cortex_a8/a9: fix some comments
[openocd/openocdswd.git] / src / target / cortex_a8.c
blobf50b14955bd3550cd1f6b7cfdb97c58cb4e5a89a
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 * *
32 * Cortex-A8(tm) TRM, ARM DDI 0344H *
33 * *
34 ***************************************************************************/
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
39 #include "breakpoints.h"
40 #include "cortex_a8.h"
41 #include "register.h"
42 #include "target_request.h"
43 #include "target_type.h"
44 #include "arm_opcodes.h"
45 #include <helper/time_support.h>
47 static int cortex_a8_poll(struct target *target);
48 static int cortex_a8_debug_entry(struct target *target);
49 static int cortex_a8_restore_context(struct target *target, bool bpwp);
50 static int cortex_a8_set_breakpoint(struct target *target,
51 struct breakpoint *breakpoint, uint8_t matchmode);
52 static int cortex_a8_unset_breakpoint(struct target *target,
53 struct breakpoint *breakpoint);
54 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
55 uint32_t *value, int regnum);
56 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
57 uint32_t value, int regnum);
58 static int cortex_a8_mmu(struct target *target, int *enabled);
59 static int cortex_a8_virt2phys(struct target *target,
60 uint32_t virt, uint32_t *phys);
61 static int cortex_a8_disable_mmu_caches(struct target *target, int mmu,
62 int d_u_cache, int i_cache);
63 static int cortex_a8_enable_mmu_caches(struct target *target, int mmu,
64 int d_u_cache, int i_cache);
65 static int cortex_a8_get_ttb(struct target *target, uint32_t *result);
69 * FIXME do topology discovery using the ROM; don't
70 * assume this is an OMAP3. Also, allow for multiple ARMv7-A
71 * cores, with different AP numbering ... don't use a #define
72 * for these numbers, use per-core armv7a state.
74 #define swjdp_memoryap 0
75 #define swjdp_debugap 1
78 * Cortex-A8 Basic debug access, very low level assumes state is saved
80 static int cortex_a8_init_debug_access(struct target *target)
82 struct armv7a_common *armv7a = target_to_armv7a(target);
83 struct adiv5_dap *swjdp = &armv7a->dap;
85 int retval;
86 uint32_t dummy;
88 LOG_DEBUG(" ");
90 /* Unlocking the debug registers for modification */
91 /* The debugport might be uninitialised so try twice */
92 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
93 if (retval != ERROR_OK)
95 /* try again */
96 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
97 if (retval == ERROR_OK)
99 LOG_USER("Locking debug access failed on first, but succeeded on second try.");
102 if (retval != ERROR_OK)
103 return retval;
104 /* Clear Sticky Power Down status Bit in PRSR to enable access to
105 the registers in the Core Power Domain */
106 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
107 if (retval != ERROR_OK)
108 return retval;
110 /* Enabling of instruction execution in debug mode is done in debug_entry code */
112 /* Resync breakpoint registers */
114 /* Since this is likely called from init or reset, update target state information*/
115 retval = cortex_a8_poll(target);
117 return retval;
120 /* To reduce needless round-trips, pass in a pointer to the current
121 * DSCR value. Initialize it to zero if you just need to know the
122 * value on return from this function; or DSCR_INSTR_COMP if you
123 * happen to know that no instruction is pending.
125 static int cortex_a8_exec_opcode(struct target *target,
126 uint32_t opcode, uint32_t *dscr_p)
128 uint32_t dscr;
129 int retval;
130 struct armv7a_common *armv7a = target_to_armv7a(target);
131 struct adiv5_dap *swjdp = &armv7a->dap;
133 dscr = dscr_p ? *dscr_p : 0;
135 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
137 /* Wait for InstrCompl bit to be set */
138 long long then = timeval_ms();
139 while ((dscr & DSCR_INSTR_COMP) == 0)
141 retval = mem_ap_read_atomic_u32(swjdp,
142 armv7a->debug_base + CPUDBG_DSCR, &dscr);
143 if (retval != ERROR_OK)
145 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
146 return retval;
148 if (timeval_ms() > then + 1000)
150 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
151 return ERROR_FAIL;
155 retval = mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
156 if (retval != ERROR_OK)
157 return retval;
159 then = timeval_ms();
162 retval = mem_ap_read_atomic_u32(swjdp,
163 armv7a->debug_base + CPUDBG_DSCR, &dscr);
164 if (retval != ERROR_OK)
166 LOG_ERROR("Could not read DSCR register");
167 return retval;
169 if (timeval_ms() > then + 1000)
171 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
172 return ERROR_FAIL;
175 while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
177 if (dscr_p)
178 *dscr_p = dscr;
180 return retval;
183 /**************************************************************************
184 Read core register with very few exec_opcode, fast but needs work_area.
185 This can cause problems with MMU active.
186 **************************************************************************/
187 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
188 uint32_t * regfile)
190 int retval = ERROR_OK;
191 struct armv7a_common *armv7a = target_to_armv7a(target);
192 struct adiv5_dap *swjdp = &armv7a->dap;
194 retval = cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
195 if (retval != ERROR_OK)
196 return retval;
197 retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
198 if (retval != ERROR_OK)
199 return retval;
200 retval = cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
201 if (retval != ERROR_OK)
202 return retval;
204 dap_ap_select(swjdp, swjdp_memoryap);
205 retval = mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
206 if (retval != ERROR_OK)
207 return retval;
208 dap_ap_select(swjdp, swjdp_debugap);
210 return retval;
213 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
214 uint32_t *value, int regnum)
216 int retval = ERROR_OK;
217 uint8_t reg = regnum&0xFF;
218 uint32_t dscr = 0;
219 struct armv7a_common *armv7a = target_to_armv7a(target);
220 struct adiv5_dap *swjdp = &armv7a->dap;
222 if (reg > 17)
223 return retval;
225 if (reg < 15)
227 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
228 retval = cortex_a8_exec_opcode(target,
229 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
230 &dscr);
231 if (retval != ERROR_OK)
232 return retval;
234 else if (reg == 15)
236 /* "MOV r0, r15"; then move r0 to DCCTX */
237 retval = cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
238 if (retval != ERROR_OK)
239 return retval;
240 retval = cortex_a8_exec_opcode(target,
241 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
242 &dscr);
243 if (retval != ERROR_OK)
244 return retval;
246 else
248 /* "MRS r0, CPSR" or "MRS r0, SPSR"
249 * then move r0 to DCCTX
251 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
252 if (retval != ERROR_OK)
253 return retval;
254 retval = cortex_a8_exec_opcode(target,
255 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
256 &dscr);
257 if (retval != ERROR_OK)
258 return retval;
261 /* Wait for DTRRXfull then read DTRRTX */
262 long long then = timeval_ms();
263 while ((dscr & DSCR_DTR_TX_FULL) == 0)
265 retval = mem_ap_read_atomic_u32(swjdp,
266 armv7a->debug_base + CPUDBG_DSCR, &dscr);
267 if (retval != ERROR_OK)
268 return retval;
269 if (timeval_ms() > then + 1000)
271 LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
272 return ERROR_FAIL;
276 retval = mem_ap_read_atomic_u32(swjdp,
277 armv7a->debug_base + CPUDBG_DTRTX, value);
278 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
280 return retval;
283 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
284 uint32_t value, int regnum)
286 int retval = ERROR_OK;
287 uint8_t Rd = regnum&0xFF;
288 uint32_t dscr;
289 struct armv7a_common *armv7a = target_to_armv7a(target);
