lookup(sin->sin_addr.s_addr,
9756 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
9757 NULL, MATCH_IRE_TYPE, ipst);
9758 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) {
9760 if (ire != NULL)
9761 ire_refrele(ire);
9762 return (ENXIO);
9765 ASSERT(ire != NULL && ill != NULL);
9766 ipif = ill->ill_ipif;
9767 ipif_refhold(ipif);
9768 ire_refrele(ire);
9770 ci->ci_sin = sin;
9771 ci->ci_ipif = ipif;
9772 return (0);
9776 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
9777 * atomically set/clear the muxids. Also complete the ioctl by acking or
9778 * naking it. Note that the code is structured such that the link type,
9779 * whether it's persistent or not, is treated equally. ifconfig(1M) and
9780 * its clones use the persistent link, while pppd(1M) and perhaps many
9781 * other daemons may use non-persistent link. When combined with some
9782 * ill_t states, linking and unlinking lower streams may be used as
9783 * indicators of dynamic re-plumbing events [see PSARC/1999/348].
9785 /* ARGSUSED */
9786 void
9787 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
9789 mblk_t *mp1, *mp2;
9790 struct linkblk *li;
9791 struct ipmx_s *ipmxp;
9792 ill_t *ill;
9793 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
9794 int err = 0;
9795 boolean_t entered_ipsq = B_FALSE;
9796 boolean_t islink;
9797 ip_stack_t *ipst;
9799 if (CONN_Q(q))
9800 ipst = CONNQ_TO_IPST(q);
9801 else
9802 ipst = ILLQ_TO_IPST(q);
9804 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
9805 ioccmd == I_LINK || ioccmd == I_UNLINK);
9807 islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9809 mp1 = mp->b_cont; /* This is the linkblk info */
9810 li = (struct linkblk *)mp1->b_rptr;
9813 * ARP has added this special mblk, and the utility is asking us
9814 * to perform consistency checks, and also atomically set the
9815 * muxid. Ifconfig is an example. It achieves this by using
9816 * /dev/arp as the mux to plink the arp stream, and pushes arp on
9817 * to /dev/udp[6] stream for use as the mux when plinking the IP
9818 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c
9819 * and other comments in this routine for more details.
9821 mp2 = mp1->b_cont; /* This is added by ARP */
9824 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than
9825 * ifconfig which didn't push ARP on top of the dummy mux, we won't
9826 * get the special mblk above. For backward compatibility, we
9827 * request ip_sioctl_plink_ipmod() to skip the consistency checks.
9828 * The utility will use SIOCSLIFMUXID to store the muxids. This is
9829 * not atomic, and can leave the streams unplumbable if the utility
9830 * is interrupted before it does the SIOCSLIFMUXID.
9832 if (mp2 == NULL) {
9833 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE);
9834 if (err == EINPROGRESS)
9835 return;
9836 goto done;
9840 * This is an I_{P}LINK sent down by ifconfig through the ARP module;
9841 * ARP has appended this last mblk to tell us whether the lower stream
9842 * is an arp-dev stream or an IP module stream.
9844 ipmxp = (struct ipmx_s *)mp2->b_rptr;
9845 if (ipmxp->ipmx_arpdev_stream) {
9847 * The lower stream is the arp-dev stream.
9849 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE,
9850 q, mp, ip_sioctl_plink, &err, NULL, ipst);
9851 if (ill == NULL) {
9852 if (err == EINPROGRESS)
9853 return;
9854 err = EINVAL;
9855 goto done;
9858 if (ipsq == NULL) {
9859 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9860 NEW_OP, B_TRUE);
9861 if (ipsq == NULL) {
9862 ill_refrele(ill);
9863 return;
9865 entered_ipsq = B_TRUE;
9867 ASSERT(IAM_WRITER_ILL(ill));
9868 ill_refrele(ill);
9871 * To ensure consistency between IP and ARP, the following
9872 * LIFO scheme is used in plink/punlink. (IP first, ARP last).
9873 * This is because the muxid's are stored in the IP stream on
9874 * the ill.
9876 * I_{P}LINK: ifconfig plinks the IP stream before plinking
9877 * the ARP stream. On an arp-dev stream, IP checks that it is
9878 * not yet plinked, and it also checks that the corresponding
9879 * IP stream is already plinked.
9881 * I_{P}UNLINK: ifconfig punlinks the ARP stream before
9882 * punlinking the IP stream. IP does not allow punlink of the
9883 * IP stream unless the arp stream has been punlinked.
9885 if ((islink &&
9886 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) ||
9887 (!islink && ill->ill_arp_muxid != li->l_index)) {
9888 err = EINVAL;
9889 goto done;
9891 ill->ill_arp_muxid = islink ? li->l_index : 0;
9892 } else {
9894 * The lower stream is probably an IP module stream. Do
9895 * consistency checking.
9897 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE);
9898 if (err == EINPROGRESS)
9899 return;
9901 done:
9902 if (err == 0)
9903 miocack(q, mp, 0, 0);
9904 else
9905 miocnak(q, mp, 0, err);
9907 /* Conn was refheld in ip_sioctl_copyin_setup */
9908 if (CONN_Q(q))
9909 CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
9910 if (entered_ipsq)
9911 ipsq_exit(ipsq, B_TRUE, B_TRUE);
9915 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
9916 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
9917 * module stream). If `doconsist' is set, then do the extended consistency
9918 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here.
9919 * Returns zero on success, EINPROGRESS if the operation is still pending, or
9920 * an error code on failure.
9922 static int
9923 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
9924 struct linkblk *li, boolean_t doconsist)
9926 ill_t *ill;
9927 queue_t *ipwq, *dwq;
9928 const char *name;
9929 struct qinit *qinfo;
9930 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9931 boolean_t entered_ipsq = B_FALSE;
9934 * Walk the lower stream to verify it's the IP module stream.
9935 * The IP module is identified by its name, wput function,
9936 * and non-NULL q_next. STREAMS ensures that the lower stream
9937 * (li->l_qbot) will not vanish until this ioctl completes.
9939 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
9940 qinfo = ipwq->q_qinfo;
9941 name = qinfo->qi_minfo->mi_idname;
9942 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
9943 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
9944 break;
9949 * If this isn't an IP module stream, bail.
9951 if (ipwq == NULL)
9952 return (0);
9954 ill = ipwq->q_ptr;
9955 ASSERT(ill != NULL);
9957 if (ipsq == NULL) {
9958 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9959 NEW_OP, B_TRUE);
9960 if (ipsq == NULL)
9961 return (EINPROGRESS);
9962 entered_ipsq = B_TRUE;
9964 ASSERT(IAM_WRITER_ILL(ill));
9966 if (doconsist) {
9968 * Consistency checking requires that I_{P}LINK occurs
9969 * prior to setting ill_ip_muxid, and that I_{P}UNLINK
9970 * occurs prior to clearing ill_arp_muxid.
9972 if ((islink && ill->ill_ip_muxid != 0) ||
9973 (!islink && ill->ill_arp_muxid != 0)) {
9974 if (entered_ipsq)
9975 ipsq_exit(ipsq, B_TRUE, B_TRUE);
9976 return (EINVAL);
9981 * As part of I_{P}LINKing, stash the number of downstream modules and
9982 * the read queue of the module immediately below IP in the ill.
9983 * These are used during the capability negotiation below.
9985 ill->ill_lmod_rq = NULL;
9986 ill->ill_lmod_cnt = 0;
9987 if (islink && ((dwq = ipwq->q_next) != NULL)) {
9988 ill->ill_lmod_rq = RD(dwq);
9989 for (; dwq != NULL; dwq = dwq->q_next)
9990 ill->ill_lmod_cnt++;
9993 if (doconsist)
9994 ill->ill_ip_muxid = islink ? li->l_index : 0;
9997 * If there's at least one up ipif on this ill, then we're bound to
9998 * the underlying driver via DLPI. In that case, renegotiate
9999 * capabilities to account for any possible change in modules
10000 * interposed between IP and the driver.
10002 if (ill->ill_ipif_up_count > 0) {
10003 if (islink)
10004 ill_capability_probe(ill);
10005 else
10006 ill_capability_reset(ill);
10009 if (entered_ipsq)
10010 ipsq_exit(ipsq, B_TRUE, B_TRUE);
10012 return (0);
10016 * Search the ioctl command in the ioctl tables and return a pointer
10017 * to the ioctl command information. The ioctl command tables are
10018 * static and fully populated at compile time.
10020 ip_ioctl_cmd_t *
10021 ip_sioctl_lookup(int ioc_cmd)
10023 int index;
10024 ip_ioctl_cmd_t *ipip;
10025 ip_ioctl_cmd_t *ipip_end;
10027 if (ioc_cmd == IPI_DONTCARE)
10028 return (NULL);
10031 * Do a 2 step search. First search the indexed table
10032 * based on the least significant byte of the ioctl cmd.
10033 * If we don't find a match, then search the misc table
10034 * serially.
10036 index = ioc_cmd & 0xFF;
10037 if (index < ip_ndx_ioctl_count) {
10038 ipip = &ip_ndx_ioctl_table[index];
10039 if (ipip->ipi_cmd == ioc_cmd) {
10040 /* Found a match in the ndx table */
10041 return (ipip);
10045 /* Search the misc table */
10046 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
10047 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
10048 if (ipip->ipi_cmd == ioc_cmd)
10049 /* Found a match in the misc table */
10050 return (ipip);
10053 return (NULL);
10057 * Wrapper function for resuming deferred ioctl processing
10058 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
10059 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
10061 /* ARGSUSED */
10062 void
10063 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
10064 void *dummy_arg)
10066 ip_sioctl_copyin_setup(q, mp);
10070 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message
10071 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle
10072 * in either I_STR or TRANSPARENT form, using the mi_copy facility.
10073 * We establish here the size of the block to be copied in. mi_copyin
10074 * arranges for this to happen, an processing continues in ip_wput with
10075 * an M_IOCDATA message.
10077 void
10078 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
10080 int copyin_size;
10081 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10082 ip_ioctl_cmd_t *ipip;
10083 cred_t *cr;
10084 ip_stack_t *ipst;
10086 if (CONN_Q(q))
10087 ipst = CONNQ_TO_IPST(q);
10088 else
10089 ipst = ILLQ_TO_IPST(q);
10091 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
10092 if (ipip == NULL) {
10094 * The ioctl is not one we understand or own.
10095 * Pass it along to be processed down stream,
10096 * if this is a module instance of IP, else nak
10097 * the ioctl.
10099 if (q->q_next == NULL) {
10100 goto nak;
10101 } else {
10102 putnext(q, mp);
10103 return;
10108 * If this is deferred, then we will do all the checks when we
10109 * come back.
10111 if ((iocp->ioc_cmd == SIOCGDSTINFO ||
10112 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
10113 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
10114 return;
10118 * Only allow a very small subset of IP ioctls on this stream if
10119 * IP is a module and not a driver. Allowing ioctls to be processed
10120 * in this case may cause assert failures or data corruption.
10121 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
10122 * ioctls allowed on an IP module stream, after which this stream
10123 * normally becomes a multiplexor (at which time the stream head
10124 * will fail all ioctls).
10126 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
10127 if (ipip->ipi_flags & IPI_PASS_DOWN) {
10129 * Pass common Streams ioctls which the IP
10130 * module does not own or consume along to
10131 * be processed down stream.
10133 putnext(q, mp);
10134 return;
10135 } else {
10136 goto nak;
10140 /* Make sure we have ioctl data to process. */
10141 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
10142 goto nak;
10145 * Prefer dblk credential over ioctl credential; some synthesized
10146 * ioctls have kcred set because there's no way to crhold()
10147 * a credential in some contexts. (ioc_cr is not crfree() by
10148 * the framework; the caller of ioctl needs to hold the reference
10149 * for the duration of the call).
10151 cr = DB_CREDDEF(mp, iocp->ioc_cr);
10153 /* Make sure normal users don't send down privileged ioctls */
10154 if ((ipip->ipi_flags & IPI_PRIV) &&
10155 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
10156 /* We checked the privilege earlier but log it here */
10157 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
10158 return;
10162 * The ioctl command tables can only encode fixed length
10163 * ioctl data. If the length is variable, the table will
10164 * encode the length as zero. Such special cases are handled
10165 * below in the switch.
10167 if (ipip->ipi_copyin_size != 0) {
10168 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
10169 return;
10172 switch (iocp->ioc_cmd) {
10173 case O_SIOCGIFCONF:
10174 case SIOCGIFCONF:
10176 * This IOCTL is hilarious. See comments in
10177 * ip_sioctl_get_ifconf for the story.
10179 if (iocp->ioc_count == TRANSPARENT)
10180 copyin_size = SIZEOF_STRUCT(ifconf,
10181 iocp->ioc_flag);
10182 else
10183 copyin_size = iocp->ioc_count;
10184 mi_copyin(q, mp, NULL, copyin_size);
10185 return;
10187 case O_SIOCGLIFCONF:
10188 case SIOCGLIFCONF:
10189 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
10190 mi_copyin(q, mp, NULL, copyin_size);
10191 return;
10193 case SIOCGLIFSRCOF:
10194 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
10195 mi_copyin(q, mp, NULL, copyin_size);
10196 return;
10197 case SIOCGIP6ADDRPOLICY:
10198 ip_sioctl_ip6addrpolicy(q, mp);
10199 ip6_asp_table_refrele(ipst);
10200 return;
10202 case SIOCSIP6ADDRPOLICY:
10203 ip_sioctl_ip6addrpolicy(q, mp);
10204 return;
10206 case SIOCGDSTINFO:
10207 ip_sioctl_dstinfo(q, mp);
10208 ip6_asp_table_refrele(ipst);
10209 return;
10211 case I_PLINK:
10212 case I_PUNLINK:
10213 case I_LINK:
10214 case I_UNLINK:
10216 * We treat non-persistent link similarly as the persistent
10217 * link case, in terms of plumbing/unplumbing, as well as
10218 * dynamic re-plumbing events indicator. See comments
10219 * in ip_sioctl_plink() for more.
10221 * Request can be enqueued in the 'ipsq' while waiting
10222 * to become exclusive. So bump up the conn ref.
10224 if (CONN_Q(q))
10225 CONN_INC_REF(Q_TO_CONN(q));
10226 ip_sioctl_plink(NULL, q, mp, NULL);
10227 return;
10229 case ND_GET:
10230 case ND_SET:
10232 * Use of the nd table requires holding the reader lock.
10233 * Modifying the nd table thru nd_load/nd_unload requires
10234 * the writer lock.
10236 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
10237 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
10238 rw_exit(&ipst->ips_ip_g_nd_lock);
10240 if (iocp->ioc_error)
10241 iocp->ioc_count = 0;
10242 mp->b_datap->db_type = M_IOCACK;
10243 qreply(q, mp);
10244 return;
10246 rw_exit(&ipst->ips_ip_g_nd_lock);
10248 * We don't understand this subioctl of ND_GET / ND_SET.
10249 * Maybe intended for some driver / module below us
10251 if (q->q_next) {
10252 putnext(q, mp);
10253 } else {
10254 iocp->ioc_error = ENOENT;
10255 mp->b_datap->db_type = M_IOCNAK;
10256 iocp->ioc_count = 0;
10257 qreply(q, mp);
10259 return;
10261 case IP_IOCTL:
10262 ip_wput_ioctl(q, mp);
10263 return;
10264 default:
10265 cmn_err(CE_PANIC, "should not happen ");
10267 nak:
10268 if (mp->b_cont != NULL) {
10269 freemsg(mp->b_cont);
10270 mp->b_cont = NULL;
10272 iocp->ioc_error = EINVAL;
10273 mp->b_datap->db_type = M_IOCNAK;
10274 iocp->ioc_count = 0;
10275 qreply(q, mp);
10278 /* ip_wput hands off ARP IOCTL responses to us */
10279 void
10280 ip_sioctl_iocack(queue_t *q, mblk_t *mp)
10282 struct arpreq *ar;
10283 struct xarpreq *xar;
10284 area_t *area;
10285 mblk_t *area_mp;
10286 struct iocblk *iocp;
10287 mblk_t *orig_ioc_mp, *tmp;
10288 struct iocblk *orig_iocp;
10289 ill_t *ill;
10290 conn_t *connp = NULL;
10291 uint_t ioc_id;
10292 mblk_t *pending_mp;
10293 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE;
10294 int *flagsp;
10295 char *storage = NULL;
10296 sin_t *sin;
10297 ipaddr_t addr;
10298 int err;
10299 ip_stack_t *ipst;
10301 ill = q->q_ptr;
10302 ASSERT(ill != NULL);
10303 ipst = ill->ill_ipst;
10306 * We should get back from ARP a packet chain that looks like:
10307 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
10309 if (!(area_mp = mp->b_cont) ||
10310 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) ||
10311 !(orig_ioc_mp = area_mp->b_cont) ||
10312 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) {
10313 freemsg(mp);
10314 return;
10317 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr;
10319 tmp = (orig_ioc_mp->b_cont)->b_cont;
10320 if ((orig_iocp->ioc_cmd == SIOCGXARP) ||
10321 (orig_iocp->ioc_cmd == SIOCSXARP) ||
10322 (orig_iocp->ioc_cmd == SIOCDXARP)) {
10323 x_arp_ioctl = B_TRUE;
10324 xar = (struct xarpreq *)tmp->b_rptr;
10325 sin = (sin_t *)&xar->xarp_pa;
10326 flagsp = &xar->xarp_flags;
10327 storage = xar->xarp_ha.sdl_data;
10328 if (xar->xarp_ha.sdl_nlen != 0)
10329 ifx_arp_ioctl = B_TRUE;
10330 } else {
10331 ar = (struct arpreq *)tmp->b_rptr;
10332 sin = (sin_t *)&ar->arp_pa;
10333 flagsp = &ar->arp_flags;
10334 storage = ar->arp_ha.sa_data;
10337 iocp = (struct iocblk *)mp->b_rptr;
10340 * Pick out the originating queue based on the ioc_id.
10342 ioc_id = iocp->ioc_id;
10343 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id);
10344 if (pending_mp == NULL) {
10345 ASSERT(connp == NULL);
10346 inet_freemsg(mp);
10347 return;
10349 ASSERT(connp != NULL);
10350 q = CONNP_TO_WQ(connp);
10352 /* Uncouple the internally generated IOCTL from the original one */
10353 area = (area_t *)area_mp->b_rptr;
10354 area_mp->b_cont = NULL;
10357 * Restore the b_next and b_prev used by mi code. This is needed
10358 * to complete the ioctl using mi* functions. We stored them in
10359 * the pending mp prior to sending the request to ARP.
10361 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next;
10362 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev;
10363 inet_freemsg(pending_mp);
10366 * We're done if there was an error or if this is not an SIOCG{X}ARP
10367 * Catch the case where there is an IRE_CACHE by no entry in the
10368 * arp table.
10370 addr = sin->sin_addr.s_addr;
10371 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) {
10372 ire_t *ire;
10373 dl_unitdata_req_t *dlup;
10374 mblk_t *llmp;
10375 int addr_len;
10376 ill_t *ipsqill = NULL;
10378 if (ifx_arp_ioctl) {
10380 * There's no need to lookup the ill, since
10381 * we've already done that when we started
10382 * processing the ioctl and sent the message
10383 * to ARP on that ill. So use the ill that
10384 * is stored in q->q_ptr.
10386 ipsqill = ill;
10387 ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10388 ipsqill->ill_ipif, ALL_ZONES,
10389 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
10390 } else {
10391 ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10392 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
10393 if (ire != NULL)
10394 ipsqill = ire_to_ill(ire);
10397 if ((x_arp_ioctl) && (ipsqill != NULL))
10398 storage += ill_xarp_info(&xar->xarp_ha, ipsqill);
10400 if (ire != NULL) {
10402 * Since the ire obtained from cachetable is used for
10403 * mac addr copying below, treat an incomplete ire as if
10404 * as if we never found it.
10406 if (ire->ire_nce != NULL &&
10407 ire->ire_nce->nce_state != ND_REACHABLE) {
10408 ire_refrele(ire);
10409 ire = NULL;
10410 ipsqill = NULL;
10411 goto errack;
10413 *flagsp = ATF_INUSE;
10414 llmp = (ire->ire_nce != NULL ?
10415 ire->ire_nce->nce_res_mp : NULL);
10416 if (llmp != NULL && ipsqill != NULL) {
10417 uchar_t *macaddr;
10419 addr_len = ipsqill->ill_phys_addr_length;
10420 if (x_arp_ioctl && ((addr_len +
10421 ipsqill->ill_name_length) >
10422 sizeof (xar->xarp_ha.sdl_data))) {
10423 ire_refrele(ire);
10424 freemsg(mp);
10425 ip_ioctl_finish(q, orig_ioc_mp,
10426 EINVAL, NO_COPYOUT, NULL);
10427 return;
10429 *flagsp |= ATF_COM;
10430 dlup = (dl_unitdata_req_t *)llmp->b_rptr;
10431 if (ipsqill->ill_sap_length < 0)
10432 macaddr = llmp->b_rptr +
10433 dlup->dl_dest_addr_offset;
10434 else
10435 macaddr = llmp->b_rptr +
10436 dlup->dl_dest_addr_offset +
10437 ipsqill->ill_sap_length;
10439 * For SIOCGARP, MAC address length
10440 * validation has already been done
10441 * before the ioctl was issued to ARP to
10442 * allow it to progress only on 6 byte
10443 * addressable (ethernet like) media. Thus
10444 * the mac address copying can not overwrite
10445 * the sa_data area below.
10447 bcopy(macaddr, storage, addr_len);
10449 /* Ditch the internal IOCTL. */
10450 freemsg(mp);
10451 ire_refrele(ire);
10452 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10453 return;
10458 * Delete the coresponding IRE_CACHE if any.
10459 * Reset the error if there was one (in case there was no entry
10460 * in arp.)
10462 if (iocp->ioc_cmd == AR_ENTRY_DELETE) {
10463 ipif_t *ipintf = NULL;
10465 if (ifx_arp_ioctl) {
10467 * There's no need to lookup the ill, since
10468 * we've already done that when we started
10469 * processing the ioctl and sent the message
10470 * to ARP on that ill. So use the ill that
10471 * is stored in q->q_ptr.
10473 ipintf = ill->ill_ipif;
10475 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) {
10477 * The address in "addr" may be an entry for a
10478 * router. If that's true, then any off-net
10479 * IRE_CACHE entries that go through the router
10480 * with address "addr" must be clobbered. Use
10481 * ire_walk to achieve this goal.
10483 if (ifx_arp_ioctl)
10484 ire_walk_ill_v4(MATCH_IRE_ILL, 0,
10485 ire_delete_cache_gw, (char *)&addr, ill);
10486 else
10487 ire_walk_v4(ire_delete_cache_gw, (char *)&addr,
10488 ALL_ZONES, ipst);
10489 iocp->ioc_error = 0;
10492 errack:
10493 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) {
10494 err = iocp->ioc_error;
10495 freemsg(mp);
10496 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL);
10497 return;
10501 * Completion of an SIOCG{X}ARP. Translate the information from
10502 * the area_t into the struct {x}arpreq.
10504 if (x_arp_ioctl) {
10505 storage += ill_xarp_info(&xar->xarp_ha, ill);
10506 if ((ill->ill_phys_addr_length + ill->ill_name_length) >
10507 sizeof (xar->xarp_ha.sdl_data)) {
10508 freemsg(mp);
10509 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT,
10510 NULL);
10511 return;
10514 *flagsp = ATF_INUSE;
10515 if (area->area_flags & ACE_F_PERMANENT)
10516 *flagsp |= ATF_PERM;
10517 if (area->area_flags & ACE_F_PUBLISH)
10518 *flagsp |= ATF_PUBL;
10519 if (area->area_flags & ACE_F_AUTHORITY)
10520 *flagsp |= ATF_AUTHORITY;
10521 if (area->area_hw_addr_length != 0) {
10522 *flagsp |= ATF_COM;
10524 * For SIOCGARP, MAC address length validation has
10525 * already been done before the ioctl was issued to ARP
10526 * to allow it to progress only on 6 byte addressable
10527 * (ethernet like) media. Thus the mac address copying
10528 * can not overwrite the sa_data area below.
10530 bcopy((char *)area + area->area_hw_addr_offset,
10531 storage, area->area_hw_addr_length);
10534 /* Ditch the internal IOCTL. */
10535 freemsg(mp);
10536 /* Complete the original. */
10537 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10541 * Create a new logical interface. If ipif_id is zero (i.e. not a logical
10542 * interface) create the next available logical interface for this
10543 * physical interface.
10544 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
10545 * ipif with the specified name.
10547 * If the address family is not AF_UNSPEC then set the address as well.
10549 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
10550 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
10552 * Executed as a writer on the ill or ill group.
10553 * So no lock is needed to traverse the ipif chain, or examine the
10554 * phyint flags.
10556 /* ARGSUSED */
10558 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10559 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10561 mblk_t *mp1;
10562 struct lifreq *lifr;
10563 boolean_t isv6;
10564 boolean_t exists;
10565 char *name;
10566 char *endp;
10567 char *cp;
10568 int namelen;
10569 ipif_t *ipif;
10570 long id;
10571 ipsq_t *ipsq;
10572 ill_t *ill;
10573 sin_t *sin;
10574 int err = 0;
10575 boolean_t found_sep = B_FALSE;
10576 conn_t *connp;
10577 zoneid_t zoneid;
10578 int orig_ifindex = 0;
10579 ip_stack_t *ipst = CONNQ_TO_IPST(q);
10581 ASSERT(q->q_next == NULL);
10582 ip1dbg(("ip_sioctl_addif\n"));
10583 /* Existence of mp1 has been checked in ip_wput_nondata */
10584 mp1 = mp->b_cont->b_cont;
10586 * Null terminate the string to protect against buffer
10587 * overrun. String was generated by user code and may not
10588 * be trusted.
10590 lifr = (struct lifreq *)mp1->b_rptr;
10591 lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
10592 name = lifr->lifr_name;
10593 ASSERT(CONN_Q(q));
10594 connp = Q_TO_CONN(q);
10595 isv6 = connp->conn_af_isv6;
10596 zoneid = connp->conn_zoneid;
10597 namelen = mi_strlen(name);
10598 if (namelen == 0)
10599 return (EINVAL);
10601 exists = B_FALSE;
10602 if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
10603 (mi_strcmp(name, ipif_loopback_name) == 0)) {
10605 * Allow creating lo0 using SIOCLIFADDIF.
10606 * can't be any other writer thread. So can pass null below
10607 * for the last 4 args to ipif_lookup_name.
10609 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
10610 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst);
10611 /* Prevent any further action */
10612 if (ipif == NULL) {
10613 return (ENOBUFS);
10614 } else if (!exists) {
10615 /* We created the ipif now and as writer */
10616 ipif_refrele(ipif);
10617 return (0);
10618 } else {
10619 ill = ipif->ipif_ill;
10620 ill_refhold(ill);
10621 ipif_refrele(ipif);
10623 } else {
10624 /* Look for a colon in the name. */
10625 endp = &name[namelen];
10626 for (cp = endp; --cp > name; ) {
10627 if (*cp == IPIF_SEPARATOR_CHAR) {
10628 found_sep = B_TRUE;
10630 * Reject any non-decimal aliases for plumbing
10631 * of logical interfaces. Aliases with leading
10632 * zeroes are also rejected as they introduce
10633 * ambiguity in the naming of the interfaces.
10634 * Comparing with "0" takes care of all such
10635 * cases.
10637 if ((strncmp("0", cp+1, 1)) == 0)
10638 return (EINVAL);
10640 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
10641 id <= 0 || *endp != '\0') {
10642 return (EINVAL);
10644 *cp = '\0';
10645 break;
10648 ill = ill_lookup_on_name(name, B_FALSE, isv6,
10649 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst);
10650 if (found_sep)
10651 *cp = IPIF_SEPARATOR_CHAR;
10652 if (ill == NULL)
10653 return (err);
10656 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
10657 B_TRUE);
10660 * Release the refhold due to the lookup, now that we are excl
10661 * or we are just returning
10663 ill_refrele(ill);
10665 if (ipsq == NULL)
10666 return (EINPROGRESS);
10669 * If the interface is failed, inactive or offlined, look for a working
10670 * interface in the ill group and create the ipif there. If we can't
10671 * find a good interface, create the ipif anyway so that in.mpathd can
10672 * move it to the first repaired interface.
10674 if ((ill->ill_phyint->phyint_flags &
10675 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10676 ill->ill_phyint->phyint_groupname_len != 0) {
10677 phyint_t *phyi;
10678 char *groupname = ill->ill_phyint->phyint_groupname;
10681 * We're looking for a working interface, but it doesn't matter
10682 * if it's up or down; so instead of following the group lists,
10683 * we look at each physical interface and compare the groupname.
10684 * We're only interested in interfaces with IPv4 (resp. IPv6)
10685 * plumbed when we're adding an IPv4 (resp. IPv6) ipif.
10686 * Otherwise we create the ipif on the failed interface.
10688 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10689 phyi = avl_first(&ipst->ips_phyint_g_list->
10690 phyint_list_avl_by_index);
10691 for (; phyi != NULL;
10692 phyi = avl_walk(&ipst->ips_phyint_g_list->
10693 phyint_list_avl_by_index,
10694 phyi, AVL_AFTER)) {
10695 if (phyi->phyint_groupname_len == 0)
10696 continue;
10697 ASSERT(phyi->phyint_groupname != NULL);
10698 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 &&
10699 !(phyi->phyint_flags &
10700 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10701 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) :
10702 (phyi->phyint_illv4 != NULL))) {
10703 break;
10706 rw_exit(&ipst->ips_ill_g_lock);
10708 if (phyi != NULL) {
10709 orig_ifindex = ill->ill_phyint->phyint_ifindex;
10710 ill = (ill->ill_isv6 ? phyi->phyint_illv6 :
10711 phyi->phyint_illv4);
10716 * We are now exclusive on the ipsq, so an ill move will be serialized
10717 * before or after us.
10719 ASSERT(IAM_WRITER_ILL(ill));
10720 ASSERT(ill->ill_move_in_progress == B_FALSE);
10722 if (found_sep && orig_ifindex == 0) {
10723 /* Now see if there is an IPIF with this unit number. */
10724 for (ipif = ill->ill_ipif; ipif != NULL;
10725 ipif = ipif->ipif_next) {
10726 if (ipif->ipif_id == id) {
10727 err = EEXIST;
10728 goto done;
10734 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
10735 * of lo0. We never come here when we plumb lo0:0. It
10736 * happens in ipif_lookup_on_name.
10737 * The specified unit number is ignored when we create the ipif on a
10738 * different interface. However, we save it in ipif_orig_ipifid below so
10739 * that the ipif fails back to the right position.
10741 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ?
10742 id : -1, IRE_LOCAL, B_TRUE)) == NULL) {
10743 err = ENOBUFS;
10744 goto done;
10747 /* Return created name with ioctl */
10748 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
10749 IPIF_SEPARATOR_CHAR, ipif->ipif_id);
10750 ip1dbg(("created %s\n", lifr->lifr_name));
10752 /* Set address */
10753 sin = (sin_t *)&lifr->lifr_addr;
10754 if (sin->sin_family != AF_UNSPEC) {
10755 err = ip_sioctl_addr(ipif, sin, q, mp,
10756 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
10759 /* Set ifindex and unit number for failback */
10760 if (err == 0 && orig_ifindex != 0) {
10761 ipif->ipif_orig_ifindex = orig_ifindex;
10762 if (found_sep) {
10763 ipif->ipif_orig_ipifid = id;
10767 done:
10768 ipsq_exit(ipsq, B_TRUE, B_TRUE);
10769 return (err);
10773 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
10774 * interface) delete it based on the IP address (on this physical interface).
10775 * Otherwise delete it based on the ipif_id.
10776 * Also, special handling to allow a removeif of lo0.
10778 /* ARGSUSED */
10780 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10781 ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10783 conn_t *connp;
10784 ill_t *ill = ipif->ipif_ill;
10785 boolean_t success;
10786 ip_stack_t *ipst;
10788 ipst = CONNQ_TO_IPST(q);
10790 ASSERT(q->q_next == NULL);
10791 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
10792 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10793 ASSERT(IAM_WRITER_IPIF(ipif));
10795 connp = Q_TO_CONN(q);
10797 * Special case for unplumbing lo0 (the loopback physical interface).
10798 * If unplumbing lo0, the incoming address structure has been
10799 * initialized to all zeros. When unplumbing lo0, all its logical
10800 * interfaces must be removed too.
10802 * Note that this interface may be called to remove a specific
10803 * loopback logical interface (eg, lo0:1). But in that case
10804 * ipif->ipif_id != 0 so that the code path for that case is the
10805 * same as any other interface (meaning it skips the code directly
10806 * below).
10808 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10809 if (sin->sin_family == AF_UNSPEC &&
10810 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
10812 * Mark it condemned. No new ref. will be made to ill.
10814 mutex_enter(&ill->ill_lock);
10815 ill->ill_state_flags |= ILL_CONDEMNED;
10816 for (ipif = ill->ill_ipif; ipif != NULL;
10817 ipif = ipif->ipif_next) {
10818 ipif->ipif_state_flags |= IPIF_CONDEMNED;
10820 mutex_exit(&ill->ill_lock);
10822 ipif = ill->ill_ipif;
10823 /* unplumb the loopback interface */
10824 ill_delete(ill);
10825 mutex_enter(&connp->conn_lock);
10826 mutex_enter(&ill->ill_lock);
10827 ASSERT(ill->ill_group == NULL);
10829 /* Are any references to this ill active */
10830 if (ill_is_quiescent(ill)) {
10831 mutex_exit(&ill->ill_lock);
10832 mutex_exit(&connp->conn_lock);
10833 ill_delete_tail(ill);
10834 mi_free(ill);
10835 return (0);
10837 success = ipsq_pending_mp_add(connp, ipif,
10838 CONNP_TO_WQ(connp), mp, ILL_FREE);
10839 mutex_exit(&connp->conn_lock);
10840 mutex_exit(&ill->ill_lock);
10841 if (success)
10842 return (EINPROGRESS);
10843 else
10844 return (EINTR);
10849 * We are exclusive on the ipsq, so an ill move will be serialized
10850 * before or after us.
10852 ASSERT(ill->ill_move_in_progress == B_FALSE);
10854 if (ipif->ipif_id == 0) {
10855 /* Find based on address */
10856 if (ipif->ipif_isv6) {
10857 sin6_t *sin6;
10859 if (sin->sin_family != AF_INET6)
10860 return (EAFNOSUPPORT);
10862 sin6 = (sin6_t *)sin;
10863 /* We are a writer, so we should be able to lookup */
10864 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
10865 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
10866 if (ipif == NULL) {
10868 * Maybe the address in on another interface in
10869 * the same IPMP group? We check this below.
10871 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
10872 NULL, ALL_ZONES, NULL, NULL, NULL, NULL,
10873 ipst);
10875 } else {
10876 ipaddr_t addr;
10878 if (sin->sin_family != AF_INET)
10879 return (EAFNOSUPPORT);
10881 addr = sin->sin_addr.s_addr;
10882 /* We are a writer, so we should be able to lookup */
10883 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL,
10884 NULL, NULL, NULL, ipst);
10885 if (ipif == NULL) {
10887 * Maybe the address in on another interface in
10888 * the same IPMP group? We check this below.
10890 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES,
10891 NULL, NULL, NULL, NULL, ipst);
10894 if (ipif == NULL) {
10895 return (EADDRNOTAVAIL);
10898 * When the address to be removed is hosted on a different
10899 * interface, we check if the interface is in the same IPMP
10900 * group as the specified one; if so we proceed with the
10901 * removal.
10902 * ill->ill_group is NULL when the ill is down, so we have to
10903 * compare the group names instead.
10905 if (ipif->ipif_ill != ill &&
10906 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 ||
10907 ill->ill_phyint->phyint_groupname_len == 0 ||
10908 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname,
10909 ill->ill_phyint->phyint_groupname) != 0)) {
10910 ipif_refrele(ipif);
10911 return (EADDRNOTAVAIL);
10914 /* This is a writer */
10915 ipif_refrele(ipif);
10919 * Can not delete instance zero since it is tied to the ill.
10921 if (ipif->ipif_id == 0)
10922 return (EBUSY);
10924 mutex_enter(&ill->ill_lock);
10925 ipif->ipif_state_flags |= IPIF_CONDEMNED;
10926 mutex_exit(&ill->ill_lock);
10928 ipif_free(ipif);
10930 mutex_enter(&connp->conn_lock);
10931 mutex_enter(&ill->ill_lock);
10933 /* Are any references to this ipif active */
10934 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) {
10935 mutex_exit(&ill->ill_lock);
10936 mutex_exit(&connp->conn_lock);
10937 ipif_non_duplicate(ipif);
10938 ipif_down_tail(ipif);
10939 ipif_free_tail(ipif);
10940 return (0);
10942 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
10943 IPIF_FREE);
10944 mutex_exit(&ill->ill_lock);
10945 mutex_exit(&connp->conn_lock);
10946 if (success)
10947 return (EINPROGRESS);
10948 else
10949 return (EINTR);
10953 * Restart the removeif ioctl. The refcnt has gone down to 0.
10954 * The ipif is already condemned. So can't find it thru lookups.
10956 /* ARGSUSED */
10958 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
10959 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10961 ill_t *ill = ipif->ipif_ill;
10963 ASSERT(IAM_WRITER_IPIF(ipif));
10964 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
10966 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
10967 ill->ill_name, ipif->ipif_id, (void *)ipif));
10969 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10970 ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
10971 ill_delete_tail(ill);
10972 mi_free(ill);
10973 return (0);
10976 ipif_non_duplicate(ipif);
10977 ipif_down_tail(ipif);
10978 ipif_free_tail(ipif);
10980 ILL_UNMARK_CHANGING(ill);
10981 return (0);
10985 * Set the local interface address.
10986 * Allow an address of all zero when the interface is down.
10988 /* ARGSUSED */
10990 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10991 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10993 int err = 0;
10994 in6_addr_t v6addr;
10995 boolean_t need_up = B_FALSE;
10997 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
10998 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11000 ASSERT(IAM_WRITER_IPIF(ipif));
11002 if (ipif->ipif_isv6) {
11003 sin6_t *sin6;
11004 ill_t *ill;
11005 phyint_t *phyi;
11007 if (sin->sin_family != AF_INET6)
11008 return (EAFNOSUPPORT);
11010 sin6 = (sin6_t *)sin;
11011 v6addr = sin6->sin6_addr;
11012 ill = ipif->ipif_ill;
11013 phyi = ill->ill_phyint;
11016 * Enforce that true multicast interfaces have a link-local
11017 * address for logical unit 0.
11019 if (ipif->ipif_id == 0 &&
11020 (ill->ill_flags & ILLF_MULTICAST) &&
11021 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
11022 !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
11023 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
11024 return (EADDRNOTAVAIL);
11028 * up interfaces shouldn't have the unspecified address
11029 * unless they also have the IPIF_NOLOCAL flags set and
11030 * have a subnet assigned.
11032 if ((ipif->ipif_flags & IPIF_UP) &&
11033 IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
11034 (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
11035 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
11036 return (EADDRNOTAVAIL);
11039 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11040 return (EADDRNOTAVAIL);
11041 } else {
11042 ipaddr_t addr;
11044 if (sin->sin_family != AF_INET)
11045 return (EAFNOSUPPORT);
11047 addr = sin->sin_addr.s_addr;
11049 /* Allow 0 as the local address. */
11050 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11051 return (EADDRNOTAVAIL);
11053 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11058 * Even if there is no change we redo things just to rerun
11059 * ipif_set_default.
11061 if (ipif->ipif_flags & IPIF_UP) {
11063 * Setting a new local address, make sure
11064 * we have net and subnet bcast ire's for
11065 * the old address if we need them.
11067 if (!ipif->ipif_isv6)
11068 ipif_check_bcast_ires(ipif);
11070 * If the interface is already marked up,
11071 * we call ipif_down which will take care
11072 * of ditching any IREs that have been set
11073 * up based on the old interface address.
11075 err = ipif_logical_down(ipif, q, mp);
11076 if (err == EINPROGRESS)
11077 return (err);
11078 ipif_down_tail(ipif);
11079 need_up = 1;
11082 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
11083 return (err);
11087 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11088 boolean_t need_up)
11090 in6_addr_t v6addr;
11091 in6_addr_t ov6addr;
11092 ipaddr_t addr;
11093 sin6_t *sin6;
11094 int sinlen;
11095 int err = 0;
11096 ill_t *ill = ipif->ipif_ill;
11097 boolean_t need_dl_down;
11098 boolean_t need_arp_down;
11099 struct iocblk *iocp;
11101 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
11103 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
11104 ill->ill_name, ipif->ipif_id, (void *)ipif));
11105 ASSERT(IAM_WRITER_IPIF(ipif));
11107 /* Must cancel any pending timer before taking the ill_lock */
11108 if (ipif->ipif_recovery_id != 0)
11109 (void) untimeout(ipif->ipif_recovery_id);
11110 ipif->ipif_recovery_id = 0;
11112 if (ipif->ipif_isv6) {
11113 sin6 = (sin6_t *)sin;
11114 v6addr = sin6->sin6_addr;
11115 sinlen = sizeof (struct sockaddr_in6);
11116 } else {
11117 addr = sin->sin_addr.s_addr;
11118 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11119 sinlen = sizeof (struct sockaddr_in);
11121 mutex_enter(&ill->ill_lock);
11122 ov6addr = ipif->ipif_v6lcl_addr;
11123 ipif->ipif_v6lcl_addr = v6addr;
11124 sctp_update_ipif_addr(ipif, ov6addr);
11125 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) {
11126 ipif->ipif_v6src_addr = ipv6_all_zeros;
11127 } else {
11128 ipif->ipif_v6src_addr = v6addr;
11130 ipif->ipif_addr_ready = 0;
11133 * If the interface was previously marked as a duplicate, then since
11134 * we've now got a "new" address, it should no longer be considered a
11135 * duplicate -- even if the "new" address is the same as the old one.
11136 * Note that if all ipifs are down, we may have a pending ARP down
11137 * event to handle. This is because we want to recover from duplicates
11138 * and thus delay tearing down ARP until the duplicates have been
11139 * removed or disabled.
11141 need_dl_down = need_arp_down = B_FALSE;
11142 if (ipif->ipif_flags & IPIF_DUPLICATE) {
11143 need_arp_down = !need_up;
11144 ipif->ipif_flags &= ~IPIF_DUPLICATE;
11145 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11146 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11147 need_dl_down = B_TRUE;
11151 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) &&
11152 !ill->ill_is_6to4tun) {
11153 queue_t *wqp = ill->ill_wq;
11156 * The local address of this interface is a 6to4 address,
11157 * check if this interface is in fact a 6to4 tunnel or just
11158 * an interface configured with a 6to4 address. We are only
11159 * interested in the former.
11161 if (wqp != NULL) {
11162 while ((wqp->q_next != NULL) &&
11163 (wqp->q_next->q_qinfo != NULL) &&
11164 (wqp->q_next->q_qinfo->qi_minfo != NULL)) {
11166 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum
11167 == TUN6TO4_MODID) {
11168 /* set for use in IP */
11169 ill->ill_is_6to4tun = 1;
11170 break;
11172 wqp = wqp->q_next;
11177 ipif_set_default(ipif);
11180 * When publishing an interface address change event, we only notify
11181 * the event listeners of the new address. It is assumed that if they
11182 * actively care about the addresses assigned that they will have
11183 * already discovered the previous address assigned (if there was one.)
11185 * Don't attach nic event message for SIOCLIFADDIF ioctl.
11187 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
11188 hook_nic_event_t *info;
11189 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) {
11190 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d "
11191 "attached for %s\n", info->hne_event,
11192 ill->ill_name));
11193 if (info->hne_data != NULL)
11194 kmem_free(info->hne_data, info->hne_datalen);
11195 kmem_free(info, sizeof (hook_nic_event_t));
11198 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
11199 if (info != NULL) {
11200 ip_stack_t *ipst = ill->ill_ipst;
11202 info->hne_nic =
11203 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex;
11204 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id);
11205 info->hne_event = NE_ADDRESS_CHANGE;
11206 info->hne_family = ipif->ipif_isv6 ?
11207 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
11208 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP);
11209 if (info->hne_data != NULL) {
11210 info->hne_datalen = sinlen;
11211 bcopy(sin, info->hne_data, sinlen);
11212 } else {
11213 ip2dbg(("ip_sioctl_addr_tail: could not attach "
11214 "address information for ADDRESS_CHANGE nic"
11215 " event of %s (ENOMEM)\n",
11216 ipif->ipif_ill->ill_name));
11217 kmem_free(info, sizeof (hook_nic_event_t));
11219 } else
11220 ip2dbg(("ip_sioctl_addr_tail: could not attach "
11221 "ADDRESS_CHANGE nic event information for %s "
11222 "(ENOMEM)\n", ipif->ipif_ill->ill_name));
11224 ipif->ipif_ill->ill_nic_event_info = info;
11227 mutex_exit(&ill->ill_lock);
11229 if (need_up) {
11231 * Now bring the interface back up. If this
11232 * is the only IPIF for the ILL, ipif_up
11233 * will have to re-bind to the device, so
11234 * we may get back EINPROGRESS, in which
11235 * case, this IOCTL will get completed in
11236 * ip_rput_dlpi when we see the DL_BIND_ACK.
11238 err = ipif_up(ipif, q, mp);
11241 if (need_dl_down)
11242 ill_dl_down(ill);
11243 if (need_arp_down)
11244 ipif_arp_down(ipif);
11246 return (err);
11251 * Restart entry point to restart the address set operation after the
11252 * refcounts have dropped to zero.
11254 /* ARGSUSED */
11256 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11257 ip_ioctl_cmd_t *ipip, void *ifreq)
11259 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
11260 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11261 ASSERT(IAM_WRITER_IPIF(ipif));
11262 ipif_down_tail(ipif);
11263 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
11266 /* ARGSUSED */
11268 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11269 ip_ioctl_cmd_t *ipip, void *if_req)
11271 sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11272 struct lifreq *lifr = (struct lifreq *)if_req;
11274 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
11275 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11277 * The net mask and address can't change since we have a
11278 * reference to the ipif. So no lock is necessary.
11280 if (ipif->ipif_isv6) {
11281 *sin6 = sin6_null;
11282 sin6->sin6_family = AF_INET6;
11283 sin6->sin6_addr = ipif->ipif_v6lcl_addr;
11284 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11285 lifr->lifr_addrlen =
11286 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11287 } else {
11288 *sin = sin_null;
11289 sin->sin_family = AF_INET;
11290 sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
11291 if (ipip->ipi_cmd_type == LIF_CMD) {
11292 lifr->lifr_addrlen =
11293 ip_mask_to_plen(ipif->ipif_net_mask);
11296 return (0);
11300 * Set the destination address for a pt-pt interface.
11302 /* ARGSUSED */
11304 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11305 ip_ioctl_cmd_t *ipip, void *if_req)
11307 int err = 0;
11308 in6_addr_t v6addr;
11309 boolean_t need_up = B_FALSE;
11311 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
11312 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11313 ASSERT(IAM_WRITER_IPIF(ipif));
11315 if (ipif->ipif_isv6) {
11316 sin6_t *sin6;
11318 if (sin->sin_family != AF_INET6)
11319 return (EAFNOSUPPORT);
11321 sin6 = (sin6_t *)sin;
11322 v6addr = sin6->sin6_addr;
11324 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11325 return (EADDRNOTAVAIL);
11326 } else {
11327 ipaddr_t addr;
11329 if (sin->sin_family != AF_INET)
11330 return (EAFNOSUPPORT);
11332 addr = sin->sin_addr.s_addr;
11333 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11334 return (EADDRNOTAVAIL);
11336 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11339 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
11340 return (0); /* No change */
11342 if (ipif->ipif_flags & IPIF_UP) {
11344 * If the interface is already marked up,
11345 * we call ipif_down which will take care
11346 * of ditching any IREs that have been set
11347 * up based on the old pp dst address.
11349 err = ipif_logical_down(ipif, q, mp);
11350 if (err == EINPROGRESS)
11351 return (err);
11352 ipif_down_tail(ipif);
11353 need_up = B_TRUE;
11356 * could return EINPROGRESS. If so ioctl will complete in
11357 * ip_rput_dlpi_writer
11359 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
11360 return (err);
11363 static int
11364 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11365 boolean_t need_up)
11367 in6_addr_t v6addr;
11368 ill_t *ill = ipif->ipif_ill;
11369 int err = 0;
11370 boolean_t need_dl_down;
11371 boolean_t need_arp_down;
11373 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
11374 ipif->ipif_id, (void *)ipif));
11376 /* Must cancel any pending timer before taking the ill_lock */
11377 if (ipif->ipif_recovery_id != 0)
11378 (void) untimeout(ipif->ipif_recovery_id);
11379 ipif->ipif_recovery_id = 0;
11381 if (ipif->ipif_isv6) {
11382 sin6_t *sin6;
11384 sin6 = (sin6_t *)sin;
11385 v6addr = sin6->sin6_addr;
11386 } else {
11387 ipaddr_t addr;
11389 addr = sin->sin_addr.s_addr;
11390 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11392 mutex_enter(&ill->ill_lock);
11393 /* Set point to point destination address. */
11394 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11396 * Allow this as a means of creating logical
11397 * pt-pt interfaces on top of e.g. an Ethernet.
11398 * XXX Undocumented HACK for testing.
11399 * pt-pt interfaces are created with NUD disabled.
11401 ipif->ipif_flags |= IPIF_POINTOPOINT;
11402 ipif->ipif_flags &= ~IPIF_BROADCAST;
11403 if (ipif->ipif_isv6)
11404 ill->ill_flags |= ILLF_NONUD;
11408 * If the interface was previously marked as a duplicate, then since
11409 * we've now got a "new" address, it should no longer be considered a
11410 * duplicate -- even if the "new" address is the same as the old one.
11411 * Note that if all ipifs are down, we may have a pending ARP down
11412 * event to handle.
11414 need_dl_down = need_arp_down = B_FALSE;
11415 if (ipif->ipif_flags & IPIF_DUPLICATE) {
11416 need_arp_down = !need_up;
11417 ipif->ipif_flags &= ~IPIF_DUPLICATE;
11418 if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11419 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11420 need_dl_down = B_TRUE;
11424 /* Set the new address. */
11425 ipif->ipif_v6pp_dst_addr = v6addr;
11426 /* Make sure subnet tracks pp_dst */
11427 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
11428 mutex_exit(&ill->ill_lock);
11430 if (need_up) {
11432 * Now bring the interface back up. If this
11433 * is the only IPIF for the ILL, ipif_up
11434 * will have to re-bind to the device, so
11435 * we may get back EINPROGRESS, in which
11436 * case, this IOCTL will get completed in
11437 * ip_rput_dlpi when we see the DL_BIND_ACK.
11439 err = ipif_up(ipif, q, mp);
11442 if (need_dl_down)
11443 ill_dl_down(ill);
11445 if (need_arp_down)
11446 ipif_arp_down(ipif);
11447 return (err);
11451 * Restart entry point to restart the dstaddress set operation after the
11452 * refcounts have dropped to zero.
11454 /* ARGSUSED */
11456 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11457 ip_ioctl_cmd_t *ipip, void *ifreq)
11459 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
11460 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11461 ipif_down_tail(ipif);
11462 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
11465 /* ARGSUSED */
11467 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11468 ip_ioctl_cmd_t *ipip, void *if_req)
11470 sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11472 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
11473 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11475 * Get point to point destination address. The addresses can't
11476 * change since we hold a reference to the ipif.
11478 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
11479 return (EADDRNOTAVAIL);
11481 if (ipif->ipif_isv6) {
11482 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11483 *sin6 = sin6_null;
11484 sin6->sin6_family = AF_INET6;
11485 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
11486 } else {
11487 *sin = sin_null;
11488 sin->sin_family = AF_INET;
11489 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
11491 return (0);
11495 * part of ipmp, make this func return the active/inactive state and
11496 * caller can set once atomically instead of multiple mutex_enter/mutex_exit
11499 * This function either sets or clears the IFF_INACTIVE flag.
11501 * As long as there are some addresses or multicast memberships on the
11502 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we
11503 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface
11504 * will be used for outbound packets.
11506 * Caller needs to verify the validity of setting IFF_INACTIVE.
11508 static void
11509 phyint_inactive(phyint_t *phyi)
11511 ill_t *ill_v4;
11512 ill_t *ill_v6;
11513 ipif_t *ipif;
11514 ilm_t *ilm;
11516 ill_v4 = phyi->phyint_illv4;
11517 ill_v6 = phyi->phyint_illv6;
11520 * No need for a lock while traversing the list since iam
11521 * a writer
11523 if (ill_v4 != NULL) {
11524 ASSERT(IAM_WRITER_ILL(ill_v4));
11525 for (ipif = ill_v4->ill_ipif; ipif != NULL;
11526 ipif = ipif->ipif_next) {
11527 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11528 mutex_enter(&phyi->phyint_lock);
11529 phyi->phyint_flags &= ~PHYI_INACTIVE;
11530 mutex_exit(&phyi->phyint_lock);
11531 return;
11534 for (ilm = ill_v4->ill_ilm; ilm != NULL;
11535 ilm = ilm->ilm_next) {
11536 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11537 mutex_enter(&phyi->phyint_lock);
11538 phyi->phyint_flags &= ~PHYI_INACTIVE;
11539 mutex_exit(&phyi->phyint_lock);
11540 return;
11544 if (ill_v6 != NULL) {
11545 ill_v6 = phyi->phyint_illv6;
11546 for (ipif = ill_v6->ill_ipif; ipif != NULL;
11547 ipif = ipif->ipif_next) {
11548 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11549 mutex_enter(&phyi->phyint_lock);
11550 phyi->phyint_flags &= ~PHYI_INACTIVE;
11551 mutex_exit(&phyi->phyint_lock);
11552 return;
11555 for (ilm = ill_v6->ill_ilm; ilm != NULL;
11556 ilm = ilm->ilm_next) {
11557 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11558 mutex_enter(&phyi->phyint_lock);
11559 phyi->phyint_flags &= ~PHYI_INACTIVE;
11560 mutex_exit(&phyi->phyint_lock);
11561 return;
11565 mutex_enter(&phyi->phyint_lock);
11566 phyi->phyint_flags |= PHYI_INACTIVE;
11567 mutex_exit(&phyi->phyint_lock);
11571 * This function is called only when the phyint flags change. Currently
11572 * called from ip_sioctl_flags. We re-do the broadcast nomination so
11573 * that we can select a good ill.
11575 static void
11576 ip_redo_nomination(phyint_t *phyi)
11578 ill_t *ill_v4;
11580 ill_v4 = phyi->phyint_illv4;
11582 if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
11583 ASSERT(IAM_WRITER_ILL(ill_v4));
11584 if (ill_v4->ill_group->illgrp_ill_count > 1)
11585 ill_nominate_bcast_rcv(ill_v4->ill_group);
11590 * Heuristic to check if ill is INACTIVE.
11591 * Checks if ill has an ipif with an usable ip address.
11593 * Return values:
11594 * B_TRUE - ill is INACTIVE; has no usable ipif
11595 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif
11597 static boolean_t
11598 ill_is_inactive(ill_t *ill)
11600 ipif_t *ipif;
11602 /* Check whether it is in an IPMP group */
11603 if (ill->ill_phyint->phyint_groupname == NULL)
11604 return (B_FALSE);
11606 if (ill->ill_ipif_up_count == 0)
11607 return (B_TRUE);
11609 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
11610 uint64_t flags = ipif->ipif_flags;
11613 * This ipif is usable if it is IPIF_UP and not a
11614 * dedicated test address. A dedicated test address
11615 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED
11616 * (note in particular that V6 test addresses are
11617 * link-local data addresses and thus are marked
11618 * IPIF_NOFAILOVER but not IPIF_DEPRECATED).
