arm: add error propagation to generic get_ttb fn
[openocd/openocdswd.git] / src / target / embeddedice.c
blob7ef4ac421b5aee57f69a245baaa6ca45ed63c6c7
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
30 #include "embeddedice.h"
31 #include "register.h"
33 /**
34 * @file
36 * This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
37 * module found on scan chain 2 in ARM7, ARM9, and some other families
38 * of ARM cores. The module is called "EmbeddedICE-RT" if it has
39 * monitor mode support.
41 * EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
42 * Communications Channel (DCC) used to read or write 32-bit words to
43 * OpenOCD-aware code running on the target CPU.
44 * Newer modules also include vector catch hardware. Some versions
45 * support hardware single-stepping, "monitor mode" debug (which is not
46 * currently supported by OpenOCD), or extended reporting on why the
47 * core entered debug mode.
50 static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf);
53 * From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
55 static const struct {
56 char *name;
57 unsigned short addr;
58 unsigned short width;
59 } eice_regs[] = {
60 [EICE_DBG_CTRL] = {
61 .name = "debug_ctrl",
62 .addr = 0,
63 /* width is assigned based on EICE version */
65 [EICE_DBG_STAT] = {
66 .name = "debug_status",
67 .addr = 1,
68 /* width is assigned based on EICE version */
70 [EICE_COMMS_CTRL] = {
71 .name = "comms_ctrl",
72 .addr = 4,
73 .width = 6,
75 [EICE_COMMS_DATA] = {
76 .name = "comms_data",
77 .addr = 5,
78 .width = 32,
80 [EICE_W0_ADDR_VALUE] = {
81 .name = "watch_0_addr_value",
82 .addr = 8,
83 .width = 32,
85 [EICE_W0_ADDR_MASK] = {
86 .name = "watch_0_addr_mask",
87 .addr = 9,
88 .width = 32,
90 [EICE_W0_DATA_VALUE ] = {
91 .name = "watch_0_data_value",
92 .addr = 10,
93 .width = 32,
95 [EICE_W0_DATA_MASK] = {
96 .name = "watch_0_data_mask",
97 .addr = 11,
98 .width = 32,
100 [EICE_W0_CONTROL_VALUE] = {
101 .name = "watch_0_control_value",
102 .addr = 12,
103 .width = 9,
105 [EICE_W0_CONTROL_MASK] = {
106 .name = "watch_0_control_mask",
107 .addr = 13,
108 .width = 8,
110 [EICE_W1_ADDR_VALUE] = {
111 .name = "watch_1_addr_value",
112 .addr = 16,
113 .width = 32,
115 [EICE_W1_ADDR_MASK] = {
116 .name = "watch_1_addr_mask",
117 .addr = 17,
118 .width = 32,
120 [EICE_W1_DATA_VALUE] = {
121 .name = "watch_1_data_value",
122 .addr = 18,
123 .width = 32,
125 [EICE_W1_DATA_MASK] = {
126 .name = "watch_1_data_mask",
127 .addr = 19,
128 .width = 32,
130 [EICE_W1_CONTROL_VALUE] = {
131 .name = "watch_1_control_value",
132 .addr = 20,
133 .width = 9,
135 [EICE_W1_CONTROL_MASK] = {
136 .name = "watch_1_control_mask",
137 .addr = 21,
138 .width = 8,
140 /* vector_catch isn't always present */
141 [EICE_VEC_CATCH] = {
142 .name = "vector_catch",
143 .addr = 2,
144 .width = 8,
149 static int embeddedice_get_reg(struct reg *reg)
151 int retval;
153 if ((retval = embeddedice_read_reg(reg)) != ERROR_OK)
154 LOG_ERROR("error queueing EmbeddedICE register read");
155 else if ((retval = jtag_execute_queue()) != ERROR_OK)
156 LOG_ERROR("EmbeddedICE register read failed");
158 return retval;
161 static const struct reg_arch_type eice_reg_type = {
162 .get = embeddedice_get_reg,
163 .set = embeddedice_set_reg_w_exec,
167 * Probe EmbeddedICE module and set up local records of its registers.
168 * Different versions of the modules have different capabilities, such as
169 * hardware support for vector_catch, single stepping, and monitor mode.
