1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
40 ***************************************************************************/
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
57 #include "rtos/rtos.h"
59 static int target_read_buffer_default(struct target
*target
, uint32_t address
,
60 uint32_t size
, uint8_t *buffer
);
61 static int target_write_buffer_default(struct target
*target
, uint32_t address
,
62 uint32_t size
, const uint8_t *buffer
);
63 static int target_array2mem(Jim_Interp
*interp
, struct target
*target
,
64 int argc
, Jim_Obj
* const *argv
);
65 static int target_mem2array(Jim_Interp
*interp
, struct target
*target
,
66 int argc
, Jim_Obj
* const *argv
);
67 static int target_register_user_commands(struct command_context
*cmd_ctx
);
70 extern struct target_type arm7tdmi_target
;
71 extern struct target_type arm720t_target
;
72 extern struct target_type arm9tdmi_target
;
73 extern struct target_type arm920t_target
;
74 extern struct target_type arm966e_target
;
75 extern struct target_type arm946e_target
;
76 extern struct target_type arm926ejs_target
;
77 extern struct target_type fa526_target
;
78 extern struct target_type feroceon_target
;
79 extern struct target_type dragonite_target
;
80 extern struct target_type xscale_target
;
81 extern struct target_type cortexm3_target
;
82 extern struct target_type cortexa8_target
;
83 extern struct target_type arm11_target
;
84 extern struct target_type mips_m4k_target
;
85 extern struct target_type avr_target
;
86 extern struct target_type dsp563xx_target
;
87 extern struct target_type dsp5680xx_target
;
88 extern struct target_type testee_target
;
89 extern struct target_type avr32_ap7k_target
;
90 extern struct target_type stm32_stlink_target
;
92 static struct target_type
*target_types
[] = {
113 &stm32_stlink_target
,
117 struct target
*all_targets
;
118 static struct target_event_callback
*target_event_callbacks
;
119 static struct target_timer_callback
*target_timer_callbacks
;
120 static const int polling_interval
= 100;
122 static const Jim_Nvp nvp_assert
[] = {
123 { .name
= "assert", NVP_ASSERT
},
124 { .name
= "deassert", NVP_DEASSERT
},
125 { .name
= "T", NVP_ASSERT
},
126 { .name
= "F", NVP_DEASSERT
},
127 { .name
= "t", NVP_ASSERT
},
128 { .name
= "f", NVP_DEASSERT
},
129 { .name
= NULL
, .value
= -1 }
132 static const Jim_Nvp nvp_error_target
[] = {
133 { .value
= ERROR_TARGET_INVALID
, .name
= "err-invalid" },
134 { .value
= ERROR_TARGET_INIT_FAILED
, .name
= "err-init-failed" },
135 { .value
= ERROR_TARGET_TIMEOUT
, .name
= "err-timeout" },
136 { .value
= ERROR_TARGET_NOT_HALTED
, .name
= "err-not-halted" },
137 { .value
= ERROR_TARGET_FAILURE
, .name
= "err-failure" },
138 { .value
= ERROR_TARGET_UNALIGNED_ACCESS
, .name
= "err-unaligned-access" },
139 { .value
= ERROR_TARGET_DATA_ABORT
, .name
= "err-data-abort" },
140 { .value
= ERROR_TARGET_RESOURCE_NOT_AVAILABLE
, .name
= "err-resource-not-available" },
141 { .value
= ERROR_TARGET_TRANSLATION_FAULT
, .name
= "err-translation-fault" },
142 { .value
= ERROR_TARGET_NOT_RUNNING
, .name
= "err-not-running" },
143 { .value
= ERROR_TARGET_NOT_EXAMINED
, .name
= "err-not-examined" },
144 { .value
= -1, .name
= NULL
}
147 static const char *target_strerror_safe(int err
)
151 n
= Jim_Nvp_value2name_simple(nvp_error_target
, err
);
158 static const Jim_Nvp nvp_target_event
[] = {
160 { .value
= TARGET_EVENT_GDB_HALT
, .name
= "gdb-halt" },
161 { .value
= TARGET_EVENT_HALTED
, .name
= "halted" },
162 { .value
= TARGET_EVENT_RESUMED
, .name
= "resumed" },
163 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