11620 if ((flags & IPIF_UP) &&
11621 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) !=
11622 (IPIF_DEPRECATED|IPIF_NOFAILOVER)))
11623 return (B_FALSE);
11625 return (B_TRUE);
11629 * Set interface flags.
11630 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT,
11631 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST,
11632 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE.
11634 * NOTE : We really don't enforce that ipif_id zero should be used
11635 * for setting any flags other than IFF_LOGINT_FLAGS. This
11636 * is because applications generally does SICGLIFFLAGS and
11637 * ORs in the new flags (that affects the logical) and does a
11638 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
11639 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
11640 * flags that will be turned on is correct with respect to
11641 * ipif_id 0. For backward compatibility reasons, it is not done.
11643 /* ARGSUSED */
11645 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11646 ip_ioctl_cmd_t *ipip, void *if_req)
11648 uint64_t turn_on;
11649 uint64_t turn_off;
11650 int err;
11651 boolean_t need_up = B_FALSE;
11652 phyint_t *phyi;
11653 ill_t *ill;
11654 uint64_t intf_flags;
11655 boolean_t phyint_flags_modified = B_FALSE;
11656 uint64_t flags;
11657 struct ifreq *ifr;
11658 struct lifreq *lifr;
11659 boolean_t set_linklocal = B_FALSE;
11660 boolean_t zero_source = B_FALSE;
11661 ip_stack_t *ipst;
11663 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
11664 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11666 ASSERT(IAM_WRITER_IPIF(ipif));
11668 ill = ipif->ipif_ill;
11669 phyi = ill->ill_phyint;
11670 ipst = ill->ill_ipst;
11672 if (ipip->ipi_cmd_type == IF_CMD) {
11673 ifr = (struct ifreq *)if_req;
11674 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff);
11675 } else {
11676 lifr = (struct lifreq *)if_req;
11677 flags = lifr->lifr_flags;
11680 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11683 * Has the flags been set correctly till now ?
11685 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11686 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11687 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
11689 * Compare the new flags to the old, and partition
11690 * into those coming on and those going off.
11691 * For the 16 bit command keep the bits above bit 16 unchanged.
11693 if (ipip->ipi_cmd == SIOCSIFFLAGS)
11694 flags |= intf_flags & ~0xFFFF;
11697 * First check which bits will change and then which will
11698 * go on and off
11700 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE;
11701 if (!turn_on)
11702 return (0); /* No change */
11704 turn_off = intf_flags & turn_on;
11705 turn_on ^= turn_off;
11706 err = 0;
11709 * Don't allow any bits belonging to the logical interface
11710 * to be set or cleared on the replacement ipif that was
11711 * created temporarily during a MOVE.
11713 if (ipif->ipif_replace_zero &&
11714 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) {
11715 return (EINVAL);
11719 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on
11720 * IPv6 interfaces.
11722 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6))
11723 return (EINVAL);
11726 * cannot turn off IFF_NOXMIT on VNI interfaces.
11728 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
11729 return (EINVAL);
11732 * Don't allow the IFF_ROUTER flag to be turned on on loopback
11733 * interfaces. It makes no sense in that context.
11735 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
11736 return (EINVAL);
11738 if (flags & (IFF_NOLOCAL|IFF_ANYCAST))
11739 zero_source = B_TRUE;
11742 * For IPv6 ipif_id 0, don't allow the interface to be up without
11743 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
11744 * If the link local address isn't set, and can be set, it will get
11745 * set later on in this function.
11747 if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
11748 (flags & IFF_UP) && !zero_source &&
11749 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
11750 if (ipif_cant_setlinklocal(ipif))
11751 return (EINVAL);
11752 set_linklocal = B_TRUE;
11756 * ILL cannot be part of a usesrc group and and IPMP group at the
11757 * same time. No need to grab ill_g_usesrc_lock here, see
11758 * synchronization notes in ip.c
11760 if (turn_on & PHYI_STANDBY &&
11761 ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
11762 return (EINVAL);
11766 * If we modify physical interface flags, we'll potentially need to
11767 * send up two routing socket messages for the changes (one for the
11768 * IPv4 ill, and another for the IPv6 ill). Note that here.
11770 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
11771 phyint_flags_modified = B_TRUE;
11774 * If we are setting or clearing FAILED or STANDBY or OFFLINE,
11775 * we need to flush the IRE_CACHES belonging to this ill.
11776 * We handle this case here without doing the DOWN/UP dance
11777 * like it is done for other flags. If some other flags are
11778 * being turned on/off with FAILED/STANDBY/OFFLINE, the code
11779 * below will handle it by bringing it down and then
11780 * bringing it UP.
11782 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) {
11783 ill_t *ill_v4, *ill_v6;
11785 ill_v4 = phyi->phyint_illv4;
11786 ill_v6 = phyi->phyint_illv6;
11789 * First set the INACTIVE flag if needed. Then delete the ires.
11790 * ire_add will atomically prevent creating new IRE_CACHEs
11791 * unless hidden flag is set.
11792 * PHYI_FAILED and PHYI_INACTIVE are exclusive
11794 if ((turn_on & PHYI_FAILED) &&
11795 ((intf_flags & PHYI_STANDBY) ||
11796 !ipst->ips_ipmp_enable_failback)) {
11797 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */
11798 phyi->phyint_flags &= ~PHYI_INACTIVE;
11800 if ((turn_off & PHYI_FAILED) &&
11801 ((intf_flags & PHYI_STANDBY) ||
11802 (!ipst->ips_ipmp_enable_failback &&
11803 ill_is_inactive(ill)))) {
11804 phyint_inactive(phyi);
11807 if (turn_on & PHYI_STANDBY) {
11809 * We implicitly set INACTIVE only when STANDBY is set.
11810 * INACTIVE is also set on non-STANDBY phyint when user
11811 * disables FAILBACK using configuration file.
11812 * Do not allow STANDBY to be set on such INACTIVE
11813 * phyint
11815 if (phyi->phyint_flags & PHYI_INACTIVE)
11816 return (EINVAL);
11817 if (!(phyi->phyint_flags & PHYI_FAILED))
11818 phyint_inactive(phyi);
11820 if (turn_off & PHYI_STANDBY) {
11821 if (ipst->ips_ipmp_enable_failback) {
11823 * Reset PHYI_INACTIVE.
11825 phyi->phyint_flags &= ~PHYI_INACTIVE;
11826 } else if (ill_is_inactive(ill) &&
11827 !(phyi->phyint_flags & PHYI_FAILED)) {
11829 * Need to set INACTIVE, when user sets
11830 * STANDBY on a non-STANDBY phyint and
11831 * later resets STANDBY
11833 phyint_inactive(phyi);
11837 * We should always send up a message so that the
11838 * daemons come to know of it. Note that the zeroth
11839 * interface can be down and the check below for IPIF_UP
11840 * will not make sense as we are actually setting
11841 * a phyint flag here. We assume that the ipif used
11842 * is always the zeroth ipif. (ip_rts_ifmsg does not
11843 * send up any message for non-zero ipifs).
11845 phyint_flags_modified = B_TRUE;
11847 if (ill_v4 != NULL) {
11848 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
11849 IRE_CACHE, ill_stq_cache_delete,
11850 (char *)ill_v4, ill_v4);
11851 illgrp_reset_schednext(ill_v4);
11853 if (ill_v6 != NULL) {
11854 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
11855 IRE_CACHE, ill_stq_cache_delete,
11856 (char *)ill_v6, ill_v6);
11857 illgrp_reset_schednext(ill_v6);
11862 * If ILLF_ROUTER changes, we need to change the ip forwarding
11863 * status of the interface and, if the interface is part of an IPMP
11864 * group, all other interfaces that are part of the same IPMP
11865 * group.
11867 if ((turn_on | turn_off) & ILLF_ROUTER)
11868 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
11871 * If the interface is not UP and we are not going to
11872 * bring it UP, record the flags and return. When the
11873 * interface comes UP later, the right actions will be
11874 * taken.
11876 if (!(ipif->ipif_flags & IPIF_UP) &&
11877 !(turn_on & IPIF_UP)) {
11878 /* Record new flags in their respective places. */
11879 mutex_enter(&ill->ill_lock);
11880 mutex_enter(&ill->ill_phyint->phyint_lock);
11881 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
11882 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
11883 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
11884 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
11885 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
11886 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
11887 mutex_exit(&ill->ill_lock);
11888 mutex_exit(&ill->ill_phyint->phyint_lock);
11891 * We do the broadcast and nomination here rather
11892 * than waiting for a FAILOVER/FAILBACK to happen. In
11893 * the case of FAILBACK from INACTIVE standby to the
11894 * interface that has been repaired, PHYI_FAILED has not
11895 * been cleared yet. If there are only two interfaces in
11896 * that group, all we have is a FAILED and INACTIVE
11897 * interface. If we do the nomination soon after a failback,
11898 * the broadcast nomination code would select the
11899 * INACTIVE interface for receiving broadcasts as FAILED is
11900 * not yet cleared. As we don't want STANDBY/INACTIVE to
11901 * receive broadcast packets, we need to redo nomination
11902 * when the FAILED is cleared here. Thus, in general we
11903 * always do the nomination here for FAILED, STANDBY
11904 * and OFFLINE.
11906 if (((turn_on | turn_off) &
11907 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) {
11908 ip_redo_nomination(phyi);
11910 if (phyint_flags_modified) {
11911 if (phyi->phyint_illv4 != NULL) {
11912 ip_rts_ifmsg(phyi->phyint_illv4->
11913 ill_ipif);
11915 if (phyi->phyint_illv6 != NULL) {
11916 ip_rts_ifmsg(phyi->phyint_illv6->
11917 ill_ipif);
11920 return (0);
11921 } else if (set_linklocal || zero_source) {
11922 mutex_enter(&ill->ill_lock);
11923 if (set_linklocal)
11924 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
11925 if (zero_source)
11926 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE;
11927 mutex_exit(&ill->ill_lock);
11931 * Disallow IPv6 interfaces coming up that have the unspecified address,
11932 * or point-to-point interfaces with an unspecified destination. We do
11933 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
11934 * have a subnet assigned, which is how in.ndpd currently manages its
11935 * onlink prefix list when no addresses are configured with those
11936 * prefixes.
11938 if (ipif->ipif_isv6 &&
11939 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
11940 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
11941 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
11942 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11943 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
11944 return (EINVAL);
11948 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
11949 * from being brought up.
11951 if (!ipif->ipif_isv6 &&
11952 ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11953 ipif->ipif_pp_dst_addr == INADDR_ANY)) {
11954 return (EINVAL);
11958 * The only flag changes that we currently take specific action on
11959 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL,
11960 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and
11961 * IPIF_PREFERRED. This is done by bring the ipif down, changing
11962 * the flags and bringing it back up again.
11964 if ((turn_on|turn_off) &
11965 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
11966 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) {
11968 * Taking this ipif down, make sure we have
11969 * valid net and subnet bcast ire's for other
11970 * logical interfaces, if we need them.
11972 if (!ipif->ipif_isv6)
11973 ipif_check_bcast_ires(ipif);
11975 if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
11976 !(turn_off & IPIF_UP)) {
11977 need_up = B_TRUE;
11978 if (ipif->ipif_flags & IPIF_UP)
11979 ill->ill_logical_down = 1;
11980 turn_on &= ~IPIF_UP;
11982 err = ipif_down(ipif, q, mp);
11983 ip1dbg(("ipif_down returns %d err ", err));
11984 if (err == EINPROGRESS)
11985 return (err);
11986 ipif_down_tail(ipif);
11988 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up));
11991 static int
11992 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp,
11993 boolean_t need_up)
11995 ill_t *ill;
11996 phyint_t *phyi;
11997 uint64_t turn_on;
11998 uint64_t turn_off;
11999 uint64_t intf_flags;
12000 boolean_t phyint_flags_modified = B_FALSE;
12001 int err = 0;
12002 boolean_t set_linklocal = B_FALSE;
12003 boolean_t zero_source = B_FALSE;
12005 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
12006 ipif->ipif_ill->ill_name, ipif->ipif_id));
12008 ASSERT(IAM_WRITER_IPIF(ipif));
12010 ill = ipif->ipif_ill;
12011 phyi = ill->ill_phyint;
12013 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
12014 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP);
12016 turn_off = intf_flags & turn_on;
12017 turn_on ^= turn_off;
12019 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))
12020 phyint_flags_modified = B_TRUE;
12023 * Now we change the flags. Track current value of
12024 * other flags in their respective places.
12026 mutex_enter(&ill->ill_lock);
12027 mutex_enter(&phyi->phyint_lock);
12028 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
12029 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
12030 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
12031 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
12032 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
12033 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
12034 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
12035 set_linklocal = B_TRUE;
12036 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
12038 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) {
12039 zero_source = B_TRUE;
12040 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE;
12042 mutex_exit(&ill->ill_lock);
12043 mutex_exit(&phyi->phyint_lock);
12045 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)))
12046 ip_redo_nomination(phyi);
12048 if (set_linklocal)
12049 (void) ipif_setlinklocal(ipif);
12051 if (zero_source)
12052 ipif->ipif_v6src_addr = ipv6_all_zeros;
12053 else
12054 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
12056 if (need_up) {
12058 * XXX ipif_up really does not know whether a phyint flags
12059 * was modified or not. So, it sends up information on
12060 * only one routing sockets message. As we don't bring up
12061 * the interface and also set STANDBY/FAILED simultaneously
12062 * it should be okay.
12064 err = ipif_up(ipif, q, mp);
12065 } else {
12067 * Make sure routing socket sees all changes to the flags.
12068 * ipif_up_done* handles this when we use ipif_up.
12070 if (phyint_flags_modified) {
12071 if (phyi->phyint_illv4 != NULL) {
12072 ip_rts_ifmsg(phyi->phyint_illv4->
12073 ill_ipif);
12075 if (phyi->phyint_illv6 != NULL) {
12076 ip_rts_ifmsg(phyi->phyint_illv6->
12077 ill_ipif);
12079 } else {
12080 ip_rts_ifmsg(ipif);
12083 * Update the flags in SCTP's IPIF list, ipif_up() will do
12084 * this in need_up case.
12086 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12088 return (err);
12092 * Restart entry point to restart the flags restart operation after the
12093 * refcounts have dropped to zero.
12095 /* ARGSUSED */
12097 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12098 ip_ioctl_cmd_t *ipip, void *if_req)
12100 int err;
12101 struct ifreq *ifr = (struct ifreq *)if_req;
12102 struct lifreq *lifr = (struct lifreq *)if_req;
12104 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
12105 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12107 ipif_down_tail(ipif);
12108 if (ipip->ipi_cmd_type == IF_CMD) {
12110 * Since ip_sioctl_flags expects an int and ifr_flags
12111 * is a short we need to cast ifr_flags into an int
12112 * to avoid having sign extension cause bits to get
12113 * set that should not be.
12115 err = ip_sioctl_flags_tail(ipif,
12116 (uint64_t)(ifr->ifr_flags & 0x0000ffff),
12117 q, mp, B_TRUE);
12118 } else {
12119 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags,
12120 q, mp, B_TRUE);
12122 return (err);
12126 * Can operate on either a module or a driver queue.
12128 /* ARGSUSED */
12130 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12131 ip_ioctl_cmd_t *ipip, void *if_req)
12134 * Has the flags been set correctly till now ?
12136 ill_t *ill = ipif->ipif_ill;
12137 phyint_t *phyi = ill->ill_phyint;
12139 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
12140 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12141 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
12142 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
12143 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
12146 * Need a lock since some flags can be set even when there are
12147 * references to the ipif.
12149 mutex_enter(&ill->ill_lock);
12150 if (ipip->ipi_cmd_type == IF_CMD) {
12151 struct ifreq *ifr = (struct ifreq *)if_req;
12153 /* Get interface flags (low 16 only). */
12154 ifr->ifr_flags = ((ipif->ipif_flags |
12155 ill->ill_flags | phyi->phyint_flags) & 0xffff);
12156 } else {
12157 struct lifreq *lifr = (struct lifreq *)if_req;
12159 /* Get interface flags. */
12160 lifr->lifr_flags = ipif->ipif_flags |
12161 ill->ill_flags | phyi->phyint_flags;
12163 mutex_exit(&ill->ill_lock);
12164 return (0);
12167 /* ARGSUSED */
12169 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12170 ip_ioctl_cmd_t *ipip, void *if_req)
12172 int mtu;
12173 int ip_min_mtu;
12174 struct ifreq *ifr;
12175 struct lifreq *lifr;
12176 ire_t *ire;
12177 ip_stack_t *ipst;
12179 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
12180 ipif->ipif_id, (void *)ipif));
12181 if (ipip->ipi_cmd_type == IF_CMD) {
12182 ifr = (struct ifreq *)if_req;
12183 mtu = ifr->ifr_metric;
12184 } else {
12185 lifr = (struct lifreq *)if_req;
12186 mtu = lifr->lifr_mtu;
12189 if (ipif->ipif_isv6)
12190 ip_min_mtu = IPV6_MIN_MTU;
12191 else
12192 ip_min_mtu = IP_MIN_MTU;
12194 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu)
12195 return (EINVAL);
12198 * Change the MTU size in all relevant ire's.
12199 * Mtu change Vs. new ire creation - protocol below.
12200 * First change ipif_mtu and the ire_max_frag of the
12201 * interface ire. Then do an ire walk and change the
12202 * ire_max_frag of all affected ires. During ire_add
12203 * under the bucket lock, set the ire_max_frag of the
12204 * new ire being created from the ipif/ire from which
12205 * it is being derived. If an mtu change happens after
12206 * the ire is added, the new ire will be cleaned up.
12207 * Conversely if the mtu change happens before the ire
12208 * is added, ire_add will see the new value of the mtu.
12210 ipif->ipif_mtu = mtu;
12211 ipif->ipif_flags |= IPIF_FIXEDMTU;
12213 if (ipif->ipif_isv6)
12214 ire = ipif_to_ire_v6(ipif);
12215 else
12216 ire = ipif_to_ire(ipif);
12217 if (ire != NULL) {
12218 ire->ire_max_frag = ipif->ipif_mtu;
12219 ire_refrele(ire);
12221 ipst = ipif->ipif_ill->ill_ipst;
12222 if (ipif->ipif_flags & IPIF_UP) {
12223 if (ipif->ipif_isv6)
12224 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12225 ipst);
12226 else
12227 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12228 ipst);
12230 /* Update the MTU in SCTP's list */
12231 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12232 return (0);
12235 /* Get interface MTU. */
12236 /* ARGSUSED */
12238 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12239 ip_ioctl_cmd_t *ipip, void *if_req)
12241 struct ifreq *ifr;
12242 struct lifreq *lifr;
12244 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
12245 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12246 if (ipip->ipi_cmd_type == IF_CMD) {
12247 ifr = (struct ifreq *)if_req;
12248 ifr->ifr_metric = ipif->ipif_mtu;
12249 } else {
12250 lifr = (struct lifreq *)if_req;
12251 lifr->lifr_mtu = ipif->ipif_mtu;
12253 return (0);
12256 /* Set interface broadcast address. */
12257 /* ARGSUSED2 */
12259 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12260 ip_ioctl_cmd_t *ipip, void *if_req)
12262 ipaddr_t addr;
12263 ire_t *ire;
12264 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
12266 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name,
12267 ipif->ipif_id));
12269 ASSERT(IAM_WRITER_IPIF(ipif));
12270 if (!(ipif->ipif_flags & IPIF_BROADCAST))
12271 return (EADDRNOTAVAIL);
12273 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */
12275 if (sin->sin_family != AF_INET)
12276 return (EAFNOSUPPORT);
12278 addr = sin->sin_addr.s_addr;
12279 if (ipif->ipif_flags & IPIF_UP) {
12281 * If we are already up, make sure the new
12282 * broadcast address makes sense. If it does,
12283 * there should be an IRE for it already.
12284 * Don't match on ipif, only on the ill
12285 * since we are sharing these now. Don't use
12286 * MATCH_IRE_ILL_GROUP as we are looking for
12287 * the broadcast ire on this ill and each ill
12288 * in the group has its own broadcast ire.
12290 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST,
12291 ipif, ALL_ZONES, NULL,
12292 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst);
12293 if (ire == NULL) {
12294 return (EINVAL);
12295 } else {
12296 ire_refrele(ire);
12300 * Changing the broadcast addr for this ipif.
12301 * Make sure we have valid net and subnet bcast
12302 * ire's for other logical interfaces, if needed.
12304 if (addr != ipif->ipif_brd_addr)
12305 ipif_check_bcast_ires(ipif);
12306 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
12307 return (0);
12310 /* Get interface broadcast address. */
12311 /* ARGSUSED */
12313 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12314 ip_ioctl_cmd_t *ipip, void *if_req)
12316 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
12317 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12318 if (!(ipif->ipif_flags & IPIF_BROADCAST))
12319 return (EADDRNOTAVAIL);
12321 /* IPIF_BROADCAST not possible with IPv6 */
12322 ASSERT(!ipif->ipif_isv6);
12323 *sin = sin_null;
12324 sin->sin_family = AF_INET;
12325 sin->sin_addr.s_addr = ipif->ipif_brd_addr;
12326 return (0);
12330 * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
12332 /* ARGSUSED */
12334 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12335 ip_ioctl_cmd_t *ipip, void *if_req)
12337 int err = 0;
12338 in6_addr_t v6mask;
12340 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
12341 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12343 ASSERT(IAM_WRITER_IPIF(ipif));
12345 if (ipif->ipif_isv6) {
12346 sin6_t *sin6;
12348 if (sin->sin_family != AF_INET6)
12349 return (EAFNOSUPPORT);
12351 sin6 = (sin6_t *)sin;
12352 v6mask = sin6->sin6_addr;
12353 } else {
12354 ipaddr_t mask;
12356 if (sin->sin_family != AF_INET)
12357 return (EAFNOSUPPORT);
12359 mask = sin->sin_addr.s_addr;
12360 V4MASK_TO_V6(mask, v6mask);
12364 * No big deal if the interface isn't already up, or the mask
12365 * isn't really changing, or this is pt-pt.
12367 if (!(ipif->ipif_flags & IPIF_UP) ||
12368 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
12369 (ipif->ipif_flags & IPIF_POINTOPOINT)) {
12370 ipif->ipif_v6net_mask = v6mask;
12371 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12372 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
12373 ipif->ipif_v6net_mask,
12374 ipif->ipif_v6subnet);
12376 return (0);
12379 * Make sure we have valid net and subnet broadcast ire's
12380 * for the old netmask, if needed by other logical interfaces.
12382 if (!ipif->ipif_isv6)
12383 ipif_check_bcast_ires(ipif);
12385 err = ipif_logical_down(ipif, q, mp);
12386 if (err == EINPROGRESS)
12387 return (err);
12388 ipif_down_tail(ipif);
12389 err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
12390 return (err);
12393 static int
12394 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
12396 in6_addr_t v6mask;
12397 int err = 0;
12399 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
12400 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12402 if (ipif->ipif_isv6) {
12403 sin6_t *sin6;
12405 sin6 = (sin6_t *)sin;
12406 v6mask = sin6->sin6_addr;
12407 } else {
12408 ipaddr_t mask;
12410 mask = sin->sin_addr.s_addr;
12411 V4MASK_TO_V6(mask, v6mask);
12414 ipif->ipif_v6net_mask = v6mask;
12415 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12416 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
12417 ipif->ipif_v6subnet);
12419 err = ipif_up(ipif, q, mp);
12421 if (err == 0 || err == EINPROGRESS) {
12423 * The interface must be DL_BOUND if this packet has to
12424 * go out on the wire. Since we only go through a logical
12425 * down and are bound with the driver during an internal
12426 * down/up that is satisfied.
12428 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
12429 /* Potentially broadcast an address mask reply. */
12430 ipif_mask_reply(ipif);
12433 return (err);
12436 /* ARGSUSED */
12438 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12439 ip_ioctl_cmd_t *ipip, void *if_req)
12441 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
12442 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12443 ipif_down_tail(ipif);
12444 return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
12447 /* Get interface net mask. */
12448 /* ARGSUSED */
12450 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12451 ip_ioctl_cmd_t *ipip, void *if_req)
12453 struct lifreq *lifr = (struct lifreq *)if_req;
12454 struct sockaddr_in6 *sin6 = (sin6_t *)sin;
12456 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
12457 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12460 * net mask can't change since we have a reference to the ipif.
12462 if (ipif->ipif_isv6) {
12463 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12464 *sin6 = sin6_null;
12465 sin6->sin6_family = AF_INET6;
12466 sin6->sin6_addr = ipif->ipif_v6net_mask;
12467 lifr->lifr_addrlen =
12468 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12469 } else {
12470 *sin = sin_null;
12471 sin->sin_family = AF_INET;
12472 sin->sin_addr.s_addr = ipif->ipif_net_mask;
12473 if (ipip->ipi_cmd_type == LIF_CMD) {
12474 lifr->lifr_addrlen =
12475 ip_mask_to_plen(ipif->ipif_net_mask);
12478 return (0);
12481 /* ARGSUSED */
12483 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12484 ip_ioctl_cmd_t *ipip, void *if_req)
12487 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
12488 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12490 * Set interface metric. We don't use this for
12491 * anything but we keep track of it in case it is
12492 * important to routing applications or such.
12494 if (ipip->ipi_cmd_type == IF_CMD) {
12495 struct ifreq *ifr;
12497 ifr = (struct ifreq *)if_req;
12498 ipif->ipif_metric = ifr->ifr_metric;
12499 } else {
12500 struct lifreq *lifr;
12502 lifr = (struct lifreq *)if_req;
12503 ipif->ipif_metric = lifr->lifr_metric;
12505 return (0);
12509 /* ARGSUSED */
12511 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12512 ip_ioctl_cmd_t *ipip, void *if_req)
12515 /* Get interface metric. */
12516 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
12517 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12518 if (ipip->ipi_cmd_type == IF_CMD) {
12519 struct ifreq *ifr;
12521 ifr = (struct ifreq *)if_req;
12522 ifr->ifr_metric = ipif->ipif_metric;
12523 } else {
12524 struct lifreq *lifr;
12526 lifr = (struct lifreq *)if_req;
12527 lifr->lifr_metric = ipif->ipif_metric;
12530 return (0);
12533 /* ARGSUSED */
12535 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12536 ip_ioctl_cmd_t *ipip, void *if_req)
12539 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
12540 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12542 * Set the muxid returned from I_PLINK.
12544 if (ipip->ipi_cmd_type == IF_CMD) {
12545 struct ifreq *ifr = (struct ifreq *)if_req;
12547 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid;
12548 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid;
12549 } else {
12550 struct lifreq *lifr = (struct lifreq *)if_req;
12552 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid;
12553 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid;
12555 return (0);
12558 /* ARGSUSED */
12560 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12561 ip_ioctl_cmd_t *ipip, void *if_req)
12564 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
12565 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12567 * Get the muxid saved in ill for I_PUNLINK.
12569 if (ipip->ipi_cmd_type == IF_CMD) {
12570 struct ifreq *ifr = (struct ifreq *)if_req;
12572 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12573 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12574 } else {
12575 struct lifreq *lifr = (struct lifreq *)if_req;
12577 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12578 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12580 return (0);
12584 * Set the subnet prefix. Does not modify the broadcast address.
12586 /* ARGSUSED */
12588 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12589 ip_ioctl_cmd_t *ipip, void *if_req)
12591 int err = 0;
12592 in6_addr_t v6addr;
12593 in6_addr_t v6mask;
12594 boolean_t need_up = B_FALSE;
12595 int addrlen;
12597 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
12598 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12600 ASSERT(IAM_WRITER_IPIF(ipif));
12601 addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
12603 if (ipif->ipif_isv6) {
12604 sin6_t *sin6;
12606 if (sin->sin_family != AF_INET6)
12607 return (EAFNOSUPPORT);
12609 sin6 = (sin6_t *)sin;
12610 v6addr = sin6->sin6_addr;
12611 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
12612 return (EADDRNOTAVAIL);
12613 } else {
12614 ipaddr_t addr;
12616 if (sin->sin_family != AF_INET)
12617 return (EAFNOSUPPORT);
12619 addr = sin->sin_addr.s_addr;
12620 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
12621 return (EADDRNOTAVAIL);
12622 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12623 /* Add 96 bits */
12624 addrlen += IPV6_ABITS - IP_ABITS;
12627 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
12628 return (EINVAL);
12630 /* Check if bits in the address is set past the mask */
12631 if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
12632 return (EINVAL);
12634 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
12635 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
12636 return (0); /* No change */
12638 if (ipif->ipif_flags & IPIF_UP) {
12640 * If the interface is already marked up,
12641 * we call ipif_down which will take care
12642 * of ditching any IREs that have been set
12643 * up based on the old interface address.
12645 err = ipif_logical_down(ipif, q, mp);
12646 if (err == EINPROGRESS)
12647 return (err);
12648 ipif_down_tail(ipif);
12649 need_up = B_TRUE;
12652 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
12653 return (err);
12656 static int
12657 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
12658 queue_t *q, mblk_t *mp, boolean_t need_up)
12660 ill_t *ill = ipif->ipif_ill;
12661 int err = 0;
12663 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
12664 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12666 /* Set the new address. */
12667 mutex_enter(&ill->ill_lock);
12668 ipif->ipif_v6net_mask = v6mask;
12669 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12670 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
12671 ipif->ipif_v6subnet);
12673 mutex_exit(&ill->ill_lock);
12675 if (need_up) {
12677 * Now bring the interface back up. If this
12678 * is the only IPIF for the ILL, ipif_up
12679 * will have to re-bind to the device, so
12680 * we may get back EINPROGRESS, in which
12681 * case, this IOCTL will get completed in
12682 * ip_rput_dlpi when we see the DL_BIND_ACK.
12684 err = ipif_up(ipif, q, mp);
12685 if (err == EINPROGRESS)
12686 return (err);
12688 return (err);
12691 /* ARGSUSED */
12693 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12694 ip_ioctl_cmd_t *ipip, void *if_req)
12696 int addrlen;
12697 in6_addr_t v6addr;
12698 in6_addr_t v6mask;
12699 struct lifreq *lifr = (struct lifreq *)if_req;
12701 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
12702 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12703 ipif_down_tail(ipif);
12705 addrlen = lifr->lifr_addrlen;
12706 if (ipif->ipif_isv6) {
12707 sin6_t *sin6;
12709 sin6 = (sin6_t *)sin;
12710 v6addr = sin6->sin6_addr;
12711 } else {
12712 ipaddr_t addr;
12714 addr = sin->sin_addr.s_addr;
12715 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12716 addrlen += IPV6_ABITS - IP_ABITS;
12718 (void) ip_plen_to_mask_v6(addrlen, &v6mask);
12720 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
12723 /* ARGSUSED */
12725 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12726 ip_ioctl_cmd_t *ipip, void *if_req)
12728 struct lifreq *lifr = (struct lifreq *)if_req;
12729 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
12731 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
12732 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12733 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12735 if (ipif->ipif_isv6) {
12736 *sin6 = sin6_null;
12737 sin6->sin6_family = AF_INET6;
12738 sin6->sin6_addr = ipif->ipif_v6subnet;
12739 lifr->lifr_addrlen =
12740 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12741 } else {
12742 *sin = sin_null;
12743 sin->sin_family = AF_INET;
12744 sin->sin_addr.s_addr = ipif->ipif_subnet;
12745 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
12747 return (0);
12751 * Set the IPv6 address token.
12753 /* ARGSUSED */
12755 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12756 ip_ioctl_cmd_t *ipi, void *if_req)
12758 ill_t *ill = ipif->ipif_ill;
12759 int err;
12760 in6_addr_t v6addr;
12761 in6_addr_t v6mask;
12762 boolean_t need_up = B_FALSE;
12763 int i;
12764 sin6_t *sin6 = (sin6_t *)sin;
12765 struct lifreq *lifr = (struct lifreq *)if_req;
12766 int addrlen;
12768 ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
12769 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12770 ASSERT(IAM_WRITER_IPIF(ipif));
12772 addrlen = lifr->lifr_addrlen;
12773 /* Only allow for logical unit zero i.e. not on "le0:17" */
12774 if (ipif->ipif_id != 0)
12775 return (EINVAL);
12777 if (!ipif->ipif_isv6)
12778 return (EINVAL);
12780 if (addrlen > IPV6_ABITS)
12781 return (EINVAL);
12783 v6addr = sin6->sin6_addr;
12786 * The length of the token is the length from the end. To get
12787 * the proper mask for this, compute the mask of the bits not
12788 * in the token; ie. the prefix, and then xor to get the mask.
12790 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
12791 return (EINVAL);
12792 for (i = 0; i < 4; i++) {
12793 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12796 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
12797 ill->ill_token_length == addrlen)
12798 return (0); /* No change */
12800 if (ipif->ipif_flags & IPIF_UP) {
12801 err = ipif_logical_down(ipif, q, mp);
12802 if (err == EINPROGRESS)
12803 return (err);
12804 ipif_down_tail(ipif);
12805 need_up = B_TRUE;
12807 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
12808 return (err);
12811 static int
12812 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
12813 mblk_t *mp, boolean_t need_up)
12815 in6_addr_t v6addr;
12816 in6_addr_t v6mask;
12817 ill_t *ill = ipif->ipif_ill;
12818 int i;
12819 int err = 0;
12821 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
12822 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12823 v6addr = sin6->sin6_addr;
12825 * The length of the token is the length from the end. To get
12826 * the proper mask for this, compute the mask of the bits not
12827 * in the token; ie. the prefix, and then xor to get the mask.
12829 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
12830 for (i = 0; i < 4; i++)
12831 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12833 mutex_enter(&ill->ill_lock);
12834 V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
12835 ill->ill_token_length = addrlen;
12836 mutex_exit(&ill->ill_lock);
12838 if (need_up) {
12840 * Now bring the interface back up. If this
12841 * is the only IPIF for the ILL, ipif_up
12842 * will have to re-bind to the device, so
12843 * we may get back EINPROGRESS, in which
12844 * case, this IOCTL will get completed in
12845 * ip_rput_dlpi when we see the DL_BIND_ACK.
12847 err = ipif_up(ipif, q, mp);
12848 if (err == EINPROGRESS)
12849 return (err);
12851 return (err);
12854 /* ARGSUSED */
12856 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12857 ip_ioctl_cmd_t *ipi, void *if_req)
12859 ill_t *ill;
12860 sin6_t *sin6 = (sin6_t *)sin;
12861 struct lifreq *lifr = (struct lifreq *)if_req;
12863 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
12864 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12865 if (ipif->ipif_id != 0)
12866 return (EINVAL);
12868 ill = ipif->ipif_ill;
12869 if (!ill->ill_isv6)
12870 return (ENXIO);
12872 *sin6 = sin6_null;
12873 sin6->sin6_family = AF_INET6;
12874 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
12875 sin6->sin6_addr = ill->ill_token;
12876 lifr->lifr_addrlen = ill->ill_token_length;
12877 return (0);
12881 * Set (hardware) link specific information that might override
12882 * what was acquired through the DL_INFO_ACK.
12883 * The logic is as follows.
12885 * become exclusive
12886 * set CHANGING flag
12887 * change mtu on affected IREs
12888 * clear CHANGING flag
12890 * An ire add that occurs before the CHANGING flag is set will have its mtu
12891 * changed by the ip_sioctl_lnkinfo.
12893 * During the time the CHANGING flag is set, no new ires will be added to the
12894 * bucket, and ire add will fail (due the CHANGING flag).
12896 * An ire add that occurs after the CHANGING flag is set will have the right mtu
12897 * before it is added to the bucket.
12899 * Obviously only 1 thread can set the CHANGING flag and we need to become
12900 * exclusive to set the flag.
12902 /* ARGSUSED */
12904 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12905 ip_ioctl_cmd_t *ipi, void *if_req)
12907 ill_t *ill = ipif->ipif_ill;
12908 ipif_t *nipif;
12909 int ip_min_mtu;
12910 boolean_t mtu_walk = B_FALSE;
12911 struct lifreq *lifr = (struct lifreq *)if_req;
12912 lif_ifinfo_req_t *lir;
12913 ire_t *ire;
12915 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
12916 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12917 lir = &lifr->lifr_ifinfo;
12918 ASSERT(IAM_WRITER_IPIF(ipif));
12920 /* Only allow for logical unit zero i.e. not on "le0:17" */
12921 if (ipif->ipif_id != 0)
12922 return (EINVAL);
12924 /* Set interface MTU. */
12925 if (ipif->ipif_isv6)
12926 ip_min_mtu = IPV6_MIN_MTU;
12927 else
12928 ip_min_mtu = IP_MIN_MTU;
12931 * Verify values before we set anything. Allow zero to
12932 * mean unspecified.
12934 if (lir->lir_maxmtu != 0 &&
12935 (lir->lir_maxmtu > ill->ill_max_frag ||
12936 lir->lir_maxmtu < ip_min_mtu))
12937 return (EINVAL);
12938 if (lir->lir_reachtime != 0 &&
12939 lir->lir_reachtime > ND_MAX_REACHTIME)
12940 return (EINVAL);
12941 if (lir->lir_reachretrans != 0 &&
12942 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
12943 return (EINVAL);
12945 mutex_enter(&ill->ill_lock);
12946 ill->ill_state_flags |= ILL_CHANGING;
12947 for (nipif = ill->ill_ipif; nipif != NULL;
12948 nipif = nipif->ipif_next) {
12949 nipif->ipif_state_flags |= IPIF_CHANGING;
12952 mutex_exit(&ill->ill_lock);
12954 if (lir->lir_maxmtu != 0) {
12955 ill->ill_max_mtu = lir->lir_maxmtu;
12956 ill->ill_mtu_userspecified = 1;
12957 mtu_walk = B_TRUE;
12960 if (lir->lir_reachtime != 0)
12961 ill->ill_reachable_time = lir->lir_reachtime;
12963 if (lir->lir_reachretrans != 0)
12964 ill->ill_reachable_retrans_time = lir->lir_reachretrans;
12966 ill->ill_max_hops = lir->lir_maxhops;
12968 ill->ill_max_buf = ND_MAX_Q;
12970 if (mtu_walk) {
12972 * Set the MTU on all ipifs associated with this ill except
12973 * for those whose MTU was fixed via SIOCSLIFMTU.
12975 for (nipif = ill->ill_ipif; nipif != NULL;
12976 nipif = nipif->ipif_next) {
12977 if (nipif->ipif_flags & IPIF_FIXEDMTU)
12978 continue;
12980 nipif->ipif_mtu = ill->ill_max_mtu;
12982 if (!(nipif->ipif_flags & IPIF_UP))
12983 continue;
12985 if (nipif->ipif_isv6)
12986 ire = ipif_to_ire_v6(nipif);
12987 else
12988 ire = ipif_to_ire(nipif);
12989 if (ire != NULL) {
12990 ire->ire_max_frag = ipif->ipif_mtu;
12991 ire_refrele(ire);
12993 if (ill->ill_isv6) {
12994 ire_walk_ill_v6(MATCH_IRE_ILL, 0,
12995 ipif_mtu_change, (char *)nipif,
12996 ill);
12997 } else {
12998 ire_walk_ill_v4(MATCH_IRE_ILL, 0,
12999 ipif_mtu_change, (char *)nipif,
13000 ill);
13005 mutex_enter(&ill->ill_lock);
13006 for (nipif = ill->ill_ipif; nipif != NULL;
13007 nipif = nipif->ipif_next) {
13008 nipif->ipif_state_flags &= ~IPIF_CHANGING;
13010 ILL_UNMARK_CHANGING(ill);
13011 mutex_exit(&ill->ill_lock);
13013 return (0);
13016 /* ARGSUSED */
13018 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13019 ip_ioctl_cmd_t *ipi, void *if_req)
13021 struct lif_ifinfo_req *lir;
13022 ill_t *ill = ipif->ipif_ill;
13024 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
13025 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13026 if (ipif->ipif_id != 0)
13027 return (EINVAL);
13029 lir = &((struct lifreq *)if_req)->lifr_ifinfo;
13030 lir->lir_maxhops = ill->ill_max_hops;
13031 lir->lir_reachtime = ill->ill_reachable_time;
13032 lir->lir_reachretrans = ill->ill_reachable_retrans_time;
13033 lir->lir_maxmtu = ill->ill_max_mtu;
13035 return (0);
13039 * Return best guess as to the subnet mask for the specified address.
13040 * Based on the subnet masks for all the configured interfaces.
13042 * We end up returning a zero mask in the case of default, multicast or
13043 * experimental.
13045 static ipaddr_t
13046 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
13048 ipaddr_t net_mask;
13049 ill_t *ill;
13050 ipif_t *ipif;
13051 ill_walk_context_t ctx;
13052 ipif_t *fallback_ipif = NULL;
13054 net_mask = ip_net_mask(addr);
13055 if (net_mask == 0) {
13056 *ipifp = NULL;
13057 return (0);
13060 /* Let's check to see if this is maybe a local subnet route. */
13061 /* this function only applies to IPv4 interfaces */
13062 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
13063 ill = ILL_START_WALK_V4(&ctx, ipst);
13064 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
13065 mutex_enter(&ill->ill_lock);
13066 for (ipif = ill->ill_ipif; ipif != NULL;
13067 ipif = ipif->ipif_next) {
13068 if (!IPIF_CAN_LOOKUP(ipif))
13069 continue;
13070 if (!(ipif->ipif_flags & IPIF_UP))
13071 continue;
13072 if ((ipif->ipif_subnet & net_mask) ==
13073 (addr & net_mask)) {
13075 * Don't trust pt-pt interfaces if there are
13076 * other interfaces.
13078 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13079 if (fallback_ipif == NULL) {
13080 ipif_refhold_locked(ipif);
13081 fallback_ipif = ipif;
13083 continue;
13087 * Fine. Just assume the same net mask as the
13088 * directly attached subnet interface is using.
13090 ipif_refhold_locked(ipif);
13091 mutex_exit(&ill->ill_lock);
13092 rw_exit(&ipst->ips_ill_g_lock);
13093 if (fallback_ipif != NULL)
13094 ipif_refrele(fallback_ipif);
13095 *ipifp = ipif;
13096 return (ipif->ipif_net_mask);
13099 mutex_exit(&ill->ill_lock);
13101 rw_exit(&ipst->ips_ill_g_lock);
13103 *ipifp = fallback_ipif;
13104 return ((fallback_ipif != NULL) ?
13105 fallback_ipif->ipif_net_mask : net_mask);
13109 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
13111 static void
13112 ip_wput_ioctl(queue_t *q, mblk_t *mp)
13114 IOCP iocp;
13115 ipft_t *ipft;
13116 ipllc_t *ipllc;
13117 mblk_t *mp1;
13118 cred_t *cr;
13119 int error = 0;
13120 conn_t *connp;
13122 ip1dbg(("ip_wput_ioctl"));
13123 iocp = (IOCP)mp->b_rptr;
13124 mp1 = mp->b_cont;
13125 if (mp1 == NULL) {
13126 iocp->ioc_error = EINVAL;
13127 mp->b_datap->db_type = M_IOCNAK;
13128 iocp->ioc_count = 0;
13129 qreply(q, mp);
13130 return;
13134 * These IOCTLs provide various control capabilities to
13135 * upstream agents such as ULPs and processes. There
13136 * are currently two such IOCTLs implemented. They
13137 * are used by TCP to provide update information for
13138 * existing IREs and to forcibly delete an IRE for a
13139 * host that is not responding, thereby forcing an
13140 * attempt at a new route.
13142 iocp->ioc_error = EINVAL;
13143 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
13144 goto done;
13146 ipllc = (ipllc_t *)mp1->b_rptr;
13147 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
13148 if (ipllc->ipllc_cmd == ipft->ipft_cmd)
13149 break;
13152 * prefer credential from mblk over ioctl;
13153 * see ip_sioctl_copyin_setup
13155 cr = DB_CREDDEF(mp, iocp->ioc_cr);
13158 * Refhold the conn in case the request gets queued up in some lookup
13160 ASSERT(CONN_Q(q));
13161 connp = Q_TO_CONN(q);
13162 CONN_INC_REF(connp);
13163 if (ipft->ipft_pfi &&
13164 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
13165 pullupmsg(mp1, ipft->ipft_min_size))) {
13166 error = (*ipft->ipft_pfi)(q,
13167 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
13169 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
13171 * CONN_OPER_PENDING_DONE happens in the function called
13172 * through ipft_pfi above.
13174 return;
13177 CONN_OPER_PENDING_DONE(connp);
13178 if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
13179 freemsg(mp);
13180 return;
13182 iocp->ioc_error = error;
13184 done:
13185 mp->b_datap->db_type = M_IOCACK;
13186 if (iocp->ioc_error)
13187 iocp->ioc_count = 0;
13188 qreply(q, mp);
13192 * Lookup an ipif using the sequence id (ipif_seqid)
13194 ipif_t *
13195 ipif_lookup_seqid(ill_t *ill, uint_t seqid)
13197 ipif_t *ipif;
13199 ASSERT(MUTEX_HELD(&ill->ill_lock));
13201 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13202 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif))
13203 return (ipif);
13205 return (NULL);
13209 * Assign a unique id for the ipif. This is used later when we send
13210 * IRES to ARP for resolution where we initialize ire_ipif_seqid
13211 * to the value pointed by ire_ipif->ipif_seqid. Later when the
13212 * IRE is added, we verify that ipif has not disappeared.
13215 static void
13216 ipif_assign_seqid(ipif_t *ipif)
13218 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
13220 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
13224 * Insert the ipif, so that the list of ipifs on the ill will be sorted
13225 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
13226 * be inserted into the first space available in the list. The value of
13227 * ipif_id will then be set to the appropriate value for its position.
13229 static int
13230 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock)
13232 ill_t *ill;
13233 ipif_t *tipif;
13234 ipif_t **tipifp;
13235 int id;
13236 ip_stack_t *ipst;
13238 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
13239 IAM_WRITER_IPIF(ipif));
13241 ill = ipif->ipif_ill;
13242 ASSERT(ill != NULL);
13243 ipst = ill->ill_ipst;
13246 * In the case of lo0:0 we already hold the ill_g_lock.
13247 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
13248 * ipif_insert. Another such caller is ipif_move.
13250 if (acquire_g_lock)
13251 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13252 if (acquire_ill_lock)
13253 mutex_enter(&ill->ill_lock);
13254 id = ipif->ipif_id;
13255 tipifp = &(ill->ill_ipif);
13256 if (id == -1) { /* need to find a real id */
13257 id = 0;
13258 while ((tipif = *tipifp) != NULL) {
13259 ASSERT(tipif->ipif_id >= id);
13260 if (tipif->ipif_id != id)
13261 break; /* non-consecutive id */
13262 id++;
13263 tipifp = &(tipif->ipif_next);
13265 /* limit number of logical interfaces */
13266 if (id >= ipst->ips_ip_addrs_per_if) {
13267 if (acquire_ill_lock)
13268 mutex_exit(&ill->ill_lock);
13269 if (acquire_g_lock)
13270 rw_exit(&ipst->ips_ill_g_lock);
13271 return (-1);
13273 ipif->ipif_id = id; /* assign new id */
13274 } else if (id < ipst->ips_ip_addrs_per_if) {
13275 /* we have a real id; insert ipif in the right place */
13276 while ((tipif = *tipifp) != NULL) {
13277 ASSERT(tipif->ipif_id != id);
13278 if (tipif->ipif_id > id)
13279 break; /* found correct location */
13280 tipifp = &(tipif->ipif_next);
13282 } else {
13283 if (acquire_ill_lock)
13284 mutex_exit(&ill->ill_lock);
13285 if (acquire_g_lock)
13286 rw_exit(&ipst->ips_ill_g_lock);
13287 return (-1);
13290 ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
13292 ipif->ipif_next = tipif;
13293 *tipifp = ipif;
13294 if (acquire_ill_lock)
13295 mutex_exit(&ill->ill_lock);
13296 if (acquire_g_lock)
13297 rw_exit(&ipst->ips_ill_g_lock);
13298 return (0);
13301 static void
13302 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock)
13304 ipif_t **ipifp;
13305 ill_t *ill = ipif->ipif_ill;
13307 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
13308 if (acquire_ill_lock)
13309 mutex_enter(&ill->ill_lock);
13310 else
13311 ASSERT(MUTEX_HELD(&ill->ill_lock));
13313 ipifp = &ill->ill_ipif;
13314 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
13315 if (*ipifp == ipif) {
13316 *ipifp = ipif->ipif_next;
13317 break;
13321 if (acquire_ill_lock)
13322 mutex_exit(&ill->ill_lock);
13326 * Allocate and initialize a new interface control structure. (Always
13327 * called as writer.)
13328 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
13329 * is not part of the global linked list of ills. ipif_seqid is unique
13330 * in the system and to preserve the uniqueness, it is assigned only
13331 * when ill becomes part of the global list. At that point ill will
13332 * have a name. If it doesn't get assigned here, it will get assigned
13333 * in ipif_set_values() as part of SIOCSLIFNAME processing.
13334 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
13335 * the interface flags or any other information from the DL_INFO_ACK for
13336 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
13337 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
13338 * second DL_INFO_ACK comes in from the driver.
13340 static ipif_t *
13341 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize)
13343 ipif_t *ipif;
13344 phyint_t *phyi;
13346 ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
13347 ill->ill_name, id, (void *)ill));
13348 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
13350 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL)
13351 return (NULL);
13352 *ipif = ipif_zero; /* start clean */
13354 ipif->ipif_ill = ill;
13355 ipif->ipif_id = id; /* could be -1 */
13357 * Inherit the zoneid from the ill; for the shared stack instance
13358 * this is always the global zone
13360 ipif->ipif_zoneid = ill->ill_zoneid;
13362 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
13364 ipif->ipif_refcnt = 0;
13365 ipif->ipif_saved_ire_cnt = 0;
13367 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) {
13368 mi_free(ipif);
13369 return (NULL);
13371 /* -1 id should have been replaced by real id */
13372 id = ipif->ipif_id;
13373 ASSERT(id >= 0);
13375 if (ill->ill_name[0] != '\0')
13376 ipif_assign_seqid(ipif);
13379 * Keep a copy of original id in ipif_orig_ipifid. Failback
13380 * will attempt to restore the original id. The SIOCSLIFOINDEX
13381 * ioctl sets ipif_orig_ipifid to zero.
13383 ipif->ipif_orig_ipifid = id;
13386 * We grab the ill_lock and phyint_lock to protect the flag changes.
13387 * The ipif is still not up and can't be looked up until the
13388 * ioctl completes and the IPIF_CHANGING flag is cleared.
13390 mutex_enter(&ill->ill_lock);
13391 mutex_enter(&ill->ill_phyint->phyint_lock);
13393 * Set the running flag when logical interface zero is created.
13394 * For subsequent logical interfaces, a DLPI link down
13395 * notification message may have cleared the running flag to
13396 * indicate the link is down, so we shouldn't just blindly set it.
13398 if (id == 0)
13399 ill->ill_phyint->phyint_flags |= PHYI_RUNNING;
13400 ipif->ipif_ire_type = ire_type;
13401 phyi = ill->ill_phyint;
13402 ipif->ipif_orig_ifindex = phyi->phyint_ifindex;
13404 if (ipif->ipif_isv6) {
13405 ill->ill_flags |= ILLF_IPV6;
13406 } else {
13407 ipaddr_t inaddr_any = INADDR_ANY;
13409 ill->ill_flags |= ILLF_IPV4;
13411 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
13412 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13413 &ipif->ipif_v6lcl_addr);
13414 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13415 &ipif->ipif_v6src_addr);
13416 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13417 &ipif->ipif_v6subnet);
13418 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13419 &ipif->ipif_v6net_mask);
13420 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13421 &ipif->ipif_v6brd_addr);
13422 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13423 &ipif->ipif_v6pp_dst_addr);
13427 * Don't set the interface flags etc. now, will do it in
13428 * ip_ll_subnet_defaults.
13430 if (!initialize) {
13431 mutex_exit(&ill->ill_lock);
13432 mutex_exit(&ill->ill_phyint->phyint_lock);
13433 return (ipif);
13435 ipif->ipif_mtu = ill->ill_max_mtu;
13437 if (ill->ill_bcast_addr_length != 0) {
13439 * Later detect lack of DLPI driver multicast
13440 * capability by catching DL_ENABMULTI errors in
13441 * ip_rput_dlpi.
13443 ill->ill_flags |= ILLF_MULTICAST;
13444 if (!ipif->ipif_isv6)
13445 ipif->ipif_flags |= IPIF_BROADCAST;
13446 } else {
13447 if (ill->ill_net_type != IRE_LOOPBACK) {
13448 if (ipif->ipif_isv6)
13450 * Note: xresolv interfaces will eventually need
13451 * NOARP set here as well, but that will require
13452 * those external resolvers to have some
13453 * knowledge of that flag and act appropriately.
13454 * Not to be changed at present.
13456 ill->ill_flags |= ILLF_NONUD;
13457 else
13458 ill->ill_flags |= ILLF_NOARP;
13460 if (ill->ill_phys_addr_length == 0) {
13461 if (ill->ill_media &&
13462 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
13463 ipif->ipif_flags |= IPIF_NOXMIT;
13464 phyi->phyint_flags |= PHYI_VIRTUAL;
13465 } else {
13466 /* pt-pt supports multicast. */
13467 ill->ill_flags |= ILLF_MULTICAST;
13468 if (ill->ill_net_type == IRE_LOOPBACK) {
13469 phyi->phyint_flags |=
13470 (PHYI_LOOPBACK | PHYI_VIRTUAL);
13471 } else {
13472 ipif->ipif_flags |= IPIF_POINTOPOINT;
13477 mutex_exit(&ill->ill_lock);
13478 mutex_exit(&ill->ill_phyint->phyint_lock);
13479 return (ipif);
13483 * If appropriate, send a message up to the resolver delete the entry
13484 * for the address of this interface which is going out of business.
13485 * (Always called as writer).
13487 * NOTE : We need to check for NULL mps as some of the fields are
13488 * initialized only for some interface types. See ipif_resolver_up()
13489 * for details.
13491 void
13492 ipif_arp_down(ipif_t *ipif)
13494 mblk_t *mp;
13495 ill_t *ill = ipif->ipif_ill;
13497 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13498 ASSERT(IAM_WRITER_IPIF(ipif));
13500 /* Delete the mapping for the local address */
13501 mp = ipif->ipif_arp_del_mp;
13502 if (mp != NULL) {
13503 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13504 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13505 putnext(ill->ill_rq, mp);
13506 ipif->ipif_arp_del_mp = NULL;
13510 * If this is the last ipif that is going down and there are no
13511 * duplicate addresses we may yet attempt to re-probe, then we need to
13512 * clean up ARP completely.
13514 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) {
13516 /* Send up AR_INTERFACE_DOWN message */
13517 mp = ill->ill_arp_down_mp;
13518 if (mp != NULL) {
13519 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13520 *(unsigned *)mp->b_rptr, ill->ill_name,
13521 ipif->ipif_id));
13522 putnext(ill->ill_rq, mp);
13523 ill->ill_arp_down_mp = NULL;
13526 /* Tell ARP to delete the multicast mappings */
13527 mp = ill->ill_arp_del_mapping_mp;
13528 if (mp != NULL) {
13529 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13530 *(unsigned *)mp->b_rptr, ill->ill_name,
13531 ipif->ipif_id));
13532 putnext(ill->ill_rq, mp);
13533 ill->ill_arp_del_mapping_mp = NULL;
13539 * This function sets up the multicast mappings in ARP. When ipif_resolver_up
13540 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating
13541 * that it wants the add_mp allocated in this function to be returned
13542 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to
13543 * just re-do the multicast, it wants us to send the add_mp to ARP also.