171 struct reg_cache *
172 embeddedice_build_reg_cache(struct target *target, struct arm7_9_common *arm7_9)
174 int retval;
175 struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
176 struct reg *reg_list = NULL;
177 struct embeddedice_reg *arch_info = NULL;
178 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
179 int num_regs = ARRAY_SIZE(eice_regs);
180 int i;
181 int eice_version = 0;
183 /* vector_catch isn't always present */
184 if (!arm7_9->has_vector_catch)
185 num_regs--;
187 /* the actual registers are kept in two arrays */
188 reg_list = calloc(num_regs, sizeof(struct reg));
189 arch_info = calloc(num_regs, sizeof(struct embeddedice_reg));
191 /* fill in values for the reg cache */
192 reg_cache->name = "EmbeddedICE registers";
193 reg_cache->next = NULL;
194 reg_cache->reg_list = reg_list;
195 reg_cache->num_regs = num_regs;
197 /* FIXME the second watchpoint unit on Feroceon and Dragonite
198 * seems not to work ... we should have a way to not set up
199 * its four registers here!
202 /* set up registers */
203 for (i = 0; i < num_regs; i++)
205 reg_list[i].name = eice_regs[i].name;
206 reg_list[i].size = eice_regs[i].width;
207 reg_list[i].dirty = 0;
208 reg_list[i].valid = 0;
209 reg_list[i].value = calloc(1, 4);
210 reg_list[i].arch_info = &arch_info[i];
211 reg_list[i].type = &eice_reg_type;
212 arch_info[i].addr = eice_regs[i].addr;
213 arch_info[i].jtag_info = jtag_info;
216 /* identify EmbeddedICE version by reading DCC control register */
217 embeddedice_read_reg(&reg_list[EICE_COMMS_CTRL]);
218 if ((retval = jtag_execute_queue()) != ERROR_OK)
220 for (i = 0; i < num_regs; i++)
222 free(reg_list[i].value);
224 free(reg_list);
225 free(reg_cache);
226 free(arch_info);
227 return NULL;
230 eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4);
231 LOG_INFO("Embedded ICE version %d", eice_version);
233 switch (eice_version)
235 case 1:
236 /* ARM7TDMI r3, ARM7TDMI-S r3
238 * REVISIT docs say ARM7TDMI-S r4 uses version 1 but
239 * that it has 6-bit CTRL and 5-bit STAT... doc bug?
240 * ARM7TDMI r4 docs say EICE v4.
242 reg_list[EICE_DBG_CTRL].size = 3;
243 reg_list[EICE_DBG_STAT].size = 5;
244 break;
245 case 2:
246 /* ARM9TDMI */
247 reg_list[EICE_DBG_CTRL].size = 4;
248 reg_list[EICE_DBG_STAT].size = 5;
249 arm7_9->has_single_step = 1;
250 break;
251 case 3:
252 LOG_ERROR("EmbeddedICE v%d handling might be broken",
253 eice_version);
254 reg_list[EICE_DBG_CTRL].size = 6;
255 reg_list[EICE_DBG_STAT].size = 5;
256 arm7_9->has_single_step = 1;
257 arm7_9->has_monitor_mode = 1;
258 break;
259 case 4:
260 /* ARM7TDMI r4 */
261 reg_list[EICE_DBG_CTRL].size = 6;
262 reg_list[EICE_DBG_STAT].size = 5;
263 arm7_9->has_monitor_mode = 1;
264 break;
265 case 5:
266 /* ARM9E-S rev 1 */
267 reg_list[EICE_DBG_CTRL].size = 6;
268 reg_list[EICE_DBG_STAT].size = 5;
269 arm7_9->has_single_step = 1;
270 arm7_9->has_monitor_mode = 1;
271 break;
272 case 6:
273 /* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
274 reg_list[EICE_DBG_CTRL].size = 6;
275 reg_list[EICE_DBG_STAT].size = 10;
276 /* DBG_STAT has MOE bits */
277 arm7_9->has_monitor_mode = 1;
278 break;
279 case 7:
280 LOG_ERROR("EmbeddedICE v%d handling might be broken",
281 eice_version);
282 reg_list[EICE_DBG_CTRL].size = 6;
283 reg_list[EICE_DBG_STAT].size = 5;
284 arm7_9->has_monitor_mode = 1;
285 break;
286 default:
288 * The Feroceon implementation has the version number
289 * in some unusual bits. Let feroceon.c validate it
290 * and do the appropriate setup itself.
292 if (strcmp(target_type_name(target), "feroceon") == 0 ||
293 strcmp(target_type_name(target), "dragonite") == 0)
294 break;
295 LOG_ERROR("unknown EmbeddedICE version "
296 "(comms ctrl: 0x%8.8" PRIx32 ")",
297 buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
300 /* On Feroceon and Dragonite the second unit is seemingly missing. */
301 LOG_INFO("%s: hardware has %d breakpoint/watchpoint unit%s",
302 target_name(target), arm7_9->wp_available_max,
303 (arm7_9->wp_available_max != 1) ? "s" : "");
305 return reg_cache;
309 * Initialize EmbeddedICE module, if needed.