290 struct adiv5_dap *swjdp = &armv7a->dap;
292 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
294 /* Check that DCCRX is not full */
295 retval = mem_ap_read_atomic_u32(swjdp,
296 armv7a->debug_base + CPUDBG_DSCR, &dscr);
297 if (retval != ERROR_OK)
298 return retval;
299 if (dscr & DSCR_DTR_RX_FULL)
301 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
302 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
303 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
304 &dscr);
305 if (retval != ERROR_OK)
306 return retval;
309 if (Rd > 17)
310 return retval;
312 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
313 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
314 retval = mem_ap_write_u32(swjdp,
315 armv7a->debug_base + CPUDBG_DTRRX, value);
316 if (retval != ERROR_OK)
317 return retval;
319 if (Rd < 15)
321 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
322 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
323 &dscr);
324 if (retval != ERROR_OK)
325 return retval;
327 else if (Rd == 15)
329 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
330 * then "mov r15, r0"
332 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
333 &dscr);
334 if (retval != ERROR_OK)
335 return retval;
336 retval = cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
337 if (retval != ERROR_OK)
338 return retval;
340 else
342 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
343 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
345 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
346 &dscr);
347 if (retval != ERROR_OK)
348 return retval;
349 retval = cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
350 &dscr);
351 if (retval != ERROR_OK)
352 return retval;
354 /* "Prefetch flush" after modifying execution status in CPSR */
355 if (Rd == 16)
357 retval = cortex_a8_exec_opcode(target,
358 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
359 &dscr);
360 if (retval != ERROR_OK)
361 return retval;
365 return retval;
368 /* Write to memory mapped registers directly with no cache or mmu handling */
369 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
371 int retval;
372 struct armv7a_common *armv7a = target_to_armv7a(target);
373 struct adiv5_dap *swjdp = &armv7a->dap;
375 retval = mem_ap_write_atomic_u32(swjdp, address, value);
377 return retval;
381 * Cortex-A8 implementation of Debug Programmer's Model
383 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
384 * so there's no need to poll for it before executing an instruction.
386 * NOTE that in several of these cases the "stall" mode might be useful.
387 * It'd let us queue a few operations together... prepare/finish might
388 * be the places to enable/disable that mode.
391 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
393 return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
396 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
398 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
399 return mem_ap_write_u32(&a8->armv7a_common.dap,
400 a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
403 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
404 uint32_t *dscr_p)
406 struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
407 uint32_t dscr = DSCR_INSTR_COMP;
408 int retval;
410 if (dscr_p)
411 dscr = *dscr_p;
413 /* Wait for DTRRXfull */
414 long long then = timeval_ms();
415 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
416 retval = mem_ap_read_atomic_u32(swjdp,
417 a8->armv7a_common.debug_base + CPUDBG_DSCR,
418 &dscr);
419 if (retval != ERROR_OK)
420 return retval;
421 if (timeval_ms() > then + 1000)
423 LOG_ERROR("Timeout waiting for read dcc");
424 return ERROR_FAIL;
428 retval = mem_ap_read_atomic_u32(swjdp,
429 a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
430 if (retval != ERROR_OK)
431 return retval;
432 //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
434 if (dscr_p)
435 *dscr_p = dscr;
437 return retval;
440 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
442 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
443 struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
444 uint32_t dscr;
445 int retval;
447 /* set up invariant: INSTR_COMP is set after ever DPM operation */
448 long long then = timeval_ms();
449 for (;;)
451 retval = mem_ap_read_atomic_u32(swjdp,
452 a8->armv7a_common.debug_base + CPUDBG_DSCR,
453 &dscr);
454 if (retval != ERROR_OK)
455 return retval;
456 if ((dscr & DSCR_INSTR_COMP) != 0)
457 break;
458 if (timeval_ms() > then + 1000)
460 LOG_ERROR("Timeout waiting for dpm prepare");
461 return ERROR_FAIL;
465 /* this "should never happen" ... */
466 if (dscr & DSCR_DTR_RX_FULL) {
467 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
468 /* Clear DCCRX */
469 retval = cortex_a8_exec_opcode(
470 a8->armv7a_common.armv4_5_common.target,
471 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
472 &dscr);
473 if (retval != ERROR_OK)
474 return retval;
477 return retval;
480 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
482 /* REVISIT what could be done here? */
483 return ERROR_OK;
486 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
487 uint32_t opcode, uint32_t data)
489 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
490 int retval;
491 uint32_t dscr = DSCR_INSTR_COMP;
493 retval = cortex_a8_write_dcc(a8, data);
494 if (retval != ERROR_OK)
495 return retval;
497 return cortex_a8_exec_opcode(
498 a8->armv7a_common.armv4_5_common.target,
499 opcode,
500 &dscr);
503 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
504 uint32_t opcode, uint32_t data)
506 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
507 uint32_t dscr = DSCR_INSTR_COMP;
508 int retval;
510 retval = cortex_a8_write_dcc(a8, data);
511 if (retval != ERROR_OK)
512 return retval;
514 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
515 retval = cortex_a8_exec_opcode(
516 a8->armv7a_common.armv4_5_common.target,
517 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
518 &dscr);
519 if (retval != ERROR_OK)
520 return retval;
522 /* then the opcode, taking data from R0 */
523 retval = cortex_a8_exec_opcode(
524 a8->armv7a_common.armv4_5_common.target,
525 opcode,
526 &dscr);
528 return retval;
531 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
533 struct target *target = dpm->arm->target;
534 uint32_t dscr = DSCR_INSTR_COMP;
536 /* "Prefetch flush" after modifying execution status in CPSR */
537 return cortex_a8_exec_opcode(target,
538 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
539 &dscr);
542 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
543 uint32_t opcode, uint32_t *data)
545 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
546 int retval;
547 uint32_t dscr = DSCR_INSTR_COMP;
549 /* the opcode, writing data to DCC */
550 retval = cortex_a8_exec_opcode(
551 a8->armv7a_common.armv4_5_common.target,
552 opcode,
553 &dscr);
554 if (retval != ERROR_OK)
555 return retval;
557 return cortex_a8_read_dcc(a8, data, &dscr);
561 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
562 uint32_t opcode, uint32_t *data)
564 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
565 uint32_t dscr = DSCR_INSTR_COMP;
566 int retval;
568 /* the opcode, writing data to R0 */
569 retval = cortex_a8_exec_opcode(
570 a8->armv7a_common.armv4_5_common.target,
571 opcode,
572 &dscr);
573 if (retval != ERROR_OK)
574 return retval;
576 /* write R0 to DCC */
577 retval = cortex_a8_exec_opcode(
578 a8->armv7a_common.armv4_5_common.target,
579 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
580 &dscr);
581 if (retval != ERROR_OK)
582 return retval;
584 return cortex_a8_read_dcc(a8, data, &dscr);
587 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
588 uint32_t addr, uint32_t control)