13544 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP,
13545 * as it does a ipif_arp_down after calling this function - which will
13546 * remove what we add here.
13548 * Returns -1 on failures and 0 on success.
13551 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp)
13553 mblk_t *del_mp = NULL;
13554 mblk_t *add_mp = NULL;
13555 mblk_t *mp;
13556 ill_t *ill = ipif->ipif_ill;
13557 phyint_t *phyi = ill->ill_phyint;
13558 ipaddr_t addr, mask, extract_mask = 0;
13559 arma_t *arma;
13560 uint8_t *maddr, *bphys_addr;
13561 uint32_t hw_start;
13562 dl_unitdata_req_t *dlur;
13564 ASSERT(IAM_WRITER_IPIF(ipif));
13565 if (ipif->ipif_flags & IPIF_POINTOPOINT)
13566 return (0);
13569 * Delete the existing mapping from ARP. Normally ipif_down
13570 * -> ipif_arp_down should send this up to ARP. The only
13571 * reason we would find this when we are switching from
13572 * Multicast to Broadcast where we did not do a down.
13574 mp = ill->ill_arp_del_mapping_mp;
13575 if (mp != NULL) {
13576 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13577 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13578 putnext(ill->ill_rq, mp);
13579 ill->ill_arp_del_mapping_mp = NULL;
13582 if (arp_add_mapping_mp != NULL)
13583 *arp_add_mapping_mp = NULL;
13586 * Check that the address is not to long for the constant
13587 * length reserved in the template arma_t.
13589 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN)
13590 return (-1);
13592 /* Add mapping mblk */
13593 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP);
13594 mask = (ipaddr_t)htonl(IN_CLASSD_NET);
13595 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template,
13596 (caddr_t)&addr);
13597 if (add_mp == NULL)
13598 return (-1);
13599 arma = (arma_t *)add_mp->b_rptr;
13600 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset;
13601 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN);
13602 arma->arma_hw_addr_length = ill->ill_phys_addr_length;
13605 * Determine the broadcast address.
13607 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
13608 if (ill->ill_sap_length < 0)
13609 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
13610 else
13611 bphys_addr = (uchar_t *)dlur +
13612 dlur->dl_dest_addr_offset + ill->ill_sap_length;
13614 * Check PHYI_MULTI_BCAST and length of physical
13615 * address to determine if we use the mapping or the
13616 * broadcast address.
13618 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST))
13619 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length,
13620 bphys_addr, maddr, &hw_start, &extract_mask))
13621 phyi->phyint_flags |= PHYI_MULTI_BCAST;
13623 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
13624 (ill->ill_flags & ILLF_MULTICAST)) {
13625 /* Make sure this will not match the "exact" entry. */
13626 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP);
13627 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
13628 (caddr_t)&addr);
13629 if (del_mp == NULL) {
13630 freemsg(add_mp);
13631 return (-1);
13633 bcopy(&extract_mask, (char *)arma +
13634 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN);
13635 if (phyi->phyint_flags & PHYI_MULTI_BCAST) {
13636 /* Use link-layer broadcast address for MULTI_BCAST */
13637 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length);
13638 ip2dbg(("ipif_arp_setup_multicast: adding"
13639 " MULTI_BCAST ARP setup for %s\n", ill->ill_name));
13640 } else {
13641 arma->arma_hw_mapping_start = hw_start;
13642 ip2dbg(("ipif_arp_setup_multicast: adding multicast"
13643 " ARP setup for %s\n", ill->ill_name));
13645 } else {
13646 freemsg(add_mp);
13647 ASSERT(del_mp == NULL);
13648 /* It is neither MULTICAST nor MULTI_BCAST */
13649 return (0);
13651 ASSERT(add_mp != NULL && del_mp != NULL);
13652 ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13653 ill->ill_arp_del_mapping_mp = del_mp;
13654 if (arp_add_mapping_mp != NULL) {
13655 /* The caller just wants the mblks allocated */
13656 *arp_add_mapping_mp = add_mp;
13657 } else {
13658 /* The caller wants us to send it to arp */
13659 putnext(ill->ill_rq, add_mp);
13661 return (0);
13665 * Get the resolver set up for a new interface address.
13666 * (Always called as writer.)
13667 * Called both for IPv4 and IPv6 interfaces,
13668 * though it only sets up the resolver for v6
13669 * if it's an xresolv interface (one using an external resolver).
13670 * Honors ILLF_NOARP.
13671 * The enumerated value res_act is used to tune the behavior.
13672 * If set to Res_act_initial, then we set up all the resolver
13673 * structures for a new interface. If set to Res_act_move, then
13674 * we just send an AR_ENTRY_ADD message up to ARP for IPv4
13675 * interfaces; this is called by ip_rput_dlpi_writer() to handle
13676 * asynchronous hardware address change notification. If set to
13677 * Res_act_defend, then we tell ARP that it needs to send a single
13678 * gratuitous message in defense of the address.
13679 * Returns error on failure.
13682 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
13684 caddr_t addr;
13685 mblk_t *arp_up_mp = NULL;
13686 mblk_t *arp_down_mp = NULL;
13687 mblk_t *arp_add_mp = NULL;
13688 mblk_t *arp_del_mp = NULL;
13689 mblk_t *arp_add_mapping_mp = NULL;
13690 mblk_t *arp_del_mapping_mp = NULL;
13691 ill_t *ill = ipif->ipif_ill;
13692 uchar_t *area_p = NULL;
13693 uchar_t *ared_p = NULL;
13694 int err = ENOMEM;
13695 boolean_t was_dup;
13697 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
13698 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
13699 ASSERT(IAM_WRITER_IPIF(ipif));
13701 was_dup = B_FALSE;
13702 if (res_act == Res_act_initial) {
13703 ipif->ipif_addr_ready = 0;
13705 * We're bringing an interface up here. There's no way that we
13706 * should need to shut down ARP now.
13708 mutex_enter(&ill->ill_lock);
13709 if (ipif->ipif_flags & IPIF_DUPLICATE) {
13710 ipif->ipif_flags &= ~IPIF_DUPLICATE;
13711 ill->ill_ipif_dup_count--;
13712 was_dup = B_TRUE;
13714 mutex_exit(&ill->ill_lock);
13716 if (ipif->ipif_recovery_id != 0)
13717 (void) untimeout(ipif->ipif_recovery_id);
13718 ipif->ipif_recovery_id = 0;
13719 if (ill->ill_net_type != IRE_IF_RESOLVER) {
13720 ipif->ipif_addr_ready = 1;
13721 return (0);
13723 /* NDP will set the ipif_addr_ready flag when it's ready */
13724 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
13725 return (0);
13727 if (ill->ill_isv6) {
13729 * External resolver for IPv6
13731 ASSERT(res_act == Res_act_initial);
13732 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
13733 addr = (caddr_t)&ipif->ipif_v6lcl_addr;
13734 area_p = (uchar_t *)&ip6_area_template;
13735 ared_p = (uchar_t *)&ip6_ared_template;
13737 } else {
13739 * IPv4 arp case. If the ARP stream has already started
13740 * closing, fail this request for ARP bringup. Else
13741 * record the fact that an ARP bringup is pending.
13743 mutex_enter(&ill->ill_lock);
13744 if (ill->ill_arp_closing) {
13745 mutex_exit(&ill->ill_lock);
13746 err = EINVAL;
13747 goto failed;
13748 } else {
13749 if (ill->ill_ipif_up_count == 0 &&
13750 ill->ill_ipif_dup_count == 0 && !was_dup)
13751 ill->ill_arp_bringup_pending = 1;
13752 mutex_exit(&ill->ill_lock);
13754 if (ipif->ipif_lcl_addr != INADDR_ANY) {
13755 addr = (caddr_t)&ipif->ipif_lcl_addr;
13756 area_p = (uchar_t *)&ip_area_template;
13757 ared_p = (uchar_t *)&ip_ared_template;
13762 * Add an entry for the local address in ARP only if it
13763 * is not UNNUMBERED and the address is not INADDR_ANY.
13765 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) {
13766 area_t *area;
13768 /* Now ask ARP to publish our address. */
13769 arp_add_mp = ill_arp_alloc(ill, area_p, addr);
13770 if (arp_add_mp == NULL)
13771 goto failed;
13772 area = (area_t *)arp_add_mp->b_rptr;
13773 if (res_act != Res_act_initial) {
13775 * Copy the new hardware address and length into
13776 * arp_add_mp to be sent to ARP.
13778 area->area_hw_addr_length = ill->ill_phys_addr_length;
13779 bcopy(ill->ill_phys_addr,
13780 ((char *)area + area->area_hw_addr_offset),
13781 area->area_hw_addr_length);
13784 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH |
13785 ACE_F_MYADDR;
13787 if (res_act == Res_act_defend) {
13788 area->area_flags |= ACE_F_DEFEND;
13790 * If we're just defending our address now, then
13791 * there's no need to set up ARP multicast mappings.
13792 * The publish command is enough.
13794 goto done;
13797 if (res_act != Res_act_initial)
13798 goto arp_setup_multicast;
13801 * Allocate an ARP deletion message so we know we can tell ARP
13802 * when the interface goes down.
13804 arp_del_mp = ill_arp_alloc(ill, ared_p, addr);
13805 if (arp_del_mp == NULL)
13806 goto failed;
13808 } else {
13809 if (res_act != Res_act_initial)
13810 goto done;
13813 * Need to bring up ARP or setup multicast mapping only
13814 * when the first interface is coming UP.
13816 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
13817 was_dup) {
13818 goto done;
13822 * Allocate an ARP down message (to be saved) and an ARP up
13823 * message.
13825 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0);
13826 if (arp_down_mp == NULL)
13827 goto failed;
13829 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0);
13830 if (arp_up_mp == NULL)
13831 goto failed;
13833 if (ipif->ipif_flags & IPIF_POINTOPOINT)
13834 goto done;
13836 arp_setup_multicast:
13838 * Setup the multicast mappings. This function initializes
13839 * ill_arp_del_mapping_mp also. This does not need to be done for
13840 * IPv6.
13842 if (!ill->ill_isv6) {
13843 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp);
13844 if (err != 0)
13845 goto failed;
13846 ASSERT(ill->ill_arp_del_mapping_mp != NULL);
13847 ASSERT(arp_add_mapping_mp != NULL);
13850 done:
13851 if (arp_del_mp != NULL) {
13852 ASSERT(ipif->ipif_arp_del_mp == NULL);
13853 ipif->ipif_arp_del_mp = arp_del_mp;
13855 if (arp_down_mp != NULL) {
13856 ASSERT(ill->ill_arp_down_mp == NULL);
13857 ill->ill_arp_down_mp = arp_down_mp;
13859 if (arp_del_mapping_mp != NULL) {
13860 ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13861 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp;
13863 if (arp_up_mp != NULL) {
13864 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n",
13865 ill->ill_name, ipif->ipif_id));
13866 putnext(ill->ill_rq, arp_up_mp);
13868 if (arp_add_mp != NULL) {
13869 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n",
13870 ill->ill_name, ipif->ipif_id));
13872 * If it's an extended ARP implementation, then we'll wait to
13873 * hear that DAD has finished before using the interface.
13875 if (!ill->ill_arp_extend)
13876 ipif->ipif_addr_ready = 1;
13877 putnext(ill->ill_rq, arp_add_mp);
13878 } else {
13879 ipif->ipif_addr_ready = 1;
13881 if (arp_add_mapping_mp != NULL) {
13882 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n",
13883 ill->ill_name, ipif->ipif_id));
13884 putnext(ill->ill_rq, arp_add_mapping_mp);
13886 if (res_act != Res_act_initial)
13887 return (0);
13889 if (ill->ill_flags & ILLF_NOARP)
13890 err = ill_arp_off(ill);
13891 else
13892 err = ill_arp_on(ill);
13893 if (err != 0) {
13894 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err));
13895 freemsg(ipif->ipif_arp_del_mp);
13896 freemsg(ill->ill_arp_down_mp);
13897 freemsg(ill->ill_arp_del_mapping_mp);
13898 ipif->ipif_arp_del_mp = NULL;
13899 ill->ill_arp_down_mp = NULL;
13900 ill->ill_arp_del_mapping_mp = NULL;
13901 return (err);
13903 return ((ill->ill_ipif_up_count != 0 || was_dup ||
13904 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS);
13906 failed:
13907 ip1dbg(("ipif_resolver_up: FAILED\n"));
13908 freemsg(arp_add_mp);
13909 freemsg(arp_del_mp);
13910 freemsg(arp_add_mapping_mp);
13911 freemsg(arp_up_mp);
13912 freemsg(arp_down_mp);
13913 ill->ill_arp_bringup_pending = 0;
13914 return (err);
13918 * This routine restarts IPv4 duplicate address detection (DAD) when a link has
13919 * just gone back up.
13921 static void
13922 ipif_arp_start_dad(ipif_t *ipif)
13924 ill_t *ill = ipif->ipif_ill;
13925 mblk_t *arp_add_mp;
13926 area_t *area;
13928 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing ||
13929 (ipif->ipif_flags & IPIF_UNNUMBERED) ||
13930 ipif->ipif_lcl_addr == INADDR_ANY ||
13931 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
13932 (char *)&ipif->ipif_lcl_addr)) == NULL) {
13934 * If we can't contact ARP for some reason, that's not really a
13935 * problem. Just send out the routing socket notification that
13936 * DAD completion would have done, and continue.
13938 ipif_mask_reply(ipif);
13939 ip_rts_ifmsg(ipif);
13940 ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
13941 sctp_update_ipif(ipif, SCTP_IPIF_UP);
13942 ipif->ipif_addr_ready = 1;
13943 return;
13946 /* Setting the 'unverified' flag restarts DAD */
13947 area = (area_t *)arp_add_mp->b_rptr;
13948 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR |
13949 ACE_F_UNVERIFIED;
13950 putnext(ill->ill_rq, arp_add_mp);
13953 static void
13954 ipif_ndp_start_dad(ipif_t *ipif)
13956 nce_t *nce;
13958 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE);
13959 if (nce == NULL)
13960 return;
13962 if (!ndp_restart_dad(nce)) {
13964 * If we can't restart DAD for some reason, that's not really a
13965 * problem. Just send out the routing socket notification that
13966 * DAD completion would have done, and continue.
13968 ip_rts_ifmsg(ipif);
13969 ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
13970 sctp_update_ipif(ipif, SCTP_IPIF_UP);
13971 ipif->ipif_addr_ready = 1;
13973 NCE_REFRELE(nce);
13977 * Restart duplicate address detection on all interfaces on the given ill.
13979 * This is called when an interface transitions from down to up
13980 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
13982 * Note that since the underlying physical link has transitioned, we must cause
13983 * at least one routing socket message to be sent here, either via DAD
13984 * completion or just by default on the first ipif. (If we don't do this, then
13985 * in.mpathd will see long delays when doing link-based failure recovery.)
13987 void
13988 ill_restart_dad(ill_t *ill, boolean_t went_up)
13990 ipif_t *ipif;
13992 if (ill == NULL)
13993 return;
13996 * If layer two doesn't support duplicate address detection, then just
13997 * send the routing socket message now and be done with it.
13999 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) ||
14000 (!ill->ill_isv6 && !ill->ill_arp_extend)) {
14001 ip_rts_ifmsg(ill->ill_ipif);
14002 return;
14005 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14006 if (went_up) {
14007 if (ipif->ipif_flags & IPIF_UP) {
14008 if (ill->ill_isv6)
14009 ipif_ndp_start_dad(ipif);
14010 else
14011 ipif_arp_start_dad(ipif);
14012 } else if (ill->ill_isv6 &&
14013 (ipif->ipif_flags & IPIF_DUPLICATE)) {
14015 * For IPv4, the ARP module itself will
14016 * automatically start the DAD process when it
14017 * sees DL_NOTE_LINK_UP. We respond to the
14018 * AR_CN_READY at the completion of that task.
14019 * For IPv6, we must kick off the bring-up
14020 * process now.
14022 ndp_do_recovery(ipif);
14023 } else {
14025 * Unfortunately, the first ipif is "special"
14026 * and represents the underlying ill in the
14027 * routing socket messages. Thus, when this
14028 * one ipif is down, we must still notify so
14029 * that the user knows the IFF_RUNNING status
14030 * change. (If the first ipif is up, then
14031 * we'll handle eventual routing socket
14032 * notification via DAD completion.)
14034 if (ipif == ill->ill_ipif)
14035 ip_rts_ifmsg(ill->ill_ipif);
14037 } else {
14039 * After link down, we'll need to send a new routing
14040 * message when the link comes back, so clear
14041 * ipif_addr_ready.
14043 ipif->ipif_addr_ready = 0;
14048 * If we've torn down links, then notify the user right away.
14050 if (!went_up)
14051 ip_rts_ifmsg(ill->ill_ipif);
14055 * Wakeup all threads waiting to enter the ipsq, and sleeping
14056 * on any of the ills in this ipsq. The ill_lock of the ill
14057 * must be held so that waiters don't miss wakeups
14059 static void
14060 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock)
14062 phyint_t *phyint;
14064 phyint = ipsq->ipsq_phyint_list;
14065 while (phyint != NULL) {
14066 if (phyint->phyint_illv4) {
14067 if (!caller_holds_lock)
14068 mutex_enter(&phyint->phyint_illv4->ill_lock);
14069 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14070 cv_broadcast(&phyint->phyint_illv4->ill_cv);
14071 if (!caller_holds_lock)
14072 mutex_exit(&phyint->phyint_illv4->ill_lock);
14074 if (phyint->phyint_illv6) {
14075 if (!caller_holds_lock)
14076 mutex_enter(&phyint->phyint_illv6->ill_lock);
14077 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14078 cv_broadcast(&phyint->phyint_illv6->ill_cv);
14079 if (!caller_holds_lock)
14080 mutex_exit(&phyint->phyint_illv6->ill_lock);
14082 phyint = phyint->phyint_ipsq_next;
14086 static ipsq_t *
14087 ipsq_create(char *groupname, ip_stack_t *ipst)
14089 ipsq_t *ipsq;
14091 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14092 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
14093 if (ipsq == NULL) {
14094 return (NULL);
14097 if (groupname != NULL)
14098 (void) strcpy(ipsq->ipsq_name, groupname);
14099 else
14100 ipsq->ipsq_name[0] = '\0';
14102 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL);
14103 ipsq->ipsq_flags |= IPSQ_GROUP;
14104 ipsq->ipsq_next = ipst->ips_ipsq_g_head;
14105 ipst->ips_ipsq_g_head = ipsq;
14106 ipsq->ipsq_ipst = ipst; /* No netstack_hold */
14107 return (ipsq);
14111 * Return an ipsq correspoding to the groupname. If 'create' is true
14112 * allocate a new ipsq if one does not exist. Usually an ipsq is associated
14113 * uniquely with an IPMP group. However during IPMP groupname operations,
14114 * multiple IPMP groups may be associated with a single ipsq. But no
14115 * IPMP group can be associated with more than 1 ipsq at any time.
14116 * For example
14117 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs
14118 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2
14119 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2
14121 * Now the command ifconfig hme3 group mpk17-84 results in the temporary
14122 * status shown below during the execution of the above command.
14123 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4
14125 * After the completion of the above groupname command we return to the stable
14126 * state shown below.
14127 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3
14128 * hme4 mpk17-85 ipsq2 mpk17-85 1
14130 * Because of the above, we don't search based on the ipsq_name since that
14131 * would miss the correct ipsq during certain windows as shown above.
14132 * The ipsq_name is only used during split of an ipsq to return the ipsq to its
14133 * natural state.
14135 static ipsq_t *
14136 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq,
14137 ip_stack_t *ipst)
14139 ipsq_t *ipsq;
14140 int group_len;
14141 phyint_t *phyint;
14143 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
14145 group_len = strlen(groupname);
14146 ASSERT(group_len != 0);
14147 group_len++;
14149 for (ipsq = ipst->ips_ipsq_g_head;
14150 ipsq != NULL;
14151 ipsq = ipsq->ipsq_next) {
14153 * When an ipsq is being split, and ill_split_ipsq
14154 * calls this function, we exclude it from being considered.
14156 if (ipsq == exclude_ipsq)
14157 continue;
14160 * Compare against the ipsq_name. The groupname change happens
14161 * in 2 phases. The 1st phase merges the from group into
14162 * the to group's ipsq, by calling ill_merge_groups and restarts
14163 * the ioctl. The 2nd phase then locates the ipsq again thru
14164 * ipsq_name. At this point the phyint_groupname has not been
14165 * updated.
14167 if ((group_len == strlen(ipsq->ipsq_name) + 1) &&
14168 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) {
14170 * Verify that an ipmp groupname is exactly
14171 * part of 1 ipsq and is not found in any other
14172 * ipsq.
14174 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) ==
14175 NULL);
14176 return (ipsq);
14180 * Comparison against ipsq_name alone is not sufficient.
14181 * In the case when groups are currently being
14182 * merged, the ipsq could hold other IPMP groups temporarily.
14183 * so we walk the phyint list and compare against the
14184 * phyint_groupname as well.
14186 phyint = ipsq->ipsq_phyint_list;
14187 while (phyint != NULL) {
14188 if ((group_len == phyint->phyint_groupname_len) &&
14189 (bcmp(phyint->phyint_groupname, groupname,
14190 group_len) == 0)) {
14192 * Verify that an ipmp groupname is exactly
14193 * part of 1 ipsq and is not found in any other
14194 * ipsq.
14196 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq,
14197 ipst) == NULL);
14198 return (ipsq);
14200 phyint = phyint->phyint_ipsq_next;
14203 if (create)
14204 ipsq = ipsq_create(groupname, ipst);
14205 return (ipsq);
14208 static void
14209 ipsq_delete(ipsq_t *ipsq)
14211 ipsq_t *nipsq;
14212 ipsq_t *pipsq = NULL;
14213 ip_stack_t *ipst = ipsq->ipsq_ipst;
14216 * We don't hold the ipsq lock, but we are sure no new
14217 * messages can land up, since the ipsq_refs is zero.
14218 * i.e. this ipsq is unnamed and no phyint or phyint group
14219 * is associated with this ipsq. (Lookups are based on ill_name
14220 * or phyint_groupname)
14222 ASSERT(ipsq->ipsq_refs == 0);
14223 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL);
14224 ASSERT(ipsq->ipsq_pending_mp == NULL);
14225 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) {
14227 * This is not the ipsq of an IPMP group.
14229 ipsq->ipsq_ipst = NULL;
14230 kmem_free(ipsq, sizeof (ipsq_t));
14231 return;
14234 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14237 * Locate the ipsq before we can remove it from
14238 * the singly linked list of ipsq's.
14240 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL;
14241 nipsq = nipsq->ipsq_next) {
14242 if (nipsq == ipsq) {
14243 break;
14245 pipsq = nipsq;
14248 ASSERT(nipsq == ipsq);
14250 /* unlink ipsq from the list */
14251 if (pipsq != NULL)
14252 pipsq->ipsq_next = ipsq->ipsq_next;
14253 else
14254 ipst->ips_ipsq_g_head = ipsq->ipsq_next;
14255 ipsq->ipsq_ipst = NULL;
14256 kmem_free(ipsq, sizeof (ipsq_t));
14257 rw_exit(&ipst->ips_ill_g_lock);
14260 static void
14261 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp,
14262 queue_t *q)
14264 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock));
14265 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL);
14266 ASSERT(old_ipsq->ipsq_pending_ipif == NULL);
14267 ASSERT(old_ipsq->ipsq_pending_mp == NULL);
14268 ASSERT(current_mp != NULL);
14270 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl,
14271 NEW_OP, NULL);
14273 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL &&
14274 new_ipsq->ipsq_xopq_mphead != NULL);
14277 * move from old ipsq to the new ipsq.
14279 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead;
14280 if (old_ipsq->ipsq_xopq_mphead != NULL)
14281 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail;
14283 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL;
14286 void
14287 ill_group_cleanup(ill_t *ill)
14289 ill_t *ill_v4;
14290 ill_t *ill_v6;
14291 ipif_t *ipif;
14293 ill_v4 = ill->ill_phyint->phyint_illv4;
14294 ill_v6 = ill->ill_phyint->phyint_illv6;
14296 if (ill_v4 != NULL) {
14297 mutex_enter(&ill_v4->ill_lock);
14298 for (ipif = ill_v4->ill_ipif; ipif != NULL;
14299 ipif = ipif->ipif_next) {
14300 IPIF_UNMARK_MOVING(ipif);
14302 ill_v4->ill_up_ipifs = B_FALSE;
14303 mutex_exit(&ill_v4->ill_lock);
14306 if (ill_v6 != NULL) {
14307 mutex_enter(&ill_v6->ill_lock);
14308 for (ipif = ill_v6->ill_ipif; ipif != NULL;
14309 ipif = ipif->ipif_next) {
14310 IPIF_UNMARK_MOVING(ipif);
14312 ill_v6->ill_up_ipifs = B_FALSE;
14313 mutex_exit(&ill_v6->ill_lock);
14317 * This function is called when an ill has had a change in its group status
14318 * to bring up all the ipifs that were up before the change.
14321 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
14323 ipif_t *ipif;
14324 ill_t *ill_v4;
14325 ill_t *ill_v6;
14326 ill_t *from_ill;
14327 int err = 0;
14330 ASSERT(IAM_WRITER_ILL(ill));
14333 * Except for ipif_state_flags and ill_state_flags the other
14334 * fields of the ipif/ill that are modified below are protected
14335 * implicitly since we are a writer. We would have tried to down
14336 * even an ipif that was already down, in ill_down_ipifs. So we
14337 * just blindly clear the IPIF_CHANGING flag here on all ipifs.
14339 ill_v4 = ill->ill_phyint->phyint_illv4;
14340 ill_v6 = ill->ill_phyint->phyint_illv6;
14341 if (ill_v4 != NULL) {
14342 ill_v4->ill_up_ipifs = B_TRUE;
14343 for (ipif = ill_v4->ill_ipif; ipif != NULL;
14344 ipif = ipif->ipif_next) {
14345 mutex_enter(&ill_v4->ill_lock);
14346 ipif->ipif_state_flags &= ~IPIF_CHANGING;
14347 IPIF_UNMARK_MOVING(ipif);
14348 mutex_exit(&ill_v4->ill_lock);
14349 if (ipif->ipif_was_up) {
14350 if (!(ipif->ipif_flags & IPIF_UP))
14351 err = ipif_up(ipif, q, mp);
14352 ipif->ipif_was_up = B_FALSE;
14353 if (err != 0) {
14355 * Can there be any other error ?
14357 ASSERT(err == EINPROGRESS);
14358 return (err);
14362 mutex_enter(&ill_v4->ill_lock);
14363 ill_v4->ill_state_flags &= ~ILL_CHANGING;
14364 mutex_exit(&ill_v4->ill_lock);
14365 ill_v4->ill_up_ipifs = B_FALSE;
14366 if (ill_v4->ill_move_in_progress) {
14367 ASSERT(ill_v4->ill_move_peer != NULL);
14368 ill_v4->ill_move_in_progress = B_FALSE;
14369 from_ill = ill_v4->ill_move_peer;
14370 from_ill->ill_move_in_progress = B_FALSE;
14371 from_ill->ill_move_peer = NULL;
14372 mutex_enter(&from_ill->ill_lock);
14373 from_ill->ill_state_flags &= ~ILL_CHANGING;
14374 mutex_exit(&from_ill->ill_lock);
14375 if (ill_v6 == NULL) {
14376 if (from_ill->ill_phyint->phyint_flags &
14377 PHYI_STANDBY) {
14378 phyint_inactive(from_ill->ill_phyint);
14380 if (ill_v4->ill_phyint->phyint_flags &
14381 PHYI_STANDBY) {
14382 phyint_inactive(ill_v4->ill_phyint);
14385 ill_v4->ill_move_peer = NULL;
14389 if (ill_v6 != NULL) {
14390 ill_v6->ill_up_ipifs = B_TRUE;
14391 for (ipif = ill_v6->ill_ipif; ipif != NULL;
14392 ipif = ipif->ipif_next) {
14393 mutex_enter(&ill_v6->ill_lock);
14394 ipif->ipif_state_flags &= ~IPIF_CHANGING;
14395 IPIF_UNMARK_MOVING(ipif);
14396 mutex_exit(&ill_v6->ill_lock);
14397 if (ipif->ipif_was_up) {
14398 if (!(ipif->ipif_flags & IPIF_UP))
14399 err = ipif_up(ipif, q, mp);
14400 ipif->ipif_was_up = B_FALSE;
14401 if (err != 0) {
14403 * Can there be any other error ?
14405 ASSERT(err == EINPROGRESS);
14406 return (err);
14410 mutex_enter(&ill_v6->ill_lock);
14411 ill_v6->ill_state_flags &= ~ILL_CHANGING;
14412 mutex_exit(&ill_v6->ill_lock);
14413 ill_v6->ill_up_ipifs = B_FALSE;
14414 if (ill_v6->ill_move_in_progress) {
14415 ASSERT(ill_v6->ill_move_peer != NULL);
14416 ill_v6->ill_move_in_progress = B_FALSE;
14417 from_ill = ill_v6->ill_move_peer;
14418 from_ill->ill_move_in_progress = B_FALSE;
14419 from_ill->ill_move_peer = NULL;
14420 mutex_enter(&from_ill->ill_lock);
14421 from_ill->ill_state_flags &= ~ILL_CHANGING;
14422 mutex_exit(&from_ill->ill_lock);
14423 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
14424 phyint_inactive(from_ill->ill_phyint);
14426 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) {
14427 phyint_inactive(ill_v6->ill_phyint);
14429 ill_v6->ill_move_peer = NULL;
14432 return (0);
14436 * bring down all the approriate ipifs.
14438 /* ARGSUSED */
14439 static void
14440 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover)
14442 ipif_t *ipif;
14444 ASSERT(IAM_WRITER_ILL(ill));
14447 * Except for ipif_state_flags the other fields of the ipif/ill that
14448 * are modified below are protected implicitly since we are a writer
14450 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14451 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER))
14452 continue;
14453 if (index == 0 || index == ipif->ipif_orig_ifindex) {
14455 * We go through the ipif_down logic even if the ipif
14456 * is already down, since routes can be added based
14457 * on down ipifs. Going through ipif_down once again
14458 * will delete any IREs created based on these routes.
14460 if (ipif->ipif_flags & IPIF_UP)
14461 ipif->ipif_was_up = B_TRUE;
14463 * If called with chk_nofailover true ipif is moving.
14465 mutex_enter(&ill->ill_lock);
14466 if (chk_nofailover) {
14467 ipif->ipif_state_flags |=
14468 IPIF_MOVING | IPIF_CHANGING;
14469 } else {
14470 ipif->ipif_state_flags |= IPIF_CHANGING;
14472 mutex_exit(&ill->ill_lock);
14474 * Need to re-create net/subnet bcast ires if
14475 * they are dependent on ipif.
14477 if (!ipif->ipif_isv6)
14478 ipif_check_bcast_ires(ipif);
14479 (void) ipif_logical_down(ipif, NULL, NULL);
14480 ipif_non_duplicate(ipif);
14481 ipif_down_tail(ipif);
14486 #define IPSQ_INC_REF(ipsq, ipst) { \
14487 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \
14488 (ipsq)->ipsq_refs++; \
14491 #define IPSQ_DEC_REF(ipsq, ipst) { \
14492 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \
14493 (ipsq)->ipsq_refs--; \
14494 if ((ipsq)->ipsq_refs == 0) \
14495 (ipsq)->ipsq_name[0] = '\0'; \
14499 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14500 * new_ipsq.
14502 static void
14503 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst)
14505 phyint_t *phyint;
14506 phyint_t *next_phyint;
14509 * To change the ipsq of an ill, we need to hold the ill_g_lock as
14510 * writer and the ill_lock of the ill in question. Also the dest
14511 * ipsq can't vanish while we hold the ill_g_lock as writer.
14513 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14515 phyint = cur_ipsq->ipsq_phyint_list;
14516 cur_ipsq->ipsq_phyint_list = NULL;
14517 while (phyint != NULL) {
14518 next_phyint = phyint->phyint_ipsq_next;
14519 IPSQ_DEC_REF(cur_ipsq, ipst);
14520 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list;
14521 new_ipsq->ipsq_phyint_list = phyint;
14522 IPSQ_INC_REF(new_ipsq, ipst);
14523 phyint->phyint_ipsq = new_ipsq;
14524 phyint = next_phyint;
14528 #define SPLIT_SUCCESS 0
14529 #define SPLIT_NOT_NEEDED 1
14530 #define SPLIT_FAILED 2
14533 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry,
14534 ip_stack_t *ipst)
14536 ipsq_t *newipsq = NULL;
14539 * Assertions denote pre-requisites for changing the ipsq of
14540 * a phyint
14542 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14544 * <ill-phyint> assocs can't change while ill_g_lock
14545 * is held as writer. See ill_phyint_reinit()
14547 ASSERT(phyint->phyint_illv4 == NULL ||
14548 MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14549 ASSERT(phyint->phyint_illv6 == NULL ||
14550 MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14552 if ((phyint->phyint_groupname_len !=
14553 (strlen(cur_ipsq->ipsq_name) + 1) ||
14554 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name,
14555 phyint->phyint_groupname_len) != 0)) {
14557 * Once we fail in creating a new ipsq due to memory shortage,
14558 * don't attempt to create new ipsq again, based on another
14559 * phyint, since we want all phyints belonging to an IPMP group
14560 * to be in the same ipsq even in the event of mem alloc fails.
14562 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry,
14563 cur_ipsq, ipst);
14564 if (newipsq == NULL) {
14565 /* Memory allocation failure */
14566 return (SPLIT_FAILED);
14567 } else {
14568 /* ipsq_refs protected by ill_g_lock (writer) */
14569 IPSQ_DEC_REF(cur_ipsq, ipst);
14570 phyint->phyint_ipsq = newipsq;
14571 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list;
14572 newipsq->ipsq_phyint_list = phyint;
14573 IPSQ_INC_REF(newipsq, ipst);
14574 return (SPLIT_SUCCESS);
14577 return (SPLIT_NOT_NEEDED);
14581 * The ill locks of the phyint and the ill_g_lock (writer) must be held
14582 * to do this split
14584 static int
14585 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst)
14587 ipsq_t *newipsq;
14589 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14591 * <ill-phyint> assocs can't change while ill_g_lock
14592 * is held as writer. See ill_phyint_reinit()
14595 ASSERT(phyint->phyint_illv4 == NULL ||
14596 MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14597 ASSERT(phyint->phyint_illv6 == NULL ||
14598 MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14600 if (!ipsq_init((phyint->phyint_illv4 != NULL) ?
14601 phyint->phyint_illv4: phyint->phyint_illv6)) {
14603 * ipsq_init failed due to no memory
14604 * caller will use the same ipsq
14606 return (SPLIT_FAILED);
14609 /* ipsq_ref is protected by ill_g_lock (writer) */
14610 IPSQ_DEC_REF(cur_ipsq, ipst);
14613 * This is a new ipsq that is unknown to the world.
14614 * So we don't need to hold ipsq_lock,
14616 newipsq = phyint->phyint_ipsq;
14617 newipsq->ipsq_writer = NULL;
14618 newipsq->ipsq_reentry_cnt--;
14619 ASSERT(newipsq->ipsq_reentry_cnt == 0);
14620 #ifdef DEBUG
14621 newipsq->ipsq_depth = 0;
14622 #endif
14624 return (SPLIT_SUCCESS);
14628 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14629 * ipsq's representing their individual groups or themselves. Return
14630 * whether split needs to be retried again later.
14632 static boolean_t
14633 ill_split_ipsq(ipsq_t *cur_ipsq)
14635 phyint_t *phyint;
14636 phyint_t *next_phyint;
14637 int error;
14638 boolean_t need_retry = B_FALSE;
14639 ip_stack_t *ipst = cur_ipsq->ipsq_ipst;
14641 phyint = cur_ipsq->ipsq_phyint_list;
14642 cur_ipsq->ipsq_phyint_list = NULL;
14643 while (phyint != NULL) {
14644 next_phyint = phyint->phyint_ipsq_next;
14646 * 'created' will tell us whether the callee actually
14647 * created an ipsq. Lack of memory may force the callee
14648 * to return without creating an ipsq.
14650 if (phyint->phyint_groupname == NULL) {
14651 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst);
14652 } else {
14653 error = ill_split_to_grp_ipsq(phyint, cur_ipsq,
14654 need_retry, ipst);
14657 switch (error) {
14658 case SPLIT_FAILED:
14659 need_retry = B_TRUE;
14660 /* FALLTHRU */
14661 case SPLIT_NOT_NEEDED:
14663 * Keep it on the list.
14665 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list;
14666 cur_ipsq->ipsq_phyint_list = phyint;
14667 break;
14668 case SPLIT_SUCCESS:
14669 break;
14670 default:
14671 ASSERT(0);
14674 phyint = next_phyint;
14676 return (need_retry);
14680 * given an ipsq 'ipsq' lock all ills associated with this ipsq.
14681 * and return the ills in the list. This list will be
14682 * needed to unlock all the ills later on by the caller.
14683 * The <ill-ipsq> associations could change between the
14684 * lock and unlock. Hence the unlock can't traverse the
14685 * ipsq to get the list of ills.
14687 static int
14688 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max)
14690 int cnt = 0;
14691 phyint_t *phyint;
14692 ip_stack_t *ipst = ipsq->ipsq_ipst;
14695 * The caller holds ill_g_lock to ensure that the ill memberships
14696 * of the ipsq don't change
14698 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
14700 phyint = ipsq->ipsq_phyint_list;
14701 while (phyint != NULL) {
14702 if (phyint->phyint_illv4 != NULL) {
14703 ASSERT(cnt < list_max);
14704 list[cnt++] = phyint->phyint_illv4;
14706 if (phyint->phyint_illv6 != NULL) {
14707 ASSERT(cnt < list_max);
14708 list[cnt++] = phyint->phyint_illv6;
14710 phyint = phyint->phyint_ipsq_next;
14712 ill_lock_ills(list, cnt);
14713 return (cnt);
14716 void
14717 ill_lock_ills(ill_t **list, int cnt)
14719 int i;
14721 if (cnt > 1) {
14722 boolean_t try_again;
14723 do {
14724 try_again = B_FALSE;
14725 for (i = 0; i < cnt - 1; i++) {
14726 if (list[i] < list[i + 1]) {
14727 ill_t *tmp;
14729 /* swap the elements */
14730 tmp = list[i];
14731 list[i] = list[i + 1];
14732 list[i + 1] = tmp;
14733 try_again = B_TRUE;
14736 } while (try_again);
14739 for (i = 0; i < cnt; i++) {
14740 if (i == 0) {
14741 if (list[i] != NULL)
14742 mutex_enter(&list[i]->ill_lock);
14743 else
14744 return;
14745 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
14746 mutex_enter(&list[i]->ill_lock);
14751 void
14752 ill_unlock_ills(ill_t **list, int cnt)
14754 int i;
14756 for (i = 0; i < cnt; i++) {
14757 if ((i == 0) && (list[i] != NULL)) {
14758 mutex_exit(&list[i]->ill_lock);
14759 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
14760 mutex_exit(&list[i]->ill_lock);
14766 * Merge all the ills from 1 ipsq group into another ipsq group.
14767 * The source ipsq group is specified by the ipsq associated with
14768 * 'from_ill'. The destination ipsq group is specified by the ipsq
14769 * associated with 'to_ill' or 'groupname' respectively.
14770 * Note that ipsq itself does not have a reference count mechanism
14771 * and functions don't look up an ipsq and pass it around. Instead
14772 * functions pass around an ill or groupname, and the ipsq is looked
14773 * up from the ill or groupname and the required operation performed
14774 * atomically with the lookup on the ipsq.
14776 static int
14777 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp,
14778 queue_t *q)
14780 ipsq_t *old_ipsq;
14781 ipsq_t *new_ipsq;
14782 ill_t **ill_list;
14783 int cnt;
14784 size_t ill_list_size;
14785 boolean_t became_writer_on_new_sq = B_FALSE;
14786 ip_stack_t *ipst = from_ill->ill_ipst;
14788 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst);
14789 /* Exactly 1 of 'to_ill' and groupname can be specified. */
14790 ASSERT((to_ill != NULL) ^ (groupname != NULL));
14793 * Need to hold ill_g_lock as writer and also the ill_lock to
14794 * change the <ill-ipsq> assoc of an ill. Need to hold the
14795 * ipsq_lock to prevent new messages from landing on an ipsq.
14797 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14799 old_ipsq = from_ill->ill_phyint->phyint_ipsq;
14800 if (groupname != NULL)
14801 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst);
14802 else {
14803 new_ipsq = to_ill->ill_phyint->phyint_ipsq;
14806 ASSERT(old_ipsq != NULL && new_ipsq != NULL);
14809 * both groups are on the same ipsq.
14811 if (old_ipsq == new_ipsq) {
14812 rw_exit(&ipst->ips_ill_g_lock);
14813 return (0);
14816 cnt = old_ipsq->ipsq_refs << 1;
14817 ill_list_size = cnt * sizeof (ill_t *);
14818 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
14819 if (ill_list == NULL) {
14820 rw_exit(&ipst->ips_ill_g_lock);
14821 return (ENOMEM);
14823 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt);
14825 /* Need ipsq lock to enque messages on new ipsq or to become writer */
14826 mutex_enter(&new_ipsq->ipsq_lock);
14827 if ((new_ipsq->ipsq_writer == NULL &&
14828 new_ipsq->ipsq_current_ipif == NULL) ||
14829 (new_ipsq->ipsq_writer == curthread)) {
14830 new_ipsq->ipsq_writer = curthread;
14831 new_ipsq->ipsq_reentry_cnt++;
14832 became_writer_on_new_sq = B_TRUE;
14836 * We are holding ill_g_lock as writer and all the ill locks of
14837 * the old ipsq. So the old_ipsq can't be looked up, and hence no new
14838 * message can land up on the old ipsq even though we don't hold the
14839 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq.
14841 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q);
14844 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'.
14845 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq>
14846 * assocs. till we release the ill_g_lock, and hence it can't vanish.
14848 ill_merge_ipsq(old_ipsq, new_ipsq, ipst);
14851 * Mark the new ipsq as needing a split since it is currently
14852 * being shared by more than 1 IPMP group. The split will
14853 * occur at the end of ipsq_exit
14855 new_ipsq->ipsq_split = B_TRUE;
14857 /* Now release all the locks */
14858 mutex_exit(&new_ipsq->ipsq_lock);
14859 ill_unlock_ills(ill_list, cnt);
14860 rw_exit(&ipst->ips_ill_g_lock);
14862 kmem_free(ill_list, ill_list_size);
14865 * If we succeeded in becoming writer on the new ipsq, then
14866 * drain the new ipsq and start processing all enqueued messages
14867 * including the current ioctl we are processing which is either
14868 * a set groupname or failover/failback.
14870 if (became_writer_on_new_sq)
14871 ipsq_exit(new_ipsq, B_TRUE, B_TRUE);
14874 * syncq has been changed and all the messages have been moved.
14876 mutex_enter(&old_ipsq->ipsq_lock);
14877 old_ipsq->ipsq_current_ipif = NULL;
14878 old_ipsq->ipsq_current_ioctl = 0;
14879 mutex_exit(&old_ipsq->ipsq_lock);
14880 return (EINPROGRESS);
14884 * Delete and add the loopback copy and non-loopback copy of
14885 * the BROADCAST ire corresponding to ill and addr. Used to
14886 * group broadcast ires together when ill becomes part of
14887 * a group.
14889 * This function is also called when ill is leaving the group
14890 * so that the ires belonging to the group gets re-grouped.
14892 static void
14893 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr)
14895 ire_t *ire, *nire, *nire_next, *ire_head = NULL;
14896 ire_t **ire_ptpn = &ire_head;
14897 ip_stack_t *ipst = ill->ill_ipst;
14900 * The loopback and non-loopback IREs are inserted in the order in which
14901 * they're found, on the basis that they are correctly ordered (loopback
14902 * first).
14904 for (;;) {
14905 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
14906 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
14907 if (ire == NULL)
14908 break;
14911 * we are passing in KM_SLEEP because it is not easy to
14912 * go back to a sane state in case of memory failure.
14914 nire = kmem_cache_alloc(ire_cache, KM_SLEEP);
14915 ASSERT(nire != NULL);
14916 bzero(nire, sizeof (ire_t));
14918 * Don't use ire_max_frag directly since we don't
14919 * hold on to 'ire' until we add the new ire 'nire' and
14920 * we don't want the new ire to have a dangling reference
14921 * to 'ire'. The ire_max_frag of a broadcast ire must
14922 * be in sync with the ipif_mtu of the associate ipif.
14923 * For eg. this happens as a result of SIOCSLIFNAME,
14924 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by
14925 * the driver. A change in ire_max_frag triggered as
14926 * as a result of path mtu discovery, or due to an
14927 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a
14928 * route change -mtu command does not apply to broadcast ires.
14930 * XXX We need a recovery strategy here if ire_init fails
14932 if (ire_init(nire,
14933 (uchar_t *)&ire->ire_addr,
14934 (uchar_t *)&ire->ire_mask,
14935 (uchar_t *)&ire->ire_src_addr,
14936 (uchar_t *)&ire->ire_gateway_addr,
14937 ire->ire_stq == NULL ? &ip_loopback_mtu :
14938 &ire->ire_ipif->ipif_mtu,
14939 ire->ire_nce,
14940 ire->ire_rfq,
14941 ire->ire_stq,
14942 ire->ire_type,
14943 ire->ire_ipif,
14944 ire->ire_cmask,
14945 ire->ire_phandle,
14946 ire->ire_ihandle,
14947 ire->ire_flags,
14948 &ire->ire_uinfo,
14949 NULL,
14950 NULL,
14951 ipst) == NULL) {
14952 cmn_err(CE_PANIC, "ire_init() failed");
14954 ire_delete(ire);
14955 ire_refrele(ire);
14958 * The newly created IREs are inserted at the tail of the list
14959 * starting with ire_head. As we've just allocated them no one
14960 * knows about them so it's safe.
14962 *ire_ptpn = nire;
14963 ire_ptpn = &nire->ire_next;
14966 for (nire = ire_head; nire != NULL; nire = nire_next) {
14967 int error;
14968 ire_t *oire;
14969 /* unlink the IRE from our list before calling ire_add() */
14970 nire_next = nire->ire_next;
14971 nire->ire_next = NULL;
14973 /* ire_add adds the ire at the right place in the list */
14974 oire = nire;
14975 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE);
14976 ASSERT(error == 0);
14977 ASSERT(oire == nire);
14978 ire_refrele(nire); /* Held in ire_add */
14983 * This function is usually called when an ill is inserted in
14984 * a group and all the ipifs are already UP. As all the ipifs
14985 * are already UP, the broadcast ires have already been created
14986 * and been inserted. But, ire_add_v4 would not have grouped properly.
14987 * We need to re-group for the benefit of ip_wput_ire which
14988 * expects BROADCAST ires to be grouped properly to avoid sending
14989 * more than one copy of the broadcast packet per group.
14991 * NOTE : We don't check for ill_ipif_up_count to be non-zero here
14992 * because when ipif_up_done ends up calling this, ires have
14993 * already been added before illgrp_insert i.e before ill_group
14994 * has been initialized.
14996 static void
14997 ill_group_bcast_for_xmit(ill_t *ill)
14999 ill_group_t *illgrp;
15000 ipif_t *ipif;
15001 ipaddr_t addr;
15002 ipaddr_t net_mask;
15003 ipaddr_t subnet_netmask;
15005 illgrp = ill->ill_group;
15008 * This function is called even when an ill is deleted from
15009 * the group. Hence, illgrp could be null.
15011 if (illgrp != NULL && illgrp->illgrp_ill_count == 1)
15012 return;
15015 * Delete all the BROADCAST ires matching this ill and add
15016 * them back. This time, ire_add_v4 should take care of
15017 * grouping them with others because ill is part of the
15018 * group.
15020 ill_bcast_delete_and_add(ill, 0);
15021 ill_bcast_delete_and_add(ill, INADDR_BROADCAST);
15023 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15025 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15026 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15027 net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15028 } else {
15029 net_mask = htonl(IN_CLASSA_NET);
15031 addr = net_mask & ipif->ipif_subnet;
15032 ill_bcast_delete_and_add(ill, addr);
15033 ill_bcast_delete_and_add(ill, ~net_mask | addr);
15035 subnet_netmask = ipif->ipif_net_mask;
15036 addr = ipif->ipif_subnet;
15037 ill_bcast_delete_and_add(ill, addr);
15038 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr);
15043 * This function is called from illgrp_delete when ill is being deleted
15044 * from the group.
15046 * As ill is not there in the group anymore, any address belonging
15047 * to this ill should be cleared of IRE_MARK_NORECV.
15049 static void
15050 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr)
15052 ire_t *ire;
15053 irb_t *irb;
15054 ip_stack_t *ipst = ill->ill_ipst;
15056 ASSERT(ill->ill_group == NULL);
15058 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
15059 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
15061 if (ire != NULL) {
15063 * IPMP and plumbing operations are serialized on the ipsq, so
15064 * no one will insert or delete a broadcast ire under our feet.
15066 irb = ire->ire_bucket;
15067 rw_enter(&irb->irb_lock, RW_READER);
15068 ire_refrele(ire);
15070 for (; ire != NULL; ire = ire->ire_next) {
15071 if (ire->ire_addr != addr)
15072 break;
15073 if (ire_to_ill(ire) != ill)
15074 continue;
15076 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED));
15077 ire->ire_marks &= ~IRE_MARK_NORECV;
15079 rw_exit(&irb->irb_lock);
15084 * This function must be called only after the broadcast ires
15085 * have been grouped together. For a given address addr, nominate
15086 * only one of the ires whose interface is not FAILED or OFFLINE.
15088 * This is also called when an ipif goes down, so that we can nominate
15089 * a different ire with the same address for receiving.
15091 static void
15092 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst)
15094 irb_t *irb;
15095 ire_t *ire;
15096 ire_t *ire1;
15097 ire_t *save_ire;
15098 ire_t **irep = NULL;
15099 boolean_t first = B_TRUE;
15100 ire_t *clear_ire = NULL;
15101 ire_t *start_ire = NULL;
15102 ire_t *new_lb_ire;
15103 ire_t *new_nlb_ire;
15104 boolean_t new_lb_ire_used = B_FALSE;
15105 boolean_t new_nlb_ire_used = B_FALSE;
15106 uint64_t match_flags;
15107 uint64_t phyi_flags;
15108 boolean_t fallback = B_FALSE;
15109 uint_t max_frag;
15111 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES,
15112 NULL, MATCH_IRE_TYPE, ipst);
15114 * We may not be able to find some ires if a previous
15115 * ire_create failed. This happens when an ipif goes
15116 * down and we are unable to create BROADCAST ires due
15117 * to memory failure. Thus, we have to check for NULL
15118 * below. This should handle the case for LOOPBACK,
15119 * POINTOPOINT and interfaces with some POINTOPOINT
15120 * logicals for which there are no BROADCAST ires.
15122 if (ire == NULL)
15123 return;
15125 * Currently IRE_BROADCASTS are deleted when an ipif
15126 * goes down which runs exclusively. Thus, setting
15127 * IRE_MARK_RCVD should not race with ire_delete marking
15128 * IRE_MARK_CONDEMNED. We grab the lock below just to
15129 * be consistent with other parts of the code that walks
15130 * a given bucket.
15132 save_ire = ire;
15133 irb = ire->ire_bucket;
15134 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15135 if (new_lb_ire == NULL) {
15136 ire_refrele(ire);
15137 return;
15139 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15140 if (new_nlb_ire == NULL) {
15141 ire_refrele(ire);
15142 kmem_cache_free(ire_cache, new_lb_ire);
15143 return;
15145 IRB_REFHOLD(irb);
15146 rw_enter(&irb->irb_lock, RW_WRITER);
15148 * Get to the first ire matching the address and the
15149 * group. If the address does not match we are done
15150 * as we could not find the IRE. If the address matches
15151 * we should get to the first one matching the group.
15153 while (ire != NULL) {
15154 if (ire->ire_addr != addr ||
15155 ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15156 break;
15158 ire = ire->ire_next;
15160 match_flags = PHYI_FAILED | PHYI_INACTIVE;
15161 start_ire = ire;
15162 redo:
15163 while (ire != NULL && ire->ire_addr == addr &&
15164 ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15166 * The first ire for any address within a group
15167 * should always be the one with IRE_MARK_NORECV cleared
15168 * so that ip_wput_ire can avoid searching for one.
15169 * Note down the insertion point which will be used
15170 * later.
15172 if (first && (irep == NULL))
15173 irep = ire->ire_ptpn;
15175 * PHYI_FAILED is set when the interface fails.
15176 * This interface might have become good, but the
15177 * daemon has not yet detected. We should still
15178 * not receive on this. PHYI_OFFLINE should never
15179 * be picked as this has been offlined and soon
15180 * be removed.
15182 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags;
15183 if (phyi_flags & PHYI_OFFLINE) {
15184 ire->ire_marks |= IRE_MARK_NORECV;
15185 ire = ire->ire_next;
15186 continue;
15188 if (phyi_flags & match_flags) {
15189 ire->ire_marks |= IRE_MARK_NORECV;
15190 ire = ire->ire_next;
15191 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
15192 PHYI_INACTIVE) {
15193 fallback = B_TRUE;
15195 continue;
15197 if (first) {
15199 * We will move this to the front of the list later
15200 * on.
15202 clear_ire = ire;
15203 ire->ire_marks &= ~IRE_MARK_NORECV;
15204 } else {
15205 ire->ire_marks |= IRE_MARK_NORECV;
15207 first = B_FALSE;
15208 ire = ire->ire_next;
15211 * If we never nominated anybody, try nominating at least
15212 * an INACTIVE, if we found one. Do it only once though.
15214 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) &&
15215 fallback) {
15216 match_flags = PHYI_FAILED;
15217 ire = start_ire;
15218 irep = NULL;
15219 goto redo;
15221 ire_refrele(save_ire);
15224 * irep non-NULL indicates that we entered the while loop
15225 * above. If clear_ire is at the insertion point, we don't
15226 * have to do anything. clear_ire will be NULL if all the
15227 * interfaces are failed.
15229 * We cannot unlink and reinsert the ire at the right place
15230 * in the list since there can be other walkers of this bucket.