164 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
166 { .name
= "gdb-start", .value
= TARGET_EVENT_GDB_START
},
167 { .name
= "gdb-end", .value
= TARGET_EVENT_GDB_END
},
169 { .value
= TARGET_EVENT_RESET_START
, .name
= "reset-start" },
170 { .value
= TARGET_EVENT_RESET_ASSERT_PRE
, .name
= "reset-assert-pre" },
171 { .value
= TARGET_EVENT_RESET_ASSERT
, .name
= "reset-assert" },
172 { .value
= TARGET_EVENT_RESET_ASSERT_POST
, .name
= "reset-assert-post" },
173 { .value
= TARGET_EVENT_RESET_DEASSERT_PRE
, .name
= "reset-deassert-pre" },
174 { .value
= TARGET_EVENT_RESET_DEASSERT_POST
, .name
= "reset-deassert-post" },
175 { .value
= TARGET_EVENT_RESET_HALT_PRE
, .name
= "reset-halt-pre" },
176 { .value
= TARGET_EVENT_RESET_HALT_POST
, .name
= "reset-halt-post" },
177 { .value
= TARGET_EVENT_RESET_WAIT_PRE
, .name
= "reset-wait-pre" },
178 { .value
= TARGET_EVENT_RESET_WAIT_POST
, .name
= "reset-wait-post" },
179 { .value
= TARGET_EVENT_RESET_INIT
, .name
= "reset-init" },
180 { .value
= TARGET_EVENT_RESET_END
, .name
= "reset-end" },
182 { .value
= TARGET_EVENT_EXAMINE_START
, .name
= "examine-start" },
183 { .value
= TARGET_EVENT_EXAMINE_END
, .name
= "examine-end" },
185 { .value
= TARGET_EVENT_DEBUG_HALTED
, .name
= "debug-halted" },
186 { .value
= TARGET_EVENT_DEBUG_RESUMED
, .name
= "debug-resumed" },
188 { .value
= TARGET_EVENT_GDB_ATTACH
, .name
= "gdb-attach" },
189 { .value
= TARGET_EVENT_GDB_DETACH
, .name
= "gdb-detach" },
191 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_START
, .name
= "gdb-flash-write-start" },
192 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_END
, .name
= "gdb-flash-write-end" },
194 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_START
, .name
= "gdb-flash-erase-start" },
195 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_END
, .name
= "gdb-flash-erase-end" },
197 { .name
= NULL
, .value
= -1 }
200 static const Jim_Nvp nvp_target_state
[] = {
201 { .name
= "unknown", .value
= TARGET_UNKNOWN
},
202 { .name
= "running", .value
= TARGET_RUNNING
},
203 { .name
= "halted", .value
= TARGET_HALTED
},
204 { .name
= "reset", .value
= TARGET_RESET
},
205 { .name
= "debug-running", .value
= TARGET_DEBUG_RUNNING
},
206 { .name
= NULL
, .value
= -1 },
209 static const Jim_Nvp nvp_target_debug_reason
[] = {
210 { .name
= "debug-request" , .value
= DBG_REASON_DBGRQ
},
211 { .name
= "breakpoint" , .value
= DBG_REASON_BREAKPOINT
},
212 { .name
= "watchpoint" , .value
= DBG_REASON_WATCHPOINT
},
213 { .name
= "watchpoint-and-breakpoint", .value
= DBG_REASON_WPTANDBKPT
},
214 { .name
= "single-step" , .value
= DBG_REASON_SINGLESTEP
},
215 { .name
= "target-not-halted" , .value
= DBG_REASON_NOTHALTED
},
216 { .name
= "undefined" , .value
= DBG_REASON_UNDEFINED
},
217 { .name
= NULL
, .value
= -1 },
220 static const Jim_Nvp nvp_target_endian
[] = {
221 { .name
= "big", .value
= TARGET_BIG_ENDIAN
},
222 { .name
= "little", .value
= TARGET_LITTLE_ENDIAN
},
223 { .name
= "be", .value
= TARGET_BIG_ENDIAN
},
224 { .name
= "le", .value
= TARGET_LITTLE_ENDIAN
},
225 { .name
= NULL
, .value
= -1 },
228 static const Jim_Nvp nvp_reset_modes
[] = {
229 { .name
= "unknown", .value
= RESET_UNKNOWN
},
230 { .name
= "run" , .value
= RESET_RUN
},
231 { .name
= "halt" , .value
= RESET_HALT
},
232 { .name
= "init" , .value
= RESET_INIT
},
233 { .name
= NULL
, .value
= -1 },
236 const char *debug_reason_name(struct target
*t
)
240 cp
= Jim_Nvp_value2name_simple(nvp_target_debug_reason
,
241 t
->debug_reason
)->name
;
243 LOG_ERROR("Invalid debug reason: %d", (int)(t
->debug_reason
));
244 cp
= "(*BUG*unknown*BUG*)";
249 const char *target_state_name(struct target