590 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
591 uint32_t vr = a8->armv7a_common.debug_base;
592 uint32_t cr = a8->armv7a_common.debug_base;
593 int retval;
595 switch (index_t) {
596 case 0 ... 15: /* breakpoints */
597 vr += CPUDBG_BVR_BASE;
598 cr += CPUDBG_BCR_BASE;
599 break;
600 case 16 ... 31: /* watchpoints */
601 vr += CPUDBG_WVR_BASE;
602 cr += CPUDBG_WCR_BASE;
603 index_t -= 16;
604 break;
605 default:
606 return ERROR_FAIL;
608 vr += 4 * index_t;
609 cr += 4 * index_t;
611 LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
612 (unsigned) vr, (unsigned) cr);
614 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
615 vr, addr);
616 if (retval != ERROR_OK)
617 return retval;
618 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
619 cr, control);
620 return retval;
623 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
625 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
626 uint32_t cr;
628 switch (index_t) {
629 case 0 ... 15:
630 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
631 break;
632 case 16 ... 31:
633 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
634 index_t -= 16;
635 break;
636 default:
637 return ERROR_FAIL;
639 cr += 4 * index_t;
641 LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
643 /* clear control register */
644 return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
647 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
649 struct arm_dpm *dpm = &a8->armv7a_common.dpm;
650 int retval;
652 dpm->arm = &a8->armv7a_common.armv4_5_common;
653 dpm->didr = didr;
655 dpm->prepare = cortex_a8_dpm_prepare;
656 dpm->finish = cortex_a8_dpm_finish;
658 dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
659 dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
660 dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
662 dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
663 dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
665 dpm->bpwp_enable = cortex_a8_bpwp_enable;
666 dpm->bpwp_disable = cortex_a8_bpwp_disable;
668 retval = arm_dpm_setup(dpm);
669 if (retval == ERROR_OK)
670 retval = arm_dpm_initialize(dpm);
672 return retval;
677 * Cortex-A8 Run control
680 static int cortex_a8_poll(struct target *target)
682 int retval = ERROR_OK;
683 uint32_t dscr;
684 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
685 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
686 struct adiv5_dap *swjdp = &armv7a->dap;
687 enum target_state prev_target_state = target->state;
688 uint8_t saved_apsel = dap_ap_get_select(swjdp);
690 dap_ap_select(swjdp, swjdp_debugap);
691 retval = mem_ap_read_atomic_u32(swjdp,
692 armv7a->debug_base + CPUDBG_DSCR, &dscr);
693 if (retval != ERROR_OK)
695 dap_ap_select(swjdp, saved_apsel);
696 return retval;
698 cortex_a8->cpudbg_dscr = dscr;
700 if ((dscr & 0x3) == 0x3)
702 if (prev_target_state != TARGET_HALTED)
704 /* We have a halting debug event */
705 LOG_DEBUG("Target halted");
706 target->state = TARGET_HALTED;
707 if ((prev_target_state == TARGET_RUNNING)
708 || (prev_target_state == TARGET_RESET))
710 retval = cortex_a8_debug_entry(target);
711 if (retval != ERROR_OK)
712 return retval;
714 target_call_event_callbacks(target,
715 TARGET_EVENT_HALTED);
717 if (prev_target_state == TARGET_DEBUG_RUNNING)
719 LOG_DEBUG(" ");
721 retval = cortex_a8_debug_entry(target);
722 if (retval != ERROR_OK)
723 return retval;
725 target_call_event_callbacks(target,
726 TARGET_EVENT_DEBUG_HALTED);
730 else if ((dscr & 0x3) == 0x2)
732 target->state = TARGET_RUNNING;
734 else
736 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
737 target->state = TARGET_UNKNOWN;
740 dap_ap_select(swjdp, saved_apsel);
742 return retval;
745 static int cortex_a8_halt(struct target *target)
747 int retval = ERROR_OK;
748 uint32_t dscr;
749 struct armv7a_common *armv7a = target_to_armv7a(target);
750 struct adiv5_dap *swjdp = &armv7a->dap;
751 uint8_t saved_apsel = dap_ap_get_select(swjdp);
752 dap_ap_select(swjdp, swjdp_debugap);
755 * Tell the core to be halted by writing DRCR with 0x1
756 * and then wait for the core to be halted.
758 retval = mem_ap_write_atomic_u32(swjdp,
759 armv7a->debug_base + CPUDBG_DRCR, 0x1);
760 if (retval != ERROR_OK)
761 goto out;
764 * enter halting debug mode
766 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
767 if (retval != ERROR_OK)
768 goto out;
770 retval = mem_ap_write_atomic_u32(swjdp,
771 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
772 if (retval != ERROR_OK)
773 goto out;
775 long long then = timeval_ms();
776 for (;;)
778 retval = mem_ap_read_atomic_u32(swjdp,
779 armv7a->debug_base + CPUDBG_DSCR, &dscr);
780 if (retval != ERROR_OK)
781 goto out;
782 if ((dscr & DSCR_CORE_HALTED) != 0)
784 break;
786 if (timeval_ms() > then + 1000)
788 LOG_ERROR("Timeout waiting for halt");
789 return ERROR_FAIL;
793 target->debug_reason = DBG_REASON_DBGRQ;
795 out:
796 dap_ap_select(swjdp, saved_apsel);
797 return retval;
800 static int cortex_a8_resume(struct target *target, int current,
801 uint32_t address, int handle_breakpoints, int debug_execution)
803 struct armv7a_common *armv7a = target_to_armv7a(target);
804 struct arm *armv4_5 = &armv7a->armv4_5_common;
805 struct adiv5_dap *swjdp = &armv7a->dap;
806 int retval;
808 // struct breakpoint *breakpoint = NULL;
809 uint32_t resume_pc, dscr;
811 uint8_t saved_apsel = dap_ap_get_select(swjdp);
812 dap_ap_select(swjdp, swjdp_debugap);
814 if (!debug_execution)
815 target_free_all_working_areas(target);
817 #if 0
818 if (debug_execution)
820 /* Disable interrupts */
821 /* We disable interrupts in the PRIMASK register instead of
822 * masking with C_MASKINTS,
823 * This is probably the same issue as Cortex-M3 Errata 377493:
824 * C_MASKINTS in parallel with disabled interrupts can cause
825 * local faults to not be taken. */
826 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
827 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
828 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
830 /* Make sure we are in Thumb mode */
831 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
832 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
833 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
834 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
836 #endif
838 /* current = 1: continue on current pc, otherwise continue at <address> */
839 resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
840 if (!current)
841 resume_pc = address;
843 /* Make sure that the Armv7 gdb thumb fixups does not
844 * kill the return address
846 switch (armv4_5->core_state)
848 case ARM_STATE_ARM:
849 resume_pc &= 0xFFFFFFFC;
850 break;
851 case ARM_STATE_THUMB:
852 case ARM_STATE_THUMB_EE:
853 /* When the return address is loaded into PC
854 * bit 0 must be 1 to stay in Thumb state
856 resume_pc |= 0x1;
857 break;
858 case ARM_STATE_JAZELLE:
859 LOG_ERROR("How do I resume into Jazelle state??");
860 return ERROR_FAIL;
862 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
863 buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
864 armv4_5->pc->dirty = 1;
865 armv4_5->pc->valid = 1;
867 retval = cortex_a8_restore_context(target, handle_breakpoints);
868 if (retval != ERROR_OK)
869 return retval;
871 #if 0
872 /* the front-end may request us not to handle breakpoints */
873 if (handle_breakpoints)
875 /* Single step past breakpoint at current address */
876 if ((breakpoint = breakpoint_find(target, resume_pc)))
878 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
879 cortex_m3_unset_breakpoint(target, breakpoint);
880 cortex_m3_single_step_core(target);
881 cortex_m3_set_breakpoint(target, breakpoint);
885 #endif
886 /* Restart core and wait for it to be started
887 * NOTE: this clears DSCR_ITR_EN and other bits.
