RTOS Thread awareness support wip
[openocd/openocdswd.git] / src / target / arm_adi_v5.c
blobcd6e5deb7413a57f447931ed1d64abe273aff1a3
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 * Relevant specifications from ARM include:
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t ap)
105 uint32_t new_ap = (ap << 24) & 0xFF000000;
107 if (new_ap != dap->ap_current)
109 dap->ap_current = new_ap;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
128 * @todo Rename to reflect it being specifically a MEM-AP function.
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
140 int retval;
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
151 if (tar != dap->ap_tar_value)
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
166 * Asynchronous (queued) read of a word from memory or a system register.
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
174 * @return ERROR_OK for success. Otherwise a fault code.
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
179 int retval;
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
207 int retval;
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
213 return dap_run(dap);
217 * Asynchronous (queued) write of a word to memory or a system register.
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
225 * @return ERROR_OK for success. Otherwise a fault code.
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
230 int retval;
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
258 int retval = mem_ap_write_u32(dap, address, value);
260 if (retval != ERROR_OK)
261 return retval;
263 return dap_run(dap);
266 /*****************************************************************************
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
270 * Write a buffer in target order (little endian) *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 const uint8_t* pBuffer = buffer;
279 count >>= 2;
280 wcount = count;
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
285 for (writecount = 0; writecount < count; writecount++)
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
291 for (i = 0; i < 4; i++)
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
297 pBuffer += sizeof(uint32_t);
301 while (wcount > 0)
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
312 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313 if (retval != ERROR_OK)
314 return retval;
316 for (writecount = 0; writecount < blocksize; writecount++)
318 retval = dap_queue_ap_write(dap, AP_REG_DRW,
319 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320 if (retval != ERROR_OK)
321 break;
324 if ((retval = dap_run(dap)) == ERROR_OK)
326 wcount = wcount - blocksize;
327 address = address + 4 * blocksize;
328 buffer = buffer + 4 * blocksize;
330 else
332 errorcount++;
335 if (errorcount > 1)
337 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338 return retval;
342 return retval;
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346 const uint8_t *buffer, int count, uint32_t address)
348 int retval = ERROR_OK;
349 int wcount, blocksize, writecount, i;
351 wcount = count >> 1;
353 while (wcount > 0)
355 int nbytes;
357 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
360 if (wcount < blocksize)
361 blocksize = wcount;
363 /* handle unaligned data at 4k boundary */
364 if (blocksize == 0)
365 blocksize = 1;
367 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368 if (retval != ERROR_OK)
369 return retval;
370 writecount = blocksize;
374 nbytes = MIN((writecount << 1), 4);
376 if (nbytes < 4)
378 retval = mem_ap_write_buf_u16(dap, buffer,
379 nbytes, address);
380 if (retval != ERROR_OK)
382 LOG_WARNING("Block write error address "
383 "0x%" PRIx32 ", count 0x%x",
384 address, count);
385 return retval;
388 address += nbytes >> 1;
390 else
392 uint32_t outvalue;
393 memcpy(&outvalue, buffer, sizeof(uint32_t));
395 for (i = 0; i < nbytes; i++)
397 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398 outvalue >>= 8;
399 address++;
402 memcpy(&outvalue, buffer, sizeof(uint32_t));
403 retval = dap_queue_ap_write(dap,
404 AP_REG_DRW, outvalue);
405 if (retval != ERROR_OK)
406 break;
408 if ((retval = dap_run(dap)) != ERROR_OK)
410 LOG_WARNING("Block write error address "
411 "0x%" PRIx32 ", count 0x%x",
412 address, count);
413 return retval;
417 buffer += nbytes >> 1;
418 writecount -= nbytes >> 1;
420 } while (writecount);
421 wcount -= blocksize;
424 return retval;
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
429 int retval = ERROR_OK;
431 if (count >= 4)
432 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
434 while (count > 0)
436 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437 if (retval != ERROR_OK)
438 return retval;
439 uint16_t svalue;
440 memcpy(&svalue, buffer, sizeof(uint16_t));
441 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443 if (retval != ERROR_OK)
444 break;
446 retval = dap_run(dap);
447 if (retval != ERROR_OK)
448 break;
450 count -= 2;
451 address += 2;
452 buffer += 2;
455 return retval;
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459 const uint8_t *buffer, int count, uint32_t address)
461 int retval = ERROR_OK;
462 int wcount, blocksize, writecount, i;
464 wcount = count;
466 while (wcount > 0)
468 int nbytes;
470 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
473 if (wcount < blocksize)
474 blocksize = wcount;
476 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477 if (retval != ERROR_OK)
478 return retval;
479 writecount = blocksize;
483 nbytes = MIN(writecount, 4);
485 if (nbytes < 4)
487 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488 if (retval != ERROR_OK)
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return retval;
496 address += nbytes;
498 else
500 uint32_t outvalue;
501 memcpy(&outvalue, buffer, sizeof(uint32_t));
503 for (i = 0; i < nbytes; i++)
505 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506 outvalue >>= 8;
507 address++;
510 memcpy(&outvalue, buffer, sizeof(uint32_t));
511 retval = dap_queue_ap_write(dap,
512 AP_REG_DRW, outvalue);
513 if (retval != ERROR_OK)
514 break;
516 if ((retval = dap_run(dap)) != ERROR_OK)
518 LOG_WARNING("Block write error address "
519 "0x%" PRIx32 ", count 0x%x",
520 address, count);
521 return retval;
525 buffer += nbytes;
526 writecount -= nbytes;
528 } while (writecount);
529 wcount -= blocksize;
532 return retval;
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
537 int retval = ERROR_OK;
539 if (count >= 4)
540 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
542 while (count > 0)
544 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545 if (retval != ERROR_OK)
546 return retval;
547 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549 if (retval != ERROR_OK)
550 break;
552 retval = dap_run(dap);
553 if (retval != ERROR_OK)
554 break;
556 count--;
557 address++;
558 buffer++;
561 return retval;
564 /* FIXME don't import ... this is a temporary workaround for the
565 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
572 * Synchronously read a block of 32-bit words into a buffer
573 * @param dap The DAP connected to the MEM-AP.