311 int embeddedice_setup(struct target *target)
313 int retval;
314 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
316 /* Explicitly disable monitor mode. For now we only support halting
317 * debug ... we don't know how to talk with a resident debug monitor
318 * that manages break requests. ARM's "Angel Debug Monitor" is one
319 * common example of such code.
321 if (arm7_9->has_monitor_mode)
323 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
325 embeddedice_read_reg(dbg_ctrl);
326 if ((retval = jtag_execute_queue()) != ERROR_OK)
327 return retval;
328 buf_set_u32(dbg_ctrl->value, 4, 1, 0);
329 embeddedice_set_reg_w_exec(dbg_ctrl, dbg_ctrl->value);
331 return jtag_execute_queue();
335 * Queue a read for an EmbeddedICE register into the register cache,
336 * optionally checking the value read.
337 * Note that at this level, all registers are 32 bits wide.
339 int embeddedice_read_reg_w_check(struct reg *reg,
340 uint8_t *check_value, uint8_t *check_mask)
342 struct embeddedice_reg *ice_reg = reg->arch_info;
343 uint8_t reg_addr = ice_reg->addr & 0x1f;
344 struct scan_field fields[3];
345 uint8_t field1_out[1];
346 uint8_t field2_out[1];
348 arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
350 arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
352 /* bits 31:0 -- data (ignored here) */
353 fields[0].num_bits = 32;
354 fields[0].out_value = reg->value;
355 fields[0].in_value = NULL;
356 fields[0].check_value = NULL;
357 fields[0].check_mask = NULL;
359 /* bits 36:32 -- register */
360 fields[1].num_bits = 5;
361 fields[1].out_value = field1_out;
362 field1_out[0] = reg_addr;
363 fields[1].in_value = NULL;
364 fields[1].check_value = NULL;
365 fields[1].check_mask = NULL;
367 /* bit 37 -- 0/read */
368 fields[2].num_bits = 1;
369 fields[2].out_value = field2_out;
370 field2_out[0] = 0;
371 fields[2].in_value = NULL;
372 fields[2].check_value = NULL;
373 fields[2].check_mask = NULL;
375 /* traverse Update-DR, setting address for the next read */
376 jtag_add_dr_scan(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
378 /* bits 31:0 -- the data we're reading (and maybe checking) */
379 fields[0].in_value = reg->value;
380 fields[0].check_value = check_value;
381 fields[0].check_mask = check_mask;
383 /* when reading the DCC data register, leaving the address field set to
384 * EICE_COMMS_DATA would read the register twice
385 * reading the control register is safe
387 field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
389 /* traverse Update-DR, reading but with no other side effects */
390 jtag_add_dr_scan_check(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
392 return ERROR_OK;
396 * Receive a block of size 32-bit words from the DCC.
397 * We assume the target is always going to be fast enough (relative to
398 * the JTAG clock) that the debugger won't need to poll the handshake
399 * bit. The JTAG clock is usually at least six times slower than the
400 * functional clock, so the 50+ JTAG clocks needed to receive the word
401 * allow hundreds of instruction cycles (per word) in the target.
403 int embeddedice_receive(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
405 struct scan_field fields[3];
406 uint8_t field1_out[1];
407 uint8_t field2_out[1];
409 arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
410 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
412 fields[0].num_bits = 32;
413 fields[0].out_value = NULL;
414 fields[0].in_value = NULL;
416 fields[1].num_bits = 5;
417 fields[1].out_value = field1_out;
418 field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
419 fields[1].in_value = NULL;
421 fields[2].num_bits = 1;
422 fields[2].out_value = field2_out;
423 field2_out[0] = 0;
424 fields[2].in_value = NULL;
426 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
428 while (size > 0)
430 /* when reading the last item, set the register address to the DCC control reg,
431 * to avoid reading additional data from the DCC data reg
433 if (size == 1)
434 field1_out[0] = eice_regs[EICE_COMMS_CTRL].addr;
436 fields[0].in_value = (uint8_t *)data;
437 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
438 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)data);
440 data++;
441 size--;
444 return jtag_execute_queue();
448 * Queue a read for an EmbeddedICE register into the register cache,
449 * not checking the value read.
451 int embeddedice_read_reg(struct reg *reg)
453 return embeddedice_read_reg_w_check(reg, NULL, NULL);
457 * Queue a write for an EmbeddedICE register, updating the register cache.
458 * Uses embeddedice_write_reg().
460 void embeddedice_set_reg(struct reg *reg, uint32_t value)
462 embeddedice_write_reg(reg, value);
464 buf_set_u32(reg->value, 0, reg->size, value);
465 reg->valid = 1;
466 reg->dirty = 0;
471 * Write an EmbeddedICE register, updating the register cache.
