NAND page command refactoring.
[openocd/ztw.git] / src / target / target.h
blob73190695427780d5fe38221e4ef23ad94cceb55d
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008,2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifndef TARGET_H
27 #define TARGET_H
29 #include <helper/types.h>
30 #include <helper/jim.h>
32 struct reg;
33 struct trace;
34 struct command_context;
35 struct breakpoint;
36 struct watchpoint;
37 struct mem_param;
38 struct reg_param;
42 * TARGET_UNKNOWN = 0: we don't know anything about the target yet
43 * TARGET_RUNNING = 1: the target is executing user code
44 * TARGET_HALTED = 2: the target is not executing code, and ready to talk to the
45 * debugger. on an xscale it means that the debug handler is executing
46 * TARGET_RESET = 3: the target is being held in reset (only a temporary state,
47 * not sure how this is used with all the recent changes)
48 * TARGET_DEBUG_RUNNING = 4: the target is running, but it is executing code on
49 * behalf of the debugger (e.g. algorithm for flashing)
51 * also see: target_state_name();
55 enum target_state
57 TARGET_UNKNOWN = 0,
58 TARGET_RUNNING = 1,
59 TARGET_HALTED = 2,
60 TARGET_RESET = 3,
61 TARGET_DEBUG_RUNNING = 4,
64 extern const Jim_Nvp nvp_target_state[];
66 enum nvp_assert {
67 NVP_DEASSERT,
68 NVP_ASSERT,
71 extern const Jim_Nvp nvp_assert[];
73 enum target_reset_mode
75 RESET_UNKNOWN = 0,
76 RESET_RUN = 1, /* reset and let target run */
77 RESET_HALT = 2, /* reset and halt target out of reset */
78 RESET_INIT = 3, /* reset and halt target out of reset, then run init script */
81 extern const Jim_Nvp nvp_reset_mode[];
83 enum target_debug_reason
85 DBG_REASON_DBGRQ = 0,
86 DBG_REASON_BREAKPOINT = 1,
87 DBG_REASON_WATCHPOINT = 2,
88 DBG_REASON_WPTANDBKPT = 3,
89 DBG_REASON_SINGLESTEP = 4,
90 DBG_REASON_NOTHALTED = 5,
91 DBG_REASON_UNDEFINED = 6
94 extern const Jim_Nvp nvp_target_debug_reason[];
96 enum target_endianess
98 TARGET_ENDIAN_UNKNOWN = 0,
99 TARGET_BIG_ENDIAN = 1, TARGET_LITTLE_ENDIAN = 2
102 extern const Jim_Nvp nvp_target_endian[];
104 struct working_area
106 uint32_t address;
107 uint32_t size;
108 int free;
109 uint8_t *backup;
110 struct working_area **user;
111 struct working_area *next;
114 // target_type.h contains the full definitionof struct targe_type
115 struct target
117 struct target_type *type; /* target type definition (name, access functions) */
118 const char *cmd_name; /* tcl Name of target */
119 int target_number; /* DO NOT USE! field to be removed in 2010 */
120 struct jtag_tap *tap; /* where on the jtag chain is this */
121 const char *variant; /* what variant of this chip is it? */
124 * Indicates whether this target has been examined.
126 * Do @b not access this field directly, use target_was_examined()
127 * or target_set_examined().