574 * @param buffer where the words will be stored (in host byte order).
575 * @param count How many words to read.
576 * @param address Memory address from which to read words; all the
577 * words must be readable by the currently selected MEM-AP.
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580 int count, uint32_t address)
582 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583 uint32_t adr = address;
584 uint8_t* pBuffer = buffer;
586 count >>= 2;
587 wcount = count;
589 while (wcount > 0)
591 /* Adjust to read blocks within boundaries aligned to the
592 * TAR autoincrement size (at least 2^10). Autoincrement
593 * mode avoids an extra per-word roundtrip to update TAR.
595 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596 address);
597 if (wcount < blocksize)
598 blocksize = wcount;
600 /* handle unaligned data at 4k boundary */
601 if (blocksize == 0)
602 blocksize = 1;
604 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605 address);
606 if (retval != ERROR_OK)
607 return retval;
609 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610 * so this routine becomes transport-neutral. Be careful
611 * not to cause performance problems with JTAG; would it
612 * suffice to loop over dap_queue_ap_read(), or would that
613 * be slower when JTAG is the chosen transport?
616 /* Scan out first read */
617 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618 DPAP_READ, 0, NULL, NULL);
619 if (retval != ERROR_OK)
620 return retval;
621 for (readcount = 0; readcount < blocksize - 1; readcount++)
623 /* Scan out next read; scan in posted value for the
624 * previous one. Assumes read is acked "OK/FAULT",
625 * and CTRL_STAT says that meant "OK".
627 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628 DPAP_READ, 0, buffer + 4 * readcount,
629 &dap->ack);
630 if (retval != ERROR_OK)
631 return retval;
634 /* Scan in last posted value; RDBUFF has no other effect,
635 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
637 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638 DPAP_READ, 0, buffer + 4 * readcount,
639 &dap->ack);
640 if (retval != ERROR_OK)
641 return retval;
643 retval = dap_run(dap);
644 if (retval != ERROR_OK)
646 errorcount++;
647 if (errorcount <= 1)
649 /* try again */
650 continue;
652 LOG_WARNING("Block read error address 0x%" PRIx32, address);
653 return retval;
655 wcount = wcount - blocksize;
656 address += 4 * blocksize;
657 buffer += 4 * blocksize;
660 /* if we have an unaligned access - reorder data */
661 if (adr & 0x3u)
663 for (readcount = 0; readcount < count; readcount++)
665 int i;
666 uint32_t data;
667 memcpy(&data, pBuffer, sizeof(uint32_t));
669 for (i = 0; i < 4; i++)
671 *((uint8_t*)pBuffer) =
672 (data >> 8 * (adr & 0x3));
673 pBuffer++;
674 adr++;
679 return retval;
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683 uint8_t *buffer, int count, uint32_t address)
685 uint32_t invalue;
686 int retval = ERROR_OK;
687 int wcount, blocksize, readcount, i;
689 wcount = count >> 1;
691 while (wcount > 0)
693 int nbytes;
695 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697 if (wcount < blocksize)
698 blocksize = wcount;
700 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701 if (retval != ERROR_OK)
702 return retval;
704 /* handle unaligned data at 4k boundary */
705 if (blocksize == 0)
706 blocksize = 1;
707 readcount = blocksize;
711 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712 if (retval != ERROR_OK)
713 return retval;
714 if ((retval = dap_run(dap)) != ERROR_OK)
716 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717 return retval;
720 nbytes = MIN((readcount << 1), 4);
722 for (i = 0; i < nbytes; i++)
724 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725 buffer++;
726 address++;
729 readcount -= (nbytes >> 1);
730 } while (readcount);
731 wcount -= blocksize;
734 return retval;
738 * Synchronously read a block of 16-bit halfwords into a buffer
739 * @param dap The DAP connected to the MEM-AP.