15231 * Instead we delete and recreate the ire
15233 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) {
15234 ire_t *clear_ire_stq = NULL;
15236 bzero(new_lb_ire, sizeof (ire_t));
15237 /* XXX We need a recovery strategy here. */
15238 if (ire_init(new_lb_ire,
15239 (uchar_t *)&clear_ire->ire_addr,
15240 (uchar_t *)&clear_ire->ire_mask,
15241 (uchar_t *)&clear_ire->ire_src_addr,
15242 (uchar_t *)&clear_ire->ire_gateway_addr,
15243 &clear_ire->ire_max_frag,
15244 NULL, /* let ire_nce_init derive the resolver info */
15245 clear_ire->ire_rfq,
15246 clear_ire->ire_stq,
15247 clear_ire->ire_type,
15248 clear_ire->ire_ipif,
15249 clear_ire->ire_cmask,
15250 clear_ire->ire_phandle,
15251 clear_ire->ire_ihandle,
15252 clear_ire->ire_flags,
15253 &clear_ire->ire_uinfo,
15254 NULL,
15255 NULL,
15256 ipst) == NULL)
15257 cmn_err(CE_PANIC, "ire_init() failed");
15258 if (clear_ire->ire_stq == NULL) {
15259 ire_t *ire_next = clear_ire->ire_next;
15260 if (ire_next != NULL &&
15261 ire_next->ire_stq != NULL &&
15262 ire_next->ire_addr == clear_ire->ire_addr &&
15263 ire_next->ire_ipif->ipif_ill ==
15264 clear_ire->ire_ipif->ipif_ill) {
15265 clear_ire_stq = ire_next;
15267 bzero(new_nlb_ire, sizeof (ire_t));
15268 /* XXX We need a recovery strategy here. */
15269 if (ire_init(new_nlb_ire,
15270 (uchar_t *)&clear_ire_stq->ire_addr,
15271 (uchar_t *)&clear_ire_stq->ire_mask,
15272 (uchar_t *)&clear_ire_stq->ire_src_addr,
15273 (uchar_t *)&clear_ire_stq->ire_gateway_addr,
15274 &clear_ire_stq->ire_max_frag,
15275 NULL,
15276 clear_ire_stq->ire_rfq,
15277 clear_ire_stq->ire_stq,
15278 clear_ire_stq->ire_type,
15279 clear_ire_stq->ire_ipif,
15280 clear_ire_stq->ire_cmask,
15281 clear_ire_stq->ire_phandle,
15282 clear_ire_stq->ire_ihandle,
15283 clear_ire_stq->ire_flags,
15284 &clear_ire_stq->ire_uinfo,
15285 NULL,
15286 NULL,
15287 ipst) == NULL)
15288 cmn_err(CE_PANIC, "ire_init() failed");
15293 * Delete the ire. We can't call ire_delete() since
15294 * we are holding the bucket lock. We can't release the
15295 * bucket lock since we can't allow irep to change. So just
15296 * mark it CONDEMNED. The IRB_REFRELE will delete the
15297 * ire from the list and do the refrele.
15299 clear_ire->ire_marks |= IRE_MARK_CONDEMNED;
15300 irb->irb_marks |= IRB_MARK_CONDEMNED;
15302 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) {
15303 nce_fastpath_list_delete(clear_ire_stq->ire_nce);
15304 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED;
15308 * Also take care of otherfields like ib/ob pkt count
15309 * etc. Need to dup them. ditto in ill_bcast_delete_and_add
15312 /* Set the max_frag before adding the ire */
15313 max_frag = *new_lb_ire->ire_max_fragp;
15314 new_lb_ire->ire_max_fragp = NULL;
15315 new_lb_ire->ire_max_frag = max_frag;
15317 /* Add the new ire's. Insert at *irep */
15318 new_lb_ire->ire_bucket = clear_ire->ire_bucket;
15319 ire1 = *irep;
15320 if (ire1 != NULL)
15321 ire1->ire_ptpn = &new_lb_ire->ire_next;
15322 new_lb_ire->ire_next = ire1;
15323 /* Link the new one in. */
15324 new_lb_ire->ire_ptpn = irep;
15325 membar_producer();
15326 *irep = new_lb_ire;
15327 new_lb_ire_used = B_TRUE;
15328 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
15329 new_lb_ire->ire_bucket->irb_ire_cnt++;
15330 new_lb_ire->ire_ipif->ipif_ire_cnt++;
15332 if (clear_ire_stq != NULL) {
15333 /* Set the max_frag before adding the ire */
15334 max_frag = *new_nlb_ire->ire_max_fragp;
15335 new_nlb_ire->ire_max_fragp = NULL;
15336 new_nlb_ire->ire_max_frag = max_frag;
15338 new_nlb_ire->ire_bucket = clear_ire->ire_bucket;
15339 irep = &new_lb_ire->ire_next;
15340 /* Add the new ire. Insert at *irep */
15341 ire1 = *irep;
15342 if (ire1 != NULL)
15343 ire1->ire_ptpn = &new_nlb_ire->ire_next;
15344 new_nlb_ire->ire_next = ire1;
15345 /* Link the new one in. */
15346 new_nlb_ire->ire_ptpn = irep;
15347 membar_producer();
15348 *irep = new_nlb_ire;
15349 new_nlb_ire_used = B_TRUE;
15350 BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
15351 ire_stats_inserted);
15352 new_nlb_ire->ire_bucket->irb_ire_cnt++;
15353 new_nlb_ire->ire_ipif->ipif_ire_cnt++;
15354 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++;
15357 rw_exit(&irb->irb_lock);
15358 if (!new_lb_ire_used)
15359 kmem_cache_free(ire_cache, new_lb_ire);
15360 if (!new_nlb_ire_used)
15361 kmem_cache_free(ire_cache, new_nlb_ire);
15362 IRB_REFRELE(irb);
15366 * Whenever an ipif goes down we have to renominate a different
15367 * broadcast ire to receive. Whenever an ipif comes up, we need
15368 * to make sure that we have only one nominated to receive.
15370 static void
15371 ipif_renominate_bcast(ipif_t *ipif)
15373 ill_t *ill = ipif->ipif_ill;
15374 ipaddr_t subnet_addr;
15375 ipaddr_t net_addr;
15376 ipaddr_t net_mask = 0;
15377 ipaddr_t subnet_netmask;
15378 ipaddr_t addr;
15379 ill_group_t *illgrp;
15380 ip_stack_t *ipst = ill->ill_ipst;
15382 illgrp = ill->ill_group;
15384 * If this is the last ipif going down, it might take
15385 * the ill out of the group. In that case ipif_down ->
15386 * illgrp_delete takes care of doing the nomination.
15387 * ipif_down does not call for this case.
15389 ASSERT(illgrp != NULL);
15391 /* There could not have been any ires associated with this */
15392 if (ipif->ipif_subnet == 0)
15393 return;
15395 ill_mark_bcast(illgrp, 0, ipst);
15396 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15398 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15399 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15400 net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15401 } else {
15402 net_mask = htonl(IN_CLASSA_NET);
15404 addr = net_mask & ipif->ipif_subnet;
15405 ill_mark_bcast(illgrp, addr, ipst);
15407 net_addr = ~net_mask | addr;
15408 ill_mark_bcast(illgrp, net_addr, ipst);
15410 subnet_netmask = ipif->ipif_net_mask;
15411 addr = ipif->ipif_subnet;
15412 ill_mark_bcast(illgrp, addr, ipst);
15414 subnet_addr = ~subnet_netmask | addr;
15415 ill_mark_bcast(illgrp, subnet_addr, ipst);
15419 * Whenever we form or delete ill groups, we need to nominate one set of
15420 * BROADCAST ires for receiving in the group.
15422 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires
15423 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert
15424 * for ill_ipif_up_count to be non-zero. This is the only case where
15425 * ill_ipif_up_count is zero and we would still find the ires.
15427 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one
15428 * ipif is UP and we just have to do the nomination.
15430 * 3) When ill_handoff_responsibility calls us, some ill has been removed
15431 * from the group. So, we have to do the nomination.
15433 * Because of (3), there could be just one ill in the group. But we have
15434 * to nominate still as IRE_MARK_NORCV may have been marked on this.
15435 * Thus, this function does not optimize when there is only one ill as
15436 * it is not correct for (3).
15438 static void
15439 ill_nominate_bcast_rcv(ill_group_t *illgrp)
15441 ill_t *ill;
15442 ipif_t *ipif;
15443 ipaddr_t subnet_addr;
15444 ipaddr_t prev_subnet_addr = 0;
15445 ipaddr_t net_addr;
15446 ipaddr_t prev_net_addr = 0;
15447 ipaddr_t net_mask = 0;
15448 ipaddr_t subnet_netmask;
15449 ipaddr_t addr;
15450 ip_stack_t *ipst;
15453 * When the last memeber is leaving, there is nothing to
15454 * nominate.
15456 if (illgrp->illgrp_ill_count == 0) {
15457 ASSERT(illgrp->illgrp_ill == NULL);
15458 return;
15461 ill = illgrp->illgrp_ill;
15462 ASSERT(!ill->ill_isv6);
15463 ipst = ill->ill_ipst;
15465 * We assume that ires with same address and belonging to the
15466 * same group, has been grouped together. Nominating a *single*
15467 * ill in the group for sending and receiving broadcast is done
15468 * by making sure that the first BROADCAST ire (which will be
15469 * the one returned by ire_ctable_lookup for ip_rput and the
15470 * one that will be used in ip_wput_ire) will be the one that
15471 * will not have IRE_MARK_NORECV set.
15473 * 1) ip_rput checks and discards packets received on ires marked
15474 * with IRE_MARK_NORECV. Thus, we don't send up duplicate
15475 * broadcast packets. We need to clear IRE_MARK_NORECV on the
15476 * first ire in the group for every broadcast address in the group.
15477 * ip_rput will accept packets only on the first ire i.e only
15478 * one copy of the ill.
15480 * 2) ip_wput_ire needs to send out just one copy of the broadcast
15481 * packet for the whole group. It needs to send out on the ill
15482 * whose ire has not been marked with IRE_MARK_NORECV. If it sends
15483 * on the one marked with IRE_MARK_NORECV, ip_rput will accept
15484 * the copy echoed back on other port where the ire is not marked
15485 * with IRE_MARK_NORECV.
15487 * Note that we just need to have the first IRE either loopback or
15488 * non-loopback (either of them may not exist if ire_create failed
15489 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will
15490 * always hit the first one and hence will always accept one copy.
15492 * We have a broadcast ire per ill for all the unique prefixes
15493 * hosted on that ill. As we don't have a way of knowing the
15494 * unique prefixes on a given ill and hence in the whole group,
15495 * we just call ill_mark_bcast on all the prefixes that exist
15496 * in the group. For the common case of one prefix, the code
15497 * below optimizes by remebering the last address used for
15498 * markng. In the case of multiple prefixes, this will still
15499 * optimize depending the order of prefixes.
15501 * The only unique address across the whole group is 0.0.0.0 and
15502 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables
15503 * the first ire in the bucket for receiving and disables the
15504 * others.
15506 ill_mark_bcast(illgrp, 0, ipst);
15507 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15508 for (; ill != NULL; ill = ill->ill_group_next) {
15510 for (ipif = ill->ill_ipif; ipif != NULL;
15511 ipif = ipif->ipif_next) {
15513 if (!(ipif->ipif_flags & IPIF_UP) ||
15514 ipif->ipif_subnet == 0) {
15515 continue;
15517 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15518 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15519 net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15520 } else {
15521 net_mask = htonl(IN_CLASSA_NET);
15523 addr = net_mask & ipif->ipif_subnet;
15524 if (prev_net_addr == 0 || prev_net_addr != addr) {
15525 ill_mark_bcast(illgrp, addr, ipst);
15526 net_addr = ~net_mask | addr;
15527 ill_mark_bcast(illgrp, net_addr, ipst);
15529 prev_net_addr = addr;
15531 subnet_netmask = ipif->ipif_net_mask;
15532 addr = ipif->ipif_subnet;
15533 if (prev_subnet_addr == 0 ||
15534 prev_subnet_addr != addr) {
15535 ill_mark_bcast(illgrp, addr, ipst);
15536 subnet_addr = ~subnet_netmask | addr;
15537 ill_mark_bcast(illgrp, subnet_addr, ipst);
15539 prev_subnet_addr = addr;
15545 * This function is called while forming ill groups.
15547 * Currently, we handle only allmulti groups. We want to join
15548 * allmulti on only one of the ills in the groups. In future,
15549 * when we have link aggregation, we may have to join normal
15550 * multicast groups on multiple ills as switch does inbound load
15551 * balancing. Following are the functions that calls this
15552 * function :
15554 * 1) ill_recover_multicast : Interface is coming back UP.
15555 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6
15556 * will call ill_recover_multicast to recover all the multicast
15557 * groups. We need to make sure that only one member is joined
15558 * in the ill group.
15560 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed.
15561 * Somebody is joining allmulti. We need to make sure that only one
15562 * member is joined in the group.
15564 * 3) illgrp_insert : If allmulti has already joined, we need to make
15565 * sure that only one member is joined in the group.
15567 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving
15568 * allmulti who we have nominated. We need to pick someother ill.
15570 * 5) illgrp_delete : The ill we nominated is leaving the group,
15571 * we need to pick a new ill to join the group.
15573 * For (1), (2), (5) - we just have to check whether there is
15574 * a good ill joined in the group. If we could not find any ills
15575 * joined the group, we should join.
15577 * For (4), the one that was nominated to receive, left the group.
15578 * There could be nobody joined in the group when this function is
15579 * called.
15581 * For (3) - we need to explicitly check whether there are multiple
15582 * ills joined in the group.
15584 * For simplicity, we don't differentiate any of the above cases. We
15585 * just leave the group if it is joined on any of them and join on
15586 * the first good ill.
15589 ill_nominate_mcast_rcv(ill_group_t *illgrp)
15591 ilm_t *ilm;
15592 ill_t *ill;
15593 ill_t *fallback_inactive_ill = NULL;
15594 ill_t *fallback_failed_ill = NULL;
15595 int ret = 0;
15598 * Leave the allmulti on all the ills and start fresh.
15600 for (ill = illgrp->illgrp_ill; ill != NULL;
15601 ill = ill->ill_group_next) {
15602 if (ill->ill_join_allmulti)
15603 (void) ip_leave_allmulti(ill->ill_ipif);
15607 * Choose a good ill. Fallback to inactive or failed if
15608 * none available. We need to fallback to FAILED in the
15609 * case where we have 2 interfaces in a group - where
15610 * one of them is failed and another is a good one and
15611 * the good one (not marked inactive) is leaving the group.
15613 ret = 0;
15614 for (ill = illgrp->illgrp_ill; ill != NULL;
15615 ill = ill->ill_group_next) {
15616 /* Never pick an offline interface */
15617 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE)
15618 continue;
15620 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) {
15621 fallback_failed_ill = ill;
15622 continue;
15624 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) {
15625 fallback_inactive_ill = ill;
15626 continue;
15628 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15629 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15630 ret = ip_join_allmulti(ill->ill_ipif);
15632 * ip_join_allmulti can fail because of memory
15633 * failures. So, make sure we join at least
15634 * on one ill.
15636 if (ill->ill_join_allmulti)
15637 return (0);
15641 if (ret != 0) {
15643 * If we tried nominating above and failed to do so,
15644 * return error. We might have tried multiple times.
15645 * But, return the latest error.
15647 return (ret);
15649 if ((ill = fallback_inactive_ill) != NULL) {
15650 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15651 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15652 ret = ip_join_allmulti(ill->ill_ipif);
15653 return (ret);
15656 } else if ((ill = fallback_failed_ill) != NULL) {
15657 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15658 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15659 ret = ip_join_allmulti(ill->ill_ipif);
15660 return (ret);
15664 return (0);
15668 * This function is called from illgrp_delete after it is
15669 * deleted from the group to reschedule responsibilities
15670 * to a different ill.
15672 static void
15673 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp)
15675 ilm_t *ilm;
15676 ipif_t *ipif;
15677 ipaddr_t subnet_addr;
15678 ipaddr_t net_addr;
15679 ipaddr_t net_mask = 0;
15680 ipaddr_t subnet_netmask;
15681 ipaddr_t addr;
15682 ip_stack_t *ipst = ill->ill_ipst;
15684 ASSERT(ill->ill_group == NULL);
15686 * Broadcast Responsibility:
15688 * 1. If this ill has been nominated for receiving broadcast
15689 * packets, we need to find a new one. Before we find a new
15690 * one, we need to re-group the ires that are part of this new
15691 * group (assumed by ill_nominate_bcast_rcv). We do this by
15692 * calling ill_group_bcast_for_xmit(ill) which will do the right
15693 * thing for us.
15695 * 2. If this ill was not nominated for receiving broadcast
15696 * packets, we need to clear the IRE_MARK_NORECV flag
15697 * so that we continue to send up broadcast packets.
15699 if (!ill->ill_isv6) {
15701 * Case 1 above : No optimization here. Just redo the
15702 * nomination.
15704 ill_group_bcast_for_xmit(ill);
15705 ill_nominate_bcast_rcv(illgrp);
15708 * Case 2 above : Lookup and clear IRE_MARK_NORECV.
15710 ill_clear_bcast_mark(ill, 0);
15711 ill_clear_bcast_mark(ill, INADDR_BROADCAST);
15713 for (ipif = ill->ill_ipif; ipif != NULL;
15714 ipif = ipif->ipif_next) {
15716 if (!(ipif->ipif_flags & IPIF_UP) ||
15717 ipif->ipif_subnet == 0) {
15718 continue;
15720 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15721 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15722 net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15723 } else {
15724 net_mask = htonl(IN_CLASSA_NET);
15726 addr = net_mask & ipif->ipif_subnet;
15727 ill_clear_bcast_mark(ill, addr);
15729 net_addr = ~net_mask | addr;
15730 ill_clear_bcast_mark(ill, net_addr);
15732 subnet_netmask = ipif->ipif_net_mask;
15733 addr = ipif->ipif_subnet;
15734 ill_clear_bcast_mark(ill, addr);
15736 subnet_addr = ~subnet_netmask | addr;
15737 ill_clear_bcast_mark(ill, subnet_addr);
15742 * Multicast Responsibility.
15744 * If we have joined allmulti on this one, find a new member
15745 * in the group to join allmulti. As this ill is already part
15746 * of allmulti, we don't have to join on this one.
15748 * If we have not joined allmulti on this one, there is no
15749 * responsibility to handoff. But we need to take new
15750 * responsibility i.e, join allmulti on this one if we need
15751 * to.
15753 if (ill->ill_join_allmulti) {
15754 (void) ill_nominate_mcast_rcv(illgrp);
15755 } else {
15756 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15757 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15758 (void) ip_join_allmulti(ill->ill_ipif);
15759 break;
15765 * We intentionally do the flushing of IRE_CACHES only matching
15766 * on the ill and not on groups. Note that we are already deleted
15767 * from the group.
15769 * This will make sure that all IRE_CACHES whose stq is pointing
15770 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get
15771 * deleted and IRE_CACHES that are not pointing at this ill will
15772 * be left alone.
15774 if (ill->ill_isv6) {
15775 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
15776 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
15777 } else {
15778 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
15779 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
15783 * Some conn may have cached one of the IREs deleted above. By removing
15784 * the ire reference, we clean up the extra reference to the ill held in
15785 * ire->ire_stq.
15787 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
15790 * Re-do source address selection for all the members in the
15791 * group, if they borrowed source address from one of the ipifs
15792 * in this ill.
15794 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15795 if (ill->ill_isv6) {
15796 ipif_update_other_ipifs_v6(ipif, illgrp);
15797 } else {
15798 ipif_update_other_ipifs(ipif, illgrp);
15804 * Delete the ill from the group. The caller makes sure that it is
15805 * in a group and it okay to delete from the group. So, we always
15806 * delete here.
15808 static void
15809 illgrp_delete(ill_t *ill)
15811 ill_group_t *illgrp;
15812 ill_group_t *tmpg;
15813 ill_t *tmp_ill;
15814 ip_stack_t *ipst = ill->ill_ipst;
15817 * Reset illgrp_ill_schednext if it was pointing at us.
15818 * We need to do this before we set ill_group to NULL.
15820 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15821 mutex_enter(&ill->ill_lock);
15823 illgrp_reset_schednext(ill);
15825 illgrp = ill->ill_group;
15827 /* Delete the ill from illgrp. */
15828 if (illgrp->illgrp_ill == ill) {
15829 illgrp->illgrp_ill = ill->ill_group_next;
15830 } else {
15831 tmp_ill = illgrp->illgrp_ill;
15832 while (tmp_ill->ill_group_next != ill) {
15833 tmp_ill = tmp_ill->ill_group_next;
15834 ASSERT(tmp_ill != NULL);
15836 tmp_ill->ill_group_next = ill->ill_group_next;
15838 ill->ill_group = NULL;
15839 ill->ill_group_next = NULL;
15841 illgrp->illgrp_ill_count--;
15842 mutex_exit(&ill->ill_lock);
15843 rw_exit(&ipst->ips_ill_g_lock);
15846 * As this ill is leaving the group, we need to hand off
15847 * the responsibilities to the other ills in the group, if
15848 * this ill had some responsibilities.
15851 ill_handoff_responsibility(ill, illgrp);
15853 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15855 if (illgrp->illgrp_ill_count == 0) {
15857 ASSERT(illgrp->illgrp_ill == NULL);
15858 if (ill->ill_isv6) {
15859 if (illgrp == ipst->ips_illgrp_head_v6) {
15860 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next;
15861 } else {
15862 tmpg = ipst->ips_illgrp_head_v6;
15863 while (tmpg->illgrp_next != illgrp) {
15864 tmpg = tmpg->illgrp_next;
15865 ASSERT(tmpg != NULL);
15867 tmpg->illgrp_next = illgrp->illgrp_next;
15869 } else {
15870 if (illgrp == ipst->ips_illgrp_head_v4) {
15871 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next;
15872 } else {
15873 tmpg = ipst->ips_illgrp_head_v4;
15874 while (tmpg->illgrp_next != illgrp) {
15875 tmpg = tmpg->illgrp_next;
15876 ASSERT(tmpg != NULL);
15878 tmpg->illgrp_next = illgrp->illgrp_next;
15881 mutex_destroy(&illgrp->illgrp_lock);
15882 mi_free(illgrp);
15884 rw_exit(&ipst->ips_ill_g_lock);
15887 * Even though the ill is out of the group its not necessary
15888 * to set ipsq_split as TRUE as the ipifs could be down temporarily
15889 * We will split the ipsq when phyint_groupname is set to NULL.
15893 * Send a routing sockets message if we are deleting from
15894 * groups with names.
15896 if (ill->ill_phyint->phyint_groupname_len != 0)
15897 ip_rts_ifmsg(ill->ill_ipif);
15901 * Re-do source address selection. This is normally called when
15902 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST
15903 * ipif comes up.
15905 void
15906 ill_update_source_selection(ill_t *ill)
15908 ipif_t *ipif;
15910 ASSERT(IAM_WRITER_ILL(ill));
15912 if (ill->ill_group != NULL)
15913 ill = ill->ill_group->illgrp_ill;
15915 for (; ill != NULL; ill = ill->ill_group_next) {
15916 for (ipif = ill->ill_ipif; ipif != NULL;
15917 ipif = ipif->ipif_next) {
15918 if (ill->ill_isv6)
15919 ipif_recreate_interface_routes_v6(NULL, ipif);
15920 else
15921 ipif_recreate_interface_routes(NULL, ipif);
15927 * Insert ill in a group headed by illgrp_head. The caller can either
15928 * pass a groupname in which case we search for a group with the
15929 * same name to insert in or pass a group to insert in. This function
15930 * would only search groups with names.
15932 * NOTE : The caller should make sure that there is at least one ipif
15933 * UP on this ill so that illgrp_scheduler can pick this ill
15934 * for outbound packets. If ill_ipif_up_count is zero, we have
15935 * already sent a DL_UNBIND to the driver and we don't want to
15936 * send anymore packets. We don't assert for ipif_up_count
15937 * to be greater than zero, because ipif_up_done wants to call
15938 * this function before bumping up the ipif_up_count. See
15939 * ipif_up_done() for details.
15942 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname,
15943 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up)
15945 ill_group_t *illgrp;
15946 ill_t *prev_ill;
15947 phyint_t *phyi;
15948 ip_stack_t *ipst = ill->ill_ipst;
15950 ASSERT(ill->ill_group == NULL);
15952 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15953 mutex_enter(&ill->ill_lock);
15955 if (groupname != NULL) {
15957 * Look for a group with a matching groupname to insert.
15959 for (illgrp = *illgrp_head; illgrp != NULL;
15960 illgrp = illgrp->illgrp_next) {
15962 ill_t *tmp_ill;
15965 * If we have an ill_group_t in the list which has
15966 * no ill_t assigned then we must be in the process of
15967 * removing this group. We skip this as illgrp_delete()
15968 * will remove it from the list.
15970 if ((tmp_ill = illgrp->illgrp_ill) == NULL) {
15971 ASSERT(illgrp->illgrp_ill_count == 0);
15972 continue;
15975 ASSERT(tmp_ill->ill_phyint != NULL);
15976 phyi = tmp_ill->ill_phyint;
15978 * Look at groups which has names only.
15980 if (phyi->phyint_groupname_len == 0)
15981 continue;
15983 * Names are stored in the phyint common to both
15984 * IPv4 and IPv6.
15986 if (mi_strcmp(phyi->phyint_groupname,
15987 groupname) == 0) {
15988 break;
15991 } else {
15993 * If the caller passes in a NULL "grp_to_insert", we
15994 * allocate one below and insert this singleton.
15996 illgrp = grp_to_insert;
15999 ill->ill_group_next = NULL;
16001 if (illgrp == NULL) {
16002 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t));
16003 if (illgrp == NULL) {
16004 return (ENOMEM);
16006 illgrp->illgrp_next = *illgrp_head;
16007 *illgrp_head = illgrp;
16008 illgrp->illgrp_ill = ill;
16009 illgrp->illgrp_ill_count = 1;
16010 ill->ill_group = illgrp;
16012 * Used in illgrp_scheduler to protect multiple threads
16013 * from traversing the list.
16015 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0);
16016 } else {
16017 ASSERT(ill->ill_net_type ==
16018 illgrp->illgrp_ill->ill_net_type);
16019 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type);
16021 /* Insert ill at tail of this group */
16022 prev_ill = illgrp->illgrp_ill;
16023 while (prev_ill->ill_group_next != NULL)
16024 prev_ill = prev_ill->ill_group_next;
16025 prev_ill->ill_group_next = ill;
16026 ill->ill_group = illgrp;
16027 illgrp->illgrp_ill_count++;
16029 * Inherit group properties. Currently only forwarding
16030 * is the property we try to keep the same with all the
16031 * ills. When there are more, we will abstract this into
16032 * a function.
16034 ill->ill_flags &= ~ILLF_ROUTER;
16035 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER);
16037 mutex_exit(&ill->ill_lock);
16038 rw_exit(&ipst->ips_ill_g_lock);
16041 * 1) When ipif_up_done() calls this function, ipif_up_count
16042 * may be zero as it has not yet been bumped. But the ires
16043 * have already been added. So, we do the nomination here
16044 * itself. But, when ip_sioctl_groupname calls this, it checks
16045 * for ill_ipif_up_count != 0. Thus we don't check for
16046 * ill_ipif_up_count here while nominating broadcast ires for
16047 * receive.
16049 * 2) Similarly, we need to call ill_group_bcast_for_xmit here
16050 * to group them properly as ire_add() has already happened
16051 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert
16052 * case, we need to do it here anyway.
16054 if (!ill->ill_isv6) {
16055 ill_group_bcast_for_xmit(ill);
16056 ill_nominate_bcast_rcv(illgrp);
16059 if (!ipif_is_coming_up) {
16061 * When ipif_up_done() calls this function, the multicast
16062 * groups have not been joined yet. So, there is no point in
16063 * nomination. ip_join_allmulti will handle groups when
16064 * ill_recover_multicast is called from ipif_up_done() later.
16066 (void) ill_nominate_mcast_rcv(illgrp);
16068 * ipif_up_done calls ill_update_source_selection
16069 * anyway. Moreover, we don't want to re-create
16070 * interface routes while ipif_up_done() still has reference
16071 * to them. Refer to ipif_up_done() for more details.
16073 ill_update_source_selection(ill);
16077 * Send a routing sockets message if we are inserting into
16078 * groups with names.
16080 if (groupname != NULL)
16081 ip_rts_ifmsg(ill->ill_ipif);
16082 return (0);
16086 * Return the first phyint matching the groupname. There could
16087 * be more than one when there are ill groups.
16089 * If 'usable' is set, then we exclude ones that are marked with any of
16090 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE).
16091 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo
16092 * emulation of ipmp.
16094 phyint_t *
16095 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst)
16097 phyint_t *phyi;
16099 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16101 * Group names are stored in the phyint - a common structure
16102 * to both IPv4 and IPv6.
16104 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16105 for (; phyi != NULL;
16106 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16107 phyi, AVL_AFTER)) {
16108 if (phyi->phyint_groupname_len == 0)
16109 continue;
16111 * Skip the ones that should not be used since the callers
16112 * sometime use this for sending packets.
16114 if (usable && (phyi->phyint_flags &
16115 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)))
16116 continue;
16118 ASSERT(phyi->phyint_groupname != NULL);
16119 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0)
16120 return (phyi);
16122 return (NULL);
16127 * Return the first usable phyint matching the group index. By 'usable'
16128 * we exclude ones that are marked ununsable with any of
16129 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE).
16131 * Used only for the ipmp/netinfo emulation of ipmp.
16133 phyint_t *
16134 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst)
16136 phyint_t *phyi;
16138 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16140 if (!ipst->ips_ipmp_hook_emulation)
16141 return (NULL);
16144 * Group indicies are stored in the phyint - a common structure
16145 * to both IPv4 and IPv6.
16147 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16148 for (; phyi != NULL;
16149 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16150 phyi, AVL_AFTER)) {
16151 /* Ignore the ones that do not have a group */
16152 if (phyi->phyint_groupname_len == 0)
16153 continue;
16155 ASSERT(phyi->phyint_group_ifindex != 0);
16157 * Skip the ones that should not be used since the callers
16158 * sometime use this for sending packets.
16160 if (phyi->phyint_flags &
16161 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))
16162 continue;
16163 if (phyi->phyint_group_ifindex == group_ifindex)
16164 return (phyi);
16166 return (NULL);
16171 * MT notes on creation and deletion of IPMP groups
16173 * Creation and deletion of IPMP groups introduce the need to merge or
16174 * split the associated serialization objects i.e the ipsq's. Normally all
16175 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled
16176 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during
16177 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There
16178 * is a need to change the <ill-ipsq> association and we have to operate on both
16179 * the source and destination IPMP groups. For eg. attempting to set the
16180 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to
16181 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the
16182 * source or destination IPMP group are mapped to a single ipsq for executing
16183 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's.
16184 * The <ill-ipsq> mapping is restored back to normal at a later point. This is
16185 * termed as a split of the ipsq. The converse of the merge i.e. a split of the
16186 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname
16187 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the
16188 * ipsq has to be examined for redoing the <ill-ipsq> associations.
16190 * In the above example the ioctl handling code locates the current ipsq of hme0
16191 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or
16192 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates
16193 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into
16194 * the destination ipsq. If the destination ipsq is not busy, it also enters
16195 * the destination ipsq exclusively. Now the actual groupname setting operation
16196 * can proceed. If the destination ipsq is busy, the operation is enqueued
16197 * on the destination (merged) ipsq and will be handled in the unwind from
16198 * ipsq_exit.
16200 * To prevent other threads accessing the ill while the group name change is
16201 * in progres, we bring down the ipifs which also removes the ill from the
16202 * group. The group is changed in phyint and when the first ipif on the ill
16203 * is brought up, the ill is inserted into the right IPMP group by
16204 * illgrp_insert.
16206 /* ARGSUSED */
16208 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16209 ip_ioctl_cmd_t *ipip, void *ifreq)
16211 int i;
16212 char *tmp;
16213 int namelen;
16214 ill_t *ill = ipif->ipif_ill;
16215 ill_t *ill_v4, *ill_v6;
16216 int err = 0;
16217 phyint_t *phyi;
16218 phyint_t *phyi_tmp;
16219 struct lifreq *lifr;
16220 mblk_t *mp1;
16221 char *groupname;
16222 ipsq_t *ipsq;
16223 ip_stack_t *ipst = ill->ill_ipst;
16225 ASSERT(IAM_WRITER_IPIF(ipif));
16227 /* Existance verified in ip_wput_nondata */
16228 mp1 = mp->b_cont->b_cont;
16229 lifr = (struct lifreq *)mp1->b_rptr;
16230 groupname = lifr->lifr_groupname;
16232 if (ipif->ipif_id != 0)
16233 return (EINVAL);
16235 phyi = ill->ill_phyint;
16236 ASSERT(phyi != NULL);
16238 if (phyi->phyint_flags & PHYI_VIRTUAL)
16239 return (EINVAL);
16241 tmp = groupname;
16242 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++)
16245 if (i == LIFNAMSIZ) {
16246 /* no null termination */
16247 return (EINVAL);
16251 * Calculate the namelen exclusive of the null
16252 * termination character.
16254 namelen = tmp - groupname;
16256 ill_v4 = phyi->phyint_illv4;
16257 ill_v6 = phyi->phyint_illv6;
16260 * ILL cannot be part of a usesrc group and and IPMP group at the
16261 * same time. No need to grab the ill_g_usesrc_lock here, see
16262 * synchronization notes in ip.c
16264 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
16265 return (EINVAL);
16269 * mark the ill as changing.
16270 * this should queue all new requests on the syncq.
16272 GRAB_ILL_LOCKS(ill_v4, ill_v6);
16274 if (ill_v4 != NULL)
16275 ill_v4->ill_state_flags |= ILL_CHANGING;
16276 if (ill_v6 != NULL)
16277 ill_v6->ill_state_flags |= ILL_CHANGING;
16278 RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16280 if (namelen == 0) {
16282 * Null string means remove this interface from the
16283 * existing group.
16285 if (phyi->phyint_groupname_len == 0) {
16287 * Never was in a group.
16289 err = 0;
16290 goto done;
16294 * IPv4 or IPv6 may be temporarily out of the group when all
16295 * the ipifs are down. Thus, we need to check for ill_group to
16296 * be non-NULL.
16298 if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
16299 ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16300 mutex_enter(&ill_v4->ill_lock);
16301 if (!ill_is_quiescent(ill_v4)) {
16303 * ipsq_pending_mp_add will not fail since
16304 * connp is NULL
16306 (void) ipsq_pending_mp_add(NULL,
16307 ill_v4->ill_ipif, q, mp, ILL_DOWN);
16308 mutex_exit(&ill_v4->ill_lock);
16309 err = EINPROGRESS;
16310 goto done;
16312 mutex_exit(&ill_v4->ill_lock);
16315 if (ill_v6 != NULL && ill_v6->ill_group != NULL) {
16316 ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16317 mutex_enter(&ill_v6->ill_lock);
16318 if (!ill_is_quiescent(ill_v6)) {
16319 (void) ipsq_pending_mp_add(NULL,
16320 ill_v6->ill_ipif, q, mp, ILL_DOWN);
16321 mutex_exit(&ill_v6->ill_lock);
16322 err = EINPROGRESS;
16323 goto done;
16325 mutex_exit(&ill_v6->ill_lock);
16328 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16329 GRAB_ILL_LOCKS(ill_v4, ill_v6);
16330 mutex_enter(&phyi->phyint_lock);
16331 ASSERT(phyi->phyint_groupname != NULL);
16332 mi_free(phyi->phyint_groupname);
16333 phyi->phyint_groupname = NULL;
16334 phyi->phyint_groupname_len = 0;
16336 /* Restore the ifindex used to be the per interface one */
16337 phyi->phyint_group_ifindex = 0;
16338 phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16339 mutex_exit(&phyi->phyint_lock);
16340 RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16341 rw_exit(&ipst->ips_ill_g_lock);
16342 err = ill_up_ipifs(ill, q, mp);
16345 * set the split flag so that the ipsq can be split
16347 mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16348 phyi->phyint_ipsq->ipsq_split = B_TRUE;
16349 mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16351 } else {
16352 if (phyi->phyint_groupname_len != 0) {
16353 ASSERT(phyi->phyint_groupname != NULL);
16354 /* Are we inserting in the same group ? */
16355 if (mi_strcmp(groupname,
16356 phyi->phyint_groupname) == 0) {
16357 err = 0;
16358 goto done;
16362 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16364 * Merge ipsq for the group's.
16365 * This check is here as multiple groups/ills might be
16366 * sharing the same ipsq.
16367 * If we have to merege than the operation is restarted
16368 * on the new ipsq.
16370 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst);
16371 if (phyi->phyint_ipsq != ipsq) {
16372 rw_exit(&ipst->ips_ill_g_lock);
16373 err = ill_merge_groups(ill, NULL, groupname, mp, q);
16374 goto done;
16377 * Running exclusive on new ipsq.
16380 ASSERT(ipsq != NULL);
16381 ASSERT(ipsq->ipsq_writer == curthread);
16384 * Check whether the ill_type and ill_net_type matches before
16385 * we allocate any memory so that the cleanup is easier.
16387 * We can't group dissimilar ones as we can't load spread
16388 * packets across the group because of potential link-level
16389 * header differences.
16391 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst);
16392 if (phyi_tmp != NULL) {
16393 if ((ill_v4 != NULL &&
16394 phyi_tmp->phyint_illv4 != NULL) &&
16395 ((ill_v4->ill_net_type !=
16396 phyi_tmp->phyint_illv4->ill_net_type) ||
16397 (ill_v4->ill_type !=
16398 phyi_tmp->phyint_illv4->ill_type))) {
16399 mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16400 phyi->phyint_ipsq->ipsq_split = B_TRUE;
16401 mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16402 rw_exit(&ipst->ips_ill_g_lock);
16403 return (EINVAL);
16405 if ((ill_v6 != NULL &&
16406 phyi_tmp->phyint_illv6 != NULL) &&
16407 ((ill_v6->ill_net_type !=
16408 phyi_tmp->phyint_illv6->ill_net_type) ||
16409 (ill_v6->ill_type !=
16410 phyi_tmp->phyint_illv6->ill_type))) {
16411 mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16412 phyi->phyint_ipsq->ipsq_split = B_TRUE;
16413 mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16414 rw_exit(&ipst->ips_ill_g_lock);
16415 return (EINVAL);
16419 rw_exit(&ipst->ips_ill_g_lock);
16422 * bring down all v4 ipifs.
16424 if (ill_v4 != NULL) {
16425 ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16429 * bring down all v6 ipifs.
16431 if (ill_v6 != NULL) {
16432 ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16436 * make sure all ipifs are down and there are no active
16437 * references. Call to ipsq_pending_mp_add will not fail
16438 * since connp is NULL.
16440 if (ill_v4 != NULL) {
16441 mutex_enter(&ill_v4->ill_lock);
16442 if (!ill_is_quiescent(ill_v4)) {
16443 (void) ipsq_pending_mp_add(NULL,
16444 ill_v4->ill_ipif, q, mp, ILL_DOWN);
16445 mutex_exit(&ill_v4->ill_lock);
16446 err = EINPROGRESS;
16447 goto done;
16449 mutex_exit(&ill_v4->ill_lock);
16452 if (ill_v6 != NULL) {
16453 mutex_enter(&ill_v6->ill_lock);
16454 if (!ill_is_quiescent(ill_v6)) {
16455 (void) ipsq_pending_mp_add(NULL,
16456 ill_v6->ill_ipif, q, mp, ILL_DOWN);
16457 mutex_exit(&ill_v6->ill_lock);
16458 err = EINPROGRESS;
16459 goto done;
16461 mutex_exit(&ill_v6->ill_lock);
16465 * allocate including space for null terminator
16466 * before we insert.
16468 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED);
16469 if (tmp == NULL)
16470 return (ENOMEM);
16472 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16473 GRAB_ILL_LOCKS(ill_v4, ill_v6);
16474 mutex_enter(&phyi->phyint_lock);
16475 if (phyi->phyint_groupname_len != 0) {
16476 ASSERT(phyi->phyint_groupname != NULL);
16477 mi_free(phyi->phyint_groupname);
16481 * setup the new group name.
16483 phyi->phyint_groupname = tmp;
16484 bcopy(groupname, phyi->phyint_groupname, namelen + 1);
16485 phyi->phyint_groupname_len = namelen + 1;
16487 if (ipst->ips_ipmp_hook_emulation) {
16489 * If the group already exists we use the existing
16490 * group_ifindex, otherwise we pick a new index here.
16492 if (phyi_tmp != NULL) {
16493 phyi->phyint_group_ifindex =
16494 phyi_tmp->phyint_group_ifindex;
16495 } else {
16496 /* XXX We need a recovery strategy here. */
16497 if (!ip_assign_ifindex(
16498 &phyi->phyint_group_ifindex, ipst))
16499 cmn_err(CE_PANIC,
16500 "ip_assign_ifindex() failed");
16504 * Select whether the netinfo and hook use the per-interface
16505 * or per-group ifindex.
16507 if (ipst->ips_ipmp_hook_emulation)
16508 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex;
16509 else
16510 phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16512 if (ipst->ips_ipmp_hook_emulation &&
16513 phyi_tmp != NULL) {
16514 /* First phyint in group - group PLUMB event */
16515 ill_nic_info_plumb(ill, B_TRUE);
16517 mutex_exit(&phyi->phyint_lock);
16518 RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16519 rw_exit(&ipst->ips_ill_g_lock);
16521 err = ill_up_ipifs(ill, q, mp);
16524 done:
16526 * normally ILL_CHANGING is cleared in ill_up_ipifs.
16528 if (err != EINPROGRESS) {
16529 GRAB_ILL_LOCKS(ill_v4, ill_v6);
16530 if (ill_v4 != NULL)
16531 ill_v4->ill_state_flags &= ~ILL_CHANGING;
16532 if (ill_v6 != NULL)
16533 ill_v6->ill_state_flags &= ~ILL_CHANGING;
16534 RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16536 return (err);
16539 /* ARGSUSED */
16541 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
16542 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
16544 ill_t *ill;
16545 phyint_t *phyi;
16546 struct lifreq *lifr;
16547 mblk_t *mp1;
16549 /* Existence verified in ip_wput_nondata */
16550 mp1 = mp->b_cont->b_cont;
16551 lifr = (struct lifreq *)mp1->b_rptr;
16552 ill = ipif->ipif_ill;
16553 phyi = ill->ill_phyint;
16555 lifr->lifr_groupname[0] = '\0';
16557 * ill_group may be null if all the interfaces
16558 * are down. But still, the phyint should always
16559 * hold the name.
16561 if (phyi->phyint_groupname_len != 0) {
16562 bcopy(phyi->phyint_groupname, lifr->lifr_groupname,
16563 phyi->phyint_groupname_len);
16566 return (0);
16570 typedef struct conn_move_s {
16571 ill_t *cm_from_ill;
16572 ill_t *cm_to_ill;
16573 int cm_ifindex;
16574 } conn_move_t;
16577 * ipcl_walk function for moving conn_multicast_ill for a given ill.
16579 static void
16580 conn_move(conn_t *connp, caddr_t arg)
16582 conn_move_t *connm;
16583 int ifindex;
16584 int i;
16585 ill_t *from_ill;
16586 ill_t *to_ill;
16587 ilg_t *ilg;
16588 ilm_t *ret_ilm;
16590 connm = (conn_move_t *)arg;
16591 ifindex = connm->cm_ifindex;
16592 from_ill = connm->cm_from_ill;
16593 to_ill = connm->cm_to_ill;
16595 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */
16597 /* All multicast fields protected by conn_lock */
16598 mutex_enter(&connp->conn_lock);
16599 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
16600 if ((connp->conn_outgoing_ill == from_ill) &&
16601 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) {
16602 connp->conn_outgoing_ill = to_ill;
16603 connp->conn_incoming_ill = to_ill;
16606 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */
16608 if ((connp->conn_multicast_ill == from_ill) &&
16609 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) {
16610 connp->conn_multicast_ill = connm->cm_to_ill;
16613 /* Change IP_XMIT_IF associations */
16614 if ((connp->conn_xmit_if_ill == from_ill) &&
16615 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) {
16616 connp->conn_xmit_if_ill = to_ill;
16619 * Change the ilg_ill to point to the new one. This assumes
16620 * ilm_move_v6 has moved the ilms to new_ill and the driver
16621 * has been told to receive packets on this interface.
16622 * ilm_move_v6 FAILBACKS all the ilms successfully always.
16623 * But when doing a FAILOVER, it might fail with ENOMEM and so
16624 * some ilms may not have moved. We check to see whether
16625 * the ilms have moved to to_ill. We can't check on from_ill
16626 * as in the process of moving, we could have split an ilm
16627 * in to two - which has the same orig_ifindex and v6group.
16629 * For IPv4, ilg_ipif moves implicitly. The code below really
16630 * does not do anything for IPv4 as ilg_ill is NULL for IPv4.
16632 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
16633 ilg = &connp->conn_ilg[i];
16634 if ((ilg->ilg_ill == from_ill) &&
16635 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) {
16636 /* ifindex != 0 indicates failback */
16637 if (ifindex != 0) {
16638 connp->conn_ilg[i].ilg_ill = to_ill;
16639 continue;
16642 ret_ilm = ilm_lookup_ill_index_v6(to_ill,
16643 &ilg->ilg_v6group, ilg->ilg_orig_ifindex,
16644 connp->conn_zoneid);
16646 if (ret_ilm != NULL)
16647 connp->conn_ilg[i].ilg_ill = to_ill;
16650 mutex_exit(&connp->conn_lock);
16653 static void
16654 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex)
16656 conn_move_t connm;
16657 ip_stack_t *ipst = from_ill->ill_ipst;
16659 connm.cm_from_ill = from_ill;
16660 connm.cm_to_ill = to_ill;
16661 connm.cm_ifindex = ifindex;
16663 ipcl_walk(conn_move, (caddr_t)&connm, ipst);
16667 * ilm has been moved from from_ill to to_ill.
16668 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill.
16669 * appropriately.
16671 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because
16672 * the code there de-references ipif_ill to get the ill to
16673 * send multicast requests. It does not work as ipif is on its
16674 * move and already moved when this function is called.
16675 * Thus, we need to use from_ill and to_ill send down multicast
16676 * requests.
16678 static void
16679 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill)
16681 ipif_t *ipif;
16682 ilm_t *ilm;
16685 * See whether we need to send down DL_ENABMULTI_REQ on
16686 * to_ill as ilm has just been added.
16688 ASSERT(IAM_WRITER_ILL(to_ill));
16689 ASSERT(IAM_WRITER_ILL(from_ill));
16691 ILM_WALKER_HOLD(to_ill);
16692 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
16694 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED))
16695 continue;
16697 * no locks held, ill/ipif cannot dissappear as long
16698 * as we are writer.
16700 ipif = to_ill->ill_ipif;
16702 * No need to hold any lock as we are the writer and this
16703 * can only be changed by a writer.
16705 ilm->ilm_is_new = B_FALSE;
16707 if (to_ill->ill_net_type != IRE_IF_RESOLVER ||
16708 ipif->ipif_flags & IPIF_POINTOPOINT) {
16709 ip1dbg(("ilm_send_multicast_reqs: to_ill not "
16710 "resolver\n"));
16711 continue; /* Must be IRE_IF_NORESOLVER */
16715 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
16716 ip1dbg(("ilm_send_multicast_reqs: "
16717 "to_ill MULTI_BCAST\n"));
16718 goto from;
16721 if (to_ill->ill_isv6)
16722 mld_joingroup(ilm);
16723 else
16724 igmp_joingroup(ilm);
16726 if (to_ill->ill_ipif_up_count == 0) {
16728 * Nobody there. All multicast addresses will be
16729 * re-joined when we get the DL_BIND_ACK bringing the
16730 * interface up.
16732 ilm->ilm_notify_driver = B_FALSE;
16733 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n"));
16734 goto from;
16738 * For allmulti address, we want to join on only one interface.
16739 * Checking for ilm_numentries_v6 is not correct as you may
16740 * find an ilm with zero address on to_ill, but we may not
16741 * have nominated to_ill for receiving. Thus, if we have
16742 * nominated from_ill (ill_join_allmulti is set), nominate
16743 * only if to_ill is not already nominated (to_ill normally
16744 * should not have been nominated if "from_ill" has already
16745 * been nominated. As we don't prevent failovers from happening
16746 * across groups, we don't assert).
16748 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16750 * There is no need to hold ill locks as we are
16751 * writer on both ills and when ill_join_allmulti
16752 * is changed the thread is always a writer.
16754 if (from_ill->ill_join_allmulti &&
16755 !to_ill->ill_join_allmulti) {
16756 (void) ip_join_allmulti(to_ill->ill_ipif);
16758 } else if (ilm->ilm_notify_driver) {
16761 * This is a newly moved ilm so we need to tell the
16762 * driver about the new group. There can be more than
16763 * one ilm's for the same group in the list each with a
16764 * different orig_ifindex. We have to inform the driver
16765 * once. In ilm_move_v[4,6] we only set the flag
16766 * ilm_notify_driver for the first ilm.
16769 (void) ip_ll_send_enabmulti_req(to_ill,
16770 &ilm->ilm_v6addr);
16773 ilm->ilm_notify_driver = B_FALSE;
16776 * See whether we need to send down DL_DISABMULTI_REQ on
16777 * from_ill as ilm has just been removed.
16779 from:
16780 ipif = from_ill->ill_ipif;
16781 if (from_ill->ill_net_type != IRE_IF_RESOLVER ||
16782 ipif->ipif_flags & IPIF_POINTOPOINT) {
16783 ip1dbg(("ilm_send_multicast_reqs: "
16784 "from_ill not resolver\n"));
16785 continue; /* Must be IRE_IF_NORESOLVER */
16788 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
16789 ip1dbg(("ilm_send_multicast_reqs: "
16790 "from_ill MULTI_BCAST\n"));
16791 continue;
16794 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16795 if (from_ill->ill_join_allmulti)
16796 (void) ip_leave_allmulti(from_ill->ill_ipif);
16797 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) {
16798 (void) ip_ll_send_disabmulti_req(from_ill,
16799 &ilm->ilm_v6addr);
16802 ILM_WALKER_RELE(to_ill);
16806 * This function is called when all multicast memberships needs
16807 * to be moved from "from_ill" to "to_ill" for IPv6. This function is
16808 * called only once unlike the IPv4 counterpart where it is called after
16809 * every logical interface is moved. The reason is due to multicast
16810 * memberships are joined using an interface address in IPv4 while in
16811 * IPv6, interface index is used.
16813 static void
16814 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex)
16816 ilm_t *ilm;
16817 ilm_t *ilm_next;
16818 ilm_t *new_ilm;
16819 ilm_t **ilmp;
16820 int count;
16821 char buf[INET6_ADDRSTRLEN];
16822 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast;
16823 ip_stack_t *ipst = from_ill->ill_ipst;
16825 ASSERT(MUTEX_HELD(&to_ill->ill_lock));
16826 ASSERT(MUTEX_HELD(&from_ill->ill_lock));
16827 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
16829 if (ifindex == 0) {
16831 * Form the solicited node mcast address which is used later.
16833 ipif_t *ipif;
16835 ipif = from_ill->ill_ipif;
16836 ASSERT(ipif->ipif_id == 0);
16838 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
16841 ilmp = &from_ill->ill_ilm;
16842 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
16843 ilm_next = ilm->ilm_next;
16845 if (ilm->ilm_flags & ILM_DELETED) {
16846 ilmp = &ilm->ilm_next;
16847 continue;
16850 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr,
16851 ilm->ilm_orig_ifindex, ilm->ilm_zoneid);
16852 ASSERT(ilm->ilm_orig_ifindex != 0);
16853 if (ilm->ilm_orig_ifindex == ifindex) {
16855 * We are failing back multicast memberships.
16856 * If the same ilm exists in to_ill, it means somebody
16857 * has joined the same group there e.g. ff02::1
16858 * is joined within the kernel when the interfaces
16859 * came UP.
16861 ASSERT(ilm->ilm_ipif == NULL);
16862 if (new_ilm != NULL) {
16863 new_ilm->ilm_refcnt += ilm->ilm_refcnt;
16864 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
16865 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
16866 new_ilm->ilm_is_new = B_TRUE;
16868 } else {
16870 * check if we can just move the ilm
16872 if (from_ill->ill_ilm_walker_cnt != 0) {
16874 * We have walkers we cannot move
16875 * the ilm, so allocate a new ilm,
16876 * this (old) ilm will be marked
16877 * ILM_DELETED at the end of the loop
16878 * and will be freed when the
16879 * last walker exits.
16881 new_ilm = (ilm_t *)mi_zalloc
16882 (sizeof (ilm_t));
16883 if (new_ilm == NULL) {
16884 ip0dbg(("ilm_move_v6: "
16885 "FAILBACK of IPv6"
16886 " multicast address %s : "
16887 "from %s to"
16888 " %s failed : ENOMEM \n",
16889 inet_ntop(AF_INET6,
16890 &ilm->ilm_v6addr, buf,
16891 sizeof (buf)),
16892 from_ill->ill_name,
16893 to_ill->ill_name));
16895 ilmp = &ilm->ilm_next;
16896 continue;
16898 *new_ilm = *ilm;
16900 * we don't want new_ilm linked to
16901 * ilm's filter list.
16903 new_ilm->ilm_filter = NULL;
16904 } else {
16906 * No walkers we can move the ilm.
16907 * lets take it out of the list.
16909 *ilmp = ilm->ilm_next;
16910 ilm->ilm_next = NULL;
16911 new_ilm = ilm;
16915 * if this is the first ilm for the group
16916 * set ilm_notify_driver so that we notify the
16917 * driver in ilm_send_multicast_reqs.
16919 if (ilm_lookup_ill_v6(to_ill,
16920 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
16921 new_ilm->ilm_notify_driver = B_TRUE;
16923 new_ilm->ilm_ill = to_ill;
16924 /* Add to the to_ill's list */
16925 new_ilm->ilm_next = to_ill->ill_ilm;
16926 to_ill->ill_ilm = new_ilm;
16928 * set the flag so that mld_joingroup is
16929 * called in ilm_send_multicast_reqs().
16931 new_ilm->ilm_is_new = B_TRUE;
16933 goto bottom;
16934 } else if (ifindex != 0) {
16936 * If this is FAILBACK (ifindex != 0) and the ifindex
16937 * has not matched above, look at the next ilm.
16939 ilmp = &ilm->ilm_next;
16940 continue;
16943 * If we are here, it means ifindex is 0. Failover
16944 * everything.
16946 * We need to handle solicited node mcast address
16947 * and all_nodes mcast address differently as they
16948 * are joined witin the kenrel (ipif_multicast_up)
16949 * and potentially from the userland. We are called
16950 * after the ipifs of from_ill has been moved.
16951 * If we still find ilms on ill with solicited node
16952 * mcast address or all_nodes mcast address, it must
16953 * belong to the UP interface that has not moved e.g.
16954 * ipif_id 0 with the link local prefix does not move.
16955 * We join this on the new ill accounting for all the
16956 * userland memberships so that applications don't
16957 * see any failure.
16959 * We need to make sure that we account only for the
16960 * solicited node and all node multicast addresses
16961 * that was brought UP on these. In the case of
16962 * a failover from A to B, we might have ilms belonging
16963 * to A (ilm_orig_ifindex pointing at A) on B accounting
16964 * for the membership from the userland. If we are failing
16965 * over from B to C now, we will find the ones belonging
16966 * to A on B. These don't account for the ill_ipif_up_count.
16967 * They just move from B to C. The check below on
16968 * ilm_orig_ifindex ensures that.
16970 if ((ilm->ilm_orig_ifindex ==
16971 from_ill->ill_phyint->phyint_ifindex) &&
16972 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) ||
16973 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast,
16974 &ilm->ilm_v6addr))) {
16975 ASSERT(ilm->ilm_refcnt > 0);
16976 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count;
16978 * For indentation reasons, we are not using a
16979 * "else" here.
16981 if (count == 0) {
16982 ilmp = &ilm->ilm_next;
16983 continue;
16985 ilm->ilm_refcnt -= count;
16986 if (new_ilm != NULL) {
16988 * Can find one with the same
16989 * ilm_orig_ifindex, if we are failing
16990 * over to a STANDBY. This happens
16991 * when somebody wants to join a group
16992 * on a STANDBY interface and we
16993 * internally join on a different one.