129 bool examined;
131 struct target_event_action *event_action;
133 int reset_halt; /* attempt resetting the CPU into the halted mode? */
134 uint32_t working_area; /* working area (initialized RAM). Evaluated
135 * upon first allocation from virtual/physical address. */
136 bool working_area_virt_spec; /* virtual address specified? */
137 uint32_t working_area_virt; /* virtual address */
138 bool working_area_phys_spec; /* virtual address specified? */
139 uint32_t working_area_phys; /* physical address */
140 uint32_t working_area_size; /* size in bytes */
141 uint32_t backup_working_area; /* whether the content of the working area has to be preserved */
142 struct working_area *working_areas;/* list of allocated working areas */
143 enum target_debug_reason debug_reason;/* reason why the target entered debug state */
144 enum target_endianess endianness; /* target endianess */
145 // also see: target_state_name()
146 enum target_state state; /* the current backend-state (running, halted, ...) */
147 struct reg_cache *reg_cache; /* the first register cache of the target (core regs) */
148 struct breakpoint *breakpoints; /* list of breakpoints */
149 struct watchpoint *watchpoints; /* list of watchpoints */
150 struct trace *trace_info; /* generic trace information */
151 struct debug_msg_receiver *dbgmsg;/* list of debug message receivers */
152 uint32_t dbg_msg_enabled; /* debug message status */
153 void *arch_info; /* architecture specific information */
154 struct target *next; /* next target in list */
156 int display; /* display async info in telnet session. Do not display
157 * lots of halted/resumed info when stepping in debugger. */
158 bool halt_issued; /* did we transition to halted state? */
159 long long halt_issued_time; /* Note time when halt was issued */
162 /** Returns the instance-specific name of the specified target. */
163 static inline const char *target_name(struct target *target)
165 return target->cmd_name;
168 enum target_event
170 /* LD historical names
171 * - Prior to the great TCL change
172 * - June/July/Aug 2008
173 * - Duane Ellis */
174 TARGET_EVENT_OLD_gdb_program_config,
175 TARGET_EVENT_OLD_pre_resume,
177 /* allow GDB to do stuff before others handle the halted event,
178 * this is in lieu of defining ordering of invocation of events,
179 * which would be more complicated
181 * Telling GDB to halt does not mean that the target stopped running,
182 * simply that we're dropping out of GDB's waiting for step or continue.
184 * This can be useful when e.g. detecting power dropout.
186 TARGET_EVENT_GDB_HALT,
187 TARGET_EVENT_HALTED, /* target entered debug state from normal execution or reset */
188 TARGET_EVENT_RESUMED, /* target resumed to normal execution */
189 TARGET_EVENT_RESUME_START,
190 TARGET_EVENT_RESUME_END,
192 TARGET_EVENT_GDB_START, /* debugger started execution (step/run) */
193 TARGET_EVENT_GDB_END, /* debugger stopped execution (step/run) */
195 TARGET_EVENT_RESET_START,
196 TARGET_EVENT_RESET_ASSERT_PRE,
197 TARGET_EVENT_RESET_ASSERT, /* C code uses this instead of SRST */
198 TARGET_EVENT_RESET_ASSERT_POST,
199 TARGET_EVENT_RESET_DEASSERT_PRE,
200 TARGET_EVENT_RESET_DEASSERT_POST,
201 TARGET_EVENT_RESET_HALT_PRE,
202 TARGET_EVENT_RESET_HALT_POST,
203 TARGET_EVENT_RESET_WAIT_PRE,
204 TARGET_EVENT_RESET_WAIT_POST,
205 TARGET_EVENT_RESET_INIT,
206 TARGET_EVENT_RESET_END,
208 TARGET_EVENT_DEBUG_HALTED, /* target entered debug state, but was executing on behalf of the debugger */
209 TARGET_EVENT_DEBUG_RESUMED, /* target resumed to execute on behalf of the debugger */
211 TARGET_EVENT_EXAMINE_START,
212 TARGET_EVENT_EXAMINE_END,
214 TARGET_EVENT_GDB_ATTACH,
215 TARGET_EVENT_GDB_DETACH,
217 TARGET_EVENT_GDB_FLASH_ERASE_START,
218 TARGET_EVENT_GDB_FLASH_ERASE_END,
219 TARGET_EVENT_GDB_FLASH_WRITE_START,
220 TARGET_EVENT_GDB_FLASH_WRITE_END,
223 struct target_event_action {
224 enum target_event event;
225 Jim_Interp *interp;
226 struct Jim_Obj *body;
227 int has_percent;
228 struct target_event_action *next;
231 bool target_has_event_action(struct target *target, enum target_event event);
233 struct target_event_callback
235 int (*callback)(struct target *target, enum target_event event, void *priv);
236 void *priv;
237 struct target_event_callback *next;
240 struct target_timer_callback
242 int (*callback)(void *priv);
243 int time_ms;
244 int periodic;
245 struct timeval when;
246 void *priv;
247 struct target_timer_callback *next;
250 int target_register_commands(struct command_context *cmd_ctx);
251 int target_register_user_commands(struct command_context *cmd_ctx);
252 int target_init(struct command_context *cmd_ctx);
253 int target_examine(void);
254 int target_process_reset(struct command_context *cmd_ctx,
255 enum target_reset_mode reset_mode);
257 int target_register_event_callback(
258 int (*callback)(struct target *target,
259 enum target_event event, void *priv),
260 void *priv);
261 int target_unregister_event_callback(
262 int (*callback)(struct target *target,
263 enum target_event event, void *priv),
264 void *priv);
265 int target_poll(struct target *target);
266 int target_resume(struct target *target, int current, uint32_t address,
267 int handle_breakpoints, int debug_execution);
268 int target_halt(struct target *target);
269 int target_call_event_callbacks(struct target *target, enum target_event event);
272 * The period is very approximate, the callback can happen much more often
273 * or much more rarely than specified
275 int target_register_timer_callback(int (*callback)(void *priv),
276 int time_ms, int periodic, void *priv);
277 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv);
279 int target_call_timer_callbacks(void);
281 * Invoke this to ensure that e.g. polling timer callbacks happen before
282 * a syncrhonous command completes.