740 * @param buffer where the halfwords will be stored (in host byte order).
741 * @param count How many halfwords to read.
742 * @param address Memory address from which to read words; all the
743 * words must be readable by the currently selected MEM-AP.
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746 int count, uint32_t address)
748 uint32_t invalue, i;
749 int retval = ERROR_OK;
751 if (count >= 4)
752 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
754 while (count > 0)
756 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757 if (retval != ERROR_OK)
758 return retval;
759 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760 if (retval != ERROR_OK)
761 break;
763 retval = dap_run(dap);
764 if (retval != ERROR_OK)
765 break;
767 if (address & 0x1)
769 for (i = 0; i < 2; i++)
771 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772 buffer++;
773 address++;
776 else
778 uint16_t svalue = (invalue >> 8 * (address & 0x3));
779 memcpy(buffer, &svalue, sizeof(uint16_t));
780 address += 2;
781 buffer += 2;
783 count -= 2;
786 return retval;
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
792 * The solution is to arrange for a large out/in scan in this loop and
793 * and convert data afterwards.
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796 uint8_t *buffer, int count, uint32_t address)
798 uint32_t invalue;
799 int retval = ERROR_OK;
800 int wcount, blocksize, readcount, i;
802 wcount = count;
804 while (wcount > 0)
806 int nbytes;
808 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
811 if (wcount < blocksize)
812 blocksize = wcount;
814 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815 if (retval != ERROR_OK)
816 return retval;
817 readcount = blocksize;
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (retval != ERROR_OK)
823 return retval;
824 if ((retval = dap_run(dap)) != ERROR_OK)
826 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827 return retval;
830 nbytes = MIN(readcount, 4);
832 for (i = 0; i < nbytes; i++)
834 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835 buffer++;
836 address++;
839 readcount -= nbytes;
840 } while (readcount);
841 wcount -= blocksize;
844 return retval;
848 * Synchronously read a block of bytes into a buffer
849 * @param dap The DAP connected to the MEM-AP.
850 * @param buffer where the bytes will be stored.
851 * @param count How many bytes to read.
852 * @param address Memory address from which to read data; all the
853 * data must be readable by the currently selected MEM-AP.
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856 int count, uint32_t address)
858 uint32_t invalue;
859 int retval = ERROR_OK;
861 if (count >= 4)
862 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
864 while (count > 0)
866 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867 if (retval != ERROR_OK)
868 return retval;
869 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870 if (retval != ERROR_OK)
871 return retval;
872 retval = dap_run(dap);
873 if (retval != ERROR_OK)
874 break;
876 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877 count--;
878 address++;
879 buffer++;
882 return retval;
885 /*--------------------------------------------------------------------*/
886 /* Wrapping function with selection of AP */
887 /*--------------------------------------------------------------------*/
888 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
889 uint32_t address, uint32_t *value)
891 dap_ap_select(swjdp, ap);
892 return mem_ap_read_u32(swjdp, address, value);
895 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
896 uint32_t address, uint32_t value)
898 dap_ap_select(swjdp, ap);
899 return mem_ap_write_u32(swjdp, address, value);
902 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
903 uint32_t address, uint32_t *value)
905 dap_ap_select(swjdp, ap);
906 return mem_ap_read_atomic_u32(swjdp, address, value);
909 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
910 uint32_t address, uint32_t value)
912 dap_ap_select(swjdp, ap);
913 return mem_ap_write_atomic_u32(swjdp, address, value);
916 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
917 uint8_t *buffer, int count, uint32_t address)
919 dap_ap_select(swjdp, ap);
920 return mem_ap_read_buf_u8(swjdp, buffer, count, address);
923 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
924 uint8_t *buffer, int count, uint32_t address)
926 dap_ap_select(swjdp, ap);
927 return mem_ap_read_buf_u16(swjdp, buffer, count, address);
930 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
931 uint8_t *buffer, int count, uint32_t address)
933 dap_ap_select(swjdp, ap);
934 return mem_ap_read_buf_u32(swjdp, buffer, count, address);
937 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
938 const uint8_t *buffer, int count, uint32_t address)
940 dap_ap_select(swjdp, ap);
941 return mem_ap_write_buf_u8(swjdp, buffer, count, address);
944 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
945 const uint8_t *buffer, int count, uint32_t address)
947 dap_ap_select(swjdp, ap);
948 return mem_ap_write_buf_u16(swjdp, buffer, count, address);
951 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
952 const uint8_t *buffer, int count, uint32_t address)
954 dap_ap_select(swjdp, ap);
955 return mem_ap_write_buf_u32(swjdp, buffer, count, address);
959 /*--------------------------------------------------------------------------*/
962 /* FIXME don't import ... just initialize as
963 * part of DAP transport setup
965 extern const struct dap_ops jtag_dp_ops;
967 /*--------------------------------------------------------------------------*/
970 * Initialize a DAP. This sets up the power domains, prepares the DP
971 * for further use, and arranges to use AP #0 for all AP operations
972 * until dap_ap-select() changes that policy.