889 * REVISIT: for single stepping, we probably want to
890 * disable IRQs by default, with optional override...
892 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
893 if (retval != ERROR_OK)
894 return retval;
896 long long then = timeval_ms();
897 for (;;)
899 retval = mem_ap_read_atomic_u32(swjdp,
900 armv7a->debug_base + CPUDBG_DSCR, &dscr);
901 if (retval != ERROR_OK)
902 return retval;
903 if ((dscr & DSCR_CORE_RESTARTED) != 0)
904 break;
905 if (timeval_ms() > then + 1000)
907 LOG_ERROR("Timeout waiting for resume");
908 return ERROR_FAIL;
912 target->debug_reason = DBG_REASON_NOTHALTED;
913 target->state = TARGET_RUNNING;
915 /* registers are now invalid */
916 register_cache_invalidate(armv4_5->core_cache);
918 if (!debug_execution)
920 target->state = TARGET_RUNNING;
921 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
922 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
924 else
926 target->state = TARGET_DEBUG_RUNNING;
927 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
928 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
931 dap_ap_select(swjdp, saved_apsel);
933 return ERROR_OK;
936 static int cortex_a8_debug_entry(struct target *target)
938 int i;
939 uint32_t regfile[16], cpsr, dscr;
940 int retval = ERROR_OK;
941 struct working_area *regfile_working_area = NULL;
942 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
943 struct armv7a_common *armv7a = target_to_armv7a(target);
944 struct arm *armv4_5 = &armv7a->armv4_5_common;
945 struct adiv5_dap *swjdp = &armv7a->dap;
946 struct reg *reg;
948 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
950 /* REVISIT surely we should not re-read DSCR !! */
951 retval = mem_ap_read_atomic_u32(swjdp,
952 armv7a->debug_base + CPUDBG_DSCR, &dscr);
953 if (retval != ERROR_OK)
954 return retval;
956 /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
957 * imprecise data aborts get discarded by issuing a Data
958 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
961 /* Enable the ITR execution once we are in debug mode */
962 dscr |= DSCR_ITR_EN;
963 retval = mem_ap_write_atomic_u32(swjdp,
964 armv7a->debug_base + CPUDBG_DSCR, dscr);
965 if (retval != ERROR_OK)
966 return retval;
968 /* Examine debug reason */
969 arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
971 /* save address of instruction that triggered the watchpoint? */
972 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
973 uint32_t wfar;
975 retval = mem_ap_read_atomic_u32(swjdp,
976 armv7a->debug_base + CPUDBG_WFAR,
977 &wfar);
978 if (retval != ERROR_OK)
979 return retval;
980 arm_dpm_report_wfar(&armv7a->dpm, wfar);
983 /* REVISIT fast_reg_read is never set ... */
985 /* Examine target state and mode */
986 if (cortex_a8->fast_reg_read)
987 target_alloc_working_area(target, 64, &regfile_working_area);
989 /* First load register acessible through core debug port*/
990 if (!regfile_working_area)
992 retval = arm_dpm_read_current_registers(&armv7a->dpm);
994 else
996 dap_ap_select(swjdp, swjdp_memoryap);
997 retval = cortex_a8_read_regs_through_mem(target,
998 regfile_working_area->address, regfile);
999 dap_ap_select(swjdp, swjdp_memoryap);
1000 target_free_working_area(target, regfile_working_area);
1001 if (retval != ERROR_OK)
1003 return retval;
1006 /* read Current PSR */
1007 retval = cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
1008 if (retval != ERROR_OK)
1009 return retval;
1010 dap_ap_select(swjdp, swjdp_debugap);
1011 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1013 arm_set_cpsr(armv4_5, cpsr);
1015 /* update cache */
1016 for (i = 0; i <= ARM_PC; i++)
1018 reg = arm_reg_current(armv4_5, i);
1020 buf_set_u32(reg->value, 0, 32, regfile[i]);
1021 reg->valid = 1;
1022 reg->dirty = 0;
1025 /* Fixup PC Resume Address */
1026 if (cpsr & (1 << 5))
1028 // T bit set for Thumb or ThumbEE state
1029 regfile[ARM_PC] -= 4;
1031 else
1033 // ARM state
1034 regfile[ARM_PC] -= 8;
1037 reg = armv4_5->pc;
1038 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1039 reg->dirty = reg->valid;
1042 #if 0
1043 /* TODO, Move this */
1044 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1045 cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1046 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1048 cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1049 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1051 cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1052 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1053 #endif
1055 /* Are we in an exception handler */
1056 // armv4_5->exception_number = 0;
1057 if (armv7a->post_debug_entry)
1059 retval = armv7a->post_debug_entry(target);
1060 if (retval != ERROR_OK)
1061 return retval;
1064 return retval;
1067 static int cortex_a8_post_debug_entry(struct target *target)
1069 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1070 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1071 int retval;
1073 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1074 retval = armv7a->armv4_5_common.mrc(target, 15,
1075 0, 0, /* op1, op2 */
1076 1, 0, /* CRn, CRm */
1077 &cortex_a8->cp15_control_reg);
1078 if (retval != ERROR_OK)
1079 return retval;
1080 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
1082 if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
1084 uint32_t cache_type_reg;
1086 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
1087 retval = armv7a->armv4_5_common.mrc(target, 15,
1088 0, 1, /* op1, op2 */
1089 0, 0, /* CRn, CRm */
1090 &cache_type_reg);
1091 if (retval != ERROR_OK)
1092 return retval;
1093 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
1095 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
1096 armv4_5_identify_cache(cache_type_reg,
1097 &armv7a->armv4_5_mmu.armv4_5_cache);
1100 armv7a->armv4_5_mmu.mmu_enabled =
1101 (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
1102 armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
1103 (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
1104 armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
1105 (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
1107 return ERROR_OK;
1110 static int cortex_a8_step(struct target *target, int current, uint32_t address,
1111 int handle_breakpoints)
1113 struct armv7a_common *armv7a = target_to_armv7a(target);
1114 struct arm *armv4_5 = &armv7a->armv4_5_common;
1115 struct breakpoint *breakpoint = NULL;
1116 struct breakpoint stepbreakpoint;
1117 struct reg *r;
1118 int retval;
1120 if (target->state != TARGET_HALTED)
1122 LOG_WARNING("target not halted");
1123 return ERROR_TARGET_NOT_HALTED;
1126 /* current = 1: continue on current pc, otherwise continue at <address> */
1127 r = armv4_5->pc;
1128 if (!current)
1130 buf_set_u32(r->value, 0, 32, address);
1132 else
1134 address = buf_get_u32(r->value, 0, 32);
1137 /* The front-end may request us not to handle breakpoints.