472 * Uses embeddedice_set_reg(); not queued.
474 static int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf)
476 int retval;
478 embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
479 if ((retval = jtag_execute_queue()) != ERROR_OK)
480 LOG_ERROR("register write failed");
481 return retval;
485 * Queue a write for an EmbeddedICE register, bypassing the register cache.
487 void embeddedice_write_reg(struct reg *reg, uint32_t value)
489 struct embeddedice_reg *ice_reg = reg->arch_info;
491 LOG_DEBUG("%i: 0x%8.8" PRIx32 "", ice_reg->addr, value);
493 arm_jtag_scann(ice_reg->jtag_info, 0x2, TAP_IDLE);
495 arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL, TAP_IDLE);
497 uint8_t reg_addr = ice_reg->addr & 0x1f;
498 embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
502 * Queue a write for an EmbeddedICE register, using cached value.
503 * Uses embeddedice_write_reg().
505 void embeddedice_store_reg(struct reg *reg)
507 embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
511 * Send a block of size 32-bit words to the DCC.
512 * We assume the target is always going to be fast enough (relative to
513 * the JTAG clock) that the debugger won't need to poll the handshake
514 * bit. The JTAG clock is usually at least six times slower than the
515 * functional clock, so the 50+ JTAG clocks needed to receive the word
516 * allow hundreds of instruction cycles (per word) in the target.
518 int embeddedice_send(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
520 struct scan_field fields[3];
521 uint8_t field0_out[4];
522 uint8_t field1_out[1];
523 uint8_t field2_out[1];
525 arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
526 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
528 fields[0].num_bits = 32;
529 fields[0].out_value = field0_out;
530 fields[0].in_value = NULL;
532 fields[1].num_bits = 5;
533 fields[1].out_value = field1_out;
534 field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
535 fields[1].in_value = NULL;
537 fields[2].num_bits = 1;
538 fields[2].out_value = field2_out;
539 field2_out[0] = 1;
541 fields[2].in_value = NULL;
543 while (size > 0)
545 buf_set_u32(field0_out, 0, 32, *data);
546 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
548 data++;
549 size--;
552 /* call to jtag_execute_queue() intentionally omitted */
553 return ERROR_OK;
557 * Poll DCC control register until read or write handshake completes.
559 int embeddedice_handshake(struct arm_jtag *jtag_info, int hsbit, uint32_t timeout)
561 struct scan_field fields[3];
562 uint8_t field0_in[4];
563 uint8_t field1_out[1];
564 uint8_t field2_out[1];
565 int retval;
566 uint32_t hsact;
567 struct timeval lap;
568 struct timeval now;
570 if (hsbit == EICE_COMM_CTRL_WBIT)
571 hsact = 1;
572 else if (hsbit == EICE_COMM_CTRL_RBIT)
573 hsact = 0;
574 else
575 return ERROR_INVALID_ARGUMENTS;
577 arm_jtag_scann(jtag_info, 0x2, TAP_IDLE);
578 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
580 fields[0].num_bits = 32;
581 fields[0].out_value = NULL;
582 fields[0].in_value = field0_in;
584 fields[1].num_bits = 5;
585 fields[1].out_value = field1_out;
586 field1_out[0] = eice_regs[EICE_COMMS_DATA].addr;
587 fields[1].in_value = NULL;
589 fields[2].num_bits = 1;
590 fields[2].out_value = field2_out;
591 field2_out[0] = 0;
592 fields[2].in_value = NULL;
594 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
595 gettimeofday(&lap, NULL);
596 do {
597 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
598 if ((retval = jtag_execute_queue()) != ERROR_OK)
599 return retval;
601 if (buf_get_u32(field0_in, hsbit, 1) == hsact)
602 return ERROR_OK;
604 gettimeofday(&now, NULL);
605 } while ((uint32_t)((now.tv_sec - lap.tv_sec) * 1000
606 + (now.tv_usec - lap.tv_usec) / 1000) <= timeout);
608 return ERROR_TARGET_TIMEOUT;
611 #ifndef HAVE_JTAG_MINIDRIVER_H
613 * This is an inner loop of the open loop DCC write of data to target
615 void embeddedice_write_dcc(struct jtag_tap *tap,
616 int reg_addr, uint8_t *buffer, int little, int count)
618 int i;
620 for (i = 0; i < count; i++)
622 embeddedice_write_reg_inner(tap, reg_addr,
623 fast_target_buffer_get_u32(buffer, little));
624 buffer += 4;
627 #else
628 /* provided by minidriver */
629 #endif