974 * @param dap The DAP being initialized.
976 * @todo Rename this. We also need an initialization scheme which account
977 * for SWD transports not just JTAG; that will need to address differences
978 * in layering. (JTAG is useful without any debug target; but not SWD.)
979 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
981 int ahbap_debugport_init(struct adiv5_dap *dap)
983 uint32_t ctrlstat;
984 int cnt = 0;
985 int retval;
987 LOG_DEBUG(" ");
989 /* JTAG-DP or SWJ-DP, in JTAG mode
990 * ... for SWD mode this is patched as part
991 * of link switchover
993 if (!dap->ops)
994 dap->ops = &jtag_dp_ops;
996 /* Default MEM-AP setup.
998 * REVISIT AP #0 may be an inappropriate default for this.
999 * Should we probe, or take a hint from the caller?
1000 * Presumably we can ignore the possibility of multiple APs.
1002 dap->ap_current = !0;
1003 dap_ap_select(dap, 0);
1005 /* DP initialization */
1007 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1008 if (retval != ERROR_OK)
1009 return retval;
1011 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1012 if (retval != ERROR_OK)
1013 return retval;
1015 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1016 if (retval != ERROR_OK)
1017 return retval;
1019 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1020 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1021 if (retval != ERROR_OK)
1022 return retval;
1024 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1025 if (retval != ERROR_OK)
1026 return retval;
1027 if ((retval = dap_run(dap)) != ERROR_OK)
1028 return retval;
1030 /* Check that we have debug power domains activated */
1031 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1033 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1034 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1035 if (retval != ERROR_OK)
1036 return retval;
1037 if ((retval = dap_run(dap)) != ERROR_OK)
1038 return retval;
1039 alive_sleep(10);
1042 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1044 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1045 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1046 if (retval != ERROR_OK)
1047 return retval;
1048 if ((retval = dap_run(dap)) != ERROR_OK)
1049 return retval;
1050 alive_sleep(10);
1053 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1054 if (retval != ERROR_OK)
1055 return retval;
1056 /* With debug power on we can activate OVERRUN checking */
1057 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1058 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1059 if (retval != ERROR_OK)
1060 return retval;
1061 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1062 if (retval != ERROR_OK)
1063 return retval;
1065 return ERROR_OK;
1068 /* CID interpretation -- see ARM IHI 0029B section 3
1069 * and ARM IHI 0031A table 13-3.
1071 static const char *class_description[16] ={
1072 "Reserved", "ROM table", "Reserved", "Reserved",
1073 "Reserved", "Reserved", "Reserved", "Reserved",
1074 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1075 "Reserved", "OptimoDE DESS",
1076 "Generic IP component", "PrimeCell or System component"
1079 static bool
1080 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1082 return cid3 == 0xb1 && cid2 == 0x05
1083 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1086 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1087 uint32_t *out_dbgbase, uint32_t *out_apid)
1089 uint32_t ap_old;
1090 int retval;
1091 uint32_t dbgbase, apid, idcode;
1093 /* AP address is in bits 31:24 of DP_SELECT */
1094 if (ap >= 256)
1095 return ERROR_INVALID_ARGUMENTS;
1097 ap_old = dap->ap_current;
1098 dap_ap_select(dap, ap);
1100 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1101 if (retval != ERROR_OK)
1102 return retval;
1103 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1104 if (retval != ERROR_OK)
1105 return retval;
1106 retval = dap_run(dap);
1107 if (retval != ERROR_OK)
1108 return retval;
1110 /* Excavate the device ID code */
1111 struct jtag_tap *tap = dap->jtag_info->tap;
1112 while (tap != NULL) {
1113 if (tap->hasidcode) {
1114 idcode = tap->idcode;
1115 break;
1117 tap = tap->next_tap;
1119 if (tap == NULL || !tap->hasidcode)
1120 return ERROR_OK;
1122 dap_ap_select(dap, ap_old);
1124 /* The asignment happens only here to prevent modification of these
1125 * values before they are certain. */
1126 *out_dbgbase = dbgbase;