1138 * But since Cortex-A8 uses breakpoint for single step,
1139 * we MUST handle breakpoints.
1141 handle_breakpoints = 1;
1142 if (handle_breakpoints) {
1143 breakpoint = breakpoint_find(target, address);
1144 if (breakpoint)
1145 cortex_a8_unset_breakpoint(target, breakpoint);
1148 /* Setup single step breakpoint */
1149 stepbreakpoint.address = address;
1150 stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
1151 ? 2 : 4;
1152 stepbreakpoint.type = BKPT_HARD;
1153 stepbreakpoint.set = 0;
1155 /* Break on IVA mismatch */
1156 cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
1158 target->debug_reason = DBG_REASON_SINGLESTEP;
1160 retval = cortex_a8_resume(target, 1, address, 0, 0);
1161 if (retval != ERROR_OK)
1162 return retval;
1164 long long then = timeval_ms();
1165 while (target->state != TARGET_HALTED)
1167 retval = cortex_a8_poll(target);
1168 if (retval != ERROR_OK)
1169 return retval;
1170 if (timeval_ms() > then + 1000)
1172 LOG_ERROR("timeout waiting for target halt");
1173 return ERROR_FAIL;
1177 cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1179 target->debug_reason = DBG_REASON_BREAKPOINT;
1181 if (breakpoint)
1182 cortex_a8_set_breakpoint(target, breakpoint, 0);
1184 if (target->state != TARGET_HALTED)
1185 LOG_DEBUG("target stepped");
1187 return ERROR_OK;
1190 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1192 struct armv7a_common *armv7a = target_to_armv7a(target);
1194 LOG_DEBUG(" ");
1196 if (armv7a->pre_restore_context)
1197 armv7a->pre_restore_context(target);
1199 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1204 * Cortex-A8 Breakpoint and watchpoint functions
1207 /* Setup hardware Breakpoint Register Pair */
1208 static int cortex_a8_set_breakpoint(struct target *target,
1209 struct breakpoint *breakpoint, uint8_t matchmode)
1211 int retval;
1212 int brp_i=0;
1213 uint32_t control;
1214 uint8_t byte_addr_select = 0x0F;
1215 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1216 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1217 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1219 if (breakpoint->set)
1221 LOG_WARNING("breakpoint already set");
1222 return ERROR_OK;
1225 if (breakpoint->type == BKPT_HARD)
1227 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1228 brp_i++ ;
1229 if (brp_i >= cortex_a8->brp_num)
1231 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1232 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1234 breakpoint->set = brp_i + 1;
1235 if (breakpoint->length == 2)
1237 byte_addr_select = (3 << (breakpoint->address & 0x02));
1239 control = ((matchmode & 0x7) << 20)
1240 | (byte_addr_select << 5)
1241 | (3 << 1) | 1;
1242 brp_list[brp_i].used = 1;
1243 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1244 brp_list[brp_i].control = control;
1245 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1246 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1247 brp_list[brp_i].value);
1248 if (retval != ERROR_OK)
1249 return retval;
1250 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1251 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1252 brp_list[brp_i].control);
1253 if (retval != ERROR_OK)
1254 return retval;
1255 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1256 brp_list[brp_i].control,
1257 brp_list[brp_i].value);
1259 else if (breakpoint->type == BKPT_SOFT)
1261 uint8_t code[4];
1262 if (breakpoint->length == 2)
1264 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1266 else
1268 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1270 retval = target->type->read_memory(target,
1271 breakpoint->address & 0xFFFFFFFE,
1272 breakpoint->length, 1,
1273 breakpoint->orig_instr);
1274 if (retval != ERROR_OK)
1275 return retval;
1276 retval = target->type->write_memory(target,
1277 breakpoint->address & 0xFFFFFFFE,
1278 breakpoint->length, 1, code);
1279 if (retval != ERROR_OK)
1280 return retval;
1281 breakpoint->set = 0x11; /* Any nice value but 0 */
1284 return ERROR_OK;
1287 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1289 int retval;
1290 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1291 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1292 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1294 if (!breakpoint->set)
1296 LOG_WARNING("breakpoint not set");
1297 return ERROR_OK;
1300 if (breakpoint->type == BKPT_HARD)
1302 int brp_i = breakpoint->set - 1;
1303 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1305 LOG_DEBUG("Invalid BRP number in breakpoint");
1306 return ERROR_OK;
1308 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1309 brp_list[brp_i].control, brp_list[brp_i].value);
1310 brp_list[brp_i].used = 0;
1311 brp_list[brp_i].value = 0;
1312 brp_list[brp_i].control = 0;
1313 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1314 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1315 brp_list[brp_i].control);
1316 if (retval != ERROR_OK)
1317 return retval;
1318 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1319 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1320 brp_list[brp_i].value);
1321 if (retval != ERROR_OK)
1322 return retval;
1324 else
1326 /* restore original instruction (kept in target endianness) */
1327 if (breakpoint->length == 4)
1329 retval = target->type->write_memory(target,
1330 breakpoint->address & 0xFFFFFFFE,
1331 4, 1, breakpoint->orig_instr);
1332 if (retval != ERROR_OK)
1333 return retval;
1335 else
1337 retval = target->type->write_memory(target,
1338 breakpoint->address & 0xFFFFFFFE,
1339 2, 1, breakpoint->orig_instr);
1340 if (retval != ERROR_OK)
1341 return retval;
1344 breakpoint->set = 0;
1346 return ERROR_OK;
1349 static int cortex_a8_add_breakpoint(struct target *target,
1350 struct breakpoint *breakpoint)
1352 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1354 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1356 LOG_INFO("no hardware breakpoint available");
1357 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1360 if (breakpoint->type == BKPT_HARD)
1361 cortex_a8->brp_num_available--;
1363 return cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1366 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1368 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1370 #if 0
1371 /* It is perfectly possible to remove breakpoints while the target is running */
1372 if (target->state != TARGET_HALTED)
1374 LOG_WARNING("target not halted");
1375 return ERROR_TARGET_NOT_HALTED;
1377 #endif
1379 if (breakpoint->set)
1381 cortex_a8_unset_breakpoint(target, breakpoint);
1382 if (breakpoint->type == BKPT_HARD)
1383 cortex_a8->brp_num_available++ ;
1387 return ERROR_OK;
1393 * Cortex-A8 Reset functions
1396 static int cortex_a8_assert_reset(struct target *target)
1398 struct armv7a_common *armv7a = target_to_armv7a(target);
1400 LOG_DEBUG(" ");
1402 /* FIXME when halt is requested, make it work somehow... */
1404 /* Issue some kind of warm reset. */
1405 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1406 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1407 } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1408 /* REVISIT handle "pulls" cases, if there's
1409 * hardware that needs them to work.