284 int target_call_timer_callbacks_now(void);
286 struct target* get_current_target(struct command_context *cmd_ctx);
287 struct target *get_target(const char *id);
290 * Get the target type name.
292 * This routine is a wrapper for the target->type->name field.
293 * Note that this is not an instance-specific name for his target.
295 const char *target_type_name(struct target *target);
298 * Examine the specified @a target, letting it perform any
299 * initialization that requires JTAG access.
301 * This routine is a wrapper for target->type->examine.
303 int target_examine_one(struct target *target);
305 /// @returns @c true if target_set_examined() has been called.
306 static inline bool target_was_examined(struct target *target)
308 return target->examined;
311 /// Sets the @c examined flag for the given target.
312 /// Use in target->type->examine() after one-time setup is done.
313 static inline void target_set_examined(struct target *target)
315 target->examined = true;
319 * Add the @a breakpoint for @a target.
321 * This routine is a wrapper for target->type->add_breakpoint.
323 int target_add_breakpoint(struct target *target,
324 struct breakpoint *breakpoint);
326 * Remove the @a breakpoint for @a target.
328 * This routine is a wrapper for target->type->remove_breakpoint.
330 int target_remove_breakpoint(struct target *target,
331 struct breakpoint *breakpoint);
333 * Add the @a watchpoint for @a target.
335 * This routine is a wrapper for target->type->add_watchpoint.
337 int target_add_watchpoint(struct target *target,
338 struct watchpoint *watchpoint);
340 * Remove the @a watchpoint for @a target.
342 * This routine is a wrapper for target->type->remove_watchpoint.
344 int target_remove_watchpoint(struct target *target,
345 struct watchpoint *watchpoint);
348 * Obtain the registers for GDB.
350 * This routine is a wrapper for target->type->get_gdb_reg_list.
352 int target_get_gdb_reg_list(struct target *target,
353 struct reg **reg_list[], int *reg_list_size);
356 * Step the target.
358 * This routine is a wrapper for target->type->step.
360 int target_step(struct target *target,
361 int current, uint32_t address, int handle_breakpoints);
363 * Run an algorithm on the @a target given.
365 * This routine is a wrapper for target->type->run_algorithm.
367 int target_run_algorithm(struct target *target,
368 int num_mem_params, struct mem_param *mem_params,
369 int num_reg_params, struct reg_param *reg_param,
370 uint32_t entry_point, uint32_t exit_point,
371 int timeout_ms, void *arch_info);
374 * Read @a count items of @a size bytes from the memory of @a target at
375 * the @a address given.
377 * This routine is a wrapper for target->type->read_memory.
379 int target_read_memory(struct target *target,
380 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
382 * Write @a count items of @a size bytes to the memory of @a target at
383 * the @a address given.
385 * This routine is wrapper for target->type->write_memory.
387 int target_write_memory(struct target *target,
388 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
391 * Write @a count items of 4 bytes to the memory of @a target at
392 * the @a address given. Because it operates only on whole words,
393 * this should be faster than target_write_memory().
395 * This routine is wrapper for target->type->bulk_write_memory.
397 int target_bulk_write_memory(struct target *target,
398 uint32_t address, uint32_t count, uint8_t *buffer);
401 * Write to target memory using the virtual address.