1127 *out_apid = apid;
1129 return ERROR_OK;
1132 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1133 uint32_t dbgbase, uint8_t type, uint32_t *addr)
1135 uint32_t ap_old;
1136 uint32_t romentry, entry_offset = 0, component_base, devtype;
1137 int retval = ERROR_FAIL;
1139 if (ap >= 256)
1140 return ERROR_INVALID_ARGUMENTS;
1142 ap_old = dap->ap_current;
1143 dap_ap_select(dap, ap);
1147 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1148 entry_offset, &romentry);
1149 if (retval != ERROR_OK)
1150 return retval;
1152 component_base = (dbgbase & 0xFFFFF000)
1153 + (romentry & 0xFFFFF000);
1155 if (romentry & 0x1) {
1156 retval = mem_ap_read_atomic_u32(dap,
1157 (component_base & 0xfffff000) | 0xfcc,
1158 &devtype);
1159 if ((devtype & 0xff) == type) {
1160 *addr = component_base;
1161 retval = ERROR_OK;
1162 break;
1165 entry_offset += 4;
1166 } while (romentry > 0);
1168 dap_ap_select(dap, ap_old);
1170 return retval;
1173 static int dap_info_command(struct command_context *cmd_ctx,
1174 struct adiv5_dap *dap, int ap)
1176 int retval;
1177 uint32_t dbgbase, apid;
1178 int romtable_present = 0;
1179 uint8_t mem_ap;
1180 uint32_t ap_old;
1182 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1183 if (retval != ERROR_OK)
1184 return retval;
1186 ap_old = dap->ap_current;
1187 dap_ap_select(dap, ap);
1189 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1190 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1191 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1192 if (apid)
1194 switch (apid&0x0F)
1196 case 0:
1197 command_print(cmd_ctx, "\tType is JTAG-AP");
1198 break;
1199 case 1:
1200 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1201 break;
1202 case 2:
1203 command_print(cmd_ctx, "\tType is MEM-AP APB");
1204 break;
1205 default:
1206 command_print(cmd_ctx, "\tUnknown AP type");
1207 break;
1210 /* NOTE: a MEM-AP may have a single CoreSight component that's
1211 * not a ROM table ... or have no such components at all.
1213 if (mem_ap)
1214 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1215 dbgbase);
1217 else
1219 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1222 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1223 if (romtable_present)
1225 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1226 uint16_t entry_offset;
1228 /* bit 16 of apid indicates a memory access port */
1229 if (dbgbase & 0x02)
1230 command_print(cmd_ctx, "\tValid ROM table present");
1231 else
1232 command_print(cmd_ctx, "\tROM table in legacy format");
1234 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1235 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1236 if (retval != ERROR_OK)
1237 return retval;
1238 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1239 if (retval != ERROR_OK)
1240 return retval;
1241 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1242 if (retval != ERROR_OK)
1243 return retval;
1244 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1245 if (retval != ERROR_OK)
1246 return retval;
1247 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1248 if (retval != ERROR_OK)
1249 return retval;
1250 retval = dap_run(dap);
1251 if (retval != ERROR_OK)
1252 return retval;
1254 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1255 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1256 ", CID2 0x%2.2x"
1257 ", CID1 0x%2.2x"
1258 ", CID0 0x%2.2x",
1259 (unsigned) cid3, (unsigned)cid2,
1260 (unsigned) cid1, (unsigned) cid0);
1261 if (memtype & 0x01)
1262 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1263 else
1264 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1265 "Dedicated debug bus.");
1267 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1268 entry_offset = 0;
1271 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1272 if (retval != ERROR_OK)
1273 return retval;
1274 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1275 if (romentry&0x01)
1277 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1278 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1279 uint32_t component_base;
1280 unsigned part_num;
1281 char *type, *full;
1283 component_base = (dbgbase & 0xFFFFF000)
1284 + (romentry & 0xFFFFF000);
1286 /* IDs are in last 4K section */
1289 retval = mem_ap_read_atomic_u32(dap,
1290 component_base + 0xFE0, &c_pid0);
1291 if (retval != ERROR_OK)
1292 return retval;
1293 c_pid0 &= 0xff;