1411 jtag_add_reset(0, 1);
1412 } else {
1413 LOG_ERROR("%s: how to reset?", target_name(target));
1414 return ERROR_FAIL;
1417 /* registers are now invalid */
1418 register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1420 target->state = TARGET_RESET;
1422 return ERROR_OK;
1425 static int cortex_a8_deassert_reset(struct target *target)
1427 int retval;
1429 LOG_DEBUG(" ");
1431 /* be certain SRST is off */
1432 jtag_add_reset(0, 0);
1434 retval = cortex_a8_poll(target);
1435 if (retval != ERROR_OK)
1436 return retval;
1438 if (target->reset_halt) {
1439 if (target->state != TARGET_HALTED) {
1440 LOG_WARNING("%s: ran after reset and before halt ...",
1441 target_name(target));
1442 if ((retval = target_halt(target)) != ERROR_OK)
1443 return retval;
1447 return ERROR_OK;
1451 * Cortex-A8 Memory access
1453 * This is same Cortex M3 but we must also use the correct
1454 * ap number for every access.
1457 static int cortex_a8_read_phys_memory(struct target *target,
1458 uint32_t address, uint32_t size,
1459 uint32_t count, uint8_t *buffer)
1461 struct armv7a_common *armv7a = target_to_armv7a(target);
1462 struct adiv5_dap *swjdp = &armv7a->dap;
1463 int retval = ERROR_INVALID_ARGUMENTS;
1465 /* cortex_a8 handles unaligned memory access */
1467 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1468 LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address, size, count);
1469 if (count && buffer) {
1470 switch (size) {
1471 case 4:
1472 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1473 break;
1474 case 2:
1475 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1476 break;
1477 case 1:
1478 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1479 break;
1483 return retval;
1486 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1487 uint32_t size, uint32_t count, uint8_t *buffer)
1489 int enabled = 0;
1490 uint32_t virt, phys;
1491 int retval;
1493 /* cortex_a8 handles unaligned memory access */
1495 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1496 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address, size, count);
1497 retval = cortex_a8_mmu(target, &enabled);
1498 if (retval != ERROR_OK)
1499 return retval;
1501 if(enabled)
1503 virt = address;
1504 retval = cortex_a8_virt2phys(target, virt, &phys);
1505 if (retval != ERROR_OK)
1506 return retval;
1508 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1509 address = phys;
1512 return cortex_a8_read_phys_memory(target, address, size, count, buffer);
1515 static int cortex_a8_write_phys_memory(struct target *target,
1516 uint32_t address, uint32_t size,
1517 uint32_t count, uint8_t *buffer)
1519 struct armv7a_common *armv7a = target_to_armv7a(target);
1520 struct adiv5_dap *swjdp = &armv7a->dap;
1521 int retval = ERROR_INVALID_ARGUMENTS;
1523 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1525 LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address, size, count);
1526 if (count && buffer) {
1527 switch (size) {
1528 case 4:
1529 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1530 break;
1531 case 2:
1532 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1533 break;
1534 case 1:
1535 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1536 break;
1540 /* REVISIT this op is generic ARMv7-A/R stuff */
1541 if (retval == ERROR_OK && target->state == TARGET_HALTED)
1543 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1545 retval = dpm->prepare(dpm);
1546 if (retval != ERROR_OK)
1547 return retval;
1549 /* The Cache handling will NOT work with MMU active, the
1550 * wrong addresses will be invalidated!
1552 * For both ICache and DCache, walk all cache lines in the
1553 * address range. Cortex-A8 has fixed 64 byte line length.
1555 * REVISIT per ARMv7, these may trigger watchpoints ...
1558 /* invalidate I-Cache */
1559 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1561 /* ICIMVAU - Invalidate Cache single entry
1562 * with MVA to PoU
1563 * MCR p15, 0, r0, c7, c5, 1
1565 for (uint32_t cacheline = address;
1566 cacheline < address + size * count;
1567 cacheline += 64) {
1568 retval = dpm->instr_write_data_r0(dpm,
1569 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1570 cacheline);
1571 if (retval != ERROR_OK)
1572 return retval;
1576 /* invalidate D-Cache */
1577 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1579 /* DCIMVAC - Invalidate data Cache line
1580 * with MVA to PoC
1581 * MCR p15, 0, r0, c7, c6, 1
1583 for (uint32_t cacheline = address;
1584 cacheline < address + size * count;
1585 cacheline += 64) {
1586 retval = dpm->instr_write_data_r0(dpm,
1587 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1588 cacheline);
1589 if (retval != ERROR_OK)
1590 return retval;
1594 /* (void) */ dpm->finish(dpm);
1597 return retval;
1600 static int cortex_a8_write_memory(struct target *target, uint32_t address,
1601 uint32_t size, uint32_t count, uint8_t *buffer)
1603 int enabled = 0;
1604 uint32_t virt, phys;
1605 int retval;
1607 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1609 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
1610 retval = cortex_a8_mmu(target, &enabled);
1611 if (retval != ERROR_OK)
1612 return retval;
1613 if(enabled)
1615 virt = address;
1616 retval = cortex_a8_virt2phys(target, virt, &phys);
1617 if (retval != ERROR_OK)
1618 return retval;
1619 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1620 address = phys;
1623 return cortex_a8_write_phys_memory(target, address, size,
1624 count, buffer);
1627 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1628 uint32_t count, uint8_t *buffer)
1630 return cortex_a8_write_memory(target, address, 4, count, buffer);
1634 static int cortex_a8_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1636 #if 0
1637 u16 dcrdr;
1639 mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1640 *ctrl = (uint8_t)dcrdr;
1641 *value = (uint8_t)(dcrdr >> 8);
1643 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1645 /* write ack back to software dcc register
1646 * signify we have read data */
1647 if (dcrdr & (1 << 0))
1649 dcrdr = 0;
1650 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1652 #endif
1653 return ERROR_OK;
1657 static int cortex_a8_handle_target_request(void *priv)
1659 struct target *target = priv;
1660 struct armv7a_common *armv7a = target_to_armv7a(target);
1661 struct adiv5_dap *swjdp = &armv7a->dap;
1662 int retval;
1664 if (!target_was_examined(target))
1665 return ERROR_OK;
1666 if (!target->dbg_msg_enabled)
1667 return ERROR_OK;
1669 if (target->state == TARGET_RUNNING)
1671 uint8_t data = 0;
1672 uint8_t ctrl = 0;
1674 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1675 if (retval != ERROR_OK)
1676 return retval;
1678 /* check if we have data */
1679 if (ctrl & (1 << 0))