16994 * If we had joined on from_ill then, a
16995 * failover now will find a new ilm
16996 * with this index.
16998 ip1dbg(("ilm_move_v6: FAILOVER, found"
16999 " new ilm on %s, group address %s\n",
17000 to_ill->ill_name,
17001 inet_ntop(AF_INET6,
17002 &ilm->ilm_v6addr, buf,
17003 sizeof (buf))));
17004 new_ilm->ilm_refcnt += count;
17005 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17006 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17007 new_ilm->ilm_is_new = B_TRUE;
17009 } else {
17010 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17011 if (new_ilm == NULL) {
17012 ip0dbg(("ilm_move_v6: FAILOVER of IPv6"
17013 " multicast address %s : from %s to"
17014 " %s failed : ENOMEM \n",
17015 inet_ntop(AF_INET6,
17016 &ilm->ilm_v6addr, buf,
17017 sizeof (buf)), from_ill->ill_name,
17018 to_ill->ill_name));
17019 ilmp = &ilm->ilm_next;
17020 continue;
17022 *new_ilm = *ilm;
17023 new_ilm->ilm_filter = NULL;
17024 new_ilm->ilm_refcnt = count;
17025 new_ilm->ilm_timer = INFINITY;
17026 new_ilm->ilm_rtx.rtx_timer = INFINITY;
17027 new_ilm->ilm_is_new = B_TRUE;
17029 * If the to_ill has not joined this
17030 * group we need to tell the driver in
17031 * ill_send_multicast_reqs.
17033 if (ilm_lookup_ill_v6(to_ill,
17034 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17035 new_ilm->ilm_notify_driver = B_TRUE;
17037 new_ilm->ilm_ill = to_ill;
17038 /* Add to the to_ill's list */
17039 new_ilm->ilm_next = to_ill->ill_ilm;
17040 to_ill->ill_ilm = new_ilm;
17041 ASSERT(new_ilm->ilm_ipif == NULL);
17043 if (ilm->ilm_refcnt == 0) {
17044 goto bottom;
17045 } else {
17046 new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17047 CLEAR_SLIST(new_ilm->ilm_filter);
17048 ilmp = &ilm->ilm_next;
17050 continue;
17051 } else {
17053 * ifindex = 0 means, move everything pointing at
17054 * from_ill. We are doing this becuase ill has
17055 * either FAILED or became INACTIVE.
17057 * As we would like to move things later back to
17058 * from_ill, we want to retain the identity of this
17059 * ilm. Thus, we don't blindly increment the reference
17060 * count on the ilms matching the address alone. We
17061 * need to match on the ilm_orig_index also. new_ilm
17062 * was obtained by matching ilm_orig_index also.
17064 if (new_ilm != NULL) {
17066 * This is possible only if a previous restore
17067 * was incomplete i.e restore to
17068 * ilm_orig_ifindex left some ilms because
17069 * of some failures. Thus when we are failing
17070 * again, we might find our old friends there.
17072 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm"
17073 " on %s, group address %s\n",
17074 to_ill->ill_name,
17075 inet_ntop(AF_INET6,
17076 &ilm->ilm_v6addr, buf,
17077 sizeof (buf))));
17078 new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17079 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17080 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17081 new_ilm->ilm_is_new = B_TRUE;
17083 } else {
17084 if (from_ill->ill_ilm_walker_cnt != 0) {
17085 new_ilm = (ilm_t *)
17086 mi_zalloc(sizeof (ilm_t));
17087 if (new_ilm == NULL) {
17088 ip0dbg(("ilm_move_v6: "
17089 "FAILOVER of IPv6"
17090 " multicast address %s : "
17091 "from %s to"
17092 " %s failed : ENOMEM \n",
17093 inet_ntop(AF_INET6,
17094 &ilm->ilm_v6addr, buf,
17095 sizeof (buf)),
17096 from_ill->ill_name,
17097 to_ill->ill_name));
17099 ilmp = &ilm->ilm_next;
17100 continue;
17102 *new_ilm = *ilm;
17103 new_ilm->ilm_filter = NULL;
17104 } else {
17105 *ilmp = ilm->ilm_next;
17106 new_ilm = ilm;
17109 * If the to_ill has not joined this
17110 * group we need to tell the driver in
17111 * ill_send_multicast_reqs.
17113 if (ilm_lookup_ill_v6(to_ill,
17114 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17115 new_ilm->ilm_notify_driver = B_TRUE;
17117 /* Add to the to_ill's list */
17118 new_ilm->ilm_next = to_ill->ill_ilm;
17119 to_ill->ill_ilm = new_ilm;
17120 ASSERT(ilm->ilm_ipif == NULL);
17121 new_ilm->ilm_ill = to_ill;
17122 new_ilm->ilm_is_new = B_TRUE;
17127 bottom:
17129 * Revert multicast filter state to (EXCLUDE, NULL).
17130 * new_ilm->ilm_is_new should already be set if needed.
17132 new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17133 CLEAR_SLIST(new_ilm->ilm_filter);
17135 * We allocated/got a new ilm, free the old one.
17137 if (new_ilm != ilm) {
17138 if (from_ill->ill_ilm_walker_cnt == 0) {
17139 *ilmp = ilm->ilm_next;
17140 ilm->ilm_next = NULL;
17141 FREE_SLIST(ilm->ilm_filter);
17142 FREE_SLIST(ilm->ilm_pendsrcs);
17143 FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17144 FREE_SLIST(ilm->ilm_rtx.rtx_block);
17145 mi_free((char *)ilm);
17146 } else {
17147 ilm->ilm_flags |= ILM_DELETED;
17148 from_ill->ill_ilm_cleanup_reqd = 1;
17149 ilmp = &ilm->ilm_next;
17156 * Move all the multicast memberships to to_ill. Called when
17157 * an ipif moves from "from_ill" to "to_ill". This function is slightly
17158 * different from IPv6 counterpart as multicast memberships are associated
17159 * with ills in IPv6. This function is called after every ipif is moved
17160 * unlike IPv6, where it is moved only once.
17162 static void
17163 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif)
17165 ilm_t *ilm;
17166 ilm_t *ilm_next;
17167 ilm_t *new_ilm;
17168 ilm_t **ilmp;
17169 ip_stack_t *ipst = from_ill->ill_ipst;
17171 ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17172 ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17173 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17175 ilmp = &from_ill->ill_ilm;
17176 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
17177 ilm_next = ilm->ilm_next;
17179 if (ilm->ilm_flags & ILM_DELETED) {
17180 ilmp = &ilm->ilm_next;
17181 continue;
17184 ASSERT(ilm->ilm_ipif != NULL);
17186 if (ilm->ilm_ipif != ipif) {
17187 ilmp = &ilm->ilm_next;
17188 continue;
17191 if (V4_PART_OF_V6(ilm->ilm_v6addr) ==
17192 htonl(INADDR_ALLHOSTS_GROUP)) {
17193 new_ilm = ilm_lookup_ipif(ipif,
17194 V4_PART_OF_V6(ilm->ilm_v6addr));
17195 if (new_ilm != NULL) {
17196 new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17198 * We still need to deal with the from_ill.
17200 new_ilm->ilm_is_new = B_TRUE;
17201 new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17202 CLEAR_SLIST(new_ilm->ilm_filter);
17203 goto delete_ilm;
17206 * If we could not find one e.g. ipif is
17207 * still down on to_ill, we add this ilm
17208 * on ill_new to preserve the reference
17209 * count.
17213 * When ipifs move, ilms always move with it
17214 * to the NEW ill. Thus we should never be
17215 * able to find ilm till we really move it here.
17217 ASSERT(ilm_lookup_ipif(ipif,
17218 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL);
17220 if (from_ill->ill_ilm_walker_cnt != 0) {
17221 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17222 if (new_ilm == NULL) {
17223 char buf[INET6_ADDRSTRLEN];
17224 ip0dbg(("ilm_move_v4: FAILBACK of IPv4"
17225 " multicast address %s : "
17226 "from %s to"
17227 " %s failed : ENOMEM \n",
17228 inet_ntop(AF_INET,
17229 &ilm->ilm_v6addr, buf,
17230 sizeof (buf)),
17231 from_ill->ill_name,
17232 to_ill->ill_name));
17234 ilmp = &ilm->ilm_next;
17235 continue;
17237 *new_ilm = *ilm;
17238 /* We don't want new_ilm linked to ilm's filter list */
17239 new_ilm->ilm_filter = NULL;
17240 } else {
17241 /* Remove from the list */
17242 *ilmp = ilm->ilm_next;
17243 new_ilm = ilm;
17247 * If we have never joined this group on the to_ill
17248 * make sure we tell the driver.
17250 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr,
17251 ALL_ZONES) == NULL)
17252 new_ilm->ilm_notify_driver = B_TRUE;
17254 /* Add to the to_ill's list */
17255 new_ilm->ilm_next = to_ill->ill_ilm;
17256 to_ill->ill_ilm = new_ilm;
17257 new_ilm->ilm_is_new = B_TRUE;
17260 * Revert multicast filter state to (EXCLUDE, NULL)
17262 new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17263 CLEAR_SLIST(new_ilm->ilm_filter);
17266 * Delete only if we have allocated a new ilm.
17268 if (new_ilm != ilm) {
17269 delete_ilm:
17270 if (from_ill->ill_ilm_walker_cnt == 0) {
17271 /* Remove from the list */
17272 *ilmp = ilm->ilm_next;
17273 ilm->ilm_next = NULL;
17274 FREE_SLIST(ilm->ilm_filter);
17275 FREE_SLIST(ilm->ilm_pendsrcs);
17276 FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17277 FREE_SLIST(ilm->ilm_rtx.rtx_block);
17278 mi_free((char *)ilm);
17279 } else {
17280 ilm->ilm_flags |= ILM_DELETED;
17281 from_ill->ill_ilm_cleanup_reqd = 1;
17282 ilmp = &ilm->ilm_next;
17288 static uint_t
17289 ipif_get_id(ill_t *ill, uint_t id)
17291 uint_t unit;
17292 ipif_t *tipif;
17293 boolean_t found = B_FALSE;
17294 ip_stack_t *ipst = ill->ill_ipst;
17297 * During failback, we want to go back to the same id
17298 * instead of the smallest id so that the original
17299 * configuration is maintained. id is non-zero in that
17300 * case.
17302 if (id != 0) {
17304 * While failing back, if we still have an ipif with
17305 * MAX_ADDRS_PER_IF, it means this will be replaced
17306 * as soon as we return from this function. It was
17307 * to set to MAX_ADDRS_PER_IF by the caller so that
17308 * we can choose the smallest id. Thus we return zero
17309 * in that case ignoring the hint.
17311 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF)
17312 return (0);
17313 for (tipif = ill->ill_ipif; tipif != NULL;
17314 tipif = tipif->ipif_next) {
17315 if (tipif->ipif_id == id) {
17316 found = B_TRUE;
17317 break;
17321 * If somebody already plumbed another logical
17322 * with the same id, we won't be able to find it.
17324 if (!found)
17325 return (id);
17327 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) {
17328 found = B_FALSE;
17329 for (tipif = ill->ill_ipif; tipif != NULL;
17330 tipif = tipif->ipif_next) {
17331 if (tipif->ipif_id == unit) {
17332 found = B_TRUE;
17333 break;
17336 if (!found)
17337 break;
17339 return (unit);
17342 /* ARGSUSED */
17343 static int
17344 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp,
17345 ipif_t **rep_ipif_ptr)
17347 ill_t *from_ill;
17348 ipif_t *rep_ipif;
17349 uint_t unit;
17350 int err = 0;
17351 ipif_t *to_ipif;
17352 struct iocblk *iocp;
17353 boolean_t failback_cmd;
17354 boolean_t remove_ipif;
17355 int rc;
17356 ip_stack_t *ipst;
17358 ASSERT(IAM_WRITER_ILL(to_ill));
17359 ASSERT(IAM_WRITER_IPIF(ipif));
17361 iocp = (struct iocblk *)mp->b_rptr;
17362 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK);
17363 remove_ipif = B_FALSE;
17365 from_ill = ipif->ipif_ill;
17366 ipst = from_ill->ill_ipst;
17368 ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17369 ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17370 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17373 * Don't move LINK LOCAL addresses as they are tied to
17374 * physical interface.
17376 if (from_ill->ill_isv6 &&
17377 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) {
17378 ipif->ipif_was_up = B_FALSE;
17379 IPIF_UNMARK_MOVING(ipif);
17380 return (0);
17384 * We set the ipif_id to maximum so that the search for
17385 * ipif_id will pick the lowest number i.e 0 in the
17386 * following 2 cases :
17388 * 1) We have a replacement ipif at the head of to_ill.
17389 * We can't remove it yet as we can exceed ip_addrs_per_if
17390 * on to_ill and hence the MOVE might fail. We want to
17391 * remove it only if we could move the ipif. Thus, by
17392 * setting it to the MAX value, we make the search in
17393 * ipif_get_id return the zeroth id.
17395 * 2) When DR pulls out the NIC and re-plumbs the interface,
17396 * we might just have a zero address plumbed on the ipif
17397 * with zero id in the case of IPv4. We remove that while
17398 * doing the failback. We want to remove it only if we
17399 * could move the ipif. Thus, by setting it to the MAX
17400 * value, we make the search in ipif_get_id return the
17401 * zeroth id.
17403 * Both (1) and (2) are done only when when we are moving
17404 * an ipif (either due to failover/failback) which originally
17405 * belonged to this interface i.e the ipif_orig_ifindex is
17406 * the same as to_ill's ifindex. This is needed so that
17407 * FAILOVER from A -> B ( A failed) followed by FAILOVER
17408 * from B -> A (B is being removed from the group) and
17409 * FAILBACK from A -> B restores the original configuration.
17410 * Without the check for orig_ifindex, the second FAILOVER
17411 * could make the ipif belonging to B replace the A's zeroth
17412 * ipif and the subsequent failback re-creating the replacement
17413 * ipif again.
17415 * NOTE : We created the replacement ipif when we did a
17416 * FAILOVER (See below). We could check for FAILBACK and
17417 * then look for replacement ipif to be removed. But we don't
17418 * want to do that because we wan't to allow the possibility
17419 * of a FAILOVER from A -> B (which creates the replacement ipif),
17420 * followed by a *FAILOVER* from B -> A instead of a FAILBACK
17421 * from B -> A.
17423 to_ipif = to_ill->ill_ipif;
17424 if ((to_ill->ill_phyint->phyint_ifindex ==
17425 ipif->ipif_orig_ifindex) &&
17426 IPIF_REPL_CHECK(to_ipif, failback_cmd)) {
17427 ASSERT(to_ipif->ipif_id == 0);
17428 remove_ipif = B_TRUE;
17429 to_ipif->ipif_id = MAX_ADDRS_PER_IF;
17432 * Find the lowest logical unit number on the to_ill.
17433 * If we are failing back, try to get the original id
17434 * rather than the lowest one so that the original
17435 * configuration is maintained.
17437 * XXX need a better scheme for this.
17439 if (failback_cmd) {
17440 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid);
17441 } else {
17442 unit = ipif_get_id(to_ill, 0);
17445 /* Reset back to zero in case we fail below */
17446 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF)
17447 to_ipif->ipif_id = 0;
17449 if (unit == ipst->ips_ip_addrs_per_if) {
17450 ipif->ipif_was_up = B_FALSE;
17451 IPIF_UNMARK_MOVING(ipif);
17452 return (EINVAL);
17456 * ipif is ready to move from "from_ill" to "to_ill".
17458 * 1) If we are moving ipif with id zero, create a
17459 * replacement ipif for this ipif on from_ill. If this fails
17460 * fail the MOVE operation.
17462 * 2) Remove the replacement ipif on to_ill if any.
17463 * We could remove the replacement ipif when we are moving
17464 * the ipif with id zero. But what if somebody already
17465 * unplumbed it ? Thus we always remove it if it is present.
17466 * We want to do it only if we are sure we are going to
17467 * move the ipif to to_ill which is why there are no
17468 * returns due to error till ipif is linked to to_ill.
17469 * Note that the first ipif that we failback will always
17470 * be zero if it is present.
17472 if (ipif->ipif_id == 0) {
17473 ipaddr_t inaddr_any = INADDR_ANY;
17475 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED);
17476 if (rep_ipif == NULL) {
17477 ipif->ipif_was_up = B_FALSE;
17478 IPIF_UNMARK_MOVING(ipif);
17479 return (ENOMEM);
17481 *rep_ipif = ipif_zero;
17483 * Before we put the ipif on the list, store the addresses
17484 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR
17485 * assumes so. This logic is not any different from what
17486 * ipif_allocate does.
17488 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17489 &rep_ipif->ipif_v6lcl_addr);
17490 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17491 &rep_ipif->ipif_v6src_addr);
17492 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17493 &rep_ipif->ipif_v6subnet);
17494 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17495 &rep_ipif->ipif_v6net_mask);
17496 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17497 &rep_ipif->ipif_v6brd_addr);
17498 IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17499 &rep_ipif->ipif_v6pp_dst_addr);
17501 * We mark IPIF_NOFAILOVER so that this can never
17502 * move.
17504 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER;
17505 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE;
17506 rep_ipif->ipif_replace_zero = B_TRUE;
17507 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL,
17508 MUTEX_DEFAULT, NULL);
17509 rep_ipif->ipif_id = 0;
17510 rep_ipif->ipif_ire_type = ipif->ipif_ire_type;
17511 rep_ipif->ipif_ill = from_ill;
17512 rep_ipif->ipif_orig_ifindex =
17513 from_ill->ill_phyint->phyint_ifindex;
17514 /* Insert at head */
17515 rep_ipif->ipif_next = from_ill->ill_ipif;
17516 from_ill->ill_ipif = rep_ipif;
17518 * We don't really care to let apps know about
17519 * this interface.
17523 if (remove_ipif) {
17525 * We set to a max value above for this case to get
17526 * id zero. ASSERT that we did get one.
17528 ASSERT((to_ipif->ipif_id == 0) && (unit == 0));
17529 rep_ipif = to_ipif;
17530 to_ill->ill_ipif = rep_ipif->ipif_next;
17531 rep_ipif->ipif_next = NULL;
17533 * If some apps scanned and find this interface,
17534 * it is time to let them know, so that they can
17535 * delete it.
17538 *rep_ipif_ptr = rep_ipif;
17541 /* Get it out of the ILL interface list. */
17542 ipif_remove(ipif, B_FALSE);
17544 /* Assign the new ill */
17545 ipif->ipif_ill = to_ill;
17546 ipif->ipif_id = unit;
17547 /* id has already been checked */
17548 rc = ipif_insert(ipif, B_FALSE, B_FALSE);
17549 ASSERT(rc == 0);
17550 /* Let SCTP update its list */
17551 sctp_move_ipif(ipif, from_ill, to_ill);
17553 * Handle the failover and failback of ipif_t between
17554 * ill_t that have differing maximum mtu values.
17556 if (ipif->ipif_mtu > to_ill->ill_max_mtu) {
17557 if (ipif->ipif_saved_mtu == 0) {
17559 * As this ipif_t is moving to an ill_t
17560 * that has a lower ill_max_mtu, its
17561 * ipif_mtu needs to be saved so it can
17562 * be restored during failback or during
17563 * failover to an ill_t which has a
17564 * higher ill_max_mtu.
17566 ipif->ipif_saved_mtu = ipif->ipif_mtu;
17567 ipif->ipif_mtu = to_ill->ill_max_mtu;
17568 } else {
17570 * The ipif_t is, once again, moving to
17571 * an ill_t that has a lower maximum mtu
17572 * value.
17574 ipif->ipif_mtu = to_ill->ill_max_mtu;
17576 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu &&
17577 ipif->ipif_saved_mtu != 0) {
17579 * The mtu of this ipif_t had to be reduced
17580 * during an earlier failover; this is an
17581 * opportunity for it to be increased (either as
17582 * part of another failover or a failback).
17584 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) {
17585 ipif->ipif_mtu = ipif->ipif_saved_mtu;
17586 ipif->ipif_saved_mtu = 0;
17587 } else {
17588 ipif->ipif_mtu = to_ill->ill_max_mtu;
17593 * We preserve all the other fields of the ipif including
17594 * ipif_saved_ire_mp. The routes that are saved here will
17595 * be recreated on the new interface and back on the old
17596 * interface when we move back.
17598 ASSERT(ipif->ipif_arp_del_mp == NULL);
17600 return (err);
17603 static int
17604 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp,
17605 int ifindex, ipif_t **rep_ipif_ptr)
17607 ipif_t *mipif;
17608 ipif_t *ipif_next;
17609 int err;
17612 * We don't really try to MOVE back things if some of the
17613 * operations fail. The daemon will take care of moving again
17614 * later on.
17616 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) {
17617 ipif_next = mipif->ipif_next;
17618 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) &&
17619 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) {
17621 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr);
17624 * When the MOVE fails, it is the job of the
17625 * application to take care of this properly
17626 * i.e try again if it is ENOMEM.
17628 if (mipif->ipif_ill != from_ill) {
17630 * ipif has moved.
17632 * Move the multicast memberships associated
17633 * with this ipif to the new ill. For IPv6, we
17634 * do it once after all the ipifs are moved
17635 * (in ill_move) as they are not associated
17636 * with ipifs.
17638 * We need to move the ilms as the ipif has
17639 * already been moved to a new ill even
17640 * in the case of errors. Neither
17641 * ilm_free(ipif) will find the ilm
17642 * when somebody unplumbs this ipif nor
17643 * ilm_delete(ilm) will be able to find the
17644 * ilm, if we don't move now.
17646 if (!from_ill->ill_isv6)
17647 ilm_move_v4(from_ill, to_ill, mipif);
17650 if (err != 0)
17651 return (err);
17654 return (0);
17657 static int
17658 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp)
17660 int ifindex;
17661 int err;
17662 struct iocblk *iocp;
17663 ipif_t *ipif;
17664 ipif_t *rep_ipif_ptr = NULL;
17665 ipif_t *from_ipif = NULL;
17666 boolean_t check_rep_if = B_FALSE;
17667 ip_stack_t *ipst = from_ill->ill_ipst;
17669 iocp = (struct iocblk *)mp->b_rptr;
17670 if (iocp->ioc_cmd == SIOCLIFFAILOVER) {
17672 * Move everything pointing at from_ill to to_ill.
17673 * We acheive this by passing in 0 as ifindex.
17675 ifindex = 0;
17676 } else {
17678 * Move everything pointing at from_ill whose original
17679 * ifindex of connp, ipif, ilm points at to_ill->ill_index.
17680 * We acheive this by passing in ifindex rather than 0.
17681 * Multicast vifs, ilgs move implicitly because ipifs move.
17683 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK);
17684 ifindex = to_ill->ill_phyint->phyint_ifindex;
17688 * Determine if there is at least one ipif that would move from
17689 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement
17690 * ipif (if it exists) on the to_ill would be consumed as a result of
17691 * the move, in which case we need to quiesce the replacement ipif also.
17693 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL;
17694 from_ipif = from_ipif->ipif_next) {
17695 if (((ifindex == 0) ||
17696 (ifindex == from_ipif->ipif_orig_ifindex)) &&
17697 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) {
17698 check_rep_if = B_TRUE;
17699 break;
17704 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE);
17706 GRAB_ILL_LOCKS(from_ill, to_ill);
17707 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) {
17708 (void) ipsq_pending_mp_add(NULL, ipif, q,
17709 mp, ILL_MOVE_OK);
17710 RELEASE_ILL_LOCKS(from_ill, to_ill);
17711 return (EINPROGRESS);
17714 /* Check if the replacement ipif is quiescent to delete */
17715 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif,
17716 (iocp->ioc_cmd == SIOCLIFFAILBACK))) {
17717 to_ill->ill_ipif->ipif_state_flags |=
17718 IPIF_MOVING | IPIF_CHANGING;
17719 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) {
17720 (void) ipsq_pending_mp_add(NULL, ipif, q,
17721 mp, ILL_MOVE_OK);
17722 RELEASE_ILL_LOCKS(from_ill, to_ill);
17723 return (EINPROGRESS);
17726 RELEASE_ILL_LOCKS(from_ill, to_ill);
17728 ASSERT(!MUTEX_HELD(&to_ill->ill_lock));
17729 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17730 GRAB_ILL_LOCKS(from_ill, to_ill);
17731 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr);
17733 /* ilm_move is done inside ipif_move for IPv4 */
17734 if (err == 0 && from_ill->ill_isv6)
17735 ilm_move_v6(from_ill, to_ill, ifindex);
17737 RELEASE_ILL_LOCKS(from_ill, to_ill);
17738 rw_exit(&ipst->ips_ill_g_lock);
17741 * send rts messages and multicast messages.
17743 if (rep_ipif_ptr != NULL) {
17744 if (rep_ipif_ptr->ipif_recovery_id != 0) {
17745 (void) untimeout(rep_ipif_ptr->ipif_recovery_id);
17746 rep_ipif_ptr->ipif_recovery_id = 0;
17748 ip_rts_ifmsg(rep_ipif_ptr);
17749 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr);
17750 #ifdef DEBUG
17751 ipif_trace_cleanup(rep_ipif_ptr);
17752 #endif
17753 mi_free(rep_ipif_ptr);
17756 conn_move_ill(from_ill, to_ill, ifindex);
17758 return (err);
17762 * Used to extract arguments for FAILOVER/FAILBACK ioctls.
17763 * Also checks for the validity of the arguments.
17764 * Note: We are already exclusive inside the from group.
17765 * It is upto the caller to release refcnt on the to_ill's.
17767 static int
17768 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4,
17769 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6)
17771 int dst_index;
17772 ipif_t *ipif_v4, *ipif_v6;
17773 struct lifreq *lifr;
17774 mblk_t *mp1;
17775 boolean_t exists;
17776 sin_t *sin;
17777 int err = 0;
17778 ip_stack_t *ipst;
17780 if (CONN_Q(q))
17781 ipst = CONNQ_TO_IPST(q);
17782 else
17783 ipst = ILLQ_TO_IPST(q);
17786 if ((mp1 = mp->b_cont) == NULL)
17787 return (EPROTO);
17789 if ((mp1 = mp1->b_cont) == NULL)
17790 return (EPROTO);
17792 lifr = (struct lifreq *)mp1->b_rptr;
17793 sin = (sin_t *)&lifr->lifr_addr;
17796 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6
17797 * specific operations.
17799 if (sin->sin_family != AF_UNSPEC)
17800 return (EINVAL);
17803 * Get ipif with id 0. We are writer on the from ill. So we can pass
17804 * NULLs for the last 4 args and we know the lookup won't fail
17805 * with EINPROGRESS.
17807 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name,
17808 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE,
17809 ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
17810 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name,
17811 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE,
17812 ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
17814 if (ipif_v4 == NULL && ipif_v6 == NULL)
17815 return (ENXIO);
17817 if (ipif_v4 != NULL) {
17818 ASSERT(ipif_v4->ipif_refcnt != 0);
17819 if (ipif_v4->ipif_id != 0) {
17820 err = EINVAL;
17821 goto done;
17824 ASSERT(IAM_WRITER_IPIF(ipif_v4));
17825 *ill_from_v4 = ipif_v4->ipif_ill;
17828 if (ipif_v6 != NULL) {
17829 ASSERT(ipif_v6->ipif_refcnt != 0);
17830 if (ipif_v6->ipif_id != 0) {
17831 err = EINVAL;
17832 goto done;
17835 ASSERT(IAM_WRITER_IPIF(ipif_v6));
17836 *ill_from_v6 = ipif_v6->ipif_ill;
17839 err = 0;
17840 dst_index = lifr->lifr_movetoindex;
17841 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE,
17842 q, mp, ip_process_ioctl, &err, ipst);
17843 if (err != 0) {
17845 * There could be only v6.
17847 if (err != ENXIO)
17848 goto done;
17849 err = 0;
17852 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE,
17853 q, mp, ip_process_ioctl, &err, ipst);
17854 if (err != 0) {
17855 if (err != ENXIO)
17856 goto done;
17857 if (*ill_to_v4 == NULL) {
17858 err = ENXIO;
17859 goto done;
17861 err = 0;
17865 * If we have something to MOVE i.e "from" not NULL,
17866 * "to" should be non-NULL.
17868 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) ||
17869 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) {
17870 err = EINVAL;
17873 done:
17874 if (ipif_v4 != NULL)
17875 ipif_refrele(ipif_v4);
17876 if (ipif_v6 != NULL)
17877 ipif_refrele(ipif_v6);
17878 return (err);
17882 * FAILOVER and FAILBACK are modelled as MOVE operations.
17884 * We don't check whether the MOVE is within the same group or
17885 * not, because this ioctl can be used as a generic mechanism
17886 * to failover from interface A to B, though things will function
17887 * only if they are really part of the same group. Moreover,
17888 * all ipifs may be down and hence temporarily out of the group.
17890 * ipif's that need to be moved are first brought down; V4 ipifs are brought
17891 * down first and then V6. For each we wait for the ipif's to become quiescent.
17892 * Bringing down the ipifs ensures that all ires pointing to these ipifs's
17893 * have been deleted and there are no active references. Once quiescent the
17894 * ipif's are moved and brought up on the new ill.
17896 * Normally the source ill and destination ill belong to the same IPMP group
17897 * and hence the same ipsq_t. In the event they don't belong to the same
17898 * same group the two ipsq's are first merged into one ipsq - that of the
17899 * to_ill. The multicast memberships on the source and destination ill cannot
17900 * change during the move operation since multicast joins/leaves also have to
17901 * execute on the same ipsq and are hence serialized.
17903 /* ARGSUSED */
17905 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17906 ip_ioctl_cmd_t *ipip, void *ifreq)
17908 ill_t *ill_to_v4 = NULL;
17909 ill_t *ill_to_v6 = NULL;
17910 ill_t *ill_from_v4 = NULL;
17911 ill_t *ill_from_v6 = NULL;
17912 int err = 0;
17915 * setup from and to ill's, we can get EINPROGRESS only for
17916 * to_ill's.
17918 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6,
17919 &ill_to_v4, &ill_to_v6);
17921 if (err != 0) {
17922 ip0dbg(("ip_sioctl_move: extract args failed\n"));
17923 goto done;
17927 * nothing to do.
17929 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) {
17930 goto done;
17934 * nothing to do.
17936 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) {
17937 goto done;
17941 * Mark the ill as changing.
17942 * ILL_CHANGING flag is cleared when the ipif's are brought up
17943 * in ill_up_ipifs in case of error they are cleared below.
17946 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
17947 if (ill_from_v4 != NULL)
17948 ill_from_v4->ill_state_flags |= ILL_CHANGING;
17949 if (ill_from_v6 != NULL)
17950 ill_from_v6->ill_state_flags |= ILL_CHANGING;
17951 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
17954 * Make sure that both src and dst are
17955 * in the same syncq group. If not make it happen.
17956 * We are not holding any locks because we are the writer
17957 * on the from_ipsq and we will hold locks in ill_merge_groups
17958 * to protect to_ipsq against changing.
17960 if (ill_from_v4 != NULL) {
17961 if (ill_from_v4->ill_phyint->phyint_ipsq !=
17962 ill_to_v4->ill_phyint->phyint_ipsq) {
17963 err = ill_merge_groups(ill_from_v4, ill_to_v4,
17964 NULL, mp, q);
17965 goto err_ret;
17968 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock));
17969 } else {
17971 if (ill_from_v6->ill_phyint->phyint_ipsq !=
17972 ill_to_v6->ill_phyint->phyint_ipsq) {
17973 err = ill_merge_groups(ill_from_v6, ill_to_v6,
17974 NULL, mp, q);
17975 goto err_ret;
17978 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock));
17982 * Now that the ipsq's have been merged and we are the writer
17983 * lets mark to_ill as changing as well.
17986 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
17987 if (ill_to_v4 != NULL)
17988 ill_to_v4->ill_state_flags |= ILL_CHANGING;
17989 if (ill_to_v6 != NULL)
17990 ill_to_v6->ill_state_flags |= ILL_CHANGING;
17991 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
17994 * Its ok for us to proceed with the move even if
17995 * ill_pending_mp is non null on one of the from ill's as the reply
17996 * should not be looking at the ipif, it should only care about the
17997 * ill itself.
18001 * lets move ipv4 first.
18003 if (ill_from_v4 != NULL) {
18004 ASSERT(IAM_WRITER_ILL(ill_to_v4));
18005 ill_from_v4->ill_move_in_progress = B_TRUE;
18006 ill_to_v4->ill_move_in_progress = B_TRUE;
18007 ill_to_v4->ill_move_peer = ill_from_v4;
18008 ill_from_v4->ill_move_peer = ill_to_v4;
18009 err = ill_move(ill_from_v4, ill_to_v4, q, mp);
18013 * Now lets move ipv6.
18015 if (err == 0 && ill_from_v6 != NULL) {
18016 ASSERT(IAM_WRITER_ILL(ill_to_v6));
18017 ill_from_v6->ill_move_in_progress = B_TRUE;
18018 ill_to_v6->ill_move_in_progress = B_TRUE;
18019 ill_to_v6->ill_move_peer = ill_from_v6;
18020 ill_from_v6->ill_move_peer = ill_to_v6;
18021 err = ill_move(ill_from_v6, ill_to_v6, q, mp);
18024 err_ret:
18026 * EINPROGRESS means we are waiting for the ipif's that need to be
18027 * moved to become quiescent.
18029 if (err == EINPROGRESS) {
18030 goto done;
18034 * if err is set ill_up_ipifs will not be called
18035 * lets clear the flags.
18038 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
18039 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
18041 * Some of the clearing may be redundant. But it is simple
18042 * not making any extra checks.
18044 if (ill_from_v6 != NULL) {
18045 ill_from_v6->ill_move_in_progress = B_FALSE;
18046 ill_from_v6->ill_move_peer = NULL;
18047 ill_from_v6->ill_state_flags &= ~ILL_CHANGING;
18049 if (ill_from_v4 != NULL) {
18050 ill_from_v4->ill_move_in_progress = B_FALSE;
18051 ill_from_v4->ill_move_peer = NULL;
18052 ill_from_v4->ill_state_flags &= ~ILL_CHANGING;
18054 if (ill_to_v6 != NULL) {
18055 ill_to_v6->ill_move_in_progress = B_FALSE;
18056 ill_to_v6->ill_move_peer = NULL;
18057 ill_to_v6->ill_state_flags &= ~ILL_CHANGING;
18059 if (ill_to_v4 != NULL) {
18060 ill_to_v4->ill_move_in_progress = B_FALSE;
18061 ill_to_v4->ill_move_peer = NULL;
18062 ill_to_v4->ill_state_flags &= ~ILL_CHANGING;
18066 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set.
18067 * Do this always to maintain proper state i.e even in case of errors.
18068 * As phyint_inactive looks at both v4 and v6 interfaces,
18069 * we need not call on both v4 and v6 interfaces.
18071 if (ill_from_v4 != NULL) {
18072 if ((ill_from_v4->ill_phyint->phyint_flags &
18073 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18074 phyint_inactive(ill_from_v4->ill_phyint);
18076 } else if (ill_from_v6 != NULL) {
18077 if ((ill_from_v6->ill_phyint->phyint_flags &
18078 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18079 phyint_inactive(ill_from_v6->ill_phyint);
18083 if (ill_to_v4 != NULL) {
18084 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18085 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18087 } else if (ill_to_v6 != NULL) {
18088 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18089 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18093 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18094 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
18096 no_err:
18098 * lets bring the interfaces up on the to_ill.
18100 if (err == 0) {
18101 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4,
18102 q, mp);
18105 if (err == 0) {
18106 if (ill_from_v4 != NULL && ill_to_v4 != NULL)
18107 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4);
18109 if (ill_from_v6 != NULL && ill_to_v6 != NULL)
18110 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6);
18112 done:
18114 if (ill_to_v4 != NULL) {
18115 ill_refrele(ill_to_v4);
18117 if (ill_to_v6 != NULL) {
18118 ill_refrele(ill_to_v6);
18121 return (err);
18124 static void
18125 ill_dl_down(ill_t *ill)
18128 * The ill is down; unbind but stay attached since we're still
18129 * associated with a PPA. If we have negotiated DLPI capabilites
18130 * with the data link service provider (IDS_OK) then reset them.
18131 * The interval between unbinding and rebinding is potentially
18132 * unbounded hence we cannot assume things will be the same.
18133 * The DLPI capabilities will be probed again when the data link
18134 * is brought up.
18136 mblk_t *mp = ill->ill_unbind_mp;
18137 hook_nic_event_t *info;
18139 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
18141 ill->ill_unbind_mp = NULL;
18142 if (mp != NULL) {
18143 ip1dbg(("ill_dl_down: %s (%u) for %s\n",
18144 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
18145 ill->ill_name));
18146 mutex_enter(&ill->ill_lock);
18147 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
18148 mutex_exit(&ill->ill_lock);
18150 * Reset the capabilities if the negotiation is done or is
18151 * still in progress. Note that ill_capability_reset() will
18152 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent
18153 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored.
18155 * Further, reset ill_capab_reneg to be B_FALSE so that the
18156 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent
18157 * the capabilities renegotiation from happening.
18159 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN)
18160 ill_capability_reset(ill);
18161 ill->ill_capab_reneg = B_FALSE;
18163 ill_dlpi_send(ill, mp);
18167 * Toss all of our multicast memberships. We could keep them, but
18168 * then we'd have to do bookkeeping of any joins and leaves performed
18169 * by the application while the the interface is down (we can't just
18170 * issue them because arp cannot currently process AR_ENTRY_SQUERY's
18171 * on a downed interface).
18173 ill_leave_multicast(ill);
18175 mutex_enter(&ill->ill_lock);
18177 ill->ill_dl_up = 0;
18179 if ((info = ill->ill_nic_event_info) != NULL) {
18180 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n",
18181 info->hne_event, ill->ill_name));
18182 if (info->hne_data != NULL)
18183 kmem_free(info->hne_data, info->hne_datalen);
18184 kmem_free(info, sizeof (hook_nic_event_t));
18187 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
18188 if (info != NULL) {
18189 ip_stack_t *ipst = ill->ill_ipst;
18191 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex;
18192 info->hne_lif = 0;
18193 info->hne_event = NE_DOWN;
18194 info->hne_data = NULL;
18195 info->hne_datalen = 0;
18196 info->hne_family = ill->ill_isv6 ?
18197 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18198 } else
18199 ip2dbg(("ill_dl_down: could not attach DOWN nic event "
18200 "information for %s (ENOMEM)\n", ill->ill_name));
18202 ill->ill_nic_event_info = info;
18204 mutex_exit(&ill->ill_lock);
18207 static void
18208 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
18210 union DL_primitives *dlp;
18211 t_uscalar_t prim;
18213 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18215 dlp = (union DL_primitives *)mp->b_rptr;
18216 prim = dlp->dl_primitive;
18218 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
18219 dlpi_prim_str(prim), prim, ill->ill_name));
18221 switch (prim) {
18222 case DL_PHYS_ADDR_REQ:
18224 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
18225 ill->ill_phys_addr_pend = dlpap->dl_addr_type;
18226 break;
18228 case DL_BIND_REQ:
18229 mutex_enter(&ill->ill_lock);
18230 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
18231 mutex_exit(&ill->ill_lock);
18232 break;
18236 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
18237 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
18238 * we only wait for the ACK of the DL_UNBIND_REQ.
18240 mutex_enter(&ill->ill_lock);
18241 if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
18242 (prim == DL_UNBIND_REQ)) {
18243 ill->ill_dlpi_pending = prim;
18245 mutex_exit(&ill->ill_lock);
18247 putnext(ill->ill_wq, mp);
18251 * Helper function for ill_dlpi_send().
18253 /* ARGSUSED */
18254 static void
18255 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
18257 ill_dlpi_send((ill_t *)q->q_ptr, mp);
18261 * Send a DLPI control message to the driver but make sure there
18262 * is only one outstanding message. Uses ill_dlpi_pending to tell
18263 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
18264 * when an ACK or a NAK is received to process the next queued message.
18266 void
18267 ill_dlpi_send(ill_t *ill, mblk_t *mp)
18269 mblk_t **mpp;
18271 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18274 * To ensure that any DLPI requests for current exclusive operation
18275 * are always completely sent before any DLPI messages for other
18276 * operations, require writer access before enqueuing.
18278 if (!IAM_WRITER_ILL(ill)) {
18279 ill_refhold(ill);
18280 /* qwriter_ip() does the ill_refrele() */
18281 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
18282 NEW_OP, B_TRUE);
18283 return;
18286 mutex_enter(&ill->ill_lock);
18287 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
18288 /* Must queue message. Tail insertion */
18289 mpp = &ill->ill_dlpi_deferred;
18290 while (*mpp != NULL)
18291 mpp = &((*mpp)->b_next);
18293 ip1dbg(("ill_dlpi_send: deferring request for %s\n",
18294 ill->ill_name));
18296 *mpp = mp;
18297 mutex_exit(&ill->ill_lock);
18298 return;
18300 mutex_exit(&ill->ill_lock);
18301 ill_dlpi_dispatch(ill, mp);
18305 * Send all deferred DLPI messages without waiting for their ACKs.
18307 void
18308 ill_dlpi_send_deferred(ill_t *ill)
18310 mblk_t *mp, *nextmp;
18313 * Clear ill_dlpi_pending so that the message is not queued in
18314 * ill_dlpi_send().
18316 mutex_enter(&ill->ill_lock);
18317 ill->ill_dlpi_pending = DL_PRIM_INVAL;
18318 mp = ill->ill_dlpi_deferred;
18319 ill->ill_dlpi_deferred = NULL;
18320 mutex_exit(&ill->ill_lock);
18322 for (; mp != NULL; mp = nextmp) {
18323 nextmp = mp->b_next;
18324 mp->b_next = NULL;
18325 ill_dlpi_send(ill, mp);
18330 * Check if the DLPI primitive `prim' is pending; print a warning if not.
18332 boolean_t
18333 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
18335 t_uscalar_t pending;
18337 mutex_enter(&ill->ill_lock);
18338 if (ill->ill_dlpi_pending == prim) {
18339 mutex_exit(&ill->ill_lock);
18340 return (B_TRUE);
18344 * During teardown, ill_dlpi_dispatch() will send DLPI requests
18345 * without waiting, so don't print any warnings in that case.
18347 if (ill->ill_state_flags & ILL_CONDEMNED) {
18348 mutex_exit(&ill->ill_lock);
18349 return (B_FALSE);
18351 pending = ill->ill_dlpi_pending;
18352 mutex_exit(&ill->ill_lock);
18354 if (pending == DL_PRIM_INVAL) {
18355 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
18356 "received unsolicited ack for %s on %s\n",
18357 dlpi_prim_str(prim), ill->ill_name);
18358 } else {
18359 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
18360 "received unexpected ack for %s on %s (expecting %s)\n",
18361 dlpi_prim_str(prim), ill->ill_name, dlpi_prim_str(pending));
18363 return (B_FALSE);
18367 * Called when an DLPI control message has been acked or nacked to
18368 * send down the next queued message (if any).
18370 void
18371 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
18373 mblk_t *mp;
18375 ASSERT(IAM_WRITER_ILL(ill));
18376 mutex_enter(&ill->ill_lock);
18378 ASSERT(prim != DL_PRIM_INVAL);
18379 ASSERT(ill->ill_dlpi_pending == prim);
18381 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
18382 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
18384 if ((mp = ill->ill_dlpi_deferred) == NULL) {
18385 ill->ill_dlpi_pending = DL_PRIM_INVAL;
18386 cv_signal(&ill->ill_cv);
18387 mutex_exit(&ill->ill_lock);
18388 return;
18391 ill->ill_dlpi_deferred = mp->b_next;
18392 mp->b_next = NULL;
18393 mutex_exit(&ill->ill_lock);
18395 ill_dlpi_dispatch(ill, mp);
18398 void
18399 conn_delete_ire(conn_t *connp, caddr_t arg)
18401 ipif_t *ipif = (ipif_t *)arg;
18402 ire_t *ire;
18405 * Look at the cached ires on conns which has pointers to ipifs.
18406 * We just call ire_refrele which clears up the reference
18407 * to ire. Called when a conn closes. Also called from ipif_free
18408 * to cleanup indirect references to the stale ipif via the cached ire.
18410 mutex_enter(&connp->conn_lock);
18411 ire = connp->conn_ire_cache;
18412 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) {
18413 connp->conn_ire_cache = NULL;
18414 mutex_exit(&connp->conn_lock);
18415 IRE_REFRELE_NOTR(ire);
18416 return;
18418 mutex_exit(&connp->conn_lock);
18423 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number
18424 * of IREs. Those IREs may have been previously cached in the conn structure.
18425 * This ipcl_walk() walker function releases all references to such IREs based
18426 * on the condemned flag.
18428 /* ARGSUSED */
18429 void
18430 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg)
18432 ire_t *ire;
18434 mutex_enter(&connp->conn_lock);
18435 ire = connp->conn_ire_cache;
18436 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) {
18437 connp->conn_ire_cache = NULL;
18438 mutex_exit(&connp->conn_lock);
18439 IRE_REFRELE_NOTR(ire);
18440 return;
18442 mutex_exit(&connp->conn_lock);
18446 * Take down a specific interface, but don't lose any information about it.
18447 * Also delete interface from its interface group (ifgrp).
18448 * (Always called as writer.)
18449 * This function goes through the down sequence even if the interface is
18450 * already down. There are 2 reasons.
18451 * a. Currently we permit interface routes that depend on down interfaces
18452 * to be added. This behaviour itself is questionable. However it appears
18453 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long
18454 * time. We go thru the cleanup in order to remove these routes.
18455 * b. The bringup of the interface could fail in ill_dl_up i.e. we get
18456 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is
18457 * down, but we need to cleanup i.e. do ill_dl_down and
18458 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
18460 * IP-MT notes:
18462 * Model of reference to interfaces.
18464 * The following members in ipif_t track references to the ipif.
18465 * int ipif_refcnt; Active reference count
18466 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif
18467 * The following members in ill_t track references to the ill.
18468 * int ill_refcnt; active refcnt
18469 * uint_t ill_ire_cnt; Number of ires referencing ill
18470 * uint_t ill_nce_cnt; Number of nces referencing ill
18472 * Reference to an ipif or ill can be obtained in any of the following ways.
18474 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
18475 * Pointers to ipif / ill from other data structures viz ire and conn.
18476 * Implicit reference to the ipif / ill by holding a reference to the ire.
18478 * The ipif/ill lookup functions return a reference held ipif / ill.
18479 * ipif_refcnt and ill_refcnt track the reference counts respectively.
18480 * This is a purely dynamic reference count associated with threads holding
18481 * references to the ipif / ill. Pointers from other structures do not
18482 * count towards this reference count.
18484 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the
18485 * ipif/ill. This is incremented whenever a new ire is created referencing the
18486 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is
18487 * actually added to the ire hash table. The count is decremented in
18488 * ire_inactive where the ire is destroyed.
18490 * nce's reference ill's thru nce_ill and the count of nce's associated with
18491 * an ill is recorded in ill_nce_cnt. This is incremented atomically in
18492 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
18493 * table. Similarly it is decremented in ndp_inactive() where the nce
18494 * is destroyed.
18496 * Flow of ioctls involving interface down/up
18498 * The following is the sequence of an attempt to set some critical flags on an
18499 * up interface.
18500 * ip_sioctl_flags
18501 * ipif_down
18502 * wait for ipif to be quiescent
18503 * ipif_down_tail
18504 * ip_sioctl_flags_tail
18506 * All set ioctls that involve down/up sequence would have a skeleton similar
18507 * to the above. All the *tail functions are called after the refcounts have
18508 * dropped to the appropriate values.
18510 * The mechanism to quiesce an ipif is as follows.
18512 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed
18513 * on the ipif. Callers either pass a flag requesting wait or the lookup
18514 * functions will return NULL.
18516 * Delete all ires referencing this ipif
18518 * Any thread attempting to do an ipif_refhold on an ipif that has been
18519 * obtained thru a cached pointer will first make sure that
18520 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then
18521 * increment the refcount.
18523 * The above guarantees that the ipif refcount will eventually come down to
18524 * zero and the ipif will quiesce, once all threads that currently hold a
18525 * reference to the ipif refrelease the ipif. The ipif is quiescent after the
18526 * ipif_refcount has dropped to zero and all ire's associated with this ipif
18527 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both
18528 * drop to zero.
18530 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval.
18532 * Threads trying to lookup an ipif or ill can pass a flag requesting
18533 * wait and restart if the ipif / ill cannot be looked up currently.
18534 * For eg. bind, and route operations (Eg. route add / delete) cannot return
18535 * failure if the ipif is currently undergoing an exclusive operation, and
18536 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation
18537 * is restarted by ipsq_exit() when the currently exclusive ioctl completes.
18538 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The
18539 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
18540 * change while the ill_lock is held. Before dropping the ill_lock we acquire
18541 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
18542 * until we release the ipsq_lock, even though the the ill/ipif state flags
18543 * can change after we drop the ill_lock.
18545 * An attempt to send out a packet using an ipif that is currently
18546 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this
18547 * operation and restart it later when the exclusive condition on the ipif ends.
18548 * This is an example of not passing the wait flag to the lookup functions. For
18549 * example an attempt to refhold and use conn->conn_multicast_ipif and send
18550 * out a multicast packet on that ipif will fail while the ipif is
18551 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is
18552 * currently IPIF_CHANGING will also fail.
18555 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18557 ill_t *ill = ipif->ipif_ill;
18558 phyint_t *phyi;
18559 conn_t *connp;
18560 boolean_t success;
18561 boolean_t ipif_was_up = B_FALSE;
18562 ip_stack_t *ipst = ill->ill_ipst;
18564 ASSERT(IAM_WRITER_IPIF(ipif));
18566 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
18568 if (ipif->ipif_flags & IPIF_UP) {
18569 mutex_enter(&ill->ill_lock);
18570 ipif->ipif_flags &= ~IPIF_UP;
18571 ASSERT(ill->ill_ipif_up_count > 0);
18572 --ill->ill_ipif_up_count;
18573 mutex_exit(&ill->ill_lock);
18574 ipif_was_up = B_TRUE;
18575 /* Update status in SCTP's list */
18576 sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
18580 * Blow away memberships we established in ipif_multicast_up().
18582 ipif_multicast_down(ipif);
18585 * Remove from the mapping for __sin6_src_id. We insert only
18586 * when the address is not INADDR_ANY. As IPv4 addresses are
18587 * stored as mapped addresses, we need to check for mapped
18588 * INADDR_ANY also.
18590 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
18591 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
18592 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
18593 int err;
18595 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
18596 ipif->ipif_zoneid, ipst);
18597 if (err != 0) {
18598 ip0dbg(("ipif_down: srcid_remove %d\n", err));
18603 * Before we delete the ill from the group (if any), we need
18604 * to make sure that we delete all the routes dependent on
18605 * this and also any ipifs dependent on this ipif for
18606 * source address. We need to do before we delete from
18607 * the group because
18609 * 1) ipif_down_delete_ire de-references ill->ill_group.
18611 * 2) ipif_update_other_ipifs needs to walk the whole group
18612 * for re-doing source address selection. Note that
18613 * ipif_select_source[_v6] called from
18614 * ipif_update_other_ipifs[_v6] will not pick this ipif
18615 * because we have already marked down here i.e cleared
18616 * IPIF_UP.
18618 if (ipif->ipif_isv6) {
18619 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
18620 ipst);
18621 } else {
18622 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
18623 ipst);
18627 * Cleaning up the conn_ire_cache or conns must be done only after the
18628 * ires have been deleted above. Otherwise a thread could end up
18629 * caching an ire in a conn after we have finished the cleanup of the
18630 * conn. The caching is done after making sure that the ire is not yet
18631 * condemned. Also documented in the block comment above ip_output
18633 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
18634 /* Also, delete the ires cached in SCTP */
18635 sctp_ire_cache_flush(ipif);
18638 * Update any other ipifs which have used "our" local address as
18639 * a source address. This entails removing and recreating IRE_INTERFACE
18640 * entries for such ipifs.
18642 if (ipif->ipif_isv6)
18643 ipif_update_other_ipifs_v6(ipif, ill->ill_group);
18644 else
18645 ipif_update_other_ipifs(ipif, ill->ill_group);
18647 if (ipif_was_up) {
18649 * Check whether it is last ipif to leave this group.
18650 * If this is the last ipif to leave, we should remove
18651 * this ill from the group as ipif_select_source will not
18652 * be able to find any useful ipifs if this ill is selected
18653 * for load balancing.
18655 * For nameless groups, we should call ifgrp_delete if this
18656 * belongs to some group. As this ipif is going down, we may
18657 * need to reconstruct groups.
18659 phyi = ill->ill_phyint;
18661 * If the phyint_groupname_len is 0, it may or may not
18662 * be in the nameless group. If the phyint_groupname_len is
18663 * not 0, then this ill should be part of some group.
18664 * As we always insert this ill in the group if
18665 * phyint_groupname_len is not zero when the first ipif
18666 * comes up (in ipif_up_done), it should be in a group
18667 * when the namelen is not 0.
18669 * NOTE : When we delete the ill from the group,it will
18670 * blow away all the IRE_CACHES pointing either at this ipif or
18671 * ill_wq (illgrp_cache_delete does this). Thus, no IRES
18672 * should be pointing at this ill.
18674 ASSERT(phyi->phyint_groupname_len == 0 ||
18675 (phyi->phyint_groupname != NULL && ill->ill_group != NULL));
18677 if (phyi->phyint_groupname_len != 0) {
18678 if (ill->ill_ipif_up_count == 0)
18679 illgrp_delete(ill);
18683 * If we have deleted some of the broadcast ires associated
18684 * with this ipif, we need to re-nominate somebody else if
18685 * the ires that we deleted were the nominated ones.
18687 if (ill->ill_group != NULL && !ill->ill_isv6)
18688 ipif_renominate_bcast(ipif);
18692 * neighbor-discovery or arp entries for this interface.
18694 ipif_ndp_down(ipif);
18697 * If mp is NULL the caller will wait for the appropriate refcnt.
18698 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down
18699 * and ill_delete -> ipif_free -> ipif_down
18701 if (mp == NULL) {
18702 ASSERT(q == NULL);
18703 return (0);
18706 if (CONN_Q(q)) {
18707 connp = Q_TO_CONN(q);
18708 mutex_enter(&connp->conn_lock);
18709 } else {
18710 connp = NULL;
18712 mutex_enter(&ill->ill_lock);
18714 * Are there any ire's pointing to this ipif that are still active ?
18715 * If this is the last ipif going down, are there any ire's pointing
18716 * to this ill that are still active ?
18718 if (ipif_is_quiescent(ipif)) {
18719 mutex_exit(&ill->ill_lock);
18720 if (connp != NULL)
18721 mutex_exit(&connp->conn_lock);
18722 return (0);
18725 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
18726 ill->ill_name, (void *)ill));
18728 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
18729 * drops down, the operation will be restarted by ipif_ill_refrele_tail
18730 * which in turn is called by the last refrele on the ipif/ill/ire.
18732 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
18733 if (!success) {
18734 /* The conn is closing. So just return */
18735 ASSERT(connp != NULL);
18736 mutex_exit(&ill->ill_lock);
18737 mutex_exit(&connp->conn_lock);
18738 return (EINTR);
18741 mutex_exit(&ill->ill_lock);
18742 if (connp != NULL)
18743 mutex_exit(&connp->conn_lock);
18744 return (EINPROGRESS);
18747 void
18748 ipif_down_tail(ipif_t *ipif)
18750 ill_t *ill = ipif->ipif_ill;
18753 * Skip any loopback interface (null wq).