1294 retval = mem_ap_read_atomic_u32(dap,
1295 component_base + 0xFE4, &c_pid1);
1296 if (retval != ERROR_OK)
1297 return retval;
1298 c_pid1 &= 0xff;
1299 retval = mem_ap_read_atomic_u32(dap,
1300 component_base + 0xFE8, &c_pid2);
1301 if (retval != ERROR_OK)
1302 return retval;
1303 c_pid2 &= 0xff;
1304 retval = mem_ap_read_atomic_u32(dap,
1305 component_base + 0xFEC, &c_pid3);
1306 if (retval != ERROR_OK)
1307 return retval;
1308 c_pid3 &= 0xff;
1309 retval = mem_ap_read_atomic_u32(dap,
1310 component_base + 0xFD0, &c_pid4);
1311 if (retval != ERROR_OK)
1312 return retval;
1313 c_pid4 &= 0xff;
1315 retval = mem_ap_read_atomic_u32(dap,
1316 component_base + 0xFF0, &c_cid0);
1317 if (retval != ERROR_OK)
1318 return retval;
1319 c_cid0 &= 0xff;
1320 retval = mem_ap_read_atomic_u32(dap,
1321 component_base + 0xFF4, &c_cid1);
1322 if (retval != ERROR_OK)
1323 return retval;
1324 c_cid1 &= 0xff;
1325 retval = mem_ap_read_atomic_u32(dap,
1326 component_base + 0xFF8, &c_cid2);
1327 if (retval != ERROR_OK)
1328 return retval;
1329 c_cid2 &= 0xff;
1330 retval = mem_ap_read_atomic_u32(dap,
1331 component_base + 0xFFC, &c_cid3);
1332 if (retval != ERROR_OK)
1333 return retval;
1334 c_cid3 &= 0xff;
1337 command_print(cmd_ctx,
1338 "\t\tComponent base address 0x%" PRIx32
1339 ", start address 0x%" PRIx32,
1340 component_base,
1341 /* component may take multiple 4K pages */
1342 component_base - 0x1000*(c_pid4 >> 4));
1343 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1344 (int) (c_cid1 >> 4) & 0xf,
1345 /* See ARM IHI 0029B Table 3-3 */
1346 class_description[(c_cid1 >> 4) & 0xf]);
1348 /* CoreSight component? */
1349 if (((c_cid1 >> 4) & 0x0f) == 9) {
1350 uint32_t devtype;
1351 unsigned minor;
1352 char *major = "Reserved", *subtype = "Reserved";
1354 retval = mem_ap_read_atomic_u32(dap,
1355 (component_base & 0xfffff000) | 0xfcc,
1356 &devtype);
1357 if (retval != ERROR_OK)
1358 return retval;
1359 minor = (devtype >> 4) & 0x0f;
1360 switch (devtype & 0x0f) {
1361 case 0:
1362 major = "Miscellaneous";
1363 switch (minor) {
1364 case 0:
1365 subtype = "other";
1366 break;
1367 case 4:
1368 subtype = "Validation component";
1369 break;
1371 break;
1372 case 1:
1373 major = "Trace Sink";
1374 switch (minor) {
1375 case 0:
1376 subtype = "other";
1377 break;
1378 case 1:
1379 subtype = "Port";
1380 break;
1381 case 2:
1382 subtype = "Buffer";
1383 break;
1385 break;
1386 case 2:
1387 major = "Trace Link";
1388 switch (minor) {
1389 case 0:
1390 subtype = "other";
1391 break;
1392 case 1:
1393 subtype = "Funnel, router";
1394 break;
1395 case 2:
1396 subtype = "Filter";
1397 break;
1398 case 3:
1399 subtype = "FIFO, buffer";
1400 break;
1402 break;
1403 case 3:
1404 major = "Trace Source";
1405 switch (minor) {
1406 case 0:
1407 subtype = "other";
1408 break;
1409 case 1:
1410 subtype = "Processor";
1411 break;
1412 case 2:
1413 subtype = "DSP";
1414 break;
1415 case 3:
1416 subtype = "Engine/Coprocessor";
1417 break;
1418 case 4:
1419 subtype = "Bus";
1420 break;
1422 break;
1423 case 4:
1424 major = "Debug Control";
1425 switch (minor) {
1426 case 0:
1427 subtype = "other";
1428 break;
1429 case 1:
1430 subtype = "Trigger Matrix";
1431 break;
1432 case 2:
1433 subtype = "Debug Auth";
1434 break;
1436 break;
1437 case 5:
1438 major = "Debug Logic";
1439 switch (minor) {
1440 case 0:
1441 subtype = "other";
1442 break;
1443 case 1:
1444 subtype = "Processor";
1445 break;
1446 case 2:
1447 subtype = "DSP";
1448 break;
1449 case 3:
1450 subtype = "Engine/Coprocessor";
1451 break;
1453 break;
1455 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1456 (unsigned) (devtype & 0xff),
1457 major, subtype);
1458 /* REVISIT also show 0xfc8 DevId */
1461 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1462 command_print(cmd_ctx,
1463 "\t\tCID3 0%2.2x"
1464 ", CID2 0%2.2x"
1465 ", CID1 0%2.2x"
1466 ", CID0 0%2.2x",
1467 (int) c_cid3,
1468 (int) c_cid2,
1469 (int)c_cid1,
1470 (int)c_cid0);
1471 command_print(cmd_ctx,
1472 "\t\tPeripheral ID[4..0] = hex "
1473 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1474 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1475 (int) c_pid1, (int) c_pid0);
1477 /* Part number interpretations are from Cortex
1478 * core specs, the CoreSight components TRM
1479 * (ARM DDI 0314H), CoreSight System Design
1480 * Guide (ARM DGI 0012D) and ETM specs; also
1481 * from chip observation (e.g. TI SDTI).