1681 uint32_t request;
1683 /* we assume target is quick enough */
1684 request = data;
1685 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1686 if (retval != ERROR_OK)
1687 return retval;
1688 request |= (data << 8);
1689 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1690 if (retval != ERROR_OK)
1691 return retval;
1692 request |= (data << 16);
1693 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1694 if (retval != ERROR_OK)
1695 return retval;
1696 request |= (data << 24);
1697 target_request(target, request);
1701 return ERROR_OK;
1705 * Cortex-A8 target information and configuration
1708 static int cortex_a8_examine_first(struct target *target)
1710 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1711 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1712 struct adiv5_dap *swjdp = &armv7a->dap;
1713 int i;
1714 int retval = ERROR_OK;
1715 uint32_t didr, ctypr, ttypr, cpuid;
1716 uint32_t dbgbase, apid;
1718 /* We do one extra read to ensure DAP is configured,
1719 * we call ahbap_debugport_init(swjdp) instead
1721 retval = ahbap_debugport_init(swjdp);
1722 if (retval != ERROR_OK)
1723 return retval;
1725 /* Get ROM Table base */
1726 retval = dap_get_debugbase(swjdp, 1, &dbgbase, &apid);
1727 if (retval != ERROR_OK)
1728 return retval;
1730 /* Lookup 0x15 -- Processor DAP */
1731 retval = dap_lookup_cs_component(swjdp, 1, dbgbase, 0x15,
1732 &armv7a->debug_base);
1733 if (retval != ERROR_OK)
1734 return retval;
1736 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1737 if (retval != ERROR_OK)
1738 return retval;
1740 if ((retval = mem_ap_read_atomic_u32(swjdp,
1741 armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1743 LOG_DEBUG("Examine %s failed", "CPUID");
1744 return retval;
1747 if ((retval = mem_ap_read_atomic_u32(swjdp,
1748 armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1750 LOG_DEBUG("Examine %s failed", "CTYPR");
1751 return retval;
1754 if ((retval = mem_ap_read_atomic_u32(swjdp,
1755 armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1757 LOG_DEBUG("Examine %s failed", "TTYPR");
1758 return retval;
1761 if ((retval = mem_ap_read_atomic_u32(swjdp,
1762 armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1764 LOG_DEBUG("Examine %s failed", "DIDR");
1765 return retval;
1768 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1769 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1770 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1771 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1773 armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1774 retval = cortex_a8_dpm_setup(cortex_a8, didr);
1775 if (retval != ERROR_OK)
1776 return retval;
1778 /* Setup Breakpoint Register Pairs */
1779 cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1780 cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1781 cortex_a8->brp_num_available = cortex_a8->brp_num;
1782 cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1783 // cortex_a8->brb_enabled = ????;
1784 for (i = 0; i < cortex_a8->brp_num; i++)
1786 cortex_a8->brp_list[i].used = 0;
1787 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1788 cortex_a8->brp_list[i].type = BRP_NORMAL;
1789 else
1790 cortex_a8->brp_list[i].type = BRP_CONTEXT;
1791 cortex_a8->brp_list[i].value = 0;
1792 cortex_a8->brp_list[i].control = 0;
1793 cortex_a8->brp_list[i].BRPn = i;
1796 LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
1798 target_set_examined(target);
1799 return ERROR_OK;
1802 static int cortex_a8_examine(struct target *target)
1804 int retval = ERROR_OK;
1806 /* don't re-probe hardware after each reset */
1807 if (!target_was_examined(target))
1808 retval = cortex_a8_examine_first(target);
1810 /* Configure core debug access */
1811 if (retval == ERROR_OK)
1812 retval = cortex_a8_init_debug_access(target);
1814 return retval;
1818 * Cortex-A8 target creation and initialization
1821 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1822 struct target *target)
1824 /* examine_first() does a bunch of this */
1825 return ERROR_OK;
1828 static int cortex_a8_init_arch_info(struct target *target,
1829 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1831 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1832 struct arm *armv4_5 = &armv7a->armv4_5_common;
1833 struct adiv5_dap *dap = &armv7a->dap;
1835 armv7a->armv4_5_common.dap = dap;
1837 /* Setup struct cortex_a8_common */
1838 cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1839 armv4_5->arch_info = armv7a;
1841 /* prepare JTAG information for the new target */
1842 cortex_a8->jtag_info.tap = tap;
1843 cortex_a8->jtag_info.scann_size = 4;
1845 /* Leave (only) generic DAP stuff for debugport_init() */
1846 dap->jtag_info = &cortex_a8->jtag_info;
1847 dap->memaccess_tck = 80;
1849 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1850 dap->tar_autoincr_block = (1 << 10);
1852 cortex_a8->fast_reg_read = 0;
1854 /* Set default value */
1855 cortex_a8->current_address_mode = ARM_MODE_ANY;
1857 /* register arch-specific functions */
1858 armv7a->examine_debug_reason = NULL;
1860 armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1862 armv7a->pre_restore_context = NULL;
1863 armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1864 armv7a->armv4_5_mmu.get_ttb = cortex_a8_get_ttb;
1865 armv7a->armv4_5_mmu.read_memory = cortex_a8_read_phys_memory;
1866 armv7a->armv4_5_mmu.write_memory = cortex_a8_write_phys_memory;
1867 armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a8_disable_mmu_caches;
1868 armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a8_enable_mmu_caches;
1869 armv7a->armv4_5_mmu.has_tiny_pages = 1;
1870 armv7a->armv4_5_mmu.mmu_enabled = 0;
1873 // arm7_9->handle_target_request = cortex_a8_handle_target_request;
1875 /* REVISIT v7a setup should be in a v7a-specific routine */
1876 arm_init_arch_info(target, armv4_5);
1877 armv7a->common_magic = ARMV7_COMMON_MAGIC;
1879 target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1881 return ERROR_OK;
1884 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1886 struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1888 return cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1891 static int cortex_a8_get_ttb(struct target *target, uint32_t *result)
1893 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1894 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1895 uint32_t ttb = 0, retval = ERROR_OK;
1897 /* current_address_mode is set inside cortex_a8_virt2phys()
1898 where we can determine if address belongs to user or kernel */
1899 if(cortex_a8->current_address_mode == ARM_MODE_SVC)
1901 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1902 retval = armv7a->armv4_5_common.mrc(target, 15,
1903 0, 1, /* op1, op2 */