18754 * If this is the last logical interface on the ill
18755 * have ill_dl_down tell the driver we are gone (unbind)
18756 * Note that lun 0 can ipif_down even though
18757 * there are other logical units that are up.
18758 * This occurs e.g. when we change a "significant" IFF_ flag.
18760 if (ill->ill_wq != NULL && !ill->ill_logical_down &&
18761 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
18762 ill->ill_dl_up) {
18763 ill_dl_down(ill);
18765 ill->ill_logical_down = 0;
18768 * Have to be after removing the routes in ipif_down_delete_ire.
18770 if (ipif->ipif_isv6) {
18771 if (ill->ill_flags & ILLF_XRESOLV)
18772 ipif_arp_down(ipif);
18773 } else {
18774 ipif_arp_down(ipif);
18777 ip_rts_ifmsg(ipif);
18778 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif);
18782 * Bring interface logically down without bringing the physical interface
18783 * down e.g. when the netmask is changed. This avoids long lasting link
18784 * negotiations between an ethernet interface and a certain switches.
18786 static int
18787 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18790 * The ill_logical_down flag is a transient flag. It is set here
18791 * and is cleared once the down has completed in ipif_down_tail.
18792 * This flag does not indicate whether the ill stream is in the
18793 * DL_BOUND state with the driver. Instead this flag is used by
18794 * ipif_down_tail to determine whether to DL_UNBIND the stream with
18795 * the driver. The state of the ill stream i.e. whether it is
18796 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
18798 ipif->ipif_ill->ill_logical_down = 1;
18799 return (ipif_down(ipif, q, mp));
18803 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP.
18804 * If the usesrc client ILL is already part of a usesrc group or not,
18805 * in either case a ire_stq with the matching usesrc client ILL will
18806 * locate the IRE's that need to be deleted. We want IREs to be created
18807 * with the new source address.
18809 static void
18810 ipif_delete_cache_ire(ire_t *ire, char *ill_arg)
18812 ill_t *ucill = (ill_t *)ill_arg;
18814 ASSERT(IAM_WRITER_ILL(ucill));
18816 if (ire->ire_stq == NULL)
18817 return;
18819 if ((ire->ire_type == IRE_CACHE) &&
18820 ((ill_t *)ire->ire_stq->q_ptr == ucill))
18821 ire_delete(ire);
18825 * ire_walk routine to delete every IRE dependent on the interface
18826 * address that is going down. (Always called as writer.)
18827 * Works for both v4 and v6.
18828 * In addition for checking for ire_ipif matches it also checks for
18829 * IRE_CACHE entries which have the same source address as the
18830 * disappearing ipif since ipif_select_source might have picked
18831 * that source. Note that ipif_down/ipif_update_other_ipifs takes
18832 * care of any IRE_INTERFACE with the disappearing source address.
18834 static void
18835 ipif_down_delete_ire(ire_t *ire, char *ipif_arg)
18837 ipif_t *ipif = (ipif_t *)ipif_arg;
18838 ill_t *ire_ill;
18839 ill_t *ipif_ill;
18841 ASSERT(IAM_WRITER_IPIF(ipif));
18842 if (ire->ire_ipif == NULL)
18843 return;
18846 * For IPv4, we derive source addresses for an IRE from ipif's
18847 * belonging to the same IPMP group as the IRE's outgoing
18848 * interface. If an IRE's outgoing interface isn't in the
18849 * same IPMP group as a particular ipif, then that ipif
18850 * couldn't have been used as a source address for this IRE.
18852 * For IPv6, source addresses are only restricted to the IPMP group
18853 * if the IRE is for a link-local address or a multicast address.
18854 * Otherwise, source addresses for an IRE can be chosen from
18855 * interfaces other than the the outgoing interface for that IRE.
18857 * For source address selection details, see ipif_select_source()
18858 * and ipif_select_source_v6().
18860 if (ire->ire_ipversion == IPV4_VERSION ||
18861 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) ||
18862 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
18863 ire_ill = ire->ire_ipif->ipif_ill;
18864 ipif_ill = ipif->ipif_ill;
18866 if (ire_ill->ill_group != ipif_ill->ill_group) {
18867 return;
18872 if (ire->ire_ipif != ipif) {
18874 * Look for a matching source address.
18876 if (ire->ire_type != IRE_CACHE)
18877 return;
18878 if (ipif->ipif_flags & IPIF_NOLOCAL)
18879 return;
18881 if (ire->ire_ipversion == IPV4_VERSION) {
18882 if (ire->ire_src_addr != ipif->ipif_src_addr)
18883 return;
18884 } else {
18885 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
18886 &ipif->ipif_v6lcl_addr))
18887 return;
18889 ire_delete(ire);
18890 return;
18893 * ire_delete() will do an ire_flush_cache which will delete
18894 * all ire_ipif matches
18896 ire_delete(ire);
18900 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when
18901 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or
18902 * 2) when an interface is brought up or down (on that ill).
18903 * This ensures that the IRE_CACHE entries don't retain stale source
18904 * address selection results.
18906 void
18907 ill_ipif_cache_delete(ire_t *ire, char *ill_arg)
18909 ill_t *ill = (ill_t *)ill_arg;
18910 ill_t *ipif_ill;
18912 ASSERT(IAM_WRITER_ILL(ill));
18914 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18915 * Hence this should be IRE_CACHE.
18917 ASSERT(ire->ire_type == IRE_CACHE);
18920 * We are called for IRE_CACHES whose ire_ipif matches ill.
18921 * We are only interested in IRE_CACHES that has borrowed
18922 * the source address from ill_arg e.g. ipif_up_done[_v6]
18923 * for which we need to look at ire_ipif->ipif_ill match
18924 * with ill.
18926 ASSERT(ire->ire_ipif != NULL);
18927 ipif_ill = ire->ire_ipif->ipif_ill;
18928 if (ipif_ill == ill || (ill->ill_group != NULL &&
18929 ipif_ill->ill_group == ill->ill_group)) {
18930 ire_delete(ire);
18935 * Delete all the ire whose stq references ill_arg.
18937 static void
18938 ill_stq_cache_delete(ire_t *ire, char *ill_arg)
18940 ill_t *ill = (ill_t *)ill_arg;
18941 ill_t *ire_ill;
18943 ASSERT(IAM_WRITER_ILL(ill));
18945 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18946 * Hence this should be IRE_CACHE.
18948 ASSERT(ire->ire_type == IRE_CACHE);
18951 * We are called for IRE_CACHES whose ire_stq and ire_ipif
18952 * matches ill. We are only interested in IRE_CACHES that
18953 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the
18954 * filtering here.
18956 ire_ill = (ill_t *)ire->ire_stq->q_ptr;
18958 if (ire_ill == ill)
18959 ire_delete(ire);
18963 * This is called when an ill leaves the group. We want to delete
18964 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is
18965 * pointing at ill.
18967 static void
18968 illgrp_cache_delete(ire_t *ire, char *ill_arg)
18970 ill_t *ill = (ill_t *)ill_arg;
18972 ASSERT(IAM_WRITER_ILL(ill));
18973 ASSERT(ill->ill_group == NULL);
18975 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
18976 * Hence this should be IRE_CACHE.
18978 ASSERT(ire->ire_type == IRE_CACHE);
18980 * We are called for IRE_CACHES whose ire_stq and ire_ipif
18981 * matches ill. We are interested in both.
18983 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) ||
18984 (ire->ire_ipif->ipif_ill == ill));
18986 ire_delete(ire);
18990 * Initiate deallocate of an IPIF. Always called as writer. Called by
18991 * ill_delete or ip_sioctl_removeif.
18993 static void
18994 ipif_free(ipif_t *ipif)
18996 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
18998 ASSERT(IAM_WRITER_IPIF(ipif));
19000 if (ipif->ipif_recovery_id != 0)
19001 (void) untimeout(ipif->ipif_recovery_id);
19002 ipif->ipif_recovery_id = 0;
19004 /* Remove conn references */
19005 reset_conn_ipif(ipif);
19008 * Make sure we have valid net and subnet broadcast ire's for the
19009 * other ipif's which share them with this ipif.
19011 if (!ipif->ipif_isv6)
19012 ipif_check_bcast_ires(ipif);
19015 * Take down the interface. We can be called either from ill_delete
19016 * or from ip_sioctl_removeif.
19018 (void) ipif_down(ipif, NULL, NULL);
19021 * Now that the interface is down, there's no chance it can still
19022 * become a duplicate. Cancel any timer that may have been set while
19023 * tearing down.
19025 if (ipif->ipif_recovery_id != 0)
19026 (void) untimeout(ipif->ipif_recovery_id);
19027 ipif->ipif_recovery_id = 0;
19029 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19030 /* Remove pointers to this ill in the multicast routing tables */
19031 reset_mrt_vif_ipif(ipif);
19032 rw_exit(&ipst->ips_ill_g_lock);
19036 * Warning: this is not the only function that calls mi_free on an ipif_t. See
19037 * also ill_move().
19039 static void
19040 ipif_free_tail(ipif_t *ipif)
19042 mblk_t *mp;
19043 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
19046 * Free state for addition IRE_IF_[NO]RESOLVER ire's.
19048 mutex_enter(&ipif->ipif_saved_ire_lock);
19049 mp = ipif->ipif_saved_ire_mp;
19050 ipif->ipif_saved_ire_mp = NULL;
19051 mutex_exit(&ipif->ipif_saved_ire_lock);
19052 freemsg(mp);
19055 * Need to hold both ill_g_lock and ill_lock while
19056 * inserting or removing an ipif from the linked list
19057 * of ipifs hanging off the ill.
19059 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19061 * Remove all IPv4 multicast memberships on the interface now.
19062 * IPv6 is not handled here as the multicast memberships are
19063 * tied to the ill rather than the ipif.
19065 ilm_free(ipif);
19068 * Since we held the ill_g_lock while doing the ilm_free above,
19069 * we can assert the ilms were really deleted and not just marked
19070 * ILM_DELETED.
19072 ASSERT(ilm_walk_ipif(ipif) == 0);
19074 #ifdef DEBUG
19075 ipif_trace_cleanup(ipif);
19076 #endif
19078 /* Ask SCTP to take it out of it list */
19079 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
19081 /* Get it out of the ILL interface list. */
19082 ipif_remove(ipif, B_TRUE);
19083 rw_exit(&ipst->ips_ill_g_lock);
19085 mutex_destroy(&ipif->ipif_saved_ire_lock);
19087 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
19088 ASSERT(ipif->ipif_recovery_id == 0);
19090 /* Free the memory. */
19091 mi_free(ipif);
19095 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
19096 * is zero.
19098 void
19099 ipif_get_name(const ipif_t *ipif, char *buf, int len)
19101 char lbuf[LIFNAMSIZ];
19102 char *name;
19103 size_t name_len;
19105 buf[0] = '\0';
19106 name = ipif->ipif_ill->ill_name;
19107 name_len = ipif->ipif_ill->ill_name_length;
19108 if (ipif->ipif_id != 0) {
19109 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
19110 ipif->ipif_id);
19111 name = lbuf;
19112 name_len = mi_strlen(name) + 1;
19114 len -= 1;
19115 buf[len] = '\0';
19116 len = MIN(len, name_len);
19117 bcopy(name, buf, len);
19121 * Find an IPIF based on the name passed in. Names can be of the
19122 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1),
19123 * The <phys> string can have forms like <dev><#> (e.g., le0),
19124 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3).
19125 * When there is no colon, the implied unit id is zero. <phys> must
19126 * correspond to the name of an ILL. (May be called as writer.)
19128 static ipif_t *
19129 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
19130 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
19131 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
19133 char *cp;
19134 char *endp;
19135 long id;
19136 ill_t *ill;
19137 ipif_t *ipif;
19138 uint_t ire_type;
19139 boolean_t did_alloc = B_FALSE;
19140 ipsq_t *ipsq;
19142 if (error != NULL)
19143 *error = 0;
19146 * If the caller wants to us to create the ipif, make sure we have a
19147 * valid zoneid
19149 ASSERT(!do_alloc || zoneid != ALL_ZONES);
19151 if (namelen == 0) {
19152 if (error != NULL)
19153 *error = ENXIO;
19154 return (NULL);
19157 *exists = B_FALSE;
19158 /* Look for a colon in the name. */
19159 endp = &name[namelen];
19160 for (cp = endp; --cp > name; ) {
19161 if (*cp == IPIF_SEPARATOR_CHAR)
19162 break;
19165 if (*cp == IPIF_SEPARATOR_CHAR) {
19167 * Reject any non-decimal aliases for logical
19168 * interfaces. Aliases with leading zeroes
19169 * are also rejected as they introduce ambiguity
19170 * in the naming of the interfaces.
19171 * In order to confirm with existing semantics,
19172 * and to not break any programs/script relying
19173 * on that behaviour, if<0>:0 is considered to be
19174 * a valid interface.
19176 * If alias has two or more digits and the first
19177 * is zero, fail.
19179 if (&cp[2] < endp && cp[1] == '0') {
19180 if (error != NULL)
19181 *error = EINVAL;
19182 return (NULL);
19186 if (cp <= name) {
19187 cp = endp;
19188 } else {
19189 *cp = '\0';
19193 * Look up the ILL, based on the portion of the name
19194 * before the slash. ill_lookup_on_name returns a held ill.
19195 * Temporary to check whether ill exists already. If so
19196 * ill_lookup_on_name will clear it.
19198 ill = ill_lookup_on_name(name, do_alloc, isv6,
19199 q, mp, func, error, &did_alloc, ipst);
19200 if (cp != endp)
19201 *cp = IPIF_SEPARATOR_CHAR;
19202 if (ill == NULL)
19203 return (NULL);
19205 /* Establish the unit number in the name. */
19206 id = 0;
19207 if (cp < endp && *endp == '\0') {
19208 /* If there was a colon, the unit number follows. */
19209 cp++;
19210 if (ddi_strtol(cp, NULL, 0, &id) != 0) {
19211 ill_refrele(ill);
19212 if (error != NULL)
19213 *error = ENXIO;
19214 return (NULL);
19218 GRAB_CONN_LOCK(q);
19219 mutex_enter(&ill->ill_lock);
19220 /* Now see if there is an IPIF with this unit number. */
19221 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19222 if (ipif->ipif_id == id) {
19223 if (zoneid != ALL_ZONES &&
19224 zoneid != ipif->ipif_zoneid &&
19225 ipif->ipif_zoneid != ALL_ZONES) {
19226 mutex_exit(&ill->ill_lock);
19227 RELEASE_CONN_LOCK(q);
19228 ill_refrele(ill);
19229 if (error != NULL)
19230 *error = ENXIO;
19231 return (NULL);
19234 * The block comment at the start of ipif_down
19235 * explains the use of the macros used below
19237 if (IPIF_CAN_LOOKUP(ipif)) {
19238 ipif_refhold_locked(ipif);
19239 mutex_exit(&ill->ill_lock);
19240 if (!did_alloc)
19241 *exists = B_TRUE;
19243 * Drop locks before calling ill_refrele
19244 * since it can potentially call into
19245 * ipif_ill_refrele_tail which can end up
19246 * in trying to acquire any lock.
19248 RELEASE_CONN_LOCK(q);
19249 ill_refrele(ill);
19250 return (ipif);
19251 } else if (IPIF_CAN_WAIT(ipif, q)) {
19252 ipsq = ill->ill_phyint->phyint_ipsq;
19253 mutex_enter(&ipsq->ipsq_lock);
19254 mutex_exit(&ill->ill_lock);
19255 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
19256 mutex_exit(&ipsq->ipsq_lock);
19257 RELEASE_CONN_LOCK(q);
19258 ill_refrele(ill);
19259 if (error != NULL)
19260 *error = EINPROGRESS;
19261 return (NULL);
19265 RELEASE_CONN_LOCK(q);
19267 if (!do_alloc) {
19268 mutex_exit(&ill->ill_lock);
19269 ill_refrele(ill);
19270 if (error != NULL)
19271 *error = ENXIO;
19272 return (NULL);
19276 * If none found, atomically allocate and return a new one.
19277 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
19278 * to support "receive only" use of lo0:1 etc. as is still done
19279 * below as an initial guess.
19280 * However, this is now likely to be overriden later in ipif_up_done()
19281 * when we know for sure what address has been configured on the
19282 * interface, since we might have more than one loopback interface
19283 * with a loopback address, e.g. in the case of zones, and all the
19284 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
19286 if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
19287 ire_type = IRE_LOOPBACK;
19288 else
19289 ire_type = IRE_LOCAL;
19290 ipif = ipif_allocate(ill, id, ire_type, B_TRUE);
19291 if (ipif != NULL)
19292 ipif_refhold_locked(ipif);
19293 else if (error != NULL)
19294 *error = ENOMEM;
19295 mutex_exit(&ill->ill_lock);
19296 ill_refrele(ill);
19297 return (ipif);
19301 * This routine is called whenever a new address comes up on an ipif. If
19302 * we are configured to respond to address mask requests, then we are supposed
19303 * to broadcast an address mask reply at this time. This routine is also
19304 * called if we are already up, but a netmask change is made. This is legal
19305 * but might not make the system manager very popular. (May be called
19306 * as writer.)
19308 void
19309 ipif_mask_reply(ipif_t *ipif)
19311 icmph_t *icmph;
19312 ipha_t *ipha;
19313 mblk_t *mp;
19314 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
19316 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
19318 if (!ipst->ips_ip_respond_to_address_mask_broadcast)
19319 return;
19321 /* ICMP mask reply is IPv4 only */
19322 ASSERT(!ipif->ipif_isv6);
19323 /* ICMP mask reply is not for a loopback interface */
19324 ASSERT(ipif->ipif_ill->ill_wq != NULL);
19326 mp = allocb(REPLY_LEN, BPRI_HI);
19327 if (mp == NULL)
19328 return;
19329 mp->b_wptr = mp->b_rptr + REPLY_LEN;
19331 ipha = (ipha_t *)mp->b_rptr;
19332 bzero(ipha, REPLY_LEN);
19333 *ipha = icmp_ipha;
19334 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
19335 ipha->ipha_src = ipif->ipif_src_addr;
19336 ipha->ipha_dst = ipif->ipif_brd_addr;
19337 ipha->ipha_length = htons(REPLY_LEN);
19338 ipha->ipha_ident = 0;
19340 icmph = (icmph_t *)&ipha[1];
19341 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
19342 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
19343 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
19345 put(ipif->ipif_wq, mp);
19347 #undef REPLY_LEN
19351 * When the mtu in the ipif changes, we call this routine through ire_walk
19352 * to update all the relevant IREs.
19353 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19355 static void
19356 ipif_mtu_change(ire_t *ire, char *ipif_arg)
19358 ipif_t *ipif = (ipif_t *)ipif_arg;
19360 if (ire->ire_stq == NULL || ire->ire_ipif != ipif)
19361 return;
19362 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET);
19366 * When the mtu in the ill changes, we call this routine through ire_walk
19367 * to update all the relevant IREs.
19368 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19370 void
19371 ill_mtu_change(ire_t *ire, char *ill_arg)
19373 ill_t *ill = (ill_t *)ill_arg;
19375 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill)
19376 return;
19377 ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
19381 * Join the ipif specific multicast groups.
19382 * Must be called after a mapping has been set up in the resolver. (Always
19383 * called as writer.)
19385 void
19386 ipif_multicast_up(ipif_t *ipif)
19388 int err, index;
19389 ill_t *ill;
19391 ASSERT(IAM_WRITER_IPIF(ipif));
19393 ill = ipif->ipif_ill;
19394 index = ill->ill_phyint->phyint_ifindex;
19396 ip1dbg(("ipif_multicast_up\n"));
19397 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up)
19398 return;
19400 if (ipif->ipif_isv6) {
19401 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
19402 return;
19404 /* Join the all hosts multicast address */
19405 ip1dbg(("ipif_multicast_up - addmulti\n"));
19407 * Passing B_TRUE means we have to join the multicast
19408 * membership on this interface even though this is
19409 * FAILED. If we join on a different one in the group,
19410 * we will not be able to delete the membership later
19411 * as we currently don't track where we join when we
19412 * join within the kernel unlike applications where
19413 * we have ilg/ilg_orig_index. See ip_addmulti_v6
19414 * for more on this.
19416 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index,
19417 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19418 if (err != 0) {
19419 ip0dbg(("ipif_multicast_up: "
19420 "all_hosts_mcast failed %d\n",
19421 err));
19422 return;
19425 * Enable multicast for the solicited node multicast address
19427 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19428 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19430 ipv6_multi.s6_addr32[3] |=
19431 ipif->ipif_v6lcl_addr.s6_addr32[3];
19433 err = ip_addmulti_v6(&ipv6_multi, ill, index,
19434 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE,
19435 NULL);
19436 if (err != 0) {
19437 ip0dbg(("ipif_multicast_up: solicited MC"
19438 " failed %d\n", err));
19439 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast,
19440 ill, ill->ill_phyint->phyint_ifindex,
19441 ipif->ipif_zoneid, B_TRUE, B_TRUE);
19442 return;
19445 } else {
19446 if (ipif->ipif_lcl_addr == INADDR_ANY)
19447 return;
19449 /* Join the all hosts multicast address */
19450 ip1dbg(("ipif_multicast_up - addmulti\n"));
19451 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif,
19452 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19453 if (err) {
19454 ip0dbg(("ipif_multicast_up: failed %d\n", err));
19455 return;
19458 ipif->ipif_multicast_up = 1;
19462 * Blow away any multicast groups that we joined in ipif_multicast_up().
19463 * (Explicit memberships are blown away in ill_leave_multicast() when the
19464 * ill is brought down.)
19466 static void
19467 ipif_multicast_down(ipif_t *ipif)
19469 int err;
19471 ASSERT(IAM_WRITER_IPIF(ipif));
19473 ip1dbg(("ipif_multicast_down\n"));
19474 if (!ipif->ipif_multicast_up)
19475 return;
19477 ip1dbg(("ipif_multicast_down - delmulti\n"));
19479 if (!ipif->ipif_isv6) {
19480 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE,
19481 B_TRUE);
19482 if (err != 0)
19483 ip0dbg(("ipif_multicast_down: failed %d\n", err));
19485 ipif->ipif_multicast_up = 0;
19486 return;
19490 * Leave the all hosts multicast address. Similar to ip_addmulti_v6,
19491 * we should look for ilms on this ill rather than the ones that have
19492 * been failed over here. They are here temporarily. As
19493 * ipif_multicast_up has joined on this ill, we should delete only
19494 * from this ill.
19496 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill,
19497 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid,
19498 B_TRUE, B_TRUE);
19499 if (err != 0) {
19500 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n",
19501 err));
19504 * Disable multicast for the solicited node multicast address
19506 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19507 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19509 ipv6_multi.s6_addr32[3] |=
19510 ipif->ipif_v6lcl_addr.s6_addr32[3];
19512 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill,
19513 ipif->ipif_ill->ill_phyint->phyint_ifindex,
19514 ipif->ipif_zoneid, B_TRUE, B_TRUE);
19516 if (err != 0) {
19517 ip0dbg(("ipif_multicast_down: sol MC failed %d\n",
19518 err));
19522 ipif->ipif_multicast_up = 0;
19526 * Used when an interface comes up to recreate any extra routes on this
19527 * interface.
19529 static ire_t **
19530 ipif_recover_ire(ipif_t *ipif)
19532 mblk_t *mp;
19533 ire_t **ipif_saved_irep;
19534 ire_t **irep;
19535 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
19537 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name,
19538 ipif->ipif_id));
19540 mutex_enter(&ipif->ipif_saved_ire_lock);
19541 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
19542 ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
19543 if (ipif_saved_irep == NULL) {
19544 mutex_exit(&ipif->ipif_saved_ire_lock);
19545 return (NULL);
19548 irep = ipif_saved_irep;
19549 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
19550 ire_t *ire;
19551 queue_t *rfq;
19552 queue_t *stq;
19553 ifrt_t *ifrt;
19554 uchar_t *src_addr;
19555 uchar_t *gateway_addr;
19556 ushort_t type;
19559 * When the ire was initially created and then added in
19560 * ip_rt_add(), it was created either using ipif->ipif_net_type
19561 * in the case of a traditional interface route, or as one of
19562 * the IRE_OFFSUBNET types (with the exception of
19563 * IRE_HOST types ire which is created by icmp_redirect() and
19564 * which we don't need to save or recover). In the case where
19565 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update
19566 * the ire_type to IRE_IF_NORESOLVER before calling ire_add()
19567 * to satisfy software like GateD and Sun Cluster which creates
19568 * routes using the the loopback interface's address as a
19569 * gateway.
19571 * As ifrt->ifrt_type reflects the already updated ire_type,
19572 * ire_create() will be called in the same way here as
19573 * in ip_rt_add(), namely using ipif->ipif_net_type when
19574 * the route looks like a traditional interface route (where
19575 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using
19576 * the saved ifrt->ifrt_type. This means that in the case where
19577 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by
19578 * ire_create() will be an IRE_LOOPBACK, it will then be turned
19579 * into an IRE_IF_NORESOLVER and then added by ire_add().
19581 ifrt = (ifrt_t *)mp->b_rptr;
19582 ASSERT(ifrt->ifrt_type != IRE_CACHE);
19583 if (ifrt->ifrt_type & IRE_INTERFACE) {
19584 rfq = NULL;
19585 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
19586 ? ipif->ipif_rq : ipif->ipif_wq;
19587 src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19588 ? (uint8_t *)&ifrt->ifrt_src_addr
19589 : (uint8_t *)&ipif->ipif_src_addr;
19590 gateway_addr = NULL;
19591 type = ipif->ipif_net_type;
19592 } else if (ifrt->ifrt_type & IRE_BROADCAST) {
19593 /* Recover multiroute broadcast IRE. */
19594 rfq = ipif->ipif_rq;
19595 stq = ipif->ipif_wq;
19596 src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19597 ? (uint8_t *)&ifrt->ifrt_src_addr
19598 : (uint8_t *)&ipif->ipif_src_addr;
19599 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19600 type = ifrt->ifrt_type;
19601 } else {
19602 rfq = NULL;
19603 stq = NULL;
19604 src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19605 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL;
19606 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19607 type = ifrt->ifrt_type;
19611 * Create a copy of the IRE with the saved address and netmask.
19613 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for "
19614 "0x%x/0x%x\n",
19615 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
19616 ntohl(ifrt->ifrt_addr),
19617 ntohl(ifrt->ifrt_mask)));
19618 ire = ire_create(
19619 (uint8_t *)&ifrt->ifrt_addr,
19620 (uint8_t *)&ifrt->ifrt_mask,
19621 src_addr,
19622 gateway_addr,
19623 &ifrt->ifrt_max_frag,
19624 NULL,
19625 rfq,
19626 stq,
19627 type,
19628 ipif,
19632 ifrt->ifrt_flags,
19633 &ifrt->ifrt_iulp_info,
19634 NULL,
19635 NULL,
19636 ipst);
19638 if (ire == NULL) {
19639 mutex_exit(&ipif->ipif_saved_ire_lock);
19640 kmem_free(ipif_saved_irep,
19641 ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
19642 return (NULL);
19646 * Some software (for example, GateD and Sun Cluster) attempts
19647 * to create (what amount to) IRE_PREFIX routes with the
19648 * loopback address as the gateway. This is primarily done to
19649 * set up prefixes with the RTF_REJECT flag set (for example,
19650 * when generating aggregate routes.)
19652 * If the IRE type (as defined by ipif->ipif_net_type) is
19653 * IRE_LOOPBACK, then we map the request into a
19654 * IRE_IF_NORESOLVER.
19656 if (ipif->ipif_net_type == IRE_LOOPBACK)
19657 ire->ire_type = IRE_IF_NORESOLVER;
19659 * ire held by ire_add, will be refreled' towards the
19660 * the end of ipif_up_done
19662 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
19663 *irep = ire;
19664 irep++;
19665 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire));
19667 mutex_exit(&ipif->ipif_saved_ire_lock);
19668 return (ipif_saved_irep);
19672 * Used to set the netmask and broadcast address to default values when the
19673 * interface is brought up. (Always called as writer.)
19675 static void
19676 ipif_set_default(ipif_t *ipif)
19678 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
19680 if (!ipif->ipif_isv6) {
19682 * Interface holds an IPv4 address. Default
19683 * mask is the natural netmask.
19685 if (!ipif->ipif_net_mask) {
19686 ipaddr_t v4mask;
19688 v4mask = ip_net_mask(ipif->ipif_lcl_addr);
19689 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
19691 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19692 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19693 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19694 } else {
19695 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19696 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19699 * NOTE: SunOS 4.X does this even if the broadcast address
19700 * has been already set thus we do the same here.
19702 if (ipif->ipif_flags & IPIF_BROADCAST) {
19703 ipaddr_t v4addr;
19705 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
19706 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
19708 } else {
19710 * Interface holds an IPv6-only address. Default
19711 * mask is all-ones.
19713 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
19714 ipif->ipif_v6net_mask = ipv6_all_ones;
19715 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19716 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19717 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19718 } else {
19719 V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19720 ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19726 * Return 0 if this address can be used as local address without causing
19727 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
19728 * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
19729 * Special checks are needed to allow the same IPv6 link-local address
19730 * on different ills.
19731 * TODO: allowing the same site-local address on different ill's.
19734 ip_addr_availability_check(ipif_t *new_ipif)
19736 in6_addr_t our_v6addr;
19737 ill_t *ill;
19738 ipif_t *ipif;
19739 ill_walk_context_t ctx;
19740 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst;
19742 ASSERT(IAM_WRITER_IPIF(new_ipif));
19743 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
19744 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
19746 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
19747 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
19748 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
19749 return (0);
19751 our_v6addr = new_ipif->ipif_v6lcl_addr;
19753 if (new_ipif->ipif_isv6)
19754 ill = ILL_START_WALK_V6(&ctx, ipst);
19755 else
19756 ill = ILL_START_WALK_V4(&ctx, ipst);
19758 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
19759 for (ipif = ill->ill_ipif; ipif != NULL;
19760 ipif = ipif->ipif_next) {
19761 if ((ipif == new_ipif) ||
19762 !(ipif->ipif_flags & IPIF_UP) ||
19763 (ipif->ipif_flags & IPIF_UNNUMBERED))
19764 continue;
19765 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
19766 &our_v6addr)) {
19767 if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
19768 new_ipif->ipif_flags |= IPIF_UNNUMBERED;
19769 else if (ipif->ipif_flags & IPIF_POINTOPOINT)
19770 ipif->ipif_flags |= IPIF_UNNUMBERED;
19771 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) &&
19772 new_ipif->ipif_ill != ill)
19773 continue;
19774 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) &&
19775 new_ipif->ipif_ill != ill)
19776 continue;
19777 else if (new_ipif->ipif_zoneid !=
19778 ipif->ipif_zoneid &&
19779 ipif->ipif_zoneid != ALL_ZONES &&
19780 IS_LOOPBACK(ill))
19781 continue;
19782 else if (new_ipif->ipif_ill == ill)
19783 return (EADDRINUSE);
19784 else
19785 return (EADDRNOTAVAIL);
19790 return (0);
19794 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
19795 * IREs for the ipif.
19796 * When the routine returns EINPROGRESS then mp has been consumed and
19797 * the ioctl will be acked from ip_rput_dlpi.
19799 static int
19800 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
19802 ill_t *ill = ipif->ipif_ill;
19803 boolean_t isv6 = ipif->ipif_isv6;
19804 int err = 0;
19805 boolean_t success;
19807 ASSERT(IAM_WRITER_IPIF(ipif));
19809 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
19811 /* Shouldn't get here if it is already up. */
19812 if (ipif->ipif_flags & IPIF_UP)
19813 return (EALREADY);
19815 /* Skip arp/ndp for any loopback interface. */
19816 if (ill->ill_wq != NULL) {
19817 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
19818 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
19820 if (!ill->ill_dl_up) {
19822 * ill_dl_up is not yet set. i.e. we are yet to
19823 * DL_BIND with the driver and this is the first
19824 * logical interface on the ill to become "up".
19825 * Tell the driver to get going (via DL_BIND_REQ).
19826 * Note that changing "significant" IFF_ flags
19827 * address/netmask etc cause a down/up dance, but
19828 * does not cause an unbind (DL_UNBIND) with the driver
19830 return (ill_dl_up(ill, ipif, mp, q));
19834 * ipif_resolver_up may end up sending an
19835 * AR_INTERFACE_UP message to ARP, which would, in
19836 * turn send a DLPI message to the driver. ioctls are
19837 * serialized and so we cannot send more than one
19838 * interface up message at a time. If ipif_resolver_up
19839 * does send an interface up message to ARP, we get
19840 * EINPROGRESS and we will complete in ip_arp_done.
19843 ASSERT(connp != NULL || !CONN_Q(q));
19844 ASSERT(ipsq->ipsq_pending_mp == NULL);
19845 if (connp != NULL)
19846 mutex_enter(&connp->conn_lock);
19847 mutex_enter(&ill->ill_lock);
19848 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
19849 mutex_exit(&ill->ill_lock);
19850 if (connp != NULL)
19851 mutex_exit(&connp->conn_lock);
19852 if (!success)
19853 return (EINTR);
19856 * Crank up IPv6 neighbor discovery
19857 * Unlike ARP, this should complete when
19858 * ipif_ndp_up returns. However, for
19859 * ILLF_XRESOLV interfaces we also send a
19860 * AR_INTERFACE_UP to the external resolver.
19861 * That ioctl will complete in ip_rput.
19863 if (isv6) {
19864 err = ipif_ndp_up(ipif);
19865 if (err != 0) {
19866 if (err != EINPROGRESS)
19867 mp = ipsq_pending_mp_get(ipsq, &connp);
19868 return (err);
19871 /* Now, ARP */
19872 err = ipif_resolver_up(ipif, Res_act_initial);
19873 if (err == EINPROGRESS) {
19874 /* We will complete it in ip_arp_done */
19875 return (err);
19877 mp = ipsq_pending_mp_get(ipsq, &connp);
19878 ASSERT(mp != NULL);
19879 if (err != 0)
19880 return (err);
19881 } else {
19883 * Interfaces without underlying hardware don't do duplicate
19884 * address detection.
19886 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
19887 ipif->ipif_addr_ready = 1;
19889 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
19893 * Perform a bind for the physical device.
19894 * When the routine returns EINPROGRESS then mp has been consumed and
19895 * the ioctl will be acked from ip_rput_dlpi.
19896 * Allocate an unbind message and save it until ipif_down.
19898 static int
19899 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
19901 areq_t *areq;
19902 mblk_t *areq_mp = NULL;
19903 mblk_t *bind_mp = NULL;
19904 mblk_t *unbind_mp = NULL;
19905 conn_t *connp;
19906 boolean_t success;
19907 uint16_t sap_addr;
19909 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
19910 ASSERT(IAM_WRITER_ILL(ill));
19911 ASSERT(mp != NULL);
19913 /* Create a resolver cookie for ARP */
19914 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) {
19915 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0);
19916 if (areq_mp == NULL)
19917 return (ENOMEM);
19919 freemsg(ill->ill_resolver_mp);
19920 ill->ill_resolver_mp = areq_mp;
19921 areq = (areq_t *)areq_mp->b_rptr;
19922 sap_addr = ill->ill_sap;
19923 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr));
19925 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
19926 DL_BIND_REQ);
19927 if (bind_mp == NULL)
19928 goto bad;
19929 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
19930 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
19932 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
19933 if (unbind_mp == NULL)
19934 goto bad;
19937 * Record state needed to complete this operation when the
19938 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks.
19940 ASSERT(WR(q)->q_next == NULL);
19941 connp = Q_TO_CONN(q);
19943 mutex_enter(&connp->conn_lock);
19944 mutex_enter(&ipif->ipif_ill->ill_lock);
19945 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
19946 mutex_exit(&ipif->ipif_ill->ill_lock);
19947 mutex_exit(&connp->conn_lock);
19948 if (!success)
19949 goto bad;
19952 * Save the unbind message for ill_dl_down(); it will be consumed when
19953 * the interface goes down.
19955 ASSERT(ill->ill_unbind_mp == NULL);
19956 ill->ill_unbind_mp = unbind_mp;
19958 ill_dlpi_send(ill, bind_mp);
19959 /* Send down link-layer capabilities probe if not already done. */
19960 ill_capability_probe(ill);
19963 * Sysid used to rely on the fact that netboots set domainname
19964 * and the like. Now that miniroot boots aren't strictly netboots
19965 * and miniroot network configuration is driven from userland
19966 * these things still need to be set. This situation can be detected
19967 * by comparing the interface being configured here to the one
19968 * dhcack was set to reference by the boot loader. Once sysid is
19969 * converted to use dhcp_ipc_getinfo() this call can go away.
19971 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) &&
19972 (strcmp(ill->ill_name, dhcack) == 0) &&
19973 (strlen(srpc_domain) == 0)) {
19974 if (dhcpinit() != 0)
19975 cmn_err(CE_WARN, "no cached dhcp response");
19979 * This operation will complete in ip_rput_dlpi with either
19980 * a DL_BIND_ACK or DL_ERROR_ACK.
19982 return (EINPROGRESS);
19983 bad:
19984 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
19986 * We don't have to check for possible removal from illgrp
19987 * as we have not yet inserted in illgrp. For groups
19988 * without names, this ipif is still not UP and hence
19989 * this could not have possibly had any influence in forming
19990 * groups.
19993 freemsg(bind_mp);
19994 freemsg(unbind_mp);
19995 return (ENOMEM);
19998 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
20001 * DLPI and ARP is up.
20002 * Create all the IREs associated with an interface bring up multicast.
20003 * Set the interface flag and finish other initialization
20004 * that potentially had to be differed to after DL_BIND_ACK.
20007 ipif_up_done(ipif_t *ipif)
20009 ire_t *ire_array[20];
20010 ire_t **irep = ire_array;
20011 ire_t **irep1;
20012 ipaddr_t net_mask = 0;
20013 ipaddr_t subnet_mask, route_mask;
20014 ill_t *ill = ipif->ipif_ill;
20015 queue_t *stq;
20016 ipif_t *src_ipif;
20017 ipif_t *tmp_ipif;
20018 boolean_t flush_ire_cache = B_TRUE;
20019 int err = 0;
20020 phyint_t *phyi;
20021 ire_t **ipif_saved_irep = NULL;
20022 int ipif_saved_ire_cnt;
20023 int cnt;
20024 boolean_t src_ipif_held = B_FALSE;
20025 boolean_t ire_added = B_FALSE;
20026 boolean_t loopback = B_FALSE;
20027 ip_stack_t *ipst = ill->ill_ipst;
20029 ip1dbg(("ipif_up_done(%s:%u)\n",
20030 ipif->ipif_ill->ill_name, ipif->ipif_id));
20031 /* Check if this is a loopback interface */
20032 if (ipif->ipif_ill->ill_wq == NULL)
20033 loopback = B_TRUE;
20035 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20037 * If all other interfaces for this ill are down or DEPRECATED,
20038 * or otherwise unsuitable for source address selection, remove
20039 * any IRE_CACHE entries for this ill to make sure source
20040 * address selection gets to take this new ipif into account.
20041 * No need to hold ill_lock while traversing the ipif list since
20042 * we are writer
20044 for (tmp_ipif = ill->ill_ipif; tmp_ipif;
20045 tmp_ipif = tmp_ipif->ipif_next) {
20046 if (((tmp_ipif->ipif_flags &
20047 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
20048 !(tmp_ipif->ipif_flags & IPIF_UP)) ||
20049 (tmp_ipif == ipif))
20050 continue;
20051 /* first useable pre-existing interface */
20052 flush_ire_cache = B_FALSE;
20053 break;
20055 if (flush_ire_cache)
20056 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE,
20057 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
20060 * Figure out which way the send-to queue should go. Only
20061 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK
20062 * should show up here.
20064 switch (ill->ill_net_type) {
20065 case IRE_IF_RESOLVER:
20066 stq = ill->ill_rq;
20067 break;
20068 case IRE_IF_NORESOLVER:
20069 case IRE_LOOPBACK:
20070 stq = ill->ill_wq;
20071 break;
20072 default:
20073 return (EINVAL);
20076 if (IS_LOOPBACK(ill)) {
20078 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
20079 * ipif_lookup_on_name(), but in the case of zones we can have
20080 * several loopback addresses on lo0. So all the interfaces with
20081 * loopback addresses need to be marked IRE_LOOPBACK.
20083 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
20084 htonl(INADDR_LOOPBACK))
20085 ipif->ipif_ire_type = IRE_LOOPBACK;
20086 else
20087 ipif->ipif_ire_type = IRE_LOCAL;
20090 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) {
20092 * Can't use our source address. Select a different
20093 * source address for the IRE_INTERFACE and IRE_LOCAL
20095 src_ipif = ipif_select_source(ipif->ipif_ill,
20096 ipif->ipif_subnet, ipif->ipif_zoneid);
20097 if (src_ipif == NULL)
20098 src_ipif = ipif; /* Last resort */
20099 else
20100 src_ipif_held = B_TRUE;
20101 } else {
20102 src_ipif = ipif;
20105 /* Create all the IREs associated with this interface */
20106 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20107 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20110 * If we're on a labeled system then make sure that zone-
20111 * private addresses have proper remote host database entries.
20113 if (is_system_labeled() &&
20114 ipif->ipif_ire_type != IRE_LOOPBACK &&
20115 !tsol_check_interface_address(ipif))
20116 return (EINVAL);
20118 /* Register the source address for __sin6_src_id */
20119 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
20120 ipif->ipif_zoneid, ipst);
20121 if (err != 0) {
20122 ip0dbg(("ipif_up_done: srcid_insert %d\n", err));
20123 return (err);
20126 /* If the interface address is set, create the local IRE. */
20127 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n",
20128 (void *)ipif,
20129 ipif->ipif_ire_type,
20130 ntohl(ipif->ipif_lcl_addr)));
20131 *irep++ = ire_create(
20132 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */
20133 (uchar_t *)&ip_g_all_ones, /* mask */
20134 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */
20135 NULL, /* no gateway */
20136 &ip_loopback_mtuplus, /* max frag size */
20137 NULL,
20138 ipif->ipif_rq, /* recv-from queue */
20139 NULL, /* no send-to queue */
20140 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */
20141 ipif,
20145 (ipif->ipif_flags & IPIF_PRIVATE) ?
20146 RTF_PRIVATE : 0,
20147 &ire_uinfo_null,
20148 NULL,
20149 NULL,
20150 ipst);
20151 } else {
20152 ip1dbg((
20153 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n",
20154 ipif->ipif_ire_type,
20155 ntohl(ipif->ipif_lcl_addr),
20156 (uint_t)ipif->ipif_flags));
20158 if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20159 !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20160 net_mask = ip_net_mask(ipif->ipif_lcl_addr);
20161 } else {
20162 net_mask = htonl(IN_CLASSA_NET); /* fallback */
20165 subnet_mask = ipif->ipif_net_mask;
20168 * If mask was not specified, use natural netmask of
20169 * interface address. Also, store this mask back into the
20170 * ipif struct.
20172 if (subnet_mask == 0) {
20173 subnet_mask = net_mask;
20174 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
20175 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
20176 ipif->ipif_v6subnet);
20179 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
20180 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
20181 ipif->ipif_subnet != INADDR_ANY) {
20182 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20184 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20185 route_mask = IP_HOST_MASK;
20186 } else {
20187 route_mask = subnet_mask;
20190 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p "
20191 "creating if IRE ill_net_type 0x%x for 0x%x\n",
20192 (void *)ipif, (void *)ill,
20193 ill->ill_net_type,
20194 ntohl(ipif->ipif_subnet)));
20195 *irep++ = ire_create(
20196 (uchar_t *)&ipif->ipif_subnet, /* dest address */
20197 (uchar_t *)&route_mask, /* mask */
20198 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
20199 NULL, /* no gateway */
20200 &ipif->ipif_mtu, /* max frag */
20201 NULL,
20202 NULL, /* no recv queue */
20203 stq, /* send-to queue */
20204 ill->ill_net_type, /* IF_[NO]RESOLVER */
20205 ipif,
20209 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0,
20210 &ire_uinfo_null,
20211 NULL,
20212 NULL,
20213 ipst);
20217 * Create any necessary broadcast IREs.
20219 if ((ipif->ipif_subnet != INADDR_ANY) &&
20220 (ipif->ipif_flags & IPIF_BROADCAST))
20221 irep = ipif_create_bcast_ires(ipif, irep);
20223 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20225 /* If an earlier ire_create failed, get out now */
20226 for (irep1 = irep; irep1 > ire_array; ) {
20227 irep1--;
20228 if (*irep1 == NULL) {
20229 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
20230 err = ENOMEM;
20231 goto bad;
20236 * Need to atomically check for ip_addr_availablity_check
20237 * under ip_addr_avail_lock, and if it fails got bad, and remove
20238 * from group also.The ill_g_lock is grabbed as reader
20239 * just to make sure no new ills or new ipifs are being added
20240 * to the system while we are checking the uniqueness of addresses.
20242 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20243 mutex_enter(&ipst->ips_ip_addr_avail_lock);
20244 /* Mark it up, and increment counters. */
20245 ipif->ipif_flags |= IPIF_UP;
20246 ill->ill_ipif_up_count++;
20247 err = ip_addr_availability_check(ipif);
20248 mutex_exit(&ipst->ips_ip_addr_avail_lock);
20249 rw_exit(&ipst->ips_ill_g_lock);
20251 if (err != 0) {
20253 * Our address may already be up on the same ill. In this case,
20254 * the ARP entry for our ipif replaced the one for the other
20255 * ipif. So we don't want to delete it (otherwise the other ipif
20256 * would be unable to send packets).
20257 * ip_addr_availability_check() identifies this case for us and
20258 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
20259 * which is the expected error code.
20261 if (err == EADDRINUSE) {
20262 freemsg(ipif->ipif_arp_del_mp);
20263 ipif->ipif_arp_del_mp = NULL;
20264 err = EADDRNOTAVAIL;
20266 ill->ill_ipif_up_count--;
20267 ipif->ipif_flags &= ~IPIF_UP;
20268 goto bad;
20272 * Add in all newly created IREs. ire_create_bcast() has
20273 * already checked for duplicates of the IRE_BROADCAST type.
20274 * We want to add before we call ifgrp_insert which wants
20275 * to know whether IRE_IF_RESOLVER exists or not.
20277 * NOTE : We refrele the ire though we may branch to "bad"
20278 * later on where we do ire_delete. This is okay
20279 * because nobody can delete it as we are running
20280 * exclusively.
20282 for (irep1 = irep; irep1 > ire_array; ) {
20283 irep1--;
20284 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock)));
20286 * refheld by ire_add. refele towards the end of the func
20288 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE);
20290 ire_added = B_TRUE;
20292 * Form groups if possible.
20294 * If we are supposed to be in a ill_group with a name, insert it
20295 * now as we know that at least one ipif is UP. Otherwise form
20296 * nameless groups.
20298 * If ip_enable_group_ifs is set and ipif address is not 0, insert
20299 * this ipif into the appropriate interface group, or create a
20300 * new one. If this is already in a nameless group, we try to form
20301 * a bigger group looking at other ills potentially sharing this
20302 * ipif's prefix.
20304 phyi = ill->ill_phyint;
20305 if (phyi->phyint_groupname_len != 0) {
20306 ASSERT(phyi->phyint_groupname != NULL);
20307 if (ill->ill_ipif_up_count == 1) {
20308 ASSERT(ill->ill_group == NULL);
20309 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill,
20310 phyi->phyint_groupname, NULL, B_TRUE);
20311 if (err != 0) {
20312 ip1dbg(("ipif_up_done: illgrp allocation "
20313 "failed, error %d\n", err));
20314 goto bad;
20317 ASSERT(ill->ill_group != NULL);
20321 * When this is part of group, we need to make sure that
20322 * any broadcast ires created because of this ipif coming
20323 * UP gets marked/cleared with IRE_MARK_NORECV appropriately
20324 * so that we don't receive duplicate broadcast packets.
20326 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0)
20327 ipif_renominate_bcast(ipif);
20329 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
20330 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
20331 ipif_saved_irep = ipif_recover_ire(ipif);
20333 if (!loopback) {
20335 * If the broadcast address has been set, make sure it makes
20336 * sense based on the interface address.
20337 * Only match on ill since we are sharing broadcast addresses.
20339 if ((ipif->ipif_brd_addr != INADDR_ANY) &&
20340 (ipif->ipif_flags & IPIF_BROADCAST)) {
20341 ire_t *ire;
20343 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0,
20344 IRE_BROADCAST, ipif, ALL_ZONES,
20345 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst);
20347 if (ire == NULL) {
20349 * If there isn't a matching broadcast IRE,
20350 * revert to the default for this netmask.
20352 ipif->ipif_v6brd_addr = ipv6_all_zeros;
20353 mutex_enter(&ipif->ipif_ill->ill_lock);
20354 ipif_set_default(ipif);
20355 mutex_exit(&ipif->ipif_ill->ill_lock);
20356 } else {
20357 ire_refrele(ire);
20363 /* This is the first interface on this ill */
20364 if (ipif->ipif_ipif_up_count == 1 && !loopback) {
20366 * Need to recover all multicast memberships in the driver.
20367 * This had to be deferred until we had attached.
20369 ill_recover_multicast(ill);
20371 /* Join the allhosts multicast address */
20372 ipif_multicast_up(ipif);
20374 if (!loopback) {
20376 * See whether anybody else would benefit from the
20377 * new ipif that we added. We call this always rather
20378 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST
20379 * ipif is for the benefit of illgrp_insert (done above)
20380 * which does not do source address selection as it does
20381 * not want to re-create interface routes that we are
20382 * having reference to it here.
20384 ill_update_source_selection(ill);
20387 for (irep1 = irep; irep1 > ire_array; ) {
20388 irep1--;
20389 if (*irep1 != NULL) {
20390 /* was held in ire_add */
20391 ire_refrele(*irep1);
20395 cnt = ipif_saved_ire_cnt;
20396 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
20397 if (*irep1 != NULL) {
20398 /* was held in ire_add */
20399 ire_refrele(*irep1);
20403 if (!loopback && ipif->ipif_addr_ready) {
20404 /* Broadcast an address mask reply. */
20405 ipif_mask_reply(ipif);
20407 if (ipif_saved_irep != NULL) {
20408 kmem_free(ipif_saved_irep,
20409 ipif_saved_ire_cnt * sizeof (ire_t *));
20411 if (src_ipif_held)
20412 ipif_refrele(src_ipif);
20415 * This had to be deferred until we had bound. Tell routing sockets and
20416 * others that this interface is up if it looks like the address has
20417 * been validated. Otherwise, if it isn't ready yet, wait for
20418 * duplicate address detection to do its thing.
20420 if (ipif->ipif_addr_ready) {
20421 ip_rts_ifmsg(ipif);
20422 ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
20423 /* Let SCTP update the status for this ipif */
20424 sctp_update_ipif(ipif, SCTP_IPIF_UP);
20426 return (0);
20428 bad:
20429 ip1dbg(("ipif_up_done: FAILED \n"));
20431 * We don't have to bother removing from ill groups because
20433 * 1) For groups with names, we insert only when the first ipif
20434 * comes up. In that case if it fails, it will not be in any
20435 * group. So, we need not try to remove for that case.
20437 * 2) For groups without names, either we tried to insert ipif_ill
20438 * in a group as singleton or found some other group to become
20439 * a bigger group. For the former, if it fails we don't have
20440 * anything to do as ipif_ill is not in the group and for the
20441 * latter, there are no failures in illgrp_insert/illgrp_delete
20442 * (ENOMEM can't occur for this. Check ifgrp_insert).
20444 while (irep > ire_array) {
20445 irep--;
20446 if (*irep != NULL) {
20447 ire_delete(*irep);
20448 if (ire_added)
20449 ire_refrele(*irep);
20452 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
20454 if (ipif_saved_irep != NULL) {
20455 kmem_free(ipif_saved_irep,
20456 ipif_saved_ire_cnt * sizeof (ire_t *));
20458 if (src_ipif_held)
20459 ipif_refrele(src_ipif);
20461 ipif_arp_down(ipif);
20462 return (err);
20466 * Turn off the ARP with the ILLF_NOARP flag.
20468 static int
20469 ill_arp_off(ill_t *ill)
20471 mblk_t *arp_off_mp = NULL;
20472 mblk_t *arp_on_mp = NULL;
20474 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name));
20476 ASSERT(IAM_WRITER_ILL(ill));
20477 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20480 * If the on message is still around we've already done
20481 * an arp_off without doing an arp_on thus there is no
20482 * work needed.
20484 if (ill->ill_arp_on_mp != NULL)
20485 return (0);
20488 * Allocate an ARP on message (to be saved) and an ARP off message
20490 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0);
20491 if (!arp_off_mp)
20492 return (ENOMEM);
20494 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0);
20495 if (!arp_on_mp)
20496 goto failed;
20498 ASSERT(ill->ill_arp_on_mp == NULL);
20499 ill->ill_arp_on_mp = arp_on_mp;
20501 /* Send an AR_INTERFACE_OFF request */
20502 putnext(ill->ill_rq, arp_off_mp);
20503 return (0);
20504 failed:
20506 if (arp_off_mp)
20507 freemsg(arp_off_mp);
20508 return (ENOMEM);
20512 * Turn on ARP by turning off the ILLF_NOARP flag.
20514 static int
20515 ill_arp_on(ill_t *ill)
20517 mblk_t *mp;
20519 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name));
20521 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20523 ASSERT(IAM_WRITER_ILL(ill));
20525 * Send an AR_INTERFACE_ON request if we have already done
20526 * an arp_off (which allocated the message).
20528 if (ill->ill_arp_on_mp != NULL) {
20529 mp = ill->ill_arp_on_mp;
20530 ill->ill_arp_on_mp = NULL;
20531 putnext(ill->ill_rq, mp);
20533 return (0);
20537 * Called after either deleting ill from the group or when setting
20538 * FAILED or STANDBY on the interface.
20540 static void
20541 illgrp_reset_schednext(ill_t *ill)
20543 ill_group_t *illgrp;
20544 ill_t *save_ill;
20546 ASSERT(IAM_WRITER_ILL(ill));
20548 * When called from illgrp_delete, ill_group will be non-NULL.
20549 * But when called from ip_sioctl_flags, it could be NULL if
20550 * somebody is setting FAILED/INACTIVE on some interface which
20551 * is not part of a group.
20553 illgrp = ill->ill_group;
20554 if (illgrp == NULL)
20555 return;
20556 if (illgrp->illgrp_ill_schednext != ill)
20557 return;
20559 illgrp->illgrp_ill_schednext = NULL;
20560 save_ill = ill;
20562 * Choose a good ill to be the next one for
20563 * outbound traffic. As the flags FAILED/STANDBY is
20564 * not yet marked when called from ip_sioctl_flags,
20565 * we check for ill separately.
20567 for (ill = illgrp->illgrp_ill; ill != NULL;
20568 ill = ill->ill_group_next) {
20569 if ((ill != save_ill) &&
20570 !(ill->ill_phyint->phyint_flags &
20571 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) {
20572 illgrp->illgrp_ill_schednext = ill;
20573 return;
20579 * Given an ill, find the next ill in the group to be scheduled.
20580 * (This should be called by ip_newroute() before ire_create().)
20581 * The passed in ill may be pulled out of the group, after we have picked
20582 * up a different outgoing ill from the same group. However ire add will
20583 * atomically check this.
20585 ill_t *
20586 illgrp_scheduler(ill_t *ill)
20588 ill_t *retill;
20589 ill_group_t *illgrp;
20590 int illcnt;
20591 int i;
20592 uint64_t flags;
20593 ip_stack_t *ipst = ill->ill_ipst;
20596 * We don't use a lock to check for the ill_group. If this ill
20597 * is currently being inserted we may end up just returning this
20598 * ill itself. That is ok.