1483 part_num = (c_pid0 & 0xff);
1484 part_num |= (c_pid1 & 0x0f) << 8;
1485 switch (part_num) {
1486 case 0x000:
1487 type = "Cortex-M3 NVIC";
1488 full = "(Interrupt Controller)";
1489 break;
1490 case 0x001:
1491 type = "Cortex-M3 ITM";
1492 full = "(Instrumentation Trace Module)";
1493 break;
1494 case 0x002:
1495 type = "Cortex-M3 DWT";
1496 full = "(Data Watchpoint and Trace)";
1497 break;
1498 case 0x003:
1499 type = "Cortex-M3 FBP";
1500 full = "(Flash Patch and Breakpoint)";
1501 break;
1502 case 0x00d:
1503 type = "CoreSight ETM11";
1504 full = "(Embedded Trace)";
1505 break;
1506 // case 0x113: what?
1507 case 0x120: /* from OMAP3 memmap */
1508 type = "TI SDTI";
1509 full = "(System Debug Trace Interface)";
1510 break;
1511 case 0x343: /* from OMAP3 memmap */
1512 type = "TI DAPCTL";
1513 full = "";
1514 break;
1515 case 0x906:
1516 type = "Coresight CTI";
1517 full = "(Cross Trigger)";
1518 break;
1519 case 0x907:
1520 type = "Coresight ETB";
1521 full = "(Trace Buffer)";
1522 break;
1523 case 0x908:
1524 type = "Coresight CSTF";
1525 full = "(Trace Funnel)";
1526 break;
1527 case 0x910:
1528 type = "CoreSight ETM9";
1529 full = "(Embedded Trace)";
1530 break;
1531 case 0x912:
1532 type = "Coresight TPIU";
1533 full = "(Trace Port Interface Unit)";
1534 break;
1535 case 0x921:
1536 type = "Cortex-A8 ETM";
1537 full = "(Embedded Trace)";
1538 break;
1539 case 0x922:
1540 type = "Cortex-A8 CTI";
1541 full = "(Cross Trigger)";
1542 break;
1543 case 0x923:
1544 type = "Cortex-M3 TPIU";
1545 full = "(Trace Port Interface Unit)";
1546 break;
1547 case 0x924:
1548 type = "Cortex-M3 ETM";
1549 full = "(Embedded Trace)";
1550 break;
1551 case 0x930:
1552 type = "Cortex-R4 ETM";
1553 full = "(Embedded Trace)";
1554 break;
1555 case 0xc08:
1556 type = "Cortex-A8 Debug";
1557 full = "(Debug Unit)";
1558 break;
1559 default:
1560 type = "-*- unrecognized -*-";
1561 full = "";
1562 break;
1564 command_print(cmd_ctx, "\t\tPart is %s %s",
1565 type, full);
1567 else
1569 if (romentry)
1570 command_print(cmd_ctx, "\t\tComponent not present");
1571 else
1572 command_print(cmd_ctx, "\t\tEnd of ROM table");
1574 entry_offset += 4;
1575 } while (romentry > 0);
1577 else
1579 command_print(cmd_ctx, "\tNo ROM table present");
1581 dap_ap_select(dap, ap_old);
1583 return ERROR_OK;
1586 COMMAND_HANDLER(handle_dap_info_command)
1588 struct target *target = get_current_target(CMD_CTX);
1589 struct arm *arm = target_to_arm(target);
1590 struct adiv5_dap *dap = arm->dap;
1591 uint32_t apsel;
1593 switch (CMD_ARGC) {
1594 case 0:
1595 apsel = dap->apsel;
1596 break;
1597 case 1:
1598 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1599 break;
1600 default:
1601 return ERROR_COMMAND_SYNTAX_ERROR;
1604 return dap_info_command(CMD_CTX, dap, apsel);
1607 COMMAND_HANDLER(dap_baseaddr_command)
1609 struct target *target = get_current_target(CMD_CTX);
1610 struct arm *arm = target_to_arm(target);
1611 struct adiv5_dap *dap = arm->dap;
1613 uint32_t apsel, baseaddr;
1614 int retval;
1616 switch (CMD_ARGC) {
1617 case 0:
1618 apsel = dap->apsel;
1619 break;
1620 case 1:
1621 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1622 /* AP address is in bits 31:24 of DP_SELECT */
1623 if (apsel >= 256)
1624 return ERROR_INVALID_ARGUMENTS;
1625 break;
1626 default:
1627 return ERROR_COMMAND_SYNTAX_ERROR;
1630 dap_ap_select(dap, apsel);
1632 /* NOTE: assumes we're talking to a MEM-AP, which
1633 * has a base address. There are other kinds of AP,
1634 * though they're not common for now. This should
1635 * use the ID register to verify it's a MEM-AP.