1904 2, 0, /* CRn, CRm */
1905 &ttb);
1906 if (retval != ERROR_OK)
1907 return retval;
1909 else if(cortex_a8->current_address_mode == ARM_MODE_USR)
1911 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1912 retval = armv7a->armv4_5_common.mrc(target, 15,
1913 0, 0, /* op1, op2 */
1914 2, 0, /* CRn, CRm */
1915 &ttb);
1916 if (retval != ERROR_OK)
1917 return retval;
1919 /* we don't know whose address is: user or kernel
1920 we assume that if we are in kernel mode then
1921 address belongs to kernel else if in user mode
1922 - to user */
1923 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
1925 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1926 retval = armv7a->armv4_5_common.mrc(target, 15,
1927 0, 1, /* op1, op2 */
1928 2, 0, /* CRn, CRm */
1929 &ttb);
1930 if (retval != ERROR_OK)
1931 return retval;
1933 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
1935 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1936 retval = armv7a->armv4_5_common.mrc(target, 15,
1937 0, 0, /* op1, op2 */
1938 2, 0, /* CRn, CRm */
1939 &ttb);
1940 if (retval != ERROR_OK)
1941 return retval;
1943 /* finally we don't know whose ttb to use: user or kernel */
1944 else
1945 LOG_ERROR("Don't know how to get ttb for current mode!!!");
1947 ttb &= 0xffffc000;
1949 *result = ttb;
1951 return ERROR_OK;
1954 static int cortex_a8_disable_mmu_caches(struct target *target, int mmu,
1955 int d_u_cache, int i_cache)
1957 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1958 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1959 uint32_t cp15_control;
1960 int retval;
1962 /* read cp15 control register */
1963 retval = armv7a->armv4_5_common.mrc(target, 15,
1964 0, 0, /* op1, op2 */
1965 1, 0, /* CRn, CRm */
1966 &cp15_control);
1967 if (retval != ERROR_OK)
1968 return retval;
1971 if (mmu)
1972 cp15_control &= ~0x1U;
1974 if (d_u_cache)
1975 cp15_control &= ~0x4U;
1977 if (i_cache)
1978 cp15_control &= ~0x1000U;
1980 retval = armv7a->armv4_5_common.mcr(target, 15,
1981 0, 0, /* op1, op2 */
1982 1, 0, /* CRn, CRm */
1983 cp15_control);
1984 return retval;
1987 static int cortex_a8_enable_mmu_caches(struct target *target, int mmu,
1988 int d_u_cache, int i_cache)
1990 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1991 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1992 uint32_t cp15_control;
1993 int retval;
1995 /* read cp15 control register */
1996 retval = armv7a->armv4_5_common.mrc(target, 15,
1997 0, 0, /* op1, op2 */
1998 1, 0, /* CRn, CRm */
1999 &cp15_control);
2000 if (retval != ERROR_OK)
2001 return retval;
2003 if (mmu)
2004 cp15_control |= 0x1U;
2006 if (d_u_cache)
2007 cp15_control |= 0x4U;
2009 if (i_cache)
2010 cp15_control |= 0x1000U;
2012 retval = armv7a->armv4_5_common.mcr(target, 15,
2013 0, 0, /* op1, op2 */
2014 1, 0, /* CRn, CRm */
2015 cp15_control);
2016 return retval;
2020 static int cortex_a8_mmu(struct target *target, int *enabled)
2022 if (target->state != TARGET_HALTED) {
2023 LOG_ERROR("%s: target not halted", __func__);
2024 return ERROR_TARGET_INVALID;
2027 *enabled = target_to_cortex_a8(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
2028 return ERROR_OK;
2031 static int cortex_a8_virt2phys(struct target *target,
2032 uint32_t virt, uint32_t *phys)
2034 uint32_t cb;
2035 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2036 // struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2037 struct armv7a_common *armv7a = target_to_armv7a(target);
2039 /* We assume that virtual address is separated
2040 between user and kernel in Linux style:
2041 0x00000000-0xbfffffff - User space
2042 0xc0000000-0xffffffff - Kernel space */
2043 if( virt < 0xc0000000 ) /* Linux user space */
2044 cortex_a8->current_address_mode = ARM_MODE_USR;
2045 else /* Linux kernel */
2046 cortex_a8->current_address_mode = ARM_MODE_SVC;
2047 uint32_t ret;
2048 int retval = armv4_5_mmu_translate_va(target,
2049 &armv7a->armv4_5_mmu, virt, &cb, &ret);
2050 if (retval != ERROR_OK)
2051 return retval;
2052 /* Reset the flag. We don't want someone else to use it by error */
2053 cortex_a8->current_address_mode = ARM_MODE_ANY;
2055 *phys = ret;
2056 return ERROR_OK;
2059 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
2061 struct target *target = get_current_target(CMD_CTX);
2062 struct armv7a_common *armv7a = target_to_armv7a(target);
2064 return armv4_5_handle_cache_info_command(CMD_CTX,
2065 &armv7a->armv4_5_mmu.armv4_5_cache);
2069 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
2071 struct target *target = get_current_target(CMD_CTX);
2072 if (!target_was_examined(target))
2074 LOG_ERROR("target not examined yet");
2075 return ERROR_FAIL;
2078 return cortex_a8_init_debug_access(target);
2081 static const struct command_registration cortex_a8_exec_command_handlers[] = {
2083 .name = "cache_info",
2084 .handler = cortex_a8_handle_cache_info_command,
2085 .mode = COMMAND_EXEC,
2086 .help = "display information about target caches",
2089 .name = "dbginit",
2090 .handler = cortex_a8_handle_dbginit_command,
2091 .mode = COMMAND_EXEC,
2092 .help = "Initialize core debug",
2094 COMMAND_REGISTRATION_DONE
2096 static const struct command_registration cortex_a8_command_handlers[] = {
2098 .chain = arm_command_handlers,
2101 .chain = armv7a_command_handlers,
2104 .name = "cortex_a8",
2105 .mode = COMMAND_ANY,
2106 .help = "Cortex-A8 command group",
2107 .chain = cortex_a8_exec_command_handlers,
2109 COMMAND_REGISTRATION_DONE
2112 struct target_type cortexa8_target = {
2113 .name = "cortex_a8",
2115 .poll = cortex_a8_poll,
2116 .arch_state = armv7a_arch_state,
2118 .target_request_data = NULL,
2120 .halt = cortex_a8_halt,
2121 .resume = cortex_a8_resume,
2122 .step = cortex_a8_step,
2124 .assert_reset = cortex_a8_assert_reset,
2125 .deassert_reset = cortex_a8_deassert_reset,
2126 .soft_reset_halt = NULL,
2128 /* REVISIT allow exporting VFP3 registers ... */
2129 .get_gdb_reg_list = arm_get_gdb_reg_list,
2131 .read_memory = cortex_a8_read_memory,
2132 .write_memory = cortex_a8_write_memory,
2133 .bulk_write_memory = cortex_a8_bulk_write_memory,
2135 .checksum_memory = arm_checksum_memory,
2136 .blank_check_memory = arm_blank_check_memory,
2138 .run_algorithm = armv4_5_run_algorithm,
2140 .add_breakpoint = cortex_a8_add_breakpoint,
2141 .remove_breakpoint = cortex_a8_remove_breakpoint,
2142 .add_watchpoint = NULL,
2143 .remove_watchpoint = NULL,
2145 .commands = cortex_a8_command_handlers,
2146 .target_create = cortex_a8_target_create,
2147 .init_target = cortex_a8_init_target,
2148 .examine = cortex_a8_examine,
2150 .read_phys_memory = cortex_a8_read_phys_memory,
2151 .write_phys_memory = cortex_a8_write_phys_memory,
2152 .mmu = cortex_a8_mmu,
2153 .virt2phys = cortex_a8_virt2phys,