20600 if (ill->ill_group == NULL) {
20601 ill_refhold(ill);
20602 return (ill);
20606 * Grab the ill_g_lock as reader to make sure we are dealing with
20607 * a set of stable ills. No ill can be added or deleted or change
20608 * group while we hold the reader lock.
20610 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20611 if ((illgrp = ill->ill_group) == NULL) {
20612 rw_exit(&ipst->ips_ill_g_lock);
20613 ill_refhold(ill);
20614 return (ill);
20617 illcnt = illgrp->illgrp_ill_count;
20618 mutex_enter(&illgrp->illgrp_lock);
20619 retill = illgrp->illgrp_ill_schednext;
20621 if (retill == NULL)
20622 retill = illgrp->illgrp_ill;
20625 * We do a circular search beginning at illgrp_ill_schednext
20626 * or illgrp_ill. We don't check the flags against the ill lock
20627 * since it can change anytime. The ire creation will be atomic
20628 * and will fail if the ill is FAILED or OFFLINE.
20630 for (i = 0; i < illcnt; i++) {
20631 flags = retill->ill_phyint->phyint_flags;
20633 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
20634 ILL_CAN_LOOKUP(retill)) {
20635 illgrp->illgrp_ill_schednext = retill->ill_group_next;
20636 ill_refhold(retill);
20637 break;
20639 retill = retill->ill_group_next;
20640 if (retill == NULL)
20641 retill = illgrp->illgrp_ill;
20643 mutex_exit(&illgrp->illgrp_lock);
20644 rw_exit(&ipst->ips_ill_g_lock);
20646 return (i == illcnt ? NULL : retill);
20650 * Checks for availbility of a usable source address (if there is one) when the
20651 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
20652 * this selection is done regardless of the destination.
20654 boolean_t
20655 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid)
20657 uint_t ifindex;
20658 ipif_t *ipif = NULL;
20659 ill_t *uill;
20660 boolean_t isv6;
20661 ip_stack_t *ipst = ill->ill_ipst;
20663 ASSERT(ill != NULL);
20665 isv6 = ill->ill_isv6;
20666 ifindex = ill->ill_usesrc_ifindex;
20667 if (ifindex != 0) {
20668 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL,
20669 NULL, ipst);
20670 if (uill == NULL)
20671 return (NULL);
20672 mutex_enter(&uill->ill_lock);
20673 for (ipif = uill->ill_ipif; ipif != NULL;
20674 ipif = ipif->ipif_next) {
20675 if (!IPIF_CAN_LOOKUP(ipif))
20676 continue;
20677 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
20678 continue;
20679 if (!(ipif->ipif_flags & IPIF_UP))
20680 continue;
20681 if (ipif->ipif_zoneid != zoneid)
20682 continue;
20683 if ((isv6 &&
20684 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) ||
20685 (ipif->ipif_lcl_addr == INADDR_ANY))
20686 continue;
20687 mutex_exit(&uill->ill_lock);
20688 ill_refrele(uill);
20689 return (B_TRUE);
20691 mutex_exit(&uill->ill_lock);
20692 ill_refrele(uill);
20694 return (B_FALSE);
20698 * Determine the best source address given a destination address and an ill.
20699 * Prefers non-deprecated over deprecated but will return a deprecated
20700 * address if there is no other choice. If there is a usable source address
20701 * on the interface pointed to by ill_usesrc_ifindex then that is given
20702 * first preference.
20704 * Returns NULL if there is no suitable source address for the ill.
20705 * This only occurs when there is no valid source address for the ill.
20707 ipif_t *
20708 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid)
20710 ipif_t *ipif;
20711 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */
20712 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE];
20713 int index = 0;
20714 boolean_t wrapped = B_FALSE;
20715 boolean_t same_subnet_only = B_FALSE;
20716 boolean_t ipif_same_found, ipif_other_found;
20717 boolean_t specific_found;
20718 ill_t *till, *usill = NULL;
20719 tsol_tpc_t *src_rhtp, *dst_rhtp;
20720 ip_stack_t *ipst = ill->ill_ipst;
20722 if (ill->ill_usesrc_ifindex != 0) {
20723 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
20724 B_FALSE, NULL, NULL, NULL, NULL, ipst);
20725 if (usill != NULL)
20726 ill = usill; /* Select source from usesrc ILL */
20727 else
20728 return (NULL);
20732 * If we're dealing with an unlabeled destination on a labeled system,
20733 * make sure that we ignore source addresses that are incompatible with
20734 * the destination's default label. That destination's default label
20735 * must dominate the minimum label on the source address.
20737 dst_rhtp = NULL;
20738 if (is_system_labeled()) {
20739 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
20740 if (dst_rhtp == NULL)
20741 return (NULL);
20742 if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
20743 TPC_RELE(dst_rhtp);
20744 dst_rhtp = NULL;
20749 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill
20750 * can be deleted. But an ipif/ill can get CONDEMNED any time.
20751 * After selecting the right ipif, under ill_lock make sure ipif is
20752 * not condemned, and increment refcnt. If ipif is CONDEMNED,
20753 * we retry. Inside the loop we still need to check for CONDEMNED,
20754 * but not under a lock.
20756 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20758 retry:
20759 till = ill;
20760 ipif_arr[0] = NULL;
20762 if (till->ill_group != NULL)
20763 till = till->ill_group->illgrp_ill;
20766 * Choose one good source address from each ill across the group.
20767 * If possible choose a source address in the same subnet as
20768 * the destination address.
20770 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE
20771 * This is okay because of the following.
20773 * If PHYI_FAILED is set and we still have non-deprecated
20774 * addresses, it means the addresses have not yet been
20775 * failed over to a different interface. We potentially
20776 * select them to create IRE_CACHES, which will be later
20777 * flushed when the addresses move over.
20779 * If PHYI_INACTIVE is set and we still have non-deprecated
20780 * addresses, it means either the user has configured them
20781 * or PHYI_INACTIVE has not been cleared after the addresses
20782 * been moved over. For the former, in.mpathd does a failover
20783 * when the interface becomes INACTIVE and hence we should
20784 * not find them. Once INACTIVE is set, we don't allow them
20785 * to create logical interfaces anymore. For the latter, a
20786 * flush will happen when INACTIVE is cleared which will
20787 * flush the IRE_CACHES.
20789 * If PHYI_OFFLINE is set, all the addresses will be failed
20790 * over soon. We potentially select them to create IRE_CACHEs,
20791 * which will be later flushed when the addresses move over.
20793 * NOTE : As ipif_select_source is called to borrow source address
20794 * for an ipif that is part of a group, source address selection
20795 * will be re-done whenever the group changes i.e either an
20796 * insertion/deletion in the group.
20798 * Fill ipif_arr[] with source addresses, using these rules:
20800 * 1. At most one source address from a given ill ends up
20801 * in ipif_arr[] -- that is, at most one of the ipif's
20802 * associated with a given ill ends up in ipif_arr[].
20804 * 2. If there is at least one non-deprecated ipif in the
20805 * IPMP group with a source address on the same subnet as
20806 * our destination, then fill ipif_arr[] only with
20807 * source addresses on the same subnet as our destination.
20808 * Note that because of (1), only the first
20809 * non-deprecated ipif found with a source address
20810 * matching the destination ends up in ipif_arr[].
20812 * 3. Otherwise, fill ipif_arr[] with non-deprecated source
20813 * addresses not in the same subnet as our destination.
20814 * Again, because of (1), only the first off-subnet source
20815 * address will be chosen.
20817 * 4. If there are no non-deprecated ipifs, then just use
20818 * the source address associated with the last deprecated
20819 * one we find that happens to be on the same subnet,
20820 * otherwise the first one not in the same subnet.
20822 specific_found = B_FALSE;
20823 for (; till != NULL; till = till->ill_group_next) {
20824 ipif_same_found = B_FALSE;
20825 ipif_other_found = B_FALSE;
20826 for (ipif = till->ill_ipif; ipif != NULL;
20827 ipif = ipif->ipif_next) {
20828 if (!IPIF_CAN_LOOKUP(ipif))
20829 continue;
20830 /* Always skip NOLOCAL and ANYCAST interfaces */
20831 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
20832 continue;
20833 if (!(ipif->ipif_flags & IPIF_UP) ||
20834 !ipif->ipif_addr_ready)
20835 continue;
20836 if (ipif->ipif_zoneid != zoneid &&
20837 ipif->ipif_zoneid != ALL_ZONES)
20838 continue;
20840 * Interfaces with 0.0.0.0 address are allowed to be UP,
20841 * but are not valid as source addresses.
20843 if (ipif->ipif_lcl_addr == INADDR_ANY)
20844 continue;
20847 * Check compatibility of local address for
20848 * destination's default label if we're on a labeled
20849 * system. Incompatible addresses can't be used at
20850 * all.
20852 if (dst_rhtp != NULL) {
20853 boolean_t incompat;
20855 src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
20856 IPV4_VERSION, B_FALSE);
20857 if (src_rhtp == NULL)
20858 continue;
20859 incompat =
20860 src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
20861 src_rhtp->tpc_tp.tp_doi !=
20862 dst_rhtp->tpc_tp.tp_doi ||
20863 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
20864 &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
20865 !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
20866 src_rhtp->tpc_tp.tp_sl_set_cipso));
20867 TPC_RELE(src_rhtp);
20868 if (incompat)
20869 continue;
20873 * We prefer not to use all all-zones addresses, if we
20874 * can avoid it, as they pose problems with unlabeled
20875 * destinations.
20877 if (ipif->ipif_zoneid != ALL_ZONES) {
20878 if (!specific_found &&
20879 (!same_subnet_only ||
20880 (ipif->ipif_net_mask & dst) ==
20881 ipif->ipif_subnet)) {
20882 index = 0;
20883 specific_found = B_TRUE;
20884 ipif_other_found = B_FALSE;
20886 } else {
20887 if (specific_found)
20888 continue;
20890 if (ipif->ipif_flags & IPIF_DEPRECATED) {
20891 if (ipif_dep == NULL ||
20892 (ipif->ipif_net_mask & dst) ==
20893 ipif->ipif_subnet)
20894 ipif_dep = ipif;
20895 continue;
20897 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) {
20898 /* found a source address in the same subnet */
20899 if (!same_subnet_only) {
20900 same_subnet_only = B_TRUE;
20901 index = 0;
20903 ipif_same_found = B_TRUE;
20904 } else {
20905 if (same_subnet_only || ipif_other_found)
20906 continue;
20907 ipif_other_found = B_TRUE;
20909 ipif_arr[index++] = ipif;
20910 if (index == MAX_IPIF_SELECT_SOURCE) {
20911 wrapped = B_TRUE;
20912 index = 0;
20914 if (ipif_same_found)
20915 break;
20919 if (ipif_arr[0] == NULL) {
20920 ipif = ipif_dep;
20921 } else {
20922 if (wrapped)
20923 index = MAX_IPIF_SELECT_SOURCE;
20924 ipif = ipif_arr[ipif_rand(ipst) % index];
20925 ASSERT(ipif != NULL);
20928 if (ipif != NULL) {
20929 mutex_enter(&ipif->ipif_ill->ill_lock);
20930 if (!IPIF_CAN_LOOKUP(ipif)) {
20931 mutex_exit(&ipif->ipif_ill->ill_lock);
20932 goto retry;
20934 ipif_refhold_locked(ipif);
20935 mutex_exit(&ipif->ipif_ill->ill_lock);
20938 rw_exit(&ipst->ips_ill_g_lock);
20939 if (usill != NULL)
20940 ill_refrele(usill);
20941 if (dst_rhtp != NULL)
20942 TPC_RELE(dst_rhtp);
20944 #ifdef DEBUG
20945 if (ipif == NULL) {
20946 char buf1[INET6_ADDRSTRLEN];
20948 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n",
20949 ill->ill_name,
20950 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
20951 } else {
20952 char buf1[INET6_ADDRSTRLEN];
20953 char buf2[INET6_ADDRSTRLEN];
20955 ip1dbg(("ipif_select_source(%s, %s) -> %s\n",
20956 ipif->ipif_ill->ill_name,
20957 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
20958 inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
20959 buf2, sizeof (buf2))));
20961 #endif /* DEBUG */
20962 return (ipif);
20967 * If old_ipif is not NULL, see if ipif was derived from old
20968 * ipif and if so, recreate the interface route by re-doing
20969 * source address selection. This happens when ipif_down ->
20970 * ipif_update_other_ipifs calls us.
20972 * If old_ipif is NULL, just redo the source address selection
20973 * if needed. This happens when illgrp_insert or ipif_up_done
20974 * calls us.
20976 static void
20977 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif)
20979 ire_t *ire;
20980 ire_t *ipif_ire;
20981 queue_t *stq;
20982 ipif_t *nipif;
20983 ill_t *ill;
20984 boolean_t need_rele = B_FALSE;
20985 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
20987 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif));
20988 ASSERT(IAM_WRITER_IPIF(ipif));
20990 ill = ipif->ipif_ill;
20991 if (!(ipif->ipif_flags &
20992 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
20994 * Can't possibly have borrowed the source
20995 * from old_ipif.
20997 return;
21001 * Is there any work to be done? No work if the address
21002 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
21003 * ipif_select_source() does not borrow addresses from
21004 * NOLOCAL and ANYCAST interfaces).
21006 if ((old_ipif != NULL) &&
21007 ((old_ipif->ipif_lcl_addr == INADDR_ANY) ||
21008 (old_ipif->ipif_ill->ill_wq == NULL) ||
21009 (old_ipif->ipif_flags &
21010 (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
21011 return;
21015 * Perform the same checks as when creating the
21016 * IRE_INTERFACE in ipif_up_done.
21018 if (!(ipif->ipif_flags & IPIF_UP))
21019 return;
21021 if ((ipif->ipif_flags & IPIF_NOXMIT) ||
21022 (ipif->ipif_subnet == INADDR_ANY))
21023 return;
21025 ipif_ire = ipif_to_ire(ipif);
21026 if (ipif_ire == NULL)
21027 return;
21030 * We know that ipif uses some other source for its
21031 * IRE_INTERFACE. Is it using the source of this
21032 * old_ipif?
21034 if (old_ipif != NULL &&
21035 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) {
21036 ire_refrele(ipif_ire);
21037 return;
21039 if (ip_debug > 2) {
21040 /* ip1dbg */
21041 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for"
21042 " src %s\n", AF_INET, &ipif_ire->ire_src_addr);
21045 stq = ipif_ire->ire_stq;
21048 * Can't use our source address. Select a different
21049 * source address for the IRE_INTERFACE.
21051 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid);
21052 if (nipif == NULL) {
21053 /* Last resort - all ipif's have IPIF_NOLOCAL */
21054 nipif = ipif;
21055 } else {
21056 need_rele = B_TRUE;
21059 ire = ire_create(
21060 (uchar_t *)&ipif->ipif_subnet, /* dest pref */
21061 (uchar_t *)&ipif->ipif_net_mask, /* mask */
21062 (uchar_t *)&nipif->ipif_src_addr, /* src addr */
21063 NULL, /* no gateway */
21064 &ipif->ipif_mtu, /* max frag */
21065 NULL, /* no src nce */
21066 NULL, /* no recv from queue */
21067 stq, /* send-to queue */
21068 ill->ill_net_type, /* IF_[NO]RESOLVER */
21069 ipif,
21074 &ire_uinfo_null,
21075 NULL,
21076 NULL,
21077 ipst);
21079 if (ire != NULL) {
21080 ire_t *ret_ire;
21081 int error;
21084 * We don't need ipif_ire anymore. We need to delete
21085 * before we add so that ire_add does not detect
21086 * duplicates.
21088 ire_delete(ipif_ire);
21089 ret_ire = ire;
21090 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE);
21091 ASSERT(error == 0);
21092 ASSERT(ire == ret_ire);
21093 /* Held in ire_add */
21094 ire_refrele(ret_ire);
21097 * Either we are falling through from above or could not
21098 * allocate a replacement.
21100 ire_refrele(ipif_ire);
21101 if (need_rele)
21102 ipif_refrele(nipif);
21106 * This old_ipif is going away.
21108 * Determine if any other ipif's is using our address as
21109 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
21110 * IPIF_DEPRECATED).
21111 * Find the IRE_INTERFACE for such ipifs and recreate them
21112 * to use an different source address following the rules in
21113 * ipif_up_done.
21115 * This function takes an illgrp as an argument so that illgrp_delete
21116 * can call this to update source address even after deleting the
21117 * old_ipif->ipif_ill from the ill group.
21119 static void
21120 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp)
21122 ipif_t *ipif;
21123 ill_t *ill;
21124 char buf[INET6_ADDRSTRLEN];
21126 ASSERT(IAM_WRITER_IPIF(old_ipif));
21127 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif));
21129 ill = old_ipif->ipif_ill;
21131 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n",
21132 ill->ill_name,
21133 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr,
21134 buf, sizeof (buf))));
21136 * If this part of a group, look at all ills as ipif_select_source
21137 * borrows source address across all the ills in the group.
21139 if (illgrp != NULL)
21140 ill = illgrp->illgrp_ill;
21142 for (; ill != NULL; ill = ill->ill_group_next) {
21143 for (ipif = ill->ill_ipif; ipif != NULL;
21144 ipif = ipif->ipif_next) {
21146 if (ipif == old_ipif)
21147 continue;
21149 ipif_recreate_interface_routes(old_ipif, ipif);
21154 /* ARGSUSED */
21156 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21157 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21160 * ill_phyint_reinit merged the v4 and v6 into a single
21161 * ipsq. Could also have become part of a ipmp group in the
21162 * process, and we might not have been able to complete the
21163 * operation in ipif_set_values, if we could not become
21164 * exclusive. If so restart it here.
21166 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21171 * Can operate on either a module or a driver queue.
21172 * Returns an error if not a module queue.
21174 /* ARGSUSED */
21176 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21177 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21179 queue_t *q1 = q;
21180 char *cp;
21181 char interf_name[LIFNAMSIZ];
21182 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
21184 if (q->q_next == NULL) {
21185 ip1dbg((
21186 "if_unitsel: IF_UNITSEL: no q_next\n"));
21187 return (EINVAL);
21190 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
21191 return (EALREADY);
21193 do {
21194 q1 = q1->q_next;
21195 } while (q1->q_next);
21196 cp = q1->q_qinfo->qi_minfo->mi_idname;
21197 (void) sprintf(interf_name, "%s%d", cp, ppa);
21200 * Here we are not going to delay the ioack until after
21201 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
21202 * original ioctl message before sending the requests.
21204 return (ipif_set_values(q, mp, interf_name, &ppa));
21207 /* ARGSUSED */
21209 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21210 ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21212 return (ENXIO);
21216 * Create any IRE_BROADCAST entries for `ipif', and store those entries in
21217 * `irep'. Returns a pointer to the next free `irep' entry (just like
21218 * ire_check_and_create_bcast()).
21220 static ire_t **
21221 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
21223 ipaddr_t addr;
21224 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
21225 ipaddr_t subnetmask = ipif->ipif_net_mask;
21226 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL;
21228 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
21230 ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
21232 if (ipif->ipif_lcl_addr == INADDR_ANY ||
21233 (ipif->ipif_flags & IPIF_NOLOCAL))
21234 netmask = htonl(IN_CLASSA_NET); /* fallback */
21236 irep = ire_check_and_create_bcast(ipif, 0, irep, flags);
21237 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags);
21240 * For backward compatibility, we create net broadcast IREs based on
21241 * the old "IP address class system", since some old machines only
21242 * respond to these class derived net broadcast. However, we must not
21243 * create these net broadcast IREs if the subnetmask is shorter than
21244 * the IP address class based derived netmask. Otherwise, we may
21245 * create a net broadcast address which is the same as an IP address
21246 * on the subnet -- and then TCP will refuse to talk to that address.
21248 if (netmask < subnetmask) {
21249 addr = netmask & ipif->ipif_subnet;
21250 irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
21251 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep,
21252 flags);
21256 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
21257 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
21258 * created. Creating these broadcast IREs will only create confusion
21259 * as `addr' will be the same as the IP address.
21261 if (subnetmask != 0xFFFFFFFF) {
21262 addr = ipif->ipif_subnet;
21263 irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
21264 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr,
21265 irep, flags);
21268 return (irep);
21272 * Broadcast IRE info structure used in the functions below. Since we
21273 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact.
21275 typedef struct bcast_ireinfo {
21276 uchar_t bi_type; /* BCAST_* value from below */
21277 uchar_t bi_willdie:1, /* will this IRE be going away? */
21278 bi_needrep:1, /* do we need to replace it? */
21279 bi_haverep:1, /* have we replaced it? */
21280 bi_pad:5;
21281 ipaddr_t bi_addr; /* IRE address */
21282 ipif_t *bi_backup; /* last-ditch ipif to replace it on */
21283 } bcast_ireinfo_t;
21285 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT };
21288 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and
21289 * return B_TRUE if it should immediately be used to recreate the IRE.
21291 static boolean_t
21292 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop)
21294 ipaddr_t addr;
21296 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie);
21298 switch (bireinfop->bi_type) {
21299 case BCAST_NET:
21300 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet);
21301 if (addr != bireinfop->bi_addr)
21302 return (B_FALSE);
21303 break;
21304 case BCAST_SUBNET:
21305 if (ipif->ipif_subnet != bireinfop->bi_addr)
21306 return (B_FALSE);
21307 break;
21310 bireinfop->bi_needrep = 1;
21311 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) {
21312 if (bireinfop->bi_backup == NULL)
21313 bireinfop->bi_backup = ipif;
21314 return (B_FALSE);
21316 return (B_TRUE);
21320 * Create the broadcast IREs described by `bireinfop' on `ipif', and return
21321 * them ala ire_check_and_create_bcast().
21323 static ire_t **
21324 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep)
21326 ipaddr_t mask, addr;
21328 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep);
21330 addr = bireinfop->bi_addr;
21331 irep = ire_create_bcast(ipif, addr, irep);
21333 switch (bireinfop->bi_type) {
21334 case BCAST_NET:
21335 mask = ip_net_mask(ipif->ipif_subnet);
21336 irep = ire_create_bcast(ipif, addr | ~mask, irep);
21337 break;
21338 case BCAST_SUBNET:
21339 mask = ipif->ipif_net_mask;
21340 irep = ire_create_bcast(ipif, addr | ~mask, irep);
21341 break;
21344 bireinfop->bi_haverep = 1;
21345 return (irep);
21349 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif'
21350 * going away, and determine if any of the broadcast IREs (named by `bireinfop')
21351 * that are going away are still needed. If so, have ipif_create_bcast()
21352 * recreate them (except for the deprecated case, as explained below).
21354 static ire_t **
21355 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo,
21356 ire_t **irep)
21358 int i;
21359 ipif_t *ipif;
21361 ASSERT(!ill->ill_isv6);
21362 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
21364 * Skip this ipif if it's (a) the one being taken down, (b)
21365 * not in the same zone, or (c) has no valid local address.
21367 if (ipif == test_ipif ||
21368 ipif->ipif_zoneid != test_ipif->ipif_zoneid ||
21369 ipif->ipif_subnet == 0 ||
21370 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) !=
21371 (IPIF_UP|IPIF_BROADCAST))
21372 continue;
21375 * For each dying IRE that hasn't yet been replaced, see if
21376 * `ipif' needs it and whether the IRE should be recreated on
21377 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast()
21378 * will return B_FALSE even if `ipif' needs the IRE on the
21379 * hopes that we'll later find a needy non-deprecated ipif.
21380 * However, the ipif is recorded in bi_backup for possible
21381 * subsequent use by ipif_check_bcast_ires().
21383 for (i = 0; i < BCAST_COUNT; i++) {
21384 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep)
21385 continue;
21386 if (!ipif_consider_bcast(ipif, &bireinfo[i]))
21387 continue;
21388 irep = ipif_create_bcast(ipif, &bireinfo[i], irep);
21392 * If we've replaced all of the broadcast IREs that are going
21393 * to be taken down, we know we're done.
21395 for (i = 0; i < BCAST_COUNT; i++) {
21396 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep)
21397 break;
21399 if (i == BCAST_COUNT)
21400 break;
21402 return (irep);
21406 * Check if `test_ipif' (which is going away) is associated with any existing
21407 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were
21408 * using those broadcast IREs. If so, recreate the broadcast IREs on one or
21409 * more of those other ipifs. (The old IREs will be deleted in ipif_down().)
21411 * This is necessary because broadcast IREs are shared. In particular, a
21412 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every
21413 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones,
21414 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP
21415 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the
21416 * same zone, they will share the same set of broadcast IREs.
21418 * Note: the upper bound of 12 IREs comes from the worst case of replacing all
21419 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes,
21420 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones).
21422 static void
21423 ipif_check_bcast_ires(ipif_t *test_ipif)
21425 ill_t *ill = test_ipif->ipif_ill;
21426 ire_t *ire, *ire_array[12]; /* see note above */
21427 ire_t **irep1, **irep = &ire_array[0];
21428 uint_t i, willdie;
21429 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet);
21430 bcast_ireinfo_t bireinfo[BCAST_COUNT];
21432 ASSERT(!test_ipif->ipif_isv6);
21433 ASSERT(IAM_WRITER_IPIF(test_ipif));
21436 * No broadcast IREs for the LOOPBACK interface
21437 * or others such as point to point and IPIF_NOXMIT.
21439 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) ||
21440 (test_ipif->ipif_flags & IPIF_NOXMIT))
21441 return;
21443 bzero(bireinfo, sizeof (bireinfo));
21444 bireinfo[0].bi_type = BCAST_ALLZEROES;
21445 bireinfo[0].bi_addr = 0;
21447 bireinfo[1].bi_type = BCAST_ALLONES;
21448 bireinfo[1].bi_addr = INADDR_BROADCAST;
21450 bireinfo[2].bi_type = BCAST_NET;
21451 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask;
21453 if (test_ipif->ipif_net_mask != 0)
21454 mask = test_ipif->ipif_net_mask;
21455 bireinfo[3].bi_type = BCAST_SUBNET;
21456 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask;
21459 * Figure out what (if any) broadcast IREs will die as a result of
21460 * `test_ipif' going away. If none will die, we're done.
21462 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) {
21463 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST,
21464 test_ipif, ALL_ZONES, NULL,
21465 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst);
21466 if (ire != NULL) {
21467 willdie++;
21468 bireinfo[i].bi_willdie = 1;
21469 ire_refrele(ire);
21473 if (willdie == 0)
21474 return;
21477 * Walk through all the ipifs that will be affected by the dying IREs,
21478 * and recreate the IREs as necessary.
21480 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep);
21483 * Scan through the set of broadcast IREs and see if there are any
21484 * that we need to replace that have not yet been replaced. If so,
21485 * replace them using the appropriate backup ipif.
21487 for (i = 0; i < BCAST_COUNT; i++) {
21488 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep)
21489 irep = ipif_create_bcast(bireinfo[i].bi_backup,
21490 &bireinfo[i], irep);
21494 * If we can't create all of them, don't add any of them. (Code in
21495 * ip_wput_ire() and ire_to_ill() assumes that we always have a
21496 * non-loopback copy and loopback copy for a given address.)
21498 for (irep1 = irep; irep1 > ire_array; ) {
21499 irep1--;
21500 if (*irep1 == NULL) {
21501 ip0dbg(("ipif_check_bcast_ires: can't create "
21502 "IRE_BROADCAST, memory allocation failure\n"));
21503 while (irep > ire_array) {
21504 irep--;
21505 if (*irep != NULL)
21506 ire_delete(*irep);
21508 return;
21512 for (irep1 = irep; irep1 > ire_array; ) {
21513 irep1--;
21514 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0)
21515 ire_refrele(*irep1); /* Held in ire_add */
21520 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
21521 * from lifr_flags and the name from lifr_name.
21522 * Set IFF_IPV* and ill_isv6 prior to doing the lookup
21523 * since ipif_lookup_on_name uses the _isv6 flags when matching.
21524 * Returns EINPROGRESS when mp has been consumed by queueing it on
21525 * ill_pending_mp and the ioctl will complete in ip_rput.
21527 * Can operate on either a module or a driver queue.
21528 * Returns an error if not a module queue.
21530 /* ARGSUSED */
21532 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21533 ip_ioctl_cmd_t *ipip, void *if_req)
21535 int err;
21536 ill_t *ill;
21537 struct lifreq *lifr = (struct lifreq *)if_req;
21539 ASSERT(ipif != NULL);
21540 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
21542 if (q->q_next == NULL) {
21543 ip1dbg((
21544 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
21545 return (EINVAL);
21548 ill = (ill_t *)q->q_ptr;
21550 * If we are not writer on 'q' then this interface exists already
21551 * and previous lookups (ipif_extract_lifreq()) found this ipif.
21552 * So return EALREADY
21554 if (ill != ipif->ipif_ill)
21555 return (EALREADY);
21557 if (ill->ill_name[0] != '\0')
21558 return (EALREADY);
21561 * Set all the flags. Allows all kinds of override. Provide some
21562 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST
21563 * unless there is either multicast/broadcast support in the driver
21564 * or it is a pt-pt link.
21566 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) {
21567 /* Meaningless to IP thus don't allow them to be set. */
21568 ip1dbg(("ip_setname: EINVAL 1\n"));
21569 return (EINVAL);
21572 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the
21573 * ill_bcast_addr_length info.
21575 if (!ill->ill_needs_attach &&
21576 ((lifr->lifr_flags & IFF_MULTICAST) &&
21577 !(lifr->lifr_flags & IFF_POINTOPOINT) &&
21578 ill->ill_bcast_addr_length == 0)) {
21579 /* Link not broadcast/pt-pt capable i.e. no multicast */
21580 ip1dbg(("ip_setname: EINVAL 2\n"));
21581 return (EINVAL);
21583 if ((lifr->lifr_flags & IFF_BROADCAST) &&
21584 ((lifr->lifr_flags & IFF_IPV6) ||
21585 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
21586 /* Link not broadcast capable or IPv6 i.e. no broadcast */
21587 ip1dbg(("ip_setname: EINVAL 3\n"));
21588 return (EINVAL);
21590 if (lifr->lifr_flags & IFF_UP) {
21591 /* Can only be set with SIOCSLIFFLAGS */
21592 ip1dbg(("ip_setname: EINVAL 4\n"));
21593 return (EINVAL);
21595 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 &&
21596 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) {
21597 ip1dbg(("ip_setname: EINVAL 5\n"));
21598 return (EINVAL);
21601 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces.
21603 if ((lifr->lifr_flags & IFF_XRESOLV) &&
21604 !(lifr->lifr_flags & IFF_IPV6) &&
21605 !(ipif->ipif_isv6)) {
21606 ip1dbg(("ip_setname: EINVAL 6\n"));
21607 return (EINVAL);
21611 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence
21612 * we have all the flags here. So, we assign rather than we OR.
21613 * We can't OR the flags here because we don't want to set
21614 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in
21615 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending
21616 * on lifr_flags value here.
21619 * This ill has not been inserted into the global list.
21620 * So we are still single threaded and don't need any lock
21622 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS &
21623 ~IFF_DUPLICATE;
21624 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS;
21625 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS;
21627 /* We started off as V4. */
21628 if (ill->ill_flags & ILLF_IPV6) {
21629 ill->ill_phyint->phyint_illv6 = ill;
21630 ill->ill_phyint->phyint_illv4 = NULL;
21632 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa);
21633 return (err);
21636 /* ARGSUSED */
21638 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21639 ip_ioctl_cmd_t *ipip, void *if_req)
21642 * ill_phyint_reinit merged the v4 and v6 into a single
21643 * ipsq. Could also have become part of a ipmp group in the
21644 * process, and we might not have been able to complete the
21645 * slifname in ipif_set_values, if we could not become
21646 * exclusive. If so restart it here
21648 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21652 * Return a pointer to the ipif which matches the index, IP version type and
21653 * zoneid.
21655 ipif_t *
21656 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
21657 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst)
21659 ill_t *ill;
21660 ipif_t *ipif = NULL;
21662 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
21663 (q != NULL && mp != NULL && func != NULL && err != NULL));
21665 if (err != NULL)
21666 *err = 0;
21668 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
21669 if (ill != NULL) {
21670 mutex_enter(&ill->ill_lock);
21671 for (ipif = ill->ill_ipif; ipif != NULL;
21672 ipif = ipif->ipif_next) {
21673 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES ||
21674 zoneid == ipif->ipif_zoneid ||
21675 ipif->ipif_zoneid == ALL_ZONES)) {
21676 ipif_refhold_locked(ipif);
21677 break;
21680 mutex_exit(&ill->ill_lock);
21681 ill_refrele(ill);
21682 if (ipif == NULL && err != NULL)
21683 *err = ENXIO;
21685 return (ipif);
21688 typedef struct conn_change_s {
21689 uint_t cc_old_ifindex;
21690 uint_t cc_new_ifindex;
21691 } conn_change_t;
21694 * ipcl_walk function for changing interface index.
21696 static void
21697 conn_change_ifindex(conn_t *connp, caddr_t arg)
21699 conn_change_t *connc;
21700 uint_t old_ifindex;
21701 uint_t new_ifindex;
21702 int i;
21703 ilg_t *ilg;
21705 connc = (conn_change_t *)arg;
21706 old_ifindex = connc->cc_old_ifindex;
21707 new_ifindex = connc->cc_new_ifindex;
21709 if (connp->conn_orig_bound_ifindex == old_ifindex)
21710 connp->conn_orig_bound_ifindex = new_ifindex;
21712 if (connp->conn_orig_multicast_ifindex == old_ifindex)
21713 connp->conn_orig_multicast_ifindex = new_ifindex;
21715 if (connp->conn_orig_xmit_ifindex == old_ifindex)
21716 connp->conn_orig_xmit_ifindex = new_ifindex;
21718 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
21719 ilg = &connp->conn_ilg[i];
21720 if (ilg->ilg_orig_ifindex == old_ifindex)
21721 ilg->ilg_orig_ifindex = new_ifindex;
21726 * Walk all the ipifs and ilms on this ill and change the orig_ifindex
21727 * to new_index if it matches the old_index.
21729 * Failovers typically happen within a group of ills. But somebody
21730 * can remove an ill from the group after a failover happened. If
21731 * we are setting the ifindex after this, we potentially need to
21732 * look at all the ills rather than just the ones in the group.
21733 * We cut down the work by looking at matching ill_net_types
21734 * and ill_types as we could not possibly grouped them together.
21736 static void
21737 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc)
21739 ill_t *ill;
21740 ipif_t *ipif;
21741 uint_t old_ifindex;
21742 uint_t new_ifindex;
21743 ilm_t *ilm;
21744 ill_walk_context_t ctx;
21745 ip_stack_t *ipst = ill_orig->ill_ipst;
21747 old_ifindex = connc->cc_old_ifindex;
21748 new_ifindex = connc->cc_new_ifindex;
21750 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
21751 ill = ILL_START_WALK_ALL(&ctx, ipst);
21752 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
21753 if ((ill_orig->ill_net_type != ill->ill_net_type) ||
21754 (ill_orig->ill_type != ill->ill_type)) {
21755 continue;
21757 for (ipif = ill->ill_ipif; ipif != NULL;
21758 ipif = ipif->ipif_next) {
21759 if (ipif->ipif_orig_ifindex == old_ifindex)
21760 ipif->ipif_orig_ifindex = new_ifindex;
21762 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
21763 if (ilm->ilm_orig_ifindex == old_ifindex)
21764 ilm->ilm_orig_ifindex = new_ifindex;
21767 rw_exit(&ipst->ips_ill_g_lock);
21771 * We first need to ensure that the new index is unique, and
21772 * then carry the change across both v4 and v6 ill representation
21773 * of the physical interface.
21775 /* ARGSUSED */
21777 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21778 ip_ioctl_cmd_t *ipip, void *ifreq)
21780 ill_t *ill;
21781 ill_t *ill_other;
21782 phyint_t *phyi;
21783 int old_index;
21784 conn_change_t connc;
21785 struct ifreq *ifr = (struct ifreq *)ifreq;
21786 struct lifreq *lifr = (struct lifreq *)ifreq;
21787 uint_t index;
21788 ill_t *ill_v4;
21789 ill_t *ill_v6;
21790 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
21792 if (ipip->ipi_cmd_type == IF_CMD)
21793 index = ifr->ifr_index;
21794 else
21795 index = lifr->lifr_index;
21798 * Only allow on physical interface. Also, index zero is illegal.
21800 * Need to check for PHYI_FAILED and PHYI_INACTIVE
21802 * 1) If PHYI_FAILED is set, a failover could have happened which
21803 * implies a possible failback might have to happen. As failback
21804 * depends on the old index, we should fail setting the index.
21806 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that
21807 * any addresses or multicast memberships are failed over to
21808 * a non-STANDBY interface. As failback depends on the old
21809 * index, we should fail setting the index for this case also.
21811 * 3) If PHYI_OFFLINE is set, a possible failover has happened.
21812 * Be consistent with PHYI_FAILED and fail the ioctl.
21814 ill = ipif->ipif_ill;
21815 phyi = ill->ill_phyint;
21816 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) ||
21817 ipif->ipif_id != 0 || index == 0) {
21818 return (EINVAL);
21820 old_index = phyi->phyint_ifindex;
21822 /* If the index is not changing, no work to do */
21823 if (old_index == index)
21824 return (0);
21827 * Use ill_lookup_on_ifindex to determine if the
21828 * new index is unused and if so allow the change.
21830 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL,
21831 ipst);
21832 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL,
21833 ipst);
21834 if (ill_v6 != NULL || ill_v4 != NULL) {
21835 if (ill_v4 != NULL)
21836 ill_refrele(ill_v4);
21837 if (ill_v6 != NULL)
21838 ill_refrele(ill_v6);
21839 return (EBUSY);
21843 * The new index is unused. Set it in the phyint.
21844 * Locate the other ill so that we can send a routing
21845 * sockets message.
21847 if (ill->ill_isv6) {
21848 ill_other = phyi->phyint_illv4;
21849 } else {
21850 ill_other = phyi->phyint_illv6;
21853 phyi->phyint_ifindex = index;
21855 /* Update SCTP's ILL list */
21856 sctp_ill_reindex(ill, old_index);
21858 connc.cc_old_ifindex = old_index;
21859 connc.cc_new_ifindex = index;
21860 ip_change_ifindex(ill, &connc);
21861 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst);
21863 /* Send the routing sockets message */
21864 ip_rts_ifmsg(ipif);
21865 if (ill_other != NULL)
21866 ip_rts_ifmsg(ill_other->ill_ipif);
21868 return (0);
21871 /* ARGSUSED */
21873 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21874 ip_ioctl_cmd_t *ipip, void *ifreq)
21876 struct ifreq *ifr = (struct ifreq *)ifreq;
21877 struct lifreq *lifr = (struct lifreq *)ifreq;
21879 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
21880 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21881 /* Get the interface index */
21882 if (ipip->ipi_cmd_type == IF_CMD) {
21883 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
21884 } else {
21885 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
21887 return (0);
21890 /* ARGSUSED */
21892 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21893 ip_ioctl_cmd_t *ipip, void *ifreq)
21895 struct lifreq *lifr = (struct lifreq *)ifreq;
21897 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
21898 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21899 /* Get the interface zone */
21900 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
21901 lifr->lifr_zoneid = ipif->ipif_zoneid;
21902 return (0);
21906 * Set the zoneid of an interface.
21908 /* ARGSUSED */
21910 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21911 ip_ioctl_cmd_t *ipip, void *ifreq)
21913 struct lifreq *lifr = (struct lifreq *)ifreq;
21914 int err = 0;
21915 boolean_t need_up = B_FALSE;
21916 zone_t *zptr;
21917 zone_status_t status;
21918 zoneid_t zoneid;
21920 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
21921 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
21922 if (!is_system_labeled())
21923 return (ENOTSUP);
21924 zoneid = GLOBAL_ZONEID;
21927 /* cannot assign instance zero to a non-global zone */
21928 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
21929 return (ENOTSUP);
21932 * Cannot assign to a zone that doesn't exist or is shutting down. In
21933 * the event of a race with the zone shutdown processing, since IP
21934 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
21935 * interface will be cleaned up even if the zone is shut down
21936 * immediately after the status check. If the interface can't be brought
21937 * down right away, and the zone is shut down before the restart
21938 * function is called, we resolve the possible races by rechecking the
21939 * zone status in the restart function.
21941 if ((zptr = zone_find_by_id(zoneid)) == NULL)
21942 return (EINVAL);
21943 status = zone_status_get(zptr);
21944 zone_rele(zptr);
21946 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
21947 return (EINVAL);
21949 if (ipif->ipif_flags & IPIF_UP) {
21951 * If the interface is already marked up,
21952 * we call ipif_down which will take care
21953 * of ditching any IREs that have been set
21954 * up based on the old interface address.
21956 err = ipif_logical_down(ipif, q, mp);
21957 if (err == EINPROGRESS)
21958 return (err);
21959 ipif_down_tail(ipif);
21960 need_up = B_TRUE;
21963 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
21964 return (err);
21967 static int
21968 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
21969 queue_t *q, mblk_t *mp, boolean_t need_up)
21971 int err = 0;
21972 ip_stack_t *ipst;
21974 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
21975 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
21977 if (CONN_Q(q))
21978 ipst = CONNQ_TO_IPST(q);
21979 else
21980 ipst = ILLQ_TO_IPST(q);
21983 * For exclusive stacks we don't allow a different zoneid than
21984 * global.
21986 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
21987 zoneid != GLOBAL_ZONEID)
21988 return (EINVAL);
21990 /* Set the new zone id. */
21991 ipif->ipif_zoneid = zoneid;
21993 /* Update sctp list */
21994 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
21996 if (need_up) {
21998 * Now bring the interface back up. If this
21999 * is the only IPIF for the ILL, ipif_up
22000 * will have to re-bind to the device, so
22001 * we may get back EINPROGRESS, in which
22002 * case, this IOCTL will get completed in
22003 * ip_rput_dlpi when we see the DL_BIND_ACK.
22005 err = ipif_up(ipif, q, mp);
22007 return (err);
22010 /* ARGSUSED */
22012 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22013 ip_ioctl_cmd_t *ipip, void *if_req)
22015 struct lifreq *lifr = (struct lifreq *)if_req;
22016 zoneid_t zoneid;
22017 zone_t *zptr;
22018 zone_status_t status;
22020 ASSERT(ipif->ipif_id != 0);
22021 ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22022 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
22023 zoneid = GLOBAL_ZONEID;
22025 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
22026 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22029 * We recheck the zone status to resolve the following race condition:
22030 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
22031 * 2) hme0:1 is up and can't be brought down right away;
22032 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
22033 * 3) zone "myzone" is halted; the zone status switches to
22034 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
22035 * the interfaces to remove - hme0:1 is not returned because it's not
22036 * yet in "myzone", so it won't be removed;
22037 * 4) the restart function for SIOCSLIFZONE is called; without the
22038 * status check here, we would have hme0:1 in "myzone" after it's been
22039 * destroyed.
22040 * Note that if the status check fails, we need to bring the interface
22041 * back to its state prior to ip_sioctl_slifzone(), hence the call to
22042 * ipif_up_done[_v6]().
22044 status = ZONE_IS_UNINITIALIZED;
22045 if ((zptr = zone_find_by_id(zoneid)) != NULL) {
22046 status = zone_status_get(zptr);
22047 zone_rele(zptr);
22049 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
22050 if (ipif->ipif_isv6) {
22051 (void) ipif_up_done_v6(ipif);
22052 } else {
22053 (void) ipif_up_done(ipif);
22055 return (EINVAL);
22058 ipif_down_tail(ipif);
22060 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
22061 B_TRUE));
22064 /* ARGSUSED */
22066 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22067 ip_ioctl_cmd_t *ipip, void *ifreq)
22069 struct lifreq *lifr = ifreq;
22071 ASSERT(q->q_next == NULL);
22072 ASSERT(CONN_Q(q));
22074 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
22075 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22076 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
22077 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
22079 return (0);
22083 /* Find the previous ILL in this usesrc group */
22084 static ill_t *
22085 ill_prev_usesrc(ill_t *uill)
22087 ill_t *ill;
22089 for (ill = uill->ill_usesrc_grp_next;
22090 ASSERT(ill), ill->ill_usesrc_grp_next != uill;
22091 ill = ill->ill_usesrc_grp_next)
22092 /* do nothing */;
22093 return (ill);
22097 * Release all members of the usesrc group. This routine is called
22098 * from ill_delete when the interface being unplumbed is the
22099 * group head.
22101 static void
22102 ill_disband_usesrc_group(ill_t *uill)
22104 ill_t *next_ill, *tmp_ill;
22105 ip_stack_t *ipst = uill->ill_ipst;
22107 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22108 next_ill = uill->ill_usesrc_grp_next;
22110 do {
22111 ASSERT(next_ill != NULL);
22112 tmp_ill = next_ill->ill_usesrc_grp_next;
22113 ASSERT(tmp_ill != NULL);
22114 next_ill->ill_usesrc_grp_next = NULL;
22115 next_ill->ill_usesrc_ifindex = 0;
22116 next_ill = tmp_ill;
22117 } while (next_ill->ill_usesrc_ifindex != 0);
22118 uill->ill_usesrc_grp_next = NULL;
22122 * Remove the client usesrc ILL from the list and relink to a new list
22125 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
22127 ill_t *ill, *tmp_ill;
22128 ip_stack_t *ipst = ucill->ill_ipst;
22130 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
22131 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22134 * Check if the usesrc client ILL passed in is not already
22135 * in use as a usesrc ILL i.e one whose source address is
22136 * in use OR a usesrc ILL is not already in use as a usesrc
22137 * client ILL
22139 if ((ucill->ill_usesrc_ifindex == 0) ||
22140 (uill->ill_usesrc_ifindex != 0)) {
22141 return (-1);
22144 ill = ill_prev_usesrc(ucill);
22145 ASSERT(ill->ill_usesrc_grp_next != NULL);
22147 /* Remove from the current list */
22148 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
22149 /* Only two elements in the list */
22150 ASSERT(ill->ill_usesrc_ifindex == 0);
22151 ill->ill_usesrc_grp_next = NULL;
22152 } else {
22153 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
22156 if (ifindex == 0) {
22157 ucill->ill_usesrc_ifindex = 0;
22158 ucill->ill_usesrc_grp_next = NULL;
22159 return (0);
22162 ucill->ill_usesrc_ifindex = ifindex;
22163 tmp_ill = uill->ill_usesrc_grp_next;
22164 uill->ill_usesrc_grp_next = ucill;
22165 ucill->ill_usesrc_grp_next =
22166 (tmp_ill != NULL) ? tmp_ill : uill;
22167 return (0);
22171 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
22172 * ip.c for locking details.
22174 /* ARGSUSED */
22176 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22177 ip_ioctl_cmd_t *ipip, void *ifreq)
22179 struct lifreq *lifr = (struct lifreq *)ifreq;
22180 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE,
22181 ill_flag_changed = B_FALSE;
22182 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
22183 int err = 0, ret;
22184 uint_t ifindex;
22185 phyint_t *us_phyint, *us_cli_phyint;
22186 ipsq_t *ipsq = NULL;
22187 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
22189 ASSERT(IAM_WRITER_IPIF(ipif));
22190 ASSERT(q->q_next == NULL);
22191 ASSERT(CONN_Q(q));
22193 isv6 = (Q_TO_CONN(q))->conn_af_isv6;
22194 us_cli_phyint = usesrc_cli_ill->ill_phyint;
22196 ASSERT(us_cli_phyint != NULL);
22199 * If the client ILL is being used for IPMP, abort.
22200 * Note, this can be done before ipsq_try_enter since we are already
22201 * exclusive on this ILL
22203 if ((us_cli_phyint->phyint_groupname != NULL) ||
22204 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) {
22205 return (EINVAL);
22208 ifindex = lifr->lifr_index;
22209 if (ifindex == 0) {
22210 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
22211 /* non usesrc group interface, nothing to reset */
22212 return (0);
22214 ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
22215 /* valid reset request */
22216 reset_flg = B_TRUE;
22219 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp,
22220 ip_process_ioctl, &err, ipst);
22222 if (usesrc_ill == NULL) {
22223 return (err);
22227 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP
22228 * group nor can either of the interfaces be used for standy. So
22229 * to guarantee mutual exclusion with ip_sioctl_flags (which sets
22230 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname)
22231 * we need to be exclusive on the ipsq belonging to the usesrc_ill.
22232 * We are already exlusive on this ipsq i.e ipsq corresponding to
22233 * the usesrc_cli_ill
22235 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
22236 NEW_OP, B_TRUE);
22237 if (ipsq == NULL) {
22238 err = EINPROGRESS;
22239 /* Operation enqueued on the ipsq of the usesrc ILL */
22240 goto done;
22243 /* Check if the usesrc_ill is used for IPMP */
22244 us_phyint = usesrc_ill->ill_phyint;
22245 if ((us_phyint->phyint_groupname != NULL) ||
22246 (us_phyint->phyint_flags & PHYI_STANDBY)) {
22247 err = EINVAL;
22248 goto done;
22252 * If the client is already in use as a usesrc_ill or a usesrc_ill is
22253 * already a client then return EINVAL
22255 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
22256 err = EINVAL;
22257 goto done;
22261 * If the ill_usesrc_ifindex field is already set to what it needs to
22262 * be then this is a duplicate operation.
22264 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
22265 err = 0;
22266 goto done;
22269 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
22270 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
22271 usesrc_ill->ill_isv6));
22274 * The next step ensures that no new ires will be created referencing
22275 * the client ill, until the ILL_CHANGING flag is cleared. Then
22276 * we go through an ire walk deleting all ire caches that reference
22277 * the client ill. New ires referencing the client ill that are added
22278 * to the ire table before the ILL_CHANGING flag is set, will be
22279 * cleaned up by the ire walk below. Attempt to add new ires referencing
22280 * the client ill while the ILL_CHANGING flag is set will be failed
22281 * during the ire_add in ire_atomic_start. ire_atomic_start atomically
22282 * checks (under the ill_g_usesrc_lock) that the ire being added
22283 * is not stale, i.e the ire_stq and ire_ipif are consistent and
22284 * belong to the same usesrc group.
22286 mutex_enter(&usesrc_cli_ill->ill_lock);
22287 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING;
22288 mutex_exit(&usesrc_cli_ill->ill_lock);
22289 ill_flag_changed = B_TRUE;
22291 if (ipif->ipif_isv6)
22292 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22293 ALL_ZONES, ipst);
22294 else
22295 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22296 ALL_ZONES, ipst);
22299 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
22300 * and the ill_usesrc_ifindex fields
22302 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
22304 if (reset_flg) {
22305 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
22306 if (ret != 0) {
22307 err = EINVAL;
22309 rw_exit(&ipst->ips_ill_g_usesrc_lock);
22310 goto done;
22314 * Four possibilities to consider:
22315 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
22316 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
22317 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
22318 * 4. Both are part of their respective usesrc groups
22320 if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
22321 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22322 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
22323 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22324 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22325 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
22326 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
22327 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22328 usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22329 /* Insert at head of list */
22330 usesrc_cli_ill->ill_usesrc_grp_next =
22331 usesrc_ill->ill_usesrc_grp_next;
22332 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22333 } else {
22334 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
22335 ifindex);
22336 if (ret != 0)
22337 err = EINVAL;
22339 rw_exit(&ipst->ips_ill_g_usesrc_lock);
22341 done:
22342 if (ill_flag_changed) {
22343 mutex_enter(&usesrc_cli_ill->ill_lock);
22344 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING;
22345 mutex_exit(&usesrc_cli_ill->ill_lock);
22347 if (ipsq != NULL)
22348 ipsq_exit(ipsq, B_TRUE, B_TRUE);
22349 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */
22350 ill_refrele(usesrc_ill);
22351 return (err);
22355 * comparison function used by avl.
22357 static int
22358 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
22361 uint_t index;
22363 ASSERT(phyip != NULL && index_ptr != NULL);
22365 index = *((uint_t *)index_ptr);
22367 * let the phyint with the lowest index be on top.
22369 if (((phyint_t *)phyip)->phyint_ifindex < index)
22370 return (1);
22371 if (((phyint_t *)phyip)->phyint_ifindex > index)
22372 return (-1);
22373 return (0);
22377 * comparison function used by avl.
22379 static int
22380 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
22382 ill_t *ill;
22383 int res = 0;
22385 ASSERT(phyip != NULL && name_ptr != NULL);
22387 if (((phyint_t *)phyip)->phyint_illv4)
22388 ill = ((phyint_t *)phyip)->phyint_illv4;
22389 else
22390 ill = ((phyint_t *)phyip)->phyint_illv6;
22391 ASSERT(ill != NULL);
22393 res = strcmp(ill->ill_name, (char *)name_ptr);
22394 if (res > 0)
22395 return (1);
22396 else if (res < 0)
22397 return (-1);
22398 return (0);
22401 * This function is called from ill_delete when the ill is being
22402 * unplumbed. We remove the reference from the phyint and we also
22403 * free the phyint when there are no more references to it.
22405 static void
22406 ill_phyint_free(ill_t *ill)
22408 phyint_t *phyi;
22409 phyint_t *next_phyint;
22410 ipsq_t *cur_ipsq;
22411 ip_stack_t *ipst = ill->ill_ipst;
22413 ASSERT(ill->ill_phyint != NULL);
22415 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22416 phyi = ill->ill_phyint;
22417 ill->ill_phyint = NULL;
22419 * ill_init allocates a phyint always to store the copy
22420 * of flags relevant to phyint. At that point in time, we could
22421 * not assign the name and hence phyint_illv4/v6 could not be
22422 * initialized. Later in ipif_set_values, we assign the name to
22423 * the ill, at which point in time we assign phyint_illv4/v6.
22424 * Thus we don't rely on phyint_illv6 to be initialized always.
22426 if (ill->ill_flags & ILLF_IPV6) {
22427 phyi->phyint_illv6 = NULL;
22428 } else {
22429 phyi->phyint_illv4 = NULL;
22432 * ipif_down removes it from the group when the last ipif goes
22433 * down.
22435 ASSERT(ill->ill_group == NULL);
22437 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL)
22438 return;
22441 * Make sure this phyint was put in the list.
22443 if (phyi->phyint_ifindex > 0) {
22444 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22445 phyi);
22446 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22447 phyi);
22450 * remove phyint from the ipsq list.
22452 cur_ipsq = phyi->phyint_ipsq;
22453 if (phyi == cur_ipsq->ipsq_phyint_list) {
22454 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next;
22455 } else {
22456 next_phyint = cur_ipsq->ipsq_phyint_list;
22457 while (next_phyint != NULL) {
22458 if (next_phyint->phyint_ipsq_next == phyi) {
22459 next_phyint->phyint_ipsq_next =
22460 phyi->phyint_ipsq_next;
22461 break;
22463 next_phyint = next_phyint->phyint_ipsq_next;
22465 ASSERT(next_phyint != NULL);
22467 IPSQ_DEC_REF(cur_ipsq, ipst);
22469 if (phyi->phyint_groupname_len != 0) {
22470 ASSERT(phyi->phyint_groupname != NULL);
22471 mi_free(phyi->phyint_groupname);
22473 mi_free(phyi);
22477 * Attach the ill to the phyint structure which can be shared by both
22478 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
22479 * function is called from ipif_set_values and ill_lookup_on_name (for
22480 * loopback) where we know the name of the ill. We lookup the ill and if
22481 * there is one present already with the name use that phyint. Otherwise
22482 * reuse the one allocated by ill_init.