1637 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1638 if (retval != ERROR_OK)
1639 return retval;
1640 retval = dap_run(dap);
1641 if (retval != ERROR_OK)
1642 return retval;
1644 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1646 return retval;
1649 COMMAND_HANDLER(dap_memaccess_command)
1651 struct target *target = get_current_target(CMD_CTX);
1652 struct arm *arm = target_to_arm(target);
1653 struct adiv5_dap *dap = arm->dap;
1655 uint32_t memaccess_tck;
1657 switch (CMD_ARGC) {
1658 case 0:
1659 memaccess_tck = dap->memaccess_tck;
1660 break;
1661 case 1:
1662 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1663 break;
1664 default:
1665 return ERROR_COMMAND_SYNTAX_ERROR;
1667 dap->memaccess_tck = memaccess_tck;
1669 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1670 dap->memaccess_tck);
1672 return ERROR_OK;
1675 COMMAND_HANDLER(dap_apsel_command)
1677 struct target *target = get_current_target(CMD_CTX);
1678 struct arm *arm = target_to_arm(target);
1679 struct adiv5_dap *dap = arm->dap;
1681 uint32_t apsel, apid;
1682 int retval;
1684 switch (CMD_ARGC) {
1685 case 0:
1686 apsel = 0;
1687 break;
1688 case 1:
1689 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1690 /* AP address is in bits 31:24 of DP_SELECT */
1691 if (apsel >= 256)
1692 return ERROR_INVALID_ARGUMENTS;
1693 break;
1694 default:
1695 return ERROR_COMMAND_SYNTAX_ERROR;
1698 dap->apsel = apsel;
1699 dap_ap_select(dap, apsel);
1701 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1702 if (retval != ERROR_OK)
1703 return retval;
1704 retval = dap_run(dap);
1705 if (retval != ERROR_OK)
1706 return retval;
1708 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1709 apsel, apid);
1711 return retval;
1714 COMMAND_HANDLER(dap_apid_command)
1716 struct target *target = get_current_target(CMD_CTX);
1717 struct arm *arm = target_to_arm(target);
1718 struct adiv5_dap *dap = arm->dap;
1720 uint32_t apsel, apid;
1721 int retval;
1723 switch (CMD_ARGC) {
1724 case 0:
1725 apsel = dap->apsel;
1726 break;
1727 case 1:
1728 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1729 /* AP address is in bits 31:24 of DP_SELECT */
1730 if (apsel >= 256)
1731 return ERROR_INVALID_ARGUMENTS;
1732 break;
1733 default:
1734 return ERROR_COMMAND_SYNTAX_ERROR;
1737 dap_ap_select(dap, apsel);
1739 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1740 if (retval != ERROR_OK)
1741 return retval;
1742 retval = dap_run(dap);
1743 if (retval != ERROR_OK)
1744 return retval;
1746 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1748 return retval;
1751 static const struct command_registration dap_commands[] = {
1753 .name = "info",
1754 .handler = handle_dap_info_command,
1755 .mode = COMMAND_EXEC,
1756 .help = "display ROM table for MEM-AP "
1757 "(default currently selected AP)",
1758 .usage = "[ap_num]",
1761 .name = "apsel",
1762 .handler = dap_apsel_command,
1763 .mode = COMMAND_EXEC,
1764 .help = "Set the currently selected AP (default 0) "
1765 "and display the result",
1766 .usage = "[ap_num]",
1769 .name = "apid",
1770 .handler = dap_apid_command,
1771 .mode = COMMAND_EXEC,
1772 .help = "return ID register from AP "
1773 "(default currently selected AP)",
1774 .usage = "[ap_num]",
1777 .name = "baseaddr",
1778 .handler = dap_baseaddr_command,
1779 .mode = COMMAND_EXEC,
1780 .help = "return debug base address from MEM-AP "
1781 "(default currently selected AP)",
1782 .usage = "[ap_num]",
1785 .name = "memaccess",
1786 .handler = dap_memaccess_command,
1787 .mode = COMMAND_EXEC,
1788 .help = "set/get number of extra tck for MEM-AP memory "
1789 "bus access [0-255]",
1790 .usage = "[cycles]",
1792 COMMAND_REGISTRATION_DONE
1795 const struct command_registration dap_command_handlers[] = {
1797 .name = "dap",
1798 .mode = COMMAND_EXEC,
1799 .help = "DAP command group",
1800 .chain = dap_commands,
1802 COMMAND_REGISTRATION_DONE