403 * Note that this fn is used to implement software breakpoints. Targets
404 * can implement support for software breakpoints to memory marked as read
405 * only by making this fn write to ram even if it is read only(MMU or
406 * MPUs).
408 * It is sufficient to implement for writing a single word(16 or 32 in
409 * ARM32/16 bit case) to write the breakpoint to ram.
411 * The target should also take care of "other things" to make sure that
412 * software breakpoints can be written using this function. E.g.
413 * when there is a separate instruction and data cache, this fn must
414 * make sure that the instruction cache is synced up to the potential
415 * code change that can happen as a result of the memory write(typically
416 * by invalidating the cache).
418 * The high level wrapper fn in target.c will break down this memory write
419 * request to multiple write requests to the target driver to e.g. guarantee
420 * that writing 4 bytes to an aligned address happens with a single 32 bit
421 * write operation, thus making this fn suitable to e.g. write to special
422 * peripheral registers which do not support byte operations.
424 int target_write_buffer(struct target *target,
425 uint32_t address, uint32_t size, uint8_t *buffer);
426 int target_read_buffer(struct target *target,
427 uint32_t address, uint32_t size, uint8_t *buffer);
428 int target_checksum_memory(struct target *target,
429 uint32_t address, uint32_t size, uint32_t* crc);
430 int target_blank_check_memory(struct target *target,
431 uint32_t address, uint32_t size, uint32_t* blank);
432 int target_wait_state(struct target *target, enum target_state state, int ms);
434 /** Return the *name* of this targets current state */
435 const char *target_state_name( struct target *target );
437 /* DANGER!!!!!
439 * if "area" passed in to target_alloc_working_area() points to a memory
440 * location that goes out of scope (e.g. a pointer on the stack), then
441 * the caller of target_alloc_working_area() is responsible for invoking
442 * target_free_working_area() before "area" goes out of scope.
444 * target_free_all_working_areas() will NULL out the "area" pointer
445 * upon resuming or resetting the CPU.
448 int target_alloc_working_area(struct target *target,
449 uint32_t size, struct working_area **area);
450 int target_free_working_area(struct target *target, struct working_area *area);
451 int target_free_working_area_restore(struct target *target,
452 struct working_area *area, int restore);
453 void target_free_all_working_areas(struct target *target);
454 void target_free_all_working_areas_restore(struct target *target, int restore);
456 extern struct target *all_targets;
458 extern struct target_event_callback *target_event_callbacks;
459 extern struct target_timer_callback *target_timer_callbacks;
461 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer);
462 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer);
463 uint8_t target_buffer_get_u8 (struct target *target, const uint8_t *buffer);
464 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value);
465 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value);
466 void target_buffer_set_u8 (struct target *target, uint8_t *buffer, uint8_t value);
468 int target_read_u32(struct target *target, uint32_t address, uint32_t *value);
469 int target_read_u16(struct target *target, uint32_t address, uint16_t *value);
470 int target_read_u8(struct target *target, uint32_t address, uint8_t *value);
471 int target_write_u32(struct target *target, uint32_t address, uint32_t value);
472 int target_write_u16(struct target *target, uint32_t address, uint16_t value);
473 int target_write_u8(struct target *target, uint32_t address, uint8_t value);
475 /* Issues USER() statements with target state information */
476 int target_arch_state(struct target *target);
478 void target_handle_event(struct target *t, enum target_event e);
479 void target_all_handle_event(enum target_event e);
481 #define ERROR_TARGET_INVALID (-300)
482 #define ERROR_TARGET_INIT_FAILED (-301)
483 #define ERROR_TARGET_TIMEOUT (-302)
484 #define ERROR_TARGET_NOT_HALTED (-304)
485 #define ERROR_TARGET_FAILURE (-305)
486 #define ERROR_TARGET_UNALIGNED_ACCESS (-306)
487 #define ERROR_TARGET_DATA_ABORT (-307)
488 #define ERROR_TARGET_RESOURCE_NOT_AVAILABLE (-308)
489 #define ERROR_TARGET_TRANSLATION_FAULT (-309)
490 #define ERROR_TARGET_NOT_RUNNING (-310)
491 #define ERROR_TARGET_NOT_EXAMINED (-311)
493 extern const Jim_Nvp nvp_error_target[];
495 const char *target_strerror_safe(int err);
497 #endif /* TARGET_H */