22484 static void
22485 ill_phyint_reinit(ill_t *ill)
22487 boolean_t isv6 = ill->ill_isv6;
22488 phyint_t *phyi_old;
22489 phyint_t *phyi;
22490 avl_index_t where = 0;
22491 ill_t *ill_other = NULL;
22492 ipsq_t *ipsq;
22493 ip_stack_t *ipst = ill->ill_ipst;
22495 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22497 phyi_old = ill->ill_phyint;
22498 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
22499 phyi_old->phyint_illv6 == NULL));
22500 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
22501 phyi_old->phyint_illv4 == NULL));
22502 ASSERT(phyi_old->phyint_ifindex == 0);
22504 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22505 ill->ill_name, &where);
22508 * 1. We grabbed the ill_g_lock before inserting this ill into
22509 * the global list of ills. So no other thread could have located
22510 * this ill and hence the ipsq of this ill is guaranteed to be empty.
22511 * 2. Now locate the other protocol instance of this ill.
22512 * 3. Now grab both ill locks in the right order, and the phyint lock of
22513 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
22514 * of neither ill can change.
22515 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
22516 * other ill.
22517 * 5. Release all locks.
22521 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
22522 * we are initializing IPv4.
22524 if (phyi != NULL) {
22525 ill_other = (isv6) ? phyi->phyint_illv4 :
22526 phyi->phyint_illv6;
22527 ASSERT(ill_other->ill_phyint != NULL);
22528 ASSERT((isv6 && !ill_other->ill_isv6) ||
22529 (!isv6 && ill_other->ill_isv6));
22530 GRAB_ILL_LOCKS(ill, ill_other);
22532 * We are potentially throwing away phyint_flags which
22533 * could be different from the one that we obtain from
22534 * ill_other->ill_phyint. But it is okay as we are assuming
22535 * that the state maintained within IP is correct.
22537 mutex_enter(&phyi->phyint_lock);
22538 if (isv6) {
22539 ASSERT(phyi->phyint_illv6 == NULL);
22540 phyi->phyint_illv6 = ill;
22541 } else {
22542 ASSERT(phyi->phyint_illv4 == NULL);
22543 phyi->phyint_illv4 = ill;
22546 * This is a new ill, currently undergoing SLIFNAME
22547 * So we could not have joined an IPMP group until now.
22549 ASSERT(phyi_old->phyint_ipsq_next == NULL &&
22550 phyi_old->phyint_groupname == NULL);
22553 * This phyi_old is going away. Decref ipsq_refs and
22554 * assert it is zero. The ipsq itself will be freed in
22555 * ipsq_exit
22557 ipsq = phyi_old->phyint_ipsq;
22558 IPSQ_DEC_REF(ipsq, ipst);
22559 ASSERT(ipsq->ipsq_refs == 0);
22560 /* Get the singleton phyint out of the ipsq list */
22561 ASSERT(phyi_old->phyint_ipsq_next == NULL);
22562 ipsq->ipsq_phyint_list = NULL;
22563 phyi_old->phyint_illv4 = NULL;
22564 phyi_old->phyint_illv6 = NULL;
22565 mi_free(phyi_old);
22566 } else {
22567 mutex_enter(&ill->ill_lock);
22569 * We don't need to acquire any lock, since
22570 * the ill is not yet visible globally and we
22571 * have not yet released the ill_g_lock.
22573 phyi = phyi_old;
22574 mutex_enter(&phyi->phyint_lock);
22575 /* XXX We need a recovery strategy here. */
22576 if (!phyint_assign_ifindex(phyi, ipst))
22577 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
22579 /* No IPMP group yet, thus the hook uses the ifindex */
22580 phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
22582 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22583 (void *)phyi, where);
22585 (void) avl_find(&ipst->ips_phyint_g_list->
22586 phyint_list_avl_by_index,
22587 &phyi->phyint_ifindex, &where);
22588 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22589 (void *)phyi, where);
22593 * Reassigning ill_phyint automatically reassigns the ipsq also.
22594 * pending mp is not affected because that is per ill basis.
22596 ill->ill_phyint = phyi;
22599 * Keep the index on ipif_orig_index to be used by FAILOVER.
22600 * We do this here as when the first ipif was allocated,
22601 * ipif_allocate does not know the right interface index.
22604 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex;
22606 * Now that the phyint's ifindex has been assigned, complete the
22607 * remaining
22610 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
22611 if (ill->ill_isv6) {
22612 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
22613 ill->ill_phyint->phyint_ifindex;
22614 ill->ill_mcast_type = ipst->ips_mld_max_version;
22615 } else {
22616 ill->ill_mcast_type = ipst->ips_igmp_max_version;
22620 * Generate an event within the hooks framework to indicate that
22621 * a new interface has just been added to IP. For this event to
22622 * be generated, the network interface must, at least, have an
22623 * ifindex assigned to it.
22625 * This needs to be run inside the ill_g_lock perimeter to ensure
22626 * that the ordering of delivered events to listeners matches the
22627 * order of them in the kernel.
22629 * This function could be called from ill_lookup_on_name. In that case
22630 * the interface is loopback "lo", which will not generate a NIC event.
22632 if (ill->ill_name_length <= 2 ||
22633 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') {
22635 * Generate nic plumb event for ill_name even if
22636 * ipmp_hook_emulation is set. That avoids generating events
22637 * for the ill_names should ipmp_hook_emulation be turned on
22638 * later.
22640 ill_nic_info_plumb(ill, B_FALSE);
22642 RELEASE_ILL_LOCKS(ill, ill_other);
22643 mutex_exit(&phyi->phyint_lock);
22647 * Allocate a NE_PLUMB nic info event and store in the ill.
22648 * If 'group' is set we do it for the group name, otherwise the ill name.
22649 * It will be sent when we leave the ipsq.
22651 void
22652 ill_nic_info_plumb(ill_t *ill, boolean_t group)
22654 phyint_t *phyi = ill->ill_phyint;
22655 ip_stack_t *ipst = ill->ill_ipst;
22656 hook_nic_event_t *info;
22657 char *name;
22658 int namelen;
22660 ASSERT(MUTEX_HELD(&ill->ill_lock));
22662 if ((info = ill->ill_nic_event_info) != NULL) {
22663 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d "
22664 "attached for %s\n", info->hne_event,
22665 ill->ill_name));
22666 if (info->hne_data != NULL)
22667 kmem_free(info->hne_data, info->hne_datalen);
22668 kmem_free(info, sizeof (hook_nic_event_t));
22669 ill->ill_nic_event_info = NULL;
22672 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
22673 if (info == NULL) {
22674 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic "
22675 "event information for %s (ENOMEM)\n",
22676 ill->ill_name));
22677 return;
22680 if (group) {
22681 ASSERT(phyi->phyint_groupname_len != 0);
22682 namelen = phyi->phyint_groupname_len;
22683 name = phyi->phyint_groupname;
22684 } else {
22685 namelen = ill->ill_name_length;
22686 name = ill->ill_name;
22689 info->hne_nic = phyi->phyint_hook_ifindex;
22690 info->hne_lif = 0;
22691 info->hne_event = NE_PLUMB;
22692 info->hne_family = ill->ill_isv6 ?
22693 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
22695 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP);
22696 if (info->hne_data != NULL) {
22697 info->hne_datalen = namelen;
22698 bcopy(name, info->hne_data, info->hne_datalen);
22699 } else {
22700 ip2dbg(("ill_nic_info_plumb: could not attach "
22701 "name information for PLUMB nic event "
22702 "of %s (ENOMEM)\n", name));
22703 kmem_free(info, sizeof (hook_nic_event_t));
22704 info = NULL;
22706 ill->ill_nic_event_info = info;
22710 * Unhook the nic event message from the ill and enqueue it
22711 * into the nic event taskq.
22713 void
22714 ill_nic_info_dispatch(ill_t *ill)
22716 hook_nic_event_t *info;
22718 ASSERT(MUTEX_HELD(&ill->ill_lock));
22720 if ((info = ill->ill_nic_event_info) != NULL) {
22721 if (ddi_taskq_dispatch(eventq_queue_nic,
22722 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) {
22723 ip2dbg(("ill_nic_info_dispatch: "
22724 "ddi_taskq_dispatch failed\n"));
22725 if (info->hne_data != NULL)
22726 kmem_free(info->hne_data, info->hne_datalen);
22727 kmem_free(info, sizeof (hook_nic_event_t));
22729 ill->ill_nic_event_info = NULL;
22734 * Notify any downstream modules of the name of this interface.
22735 * An M_IOCTL is used even though we don't expect a successful reply.
22736 * Any reply message from the driver (presumably an M_IOCNAK) will
22737 * eventually get discarded somewhere upstream. The message format is
22738 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
22739 * to IP.
22741 static void
22742 ip_ifname_notify(ill_t *ill, queue_t *q)
22744 mblk_t *mp1, *mp2;
22745 struct iocblk *iocp;
22746 struct lifreq *lifr;
22748 mp1 = mkiocb(SIOCSLIFNAME);
22749 if (mp1 == NULL)
22750 return;
22751 mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
22752 if (mp2 == NULL) {
22753 freeb(mp1);
22754 return;
22757 mp1->b_cont = mp2;
22758 iocp = (struct iocblk *)mp1->b_rptr;
22759 iocp->ioc_count = sizeof (struct lifreq);
22761 lifr = (struct lifreq *)mp2->b_rptr;
22762 mp2->b_wptr += sizeof (struct lifreq);
22763 bzero(lifr, sizeof (struct lifreq));
22765 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
22766 lifr->lifr_ppa = ill->ill_ppa;
22767 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
22769 putnext(q, mp1);
22772 static int
22773 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
22775 int err;
22776 ip_stack_t *ipst = ill->ill_ipst;
22778 /* Set the obsolete NDD per-interface forwarding name. */
22779 err = ill_set_ndd_name(ill);
22780 if (err != 0) {
22781 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
22782 err);
22785 /* Tell downstream modules where they are. */
22786 ip_ifname_notify(ill, q);
22789 * ill_dl_phys returns EINPROGRESS in the usual case.
22790 * Error cases are ENOMEM ...
22792 err = ill_dl_phys(ill, ipif, mp, q);
22795 * If there is no IRE expiration timer running, get one started.
22796 * igmp and mld timers will be triggered by the first multicast
22798 if (ipst->ips_ip_ire_expire_id == 0) {
22800 * acquire the lock and check again.
22802 mutex_enter(&ipst->ips_ip_trash_timer_lock);
22803 if (ipst->ips_ip_ire_expire_id == 0) {
22804 ipst->ips_ip_ire_expire_id = timeout(
22805 ip_trash_timer_expire, ipst,
22806 MSEC_TO_TICK(ipst->ips_ip_timer_interval));
22808 mutex_exit(&ipst->ips_ip_trash_timer_lock);
22811 if (ill->ill_isv6) {
22812 mutex_enter(&ipst->ips_mld_slowtimeout_lock);
22813 if (ipst->ips_mld_slowtimeout_id == 0) {
22814 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
22815 (void *)ipst,
22816 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
22818 mutex_exit(&ipst->ips_mld_slowtimeout_lock);
22819 } else {
22820 mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
22821 if (ipst->ips_igmp_slowtimeout_id == 0) {
22822 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
22823 (void *)ipst,
22824 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
22826 mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
22829 return (err);
22833 * Common routine for ppa and ifname setting. Should be called exclusive.
22835 * Returns EINPROGRESS when mp has been consumed by queueing it on
22836 * ill_pending_mp and the ioctl will complete in ip_rput.
22838 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
22839 * the new name and new ppa in lifr_name and lifr_ppa respectively.
22840 * For SLIFNAME, we pass these values back to the userland.
22842 static int
22843 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
22845 ill_t *ill;
22846 ipif_t *ipif;
22847 ipsq_t *ipsq;
22848 char *ppa_ptr;
22849 char *old_ptr;
22850 char old_char;
22851 int error;
22852 ip_stack_t *ipst;
22854 ip1dbg(("ipif_set_values: interface %s\n", interf_name));
22855 ASSERT(q->q_next != NULL);
22856 ASSERT(interf_name != NULL);
22858 ill = (ill_t *)q->q_ptr;
22859 ipst = ill->ill_ipst;
22861 ASSERT(ill->ill_ipst != NULL);
22862 ASSERT(ill->ill_name[0] == '\0');
22863 ASSERT(IAM_WRITER_ILL(ill));
22864 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
22865 ASSERT(ill->ill_ppa == UINT_MAX);
22867 /* The ppa is sent down by ifconfig or is chosen */
22868 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
22869 return (EINVAL);
22873 * make sure ppa passed in is same as ppa in the name.
22874 * This check is not made when ppa == UINT_MAX in that case ppa
22875 * in the name could be anything. System will choose a ppa and
22876 * update new_ppa_ptr and inter_name to contain the choosen ppa.
22878 if (*new_ppa_ptr != UINT_MAX) {
22879 /* stoi changes the pointer */
22880 old_ptr = ppa_ptr;
22882 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
22883 * (they don't have an externally visible ppa). We assign one
22884 * here so that we can manage the interface. Note that in
22885 * the past this value was always 0 for DLPI 1 drivers.
22887 if (*new_ppa_ptr == 0)
22888 *new_ppa_ptr = stoi(&old_ptr);
22889 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
22890 return (EINVAL);
22893 * terminate string before ppa
22894 * save char at that location.
22896 old_char = ppa_ptr[0];
22897 ppa_ptr[0] = '\0';
22899 ill->ill_ppa = *new_ppa_ptr;
22901 * Finish as much work now as possible before calling ill_glist_insert
22902 * which makes the ill globally visible and also merges it with the
22903 * other protocol instance of this phyint. The remaining work is
22904 * done after entering the ipsq which may happen sometime later.
22905 * ill_set_ndd_name occurs after the ill has been made globally visible.
22907 ipif = ill->ill_ipif;
22909 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
22910 ipif_assign_seqid(ipif);
22912 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
22913 ill->ill_flags |= ILLF_IPV4;
22915 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */
22916 ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
22918 if (ill->ill_flags & ILLF_IPV6) {
22920 ill->ill_isv6 = B_TRUE;
22921 if (ill->ill_rq != NULL) {
22922 ill->ill_rq->q_qinfo = &iprinitv6;
22923 ill->ill_wq->q_qinfo = &ipwinitv6;
22926 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
22927 ipif->ipif_v6lcl_addr = ipv6_all_zeros;
22928 ipif->ipif_v6src_addr = ipv6_all_zeros;
22929 ipif->ipif_v6subnet = ipv6_all_zeros;
22930 ipif->ipif_v6net_mask = ipv6_all_zeros;
22931 ipif->ipif_v6brd_addr = ipv6_all_zeros;
22932 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
22934 * point-to-point or Non-mulicast capable
22935 * interfaces won't do NUD unless explicitly
22936 * configured to do so.
22938 if (ipif->ipif_flags & IPIF_POINTOPOINT ||
22939 !(ill->ill_flags & ILLF_MULTICAST)) {
22940 ill->ill_flags |= ILLF_NONUD;
22942 /* Make sure IPv4 specific flag is not set on IPv6 if */
22943 if (ill->ill_flags & ILLF_NOARP) {
22945 * Note: xresolv interfaces will eventually need
22946 * NOARP set here as well, but that will require
22947 * those external resolvers to have some
22948 * knowledge of that flag and act appropriately.
22949 * Not to be changed at present.
22951 ill->ill_flags &= ~ILLF_NOARP;
22954 * Set the ILLF_ROUTER flag according to the global
22955 * IPv6 forwarding policy.
22957 if (ipst->ips_ipv6_forward != 0)
22958 ill->ill_flags |= ILLF_ROUTER;
22959 } else if (ill->ill_flags & ILLF_IPV4) {
22960 ill->ill_isv6 = B_FALSE;
22961 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
22962 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr);
22963 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
22964 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
22965 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
22966 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
22968 * Set the ILLF_ROUTER flag according to the global
22969 * IPv4 forwarding policy.
22971 if (ipst->ips_ip_g_forward != 0)
22972 ill->ill_flags |= ILLF_ROUTER;
22975 ASSERT(ill->ill_phyint != NULL);
22978 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
22979 * be completed in ill_glist_insert -> ill_phyint_reinit
22981 if (!ill_allocate_mibs(ill))
22982 return (ENOMEM);
22985 * Pick a default sap until we get the DL_INFO_ACK back from
22986 * the driver.
22988 if (ill->ill_sap == 0) {
22989 if (ill->ill_isv6)
22990 ill->ill_sap = IP6_DL_SAP;
22991 else
22992 ill->ill_sap = IP_DL_SAP;
22995 ill->ill_ifname_pending = 1;
22996 ill->ill_ifname_pending_err = 0;
22998 ill_refhold(ill);
22999 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
23000 if ((error = ill_glist_insert(ill, interf_name,
23001 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
23002 ill->ill_ppa = UINT_MAX;
23003 ill->ill_name[0] = '\0';
23005 * undo null termination done above.
23007 ppa_ptr[0] = old_char;
23008 rw_exit(&ipst->ips_ill_g_lock);
23009 ill_refrele(ill);
23010 return (error);
23013 ASSERT(ill->ill_name_length <= LIFNAMSIZ);
23016 * When we return the buffer pointed to by interf_name should contain
23017 * the same name as in ill_name.
23018 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
23019 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
23020 * so copy full name and update the ppa ptr.
23021 * When ppa passed in != UINT_MAX all values are correct just undo
23022 * null termination, this saves a bcopy.
23024 if (*new_ppa_ptr == UINT_MAX) {
23025 bcopy(ill->ill_name, interf_name, ill->ill_name_length);
23026 *new_ppa_ptr = ill->ill_ppa;
23027 } else {
23029 * undo null termination done above.
23031 ppa_ptr[0] = old_char;
23034 /* Let SCTP know about this ILL */
23035 sctp_update_ill(ill, SCTP_ILL_INSERT);
23037 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP,
23038 B_TRUE);
23040 rw_exit(&ipst->ips_ill_g_lock);
23041 ill_refrele(ill);
23042 if (ipsq == NULL)
23043 return (EINPROGRESS);
23046 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
23048 if (ipsq->ipsq_current_ipif == NULL)
23049 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
23050 else
23051 ASSERT(ipsq->ipsq_current_ipif == ipif);
23053 error = ipif_set_values_tail(ill, ipif, mp, q);
23054 ipsq_exit(ipsq, B_TRUE, B_TRUE);
23055 if (error != 0 && error != EINPROGRESS) {
23057 * restore previous values
23059 ill->ill_isv6 = B_FALSE;
23061 return (error);
23065 void
23066 ipif_init(ip_stack_t *ipst)
23068 hrtime_t hrt;
23069 int i;
23072 * Can't call drv_getparm here as it is too early in the boot.
23073 * As we use ipif_src_random just for picking a different
23074 * source address everytime, this need not be really random.
23076 hrt = gethrtime();
23077 ipst->ips_ipif_src_random =
23078 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff);
23080 for (i = 0; i < MAX_G_HEADS; i++) {
23081 ipst->ips_ill_g_heads[i].ill_g_list_head =
23082 (ill_if_t *)&ipst->ips_ill_g_heads[i];
23083 ipst->ips_ill_g_heads[i].ill_g_list_tail =
23084 (ill_if_t *)&ipst->ips_ill_g_heads[i];
23087 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
23088 ill_phyint_compare_index,
23089 sizeof (phyint_t),
23090 offsetof(struct phyint, phyint_avl_by_index));
23091 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
23092 ill_phyint_compare_name,
23093 sizeof (phyint_t),
23094 offsetof(struct phyint, phyint_avl_by_name));
23098 * Lookup the ipif corresponding to the onlink destination address. For
23099 * point-to-point interfaces, it matches with remote endpoint destination
23100 * address. For point-to-multipoint interfaces it only tries to match the
23101 * destination with the interface's subnet address. The longest, most specific
23102 * match is found to take care of such rare network configurations like -
23103 * le0: 129.146.1.1/16
23104 * le1: 129.146.2.2/24
23105 * It is used only by SO_DONTROUTE at the moment.
23107 ipif_t *
23108 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
23110 ipif_t *ipif, *best_ipif;
23111 ill_t *ill;
23112 ill_walk_context_t ctx;
23114 ASSERT(zoneid != ALL_ZONES);
23115 best_ipif = NULL;
23117 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
23118 ill = ILL_START_WALK_V4(&ctx, ipst);
23119 for (; ill != NULL; ill = ill_next(&ctx, ill)) {
23120 mutex_enter(&ill->ill_lock);
23121 for (ipif = ill->ill_ipif; ipif != NULL;
23122 ipif = ipif->ipif_next) {
23123 if (!IPIF_CAN_LOOKUP(ipif))
23124 continue;
23125 if (ipif->ipif_zoneid != zoneid &&
23126 ipif->ipif_zoneid != ALL_ZONES)
23127 continue;
23129 * Point-to-point case. Look for exact match with
23130 * destination address.
23132 if (ipif->ipif_flags & IPIF_POINTOPOINT) {
23133 if (ipif->ipif_pp_dst_addr == addr) {
23134 ipif_refhold_locked(ipif);
23135 mutex_exit(&ill->ill_lock);
23136 rw_exit(&ipst->ips_ill_g_lock);
23137 if (best_ipif != NULL)
23138 ipif_refrele(best_ipif);
23139 return (ipif);
23141 } else if (ipif->ipif_subnet == (addr &
23142 ipif->ipif_net_mask)) {
23144 * Point-to-multipoint case. Looping through to
23145 * find the most specific match. If there are
23146 * multiple best match ipif's then prefer ipif's
23147 * that are UP. If there is only one best match
23148 * ipif and it is DOWN we must still return it.
23150 if ((best_ipif == NULL) ||
23151 (ipif->ipif_net_mask >
23152 best_ipif->ipif_net_mask) ||
23153 ((ipif->ipif_net_mask ==
23154 best_ipif->ipif_net_mask) &&
23155 ((ipif->ipif_flags & IPIF_UP) &&
23156 (!(best_ipif->ipif_flags & IPIF_UP))))) {
23157 ipif_refhold_locked(ipif);
23158 mutex_exit(&ill->ill_lock);
23159 rw_exit(&ipst->ips_ill_g_lock);
23160 if (best_ipif != NULL)
23161 ipif_refrele(best_ipif);
23162 best_ipif = ipif;
23163 rw_enter(&ipst->ips_ill_g_lock,
23164 RW_READER);
23165 mutex_enter(&ill->ill_lock);
23169 mutex_exit(&ill->ill_lock);
23171 rw_exit(&ipst->ips_ill_g_lock);
23172 return (best_ipif);
23177 * Save enough information so that we can recreate the IRE if
23178 * the interface goes down and then up.
23180 static void
23181 ipif_save_ire(ipif_t *ipif, ire_t *ire)
23183 mblk_t *save_mp;
23185 save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
23186 if (save_mp != NULL) {
23187 ifrt_t *ifrt;
23189 save_mp->b_wptr += sizeof (ifrt_t);
23190 ifrt = (ifrt_t *)save_mp->b_rptr;
23191 bzero(ifrt, sizeof (ifrt_t));
23192 ifrt->ifrt_type = ire->ire_type;
23193 ifrt->ifrt_addr = ire->ire_addr;
23194 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
23195 ifrt->ifrt_src_addr = ire->ire_src_addr;
23196 ifrt->ifrt_mask = ire->ire_mask;
23197 ifrt->ifrt_flags = ire->ire_flags;
23198 ifrt->ifrt_max_frag = ire->ire_max_frag;
23199 mutex_enter(&ipif->ipif_saved_ire_lock);
23200 save_mp->b_cont = ipif->ipif_saved_ire_mp;
23201 ipif->ipif_saved_ire_mp = save_mp;
23202 ipif->ipif_saved_ire_cnt++;
23203 mutex_exit(&ipif->ipif_saved_ire_lock);
23208 static void
23209 ipif_remove_ire(ipif_t *ipif, ire_t *ire)
23211 mblk_t **mpp;
23212 mblk_t *mp;
23213 ifrt_t *ifrt;
23215 /* Remove from ipif_saved_ire_mp list if it is there */
23216 mutex_enter(&ipif->ipif_saved_ire_lock);
23217 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
23218 mpp = &(*mpp)->b_cont) {
23220 * On a given ipif, the triple of address, gateway and
23221 * mask is unique for each saved IRE (in the case of
23222 * ordinary interface routes, the gateway address is
23223 * all-zeroes).
23225 mp = *mpp;
23226 ifrt = (ifrt_t *)mp->b_rptr;
23227 if (ifrt->ifrt_addr == ire->ire_addr &&
23228 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
23229 ifrt->ifrt_mask == ire->ire_mask) {
23230 *mpp = mp->b_cont;
23231 ipif->ipif_saved_ire_cnt--;
23232 freeb(mp);
23233 break;
23236 mutex_exit(&ipif->ipif_saved_ire_lock);
23241 * IP multirouting broadcast routes handling
23242 * Append CGTP broadcast IREs to regular ones created
23243 * at ifconfig time.
23245 static void
23246 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst)
23248 ire_t *ire_prim;
23250 ASSERT(ire != NULL);
23251 ASSERT(ire_dst != NULL);
23253 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23254 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23255 if (ire_prim != NULL) {
23257 * We are in the special case of broadcasts for
23258 * CGTP. We add an IRE_BROADCAST that holds
23259 * the RTF_MULTIRT flag, the destination
23260 * address of ire_dst and the low level
23261 * info of ire_prim. In other words, CGTP
23262 * broadcast is added to the redundant ipif.
23264 ipif_t *ipif_prim;
23265 ire_t *bcast_ire;
23267 ipif_prim = ire_prim->ire_ipif;
23269 ip2dbg(("ip_cgtp_filter_bcast_add: "
23270 "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23271 (void *)ire_dst, (void *)ire_prim,
23272 (void *)ipif_prim));
23274 bcast_ire = ire_create(
23275 (uchar_t *)&ire->ire_addr,
23276 (uchar_t *)&ip_g_all_ones,
23277 (uchar_t *)&ire_dst->ire_src_addr,
23278 (uchar_t *)&ire->ire_gateway_addr,
23279 &ipif_prim->ipif_mtu,
23280 NULL,
23281 ipif_prim->ipif_rq,
23282 ipif_prim->ipif_wq,
23283 IRE_BROADCAST,
23284 ipif_prim,
23288 ire->ire_flags,
23289 &ire_uinfo_null,
23290 NULL,
23291 NULL,
23292 ipst);
23294 if (bcast_ire != NULL) {
23296 if (ire_add(&bcast_ire, NULL, NULL, NULL,
23297 B_FALSE) == 0) {
23298 ip2dbg(("ip_cgtp_filter_bcast_add: "
23299 "added bcast_ire %p\n",
23300 (void *)bcast_ire));
23302 ipif_save_ire(bcast_ire->ire_ipif,
23303 bcast_ire);
23304 ire_refrele(bcast_ire);
23307 ire_refrele(ire_prim);
23313 * IP multirouting broadcast routes handling
23314 * Remove the broadcast ire
23316 static void
23317 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
23319 ire_t *ire_dst;
23321 ASSERT(ire != NULL);
23322 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST,
23323 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23324 if (ire_dst != NULL) {
23325 ire_t *ire_prim;
23327 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23328 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23329 if (ire_prim != NULL) {
23330 ipif_t *ipif_prim;
23331 ire_t *bcast_ire;
23333 ipif_prim = ire_prim->ire_ipif;
23335 ip2dbg(("ip_cgtp_filter_bcast_delete: "
23336 "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23337 (void *)ire_dst, (void *)ire_prim,
23338 (void *)ipif_prim));
23340 bcast_ire = ire_ctable_lookup(ire->ire_addr,
23341 ire->ire_gateway_addr,
23342 IRE_BROADCAST,
23343 ipif_prim, ALL_ZONES,
23344 NULL,
23345 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF |
23346 MATCH_IRE_MASK, ipst);
23348 if (bcast_ire != NULL) {
23349 ip2dbg(("ip_cgtp_filter_bcast_delete: "
23350 "looked up bcast_ire %p\n",
23351 (void *)bcast_ire));
23352 ipif_remove_ire(bcast_ire->ire_ipif,
23353 bcast_ire);
23354 ire_delete(bcast_ire);
23356 ire_refrele(ire_prim);
23358 ire_refrele(ire_dst);
23363 * IPsec hardware acceleration capabilities related functions.
23367 * Free a per-ill IPsec capabilities structure.
23369 static void
23370 ill_ipsec_capab_free(ill_ipsec_capab_t *capab)
23372 if (capab->auth_hw_algs != NULL)
23373 kmem_free(capab->auth_hw_algs, capab->algs_size);
23374 if (capab->encr_hw_algs != NULL)
23375 kmem_free(capab->encr_hw_algs, capab->algs_size);
23376 if (capab->encr_algparm != NULL)
23377 kmem_free(capab->encr_algparm, capab->encr_algparm_size);
23378 kmem_free(capab, sizeof (ill_ipsec_capab_t));
23382 * Allocate a new per-ill IPsec capabilities structure. This structure
23383 * is specific to an IPsec protocol (AH or ESP). It is implemented as
23384 * an array which specifies, for each algorithm, whether this algorithm
23385 * is supported by the ill or not.
23387 static ill_ipsec_capab_t *
23388 ill_ipsec_capab_alloc(void)
23390 ill_ipsec_capab_t *capab;
23391 uint_t nelems;
23393 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP);
23394 if (capab == NULL)
23395 return (NULL);
23397 /* we need one bit per algorithm */
23398 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t);
23399 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t);
23401 /* allocate memory to store algorithm flags */
23402 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23403 if (capab->encr_hw_algs == NULL)
23404 goto nomem;
23405 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23406 if (capab->auth_hw_algs == NULL)
23407 goto nomem;
23409 * Leave encr_algparm NULL for now since we won't need it half
23410 * the time
23412 return (capab);
23414 nomem:
23415 ill_ipsec_capab_free(capab);
23416 return (NULL);
23420 * Resize capability array. Since we're exclusive, this is OK.
23422 static boolean_t
23423 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid)
23425 ipsec_capab_algparm_t *nalp, *oalp;
23426 uint32_t olen, nlen;
23428 oalp = capab->encr_algparm;
23429 olen = capab->encr_algparm_size;
23431 if (oalp != NULL) {
23432 if (algid < capab->encr_algparm_end)
23433 return (B_TRUE);
23436 nlen = (algid + 1) * sizeof (*nalp);
23437 nalp = kmem_zalloc(nlen, KM_NOSLEEP);
23438 if (nalp == NULL)
23439 return (B_FALSE);
23441 if (oalp != NULL) {
23442 bcopy(oalp, nalp, olen);
23443 kmem_free(oalp, olen);
23445 capab->encr_algparm = nalp;
23446 capab->encr_algparm_size = nlen;
23447 capab->encr_algparm_end = algid + 1;
23449 return (B_TRUE);
23453 * Compare the capabilities of the specified ill with the protocol
23454 * and algorithms specified by the SA passed as argument.
23455 * If they match, returns B_TRUE, B_FALSE if they do not match.
23457 * The ill can be passed as a pointer to it, or by specifying its index
23458 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments).
23460 * Called by ipsec_out_is_accelerated() do decide whether an outbound
23461 * packet is eligible for hardware acceleration, and by
23462 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down
23463 * to a particular ill.
23465 boolean_t
23466 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6,
23467 ipsa_t *sa, netstack_t *ns)
23469 boolean_t sa_isv6;
23470 uint_t algid;
23471 struct ill_ipsec_capab_s *cpp;
23472 boolean_t need_refrele = B_FALSE;
23473 ip_stack_t *ipst = ns->netstack_ip;
23475 if (ill == NULL) {
23476 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL,
23477 NULL, NULL, NULL, ipst);
23478 if (ill == NULL) {
23479 ip0dbg(("ipsec_capab_match: ill doesn't exist\n"));
23480 return (B_FALSE);
23482 need_refrele = B_TRUE;
23486 * Use the address length specified by the SA to determine
23487 * if it corresponds to a IPv6 address, and fail the matching
23488 * if the isv6 flag passed as argument does not match.
23489 * Note: this check is used for SADB capability checking before
23490 * sending SA information to an ill.
23492 sa_isv6 = (sa->ipsa_addrfam == AF_INET6);
23493 if (sa_isv6 != ill_isv6)
23494 /* protocol mismatch */
23495 goto done;
23498 * Check if the ill supports the protocol, algorithm(s) and
23499 * key size(s) specified by the SA, and get the pointers to
23500 * the algorithms supported by the ill.
23502 switch (sa->ipsa_type) {
23504 case SADB_SATYPE_ESP:
23505 if (!(ill->ill_capabilities & ILL_CAPAB_ESP))
23506 /* ill does not support ESP acceleration */
23507 goto done;
23508 cpp = ill->ill_ipsec_capab_esp;
23509 algid = sa->ipsa_auth_alg;
23510 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs))
23511 goto done;
23512 algid = sa->ipsa_encr_alg;
23513 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs))
23514 goto done;
23515 if (algid < cpp->encr_algparm_end) {
23516 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid];
23517 if (sa->ipsa_encrkeybits < alp->minkeylen)
23518 goto done;
23519 if (sa->ipsa_encrkeybits > alp->maxkeylen)
23520 goto done;
23522 break;
23524 case SADB_SATYPE_AH:
23525 if (!(ill->ill_capabilities & ILL_CAPAB_AH))
23526 /* ill does not support AH acceleration */
23527 goto done;
23528 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg,
23529 ill->ill_ipsec_capab_ah->auth_hw_algs))
23530 goto done;
23531 break;
23534 if (need_refrele)
23535 ill_refrele(ill);
23536 return (B_TRUE);
23537 done:
23538 if (need_refrele)
23539 ill_refrele(ill);
23540 return (B_FALSE);
23545 * Add a new ill to the list of IPsec capable ills.
23546 * Called from ill_capability_ipsec_ack() when an ACK was received
23547 * indicating that IPsec hardware processing was enabled for an ill.
23549 * ill must point to the ill for which acceleration was enabled.
23550 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP.
23552 static void
23553 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync)
23555 ipsec_capab_ill_t **ills, *cur_ill, *new_ill;
23556 uint_t sa_type;
23557 uint_t ipproto;
23558 ip_stack_t *ipst = ill->ill_ipst;
23560 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) ||
23561 (dl_cap == DL_CAPAB_IPSEC_ESP));
23563 switch (dl_cap) {
23564 case DL_CAPAB_IPSEC_AH:
23565 sa_type = SADB_SATYPE_AH;
23566 ills = &ipst->ips_ipsec_capab_ills_ah;
23567 ipproto = IPPROTO_AH;
23568 break;
23569 case DL_CAPAB_IPSEC_ESP:
23570 sa_type = SADB_SATYPE_ESP;
23571 ills = &ipst->ips_ipsec_capab_ills_esp;
23572 ipproto = IPPROTO_ESP;
23573 break;
23576 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
23579 * Add ill index to list of hardware accelerators. If
23580 * already in list, do nothing.
23582 for (cur_ill = *ills; cur_ill != NULL &&
23583 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex ||
23584 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next)
23587 if (cur_ill == NULL) {
23588 /* if this is a new entry for this ill */
23589 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP);
23590 if (new_ill == NULL) {
23591 rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23592 return;
23595 new_ill->ill_index = ill->ill_phyint->phyint_ifindex;
23596 new_ill->ill_isv6 = ill->ill_isv6;
23597 new_ill->next = *ills;
23598 *ills = new_ill;
23599 } else if (!sadb_resync) {
23600 /* not resync'ing SADB and an entry exists for this ill */
23601 rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23602 return;
23605 rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23607 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL)
23609 * IPsec module for protocol loaded, initiate dump
23610 * of the SADB to this ill.
23612 sadb_ill_download(ill, sa_type);
23616 * Remove an ill from the list of IPsec capable ills.
23618 static void
23619 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap)
23621 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill;
23622 ip_stack_t *ipst = ill->ill_ipst;
23624 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH ||
23625 dl_cap == DL_CAPAB_IPSEC_ESP);
23627 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah :
23628 &ipst->ips_ipsec_capab_ills_esp;
23630 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
23632 prev_ill = NULL;
23633 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index !=
23634 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 !=
23635 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next)
23637 if (cur_ill == NULL) {
23638 /* entry not found */
23639 rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23640 return;
23642 if (prev_ill == NULL) {
23643 /* entry at front of list */
23644 *ills = NULL;
23645 } else {
23646 prev_ill->next = cur_ill->next;
23648 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t));
23649 rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23653 * Called by SADB to send a DL_CONTROL_REQ message to every ill
23654 * supporting the specified IPsec protocol acceleration.
23655 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP.
23656 * We free the mblk and, if sa is non-null, release the held referece.
23658 void
23659 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa,
23660 netstack_t *ns)
23662 ipsec_capab_ill_t *ici, *cur_ici;
23663 ill_t *ill;
23664 mblk_t *nmp, *mp_ship_list = NULL, *next_mp;
23665 ip_stack_t *ipst = ns->netstack_ip;
23667 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah :
23668 ipst->ips_ipsec_capab_ills_esp;
23670 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER);
23672 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) {
23673 ill = ill_lookup_on_ifindex(cur_ici->ill_index,
23674 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst);
23677 * Handle the case where the ill goes away while the SADB is
23678 * attempting to send messages. If it's going away, it's
23679 * nuking its shadow SADB, so we don't care..
23682 if (ill == NULL)
23683 continue;
23685 if (sa != NULL) {
23687 * Make sure capabilities match before
23688 * sending SA to ill.
23690 if (!ipsec_capab_match(ill, cur_ici->ill_index,
23691 cur_ici->ill_isv6, sa, ipst->ips_netstack)) {
23692 ill_refrele(ill);
23693 continue;
23696 mutex_enter(&sa->ipsa_lock);
23697 sa->ipsa_flags |= IPSA_F_HW;
23698 mutex_exit(&sa->ipsa_lock);
23702 * Copy template message, and add it to the front
23703 * of the mblk ship list. We want to avoid holding
23704 * the ipsec_capab_ills_lock while sending the
23705 * message to the ills.
23707 * The b_next and b_prev are temporarily used
23708 * to build a list of mblks to be sent down, and to
23709 * save the ill to which they must be sent.
23711 nmp = copymsg(mp);
23712 if (nmp == NULL) {
23713 ill_refrele(ill);
23714 continue;
23716 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL);
23717 nmp->b_next = mp_ship_list;
23718 mp_ship_list = nmp;
23719 nmp->b_prev = (mblk_t *)ill;
23722 rw_exit(&ipst->ips_ipsec_capab_ills_lock);
23724 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) {
23725 /* restore the mblk to a sane state */
23726 next_mp = nmp->b_next;
23727 nmp->b_next = NULL;
23728 ill = (ill_t *)nmp->b_prev;
23729 nmp->b_prev = NULL;
23731 ill_dlpi_send(ill, nmp);
23732 ill_refrele(ill);
23735 if (sa != NULL)
23736 IPSA_REFRELE(sa);
23737 freemsg(mp);
23741 * Derive an interface id from the link layer address.
23742 * Knows about IEEE 802 and IEEE EUI-64 mappings.
23744 static boolean_t
23745 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23747 char *addr;
23749 if (phys_length != ETHERADDRL)
23750 return (B_FALSE);
23752 /* Form EUI-64 like address */
23753 addr = (char *)&v6addr->s6_addr32[2];
23754 bcopy((char *)phys_addr, addr, 3);
23755 addr[0] ^= 0x2; /* Toggle Universal/Local bit */
23756 addr[3] = (char)0xff;
23757 addr[4] = (char)0xfe;
23758 bcopy((char *)phys_addr + 3, addr + 5, 3);
23759 return (B_TRUE);
23762 /* ARGSUSED */
23763 static boolean_t
23764 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23766 return (B_FALSE);
23769 /* ARGSUSED */
23770 static boolean_t
23771 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
23772 uint32_t *hw_start, in6_addr_t *v6_extract_mask)
23775 * Multicast address mappings used over Ethernet/802.X.
23776 * This address is used as a base for mappings.
23778 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00,
23779 0x00, 0x00, 0x00};
23782 * Extract low order 32 bits from IPv6 multicast address.
23783 * Or that into the link layer address, starting from the
23784 * second byte.
23786 *hw_start = 2;
23787 v6_extract_mask->s6_addr32[0] = 0;
23788 v6_extract_mask->s6_addr32[1] = 0;
23789 v6_extract_mask->s6_addr32[2] = 0;
23790 v6_extract_mask->s6_addr32[3] = 0xffffffffU;
23791 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length);
23792 return (B_TRUE);
23796 * Indicate by return value whether multicast is supported. If not,
23797 * this code should not touch/change any parameters.
23799 /* ARGSUSED */
23800 static boolean_t
23801 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
23802 uint32_t *hw_start, ipaddr_t *extract_mask)
23805 * Multicast address mappings used over Ethernet/802.X.
23806 * This address is used as a base for mappings.
23808 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e,
23809 0x00, 0x00, 0x00 };
23811 if (phys_length != ETHERADDRL)
23812 return (B_FALSE);
23814 *extract_mask = htonl(0x007fffff);
23815 *hw_start = 2;
23816 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL);
23817 return (B_TRUE);
23821 * Derive IPoIB interface id from the link layer address.
23823 static boolean_t
23824 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
23826 char *addr;
23828 if (phys_length != 20)
23829 return (B_FALSE);
23830 addr = (char *)&v6addr->s6_addr32[2];
23831 bcopy(phys_addr + 12, addr, 8);
23833 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
23834 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
23835 * rules. In these cases, the IBA considers these GUIDs to be in
23836 * "Modified EUI-64" format, and thus toggling the u/l bit is not
23837 * required; vendors are required not to assign global EUI-64's
23838 * that differ only in u/l bit values, thus guaranteeing uniqueness
23839 * of the interface identifier. Whether the GUID is in modified
23840 * or proper EUI-64 format, the ipv6 identifier must have the u/l
23841 * bit set to 1.
23843 addr[0] |= 2; /* Set Universal/Local bit to 1 */
23844 return (B_TRUE);
23848 * Note on mapping from multicast IP addresses to IPoIB multicast link
23849 * addresses. IPoIB multicast link addresses are based on IBA link addresses.
23850 * The format of an IPoIB multicast address is:
23852 * 4 byte QPN Scope Sign. Pkey
23853 * +--------------------------------------------+
23854 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
23855 * +--------------------------------------------+
23857 * The Scope and Pkey components are properties of the IBA port and
23858 * network interface. They can be ascertained from the broadcast address.
23859 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
23862 static boolean_t
23863 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
23864 uint32_t *hw_start, in6_addr_t *v6_extract_mask)
23867 * Base IPoIB IPv6 multicast address used for mappings.
23868 * Does not contain the IBA scope/Pkey values.
23870 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
23871 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
23872 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
23875 * Extract low order 80 bits from IPv6 multicast address.
23876 * Or that into the link layer address, starting from the
23877 * sixth byte.
23879 *hw_start = 6;
23880 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length);
23883 * Now fill in the IBA scope/Pkey values from the broadcast address.
23885 *(maddr + 5) = *(bphys_addr + 5);
23886 *(maddr + 8) = *(bphys_addr + 8);
23887 *(maddr + 9) = *(bphys_addr + 9);
23889 v6_extract_mask->s6_addr32[0] = 0;
23890 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff);
23891 v6_extract_mask->s6_addr32[2] = 0xffffffffU;
23892 v6_extract_mask->s6_addr32[3] = 0xffffffffU;
23893 return (B_TRUE);
23896 static boolean_t
23897 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
23898 uint32_t *hw_start, ipaddr_t *extract_mask)
23901 * Base IPoIB IPv4 multicast address used for mappings.
23902 * Does not contain the IBA scope/Pkey values.
23904 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
23905 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
23906 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
23908 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr))
23909 return (B_FALSE);
23912 * Extract low order 28 bits from IPv4 multicast address.
23913 * Or that into the link layer address, starting from the
23914 * sixteenth byte.
23916 *extract_mask = htonl(0x0fffffff);
23917 *hw_start = 16;
23918 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length);
23921 * Now fill in the IBA scope/Pkey values from the broadcast address.
23923 *(maddr + 5) = *(bphys_addr + 5);
23924 *(maddr + 8) = *(bphys_addr + 8);
23925 *(maddr + 9) = *(bphys_addr + 9);
23926 return (B_TRUE);
23930 * Returns B_TRUE if an ipif is present in the given zone, matching some flags
23931 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there.
23932 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with
23933 * the link-local address is preferred.
23935 boolean_t
23936 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
23938 ipif_t *ipif;
23939 ipif_t *maybe_ipif = NULL;
23941 mutex_enter(&ill->ill_lock);
23942 if (ill->ill_state_flags & ILL_CONDEMNED) {
23943 mutex_exit(&ill->ill_lock);
23944 if (ipifp != NULL)
23945 *ipifp = NULL;
23946 return (B_FALSE);
23948 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
23949 if (!IPIF_CAN_LOOKUP(ipif))
23950 continue;
23951 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
23952 ipif->ipif_zoneid != ALL_ZONES)
23953 continue;
23954 if ((ipif->ipif_flags & flags) != flags)
23955 continue;
23957 if (ipifp == NULL) {
23958 mutex_exit(&ill->ill_lock);
23959 ASSERT(maybe_ipif == NULL);
23960 return (B_TRUE);
23962 if (!ill->ill_isv6 ||
23963 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) {
23964 ipif_refhold_locked(ipif);
23965 mutex_exit(&ill->ill_lock);
23966 *ipifp = ipif;
23967 return (B_TRUE);
23969 if (maybe_ipif == NULL)
23970 maybe_ipif = ipif;
23972 if (ipifp != NULL) {
23973 if (maybe_ipif != NULL)
23974 ipif_refhold_locked(maybe_ipif);
23975 *ipifp = maybe_ipif;
23977 mutex_exit(&ill->ill_lock);
23978 return (maybe_ipif != NULL);
23982 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group.
23984 boolean_t
23985 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
23987 ill_t *illg;
23988 ip_stack_t *ipst = ill->ill_ipst;
23991 * We look at the passed-in ill first without grabbing ill_g_lock.
23993 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) {
23994 return (B_TRUE);
23996 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
23997 if (ill->ill_group == NULL) {
23998 /* ill not in a group */
23999 rw_exit(&ipst->ips_ill_g_lock);
24000 return (B_FALSE);
24004 * There's no ipif in the zone on ill, however ill is part of an IPMP
24005 * group. We need to look for an ipif in the zone on all the ills in the
24006 * group.
24008 illg = ill->ill_group->illgrp_ill;
24009 do {
24011 * We don't call ipif_lookup_zoneid() on ill as we already know
24012 * that it's not there.
24014 if (illg != ill &&
24015 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) {
24016 break;
24018 } while ((illg = illg->ill_group_next) != NULL);
24019 rw_exit(&ipst->ips_ill_g_lock);
24020 return (illg != NULL);
24024 * Check if this ill is only being used to send ICMP probes for IPMP
24026 boolean_t
24027 ill_is_probeonly(ill_t *ill)
24030 * Check if the interface is FAILED, or INACTIVE
24032 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE))
24033 return (B_TRUE);
24035 return (B_FALSE);
24039 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
24040 * If a pointer to an ipif_t is returned then the caller will need to do
24041 * an ill_refrele().
24043 * If there is no real interface which matches the ifindex, then it looks
24044 * for a group that has a matching index. In the case of a group match the
24045 * lifidx must be zero. We don't need emulate the logical interfaces
24046 * since IP Filter's use of netinfo doesn't use that.
24048 ipif_t *
24049 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
24050 ip_stack_t *ipst)
24052 ipif_t *ipif;
24053 ill_t *ill;
24055 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL,
24056 ipst);
24058 if (ill == NULL) {
24059 /* Fallback to group names only if hook_emulation set */
24060 if (!ipst->ips_ipmp_hook_emulation)
24061 return (NULL);
24063 if (lifidx != 0)
24064 return (NULL);
24065 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst);
24066 if (ill == NULL)
24067 return (NULL);
24070 mutex_enter(&ill->ill_lock);
24071 if (ill->ill_state_flags & ILL_CONDEMNED) {
24072 mutex_exit(&ill->ill_lock);
24073 ill_refrele(ill);
24074 return (NULL);
24077 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
24078 if (!IPIF_CAN_LOOKUP(ipif))
24079 continue;
24080 if (lifidx == ipif->ipif_id) {
24081 ipif_refhold_locked(ipif);
24082 break;
24086 mutex_exit(&ill->ill_lock);
24087 ill_refrele(ill);
24088 return (ipif);
24092 * Flush the fastpath by deleting any nce's that are waiting for the fastpath,
24093 * There is one exceptions IRE_BROADCAST are difficult to recreate,
24094 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush()
24095 * for details.
24097 void
24098 ill_fastpath_flush(ill_t *ill)
24100 ip_stack_t *ipst = ill->ill_ipst;
24102 nce_fastpath_list_dispatch(ill, NULL, NULL);
24103 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4),
24104 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE);
24108 * Set the physical address information for `ill' to the contents of the
24109 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be
24110 * asynchronous if `ill' cannot immediately be quiesced -- in which case
24111 * EINPROGRESS will be returned.
24114 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
24116 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
24117 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr;
24119 ASSERT(IAM_WRITER_IPSQ(ipsq));
24121 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
24122 dlindp->dl_data != DL_CURR_PHYS_ADDR) {
24123 /* Changing DL_IPV6_TOKEN is not yet supported */
24124 return (0);
24128 * We need to store up to two copies of `mp' in `ill'. Due to the
24129 * design of ipsq_pending_mp_add(), we can't pass them as separate
24130 * arguments to ill_set_phys_addr_tail(). Instead, chain them
24131 * together here, then pull 'em apart in ill_set_phys_addr_tail().
24133 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
24134 freemsg(mp);
24135 return (ENOMEM);
24138 ipsq_current_start(ipsq, ill->ill_ipif, 0);
24141 * If we can quiesce the ill, then set the address. If not, then
24142 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
24144 ill_down_ipifs(ill, NULL, 0, B_FALSE);
24145 mutex_enter(&ill->ill_lock);
24146 if (!ill_is_quiescent(ill)) {
24147 /* call cannot fail since `conn_t *' argument is NULL */
24148 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
24149 mp, ILL_DOWN);
24150 mutex_exit(&ill->ill_lock);
24151 return (EINPROGRESS);
24153 mutex_exit(&ill->ill_lock);
24155 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
24156 return (0);
24160 * Once the ill associated with `q' has quiesced, set its physical address
24161 * information to the values in `addrmp'. Note that two copies of `addrmp'
24162 * are passed (linked by b_cont), since we sometimes need to save two distinct
24163 * copies in the ill_t, and our context doesn't permit sleeping or allocation
24164 * failure (we'll free the other copy if it's not needed). Since the ill_t
24165 * is quiesced, we know any stale IREs with the old address information have
24166 * already been removed, so we don't need to call ill_fastpath_flush().
24168 /* ARGSUSED */
24169 static void
24170 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
24172 ill_t *ill = q->q_ptr;
24173 mblk_t *addrmp2 = unlinkb(addrmp);
24174 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
24175 uint_t addrlen, addroff;
24177 ASSERT(IAM_WRITER_IPSQ(ipsq));
24179 addroff = dlindp->dl_addr_offset;
24180 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
24182 switch (dlindp->dl_data) {
24183 case DL_IPV6_LINK_LAYER_ADDR:
24184 ill_set_ndmp(ill, addrmp, addroff, addrlen);
24185 freemsg(addrmp2);
24186 break;
24188 case DL_CURR_PHYS_ADDR:
24189 freemsg(ill->ill_phys_addr_mp);
24190 ill->ill_phys_addr = addrmp->b_rptr + addroff;
24191 ill->ill_phys_addr_mp = addrmp;
24192 ill->ill_phys_addr_length = addrlen;
24194 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
24195 ill_set_ndmp(ill, addrmp2, addroff, addrlen);
24196 else
24197 freemsg(addrmp2);
24198 break;
24199 default:
24200 ASSERT(0);
24204 * If there are ipifs to bring up, ill_up_ipifs() will return
24205 * EINPROGRESS, and ipsq_current_finish() will be called by
24206 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is
24207 * brought up.
24209 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS)
24210 ipsq_current_finish(ipsq);
24214 * Helper routine for setting the ill_nd_lla fields.
24216 void
24217 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
24219 freemsg(ill->ill_nd_lla_mp);
24220 ill->ill_nd_lla = ndmp->b_rptr + addroff;
24221 ill->ill_nd_lla_mp = ndmp;
24222 ill->ill_nd_lla_len = addrlen;
24225 major_t IP_MAJ;
24226 #define IP "ip"
24228 #define UDP6DEV "/devices/pseudo/udp6@0:udp6"
24229 #define UDPDEV "/devices/pseudo/udp@0:udp"
24232 * Issue REMOVEIF ioctls to have the loopback interfaces
24233 * go away. Other interfaces are either I_LINKed or I_PLINKed;
24234 * the former going away when the user-level processes in the zone
24235 * are killed * and the latter are cleaned up by the stream head
24236 * str_stack_shutdown callback that undoes all I_PLINKs.
24238 void
24239 ip_loopback_cleanup(ip_stack_t *ipst)
24241 int error;
24242 ldi_handle_t lh = NULL;
24243 ldi_ident_t li = NULL;
24244 int rval;
24245 cred_t *cr;
24246 struct strioctl iocb;
24247 struct lifreq lifreq;
24249 IP_MAJ = ddi_name_to_major(IP);
24251 #ifdef NS_DEBUG
24252 (void) printf("ip_loopback_cleanup() stackid %d\n",
24253 ipst->ips_netstack->netstack_stackid);
24254 #endif
24256 bzero(&lifreq, sizeof (lifreq));
24257 (void) strcpy(lifreq.lifr_name, ipif_loopback_name);
24259 error = ldi_ident_from_major(IP_MAJ, &li);
24260 if (error) {
24261 #ifdef DEBUG
24262 printf("ip_loopback_cleanup: lyr ident get failed error %d\n",
24263 error);
24264 #endif
24265 return;
24268 cr = zone_get_kcred(netstackid_to_zoneid(
24269 ipst->ips_netstack->netstack_stackid));
24270 ASSERT(cr != NULL);
24271 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li);
24272 if (error) {
24273 #ifdef DEBUG
24274 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n",
24275 error);
24276 #endif
24277 goto out;
24279 iocb.ic_cmd = SIOCLIFREMOVEIF;
24280 iocb.ic_timout = 15;
24281 iocb.ic_len = sizeof (lifreq);
24282 iocb.ic_dp = (char *)&lifreq;
24284 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24285 /* LINTED - statement has no consequent */
24286 if (error) {
24287 #ifdef NS_DEBUG
24288 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24289 "UDP6 error %d\n", error);
24290 #endif
24292 (void) ldi_close(lh, FREAD|FWRITE, cr);
24293 lh = NULL;
24295 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li);
24296 if (error) {
24297 #ifdef NS_DEBUG
24298 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n",
24299 error);
24300 #endif
24301 goto out;
24304 iocb.ic_cmd = SIOCLIFREMOVEIF;
24305 iocb.ic_timout = 15;
24306 iocb.ic_len = sizeof (lifreq);
24307 iocb.ic_dp = (char *)&lifreq;
24309 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24310 /* LINTED - statement has no consequent */
24311 if (error) {
24312 #ifdef NS_DEBUG
24313 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24314 "UDP error %d\n", error);
24315 #endif
24317 (void) ldi_close(lh, FREAD|FWRITE, cr);
24318 lh = NULL;
24320 out:
24321 /* Close layered handles */
24322 if (lh)
24323 (void) ldi_close(lh, FREAD|FWRITE, cr);
24324 if (li)
24325 ldi_ident_release(li);
24327 crfree(cr);