*t
)
252 cp
= Jim_Nvp_value2name_simple(nvp_target_state
, t
->state
)->name
;
254 LOG_ERROR("Invalid target state: %d", (int)(t
->state
));
255 cp
= "(*BUG*unknown*BUG*)";
260 /* determine the number of the new target */
261 static int new_target_number(void)
266 /* number is 0 based */
270 if (x
< t
->target_number
)
271 x
= t
->target_number
;
277 /* read a uint32_t from a buffer in target memory endianness */
278 uint32_t target_buffer_get_u32(struct target
*target
, const uint8_t *buffer
)
280 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
281 return le_to_h_u32(buffer
);
283 return be_to_h_u32(buffer
);
286 /* read a uint24_t from a buffer in target memory endianness */
287 uint32_t target_buffer_get_u24(struct target
*target
, const uint8_t *buffer
)
289 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
290 return le_to_h_u24(buffer
);
292 return be_to_h_u24(buffer
);
295 /* read a uint16_t from a buffer in target memory endianness */
296 uint16_t target_buffer_get_u16(struct target
*target
, const uint8_t *buffer
)
298 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
299 return le_to_h_u16(buffer
);
301 return be_to_h_u16(buffer
);
304 /* read a uint8_t from a buffer in target memory endianness */
305 static uint8_t target_buffer_get_u8(struct target
*target
, const uint8_t *buffer
)
307 return *buffer
& 0x0ff;
310 /* write a uint32_t to a buffer in target memory endianness */
311 void target_buffer_set_u32(struct target
*target
, uint8_t *buffer
, uint32_t value
)
313 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
314 h_u32_to_le(buffer
, value
);
316 h_u32_to_be(buffer
, value
);
319 /* write a uint24_t to a buffer in target memory endianness */
320 void target_buffer_set_u24(struct target
*target
, uint8_t *buffer
, uint32_t value
)
322 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
323 h_u24_to_le(buffer
, value
);
325 h_u24_to_be(buffer
, value
);
328 /* write a uint16_t to a buffer in target memory endianness */
329 void target_buffer_set_u16(struct target
*target
, uint8_t *buffer
, uint16_t value
)
331 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
332 h_u16_to_le(buffer
, value
);
334 h_u16_to_be(buffer
, value
);
337 /* write a uint8_t to a buffer in target memory endianness */
338 static void target_buffer_set_u8(struct target
*target
, uint8_t *buffer
, uint8_t value
)
343 /* write a uint32_t array to a buffer in target memory endianness */
344 void target_buffer_get_u32_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint32_t *dstbuf
)
347 for (i
= 0; i
< count
; i
++)
348 dstbuf
[i
] = target_buffer_get_u32(target
, &buffer
[i
* 4]);
351 /* write a uint16_t array to a buffer in target memory endianness */
352 void target_buffer_get_u16_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint16_t *dstbuf
)
355 for (i
= 0; i
< count
; i
++)
356 dstbuf
[i
] = target_buffer_get_u16(target
, &buffer
[i
* 2]);
359 /* write a uint32_t array to a buffer in target memory endianness */
360 void target_buffer_set_u32_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, uint32_t *srcbuf
)
363 for (i
= 0; i
< count
; i
++)
364 target_buffer_set_u32(target
, &buffer
[i
* 4], srcbuf
[i
]);
367 /* write a uint16_t array to a buffer in target memory endianness */
368 void target_buffer_set_u16_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, uint16_t *srcbuf
)
371 for (i
= 0; i
< count
; i
++)
372 target_buffer_set_u16(target
, &buffer
[i
* 2], srcbuf
[i
]);
375 /* return a pointer to a configured target; id is name or number */
376 struct target
*get_target(const char *id
)
378 struct target
*target
;
380 /* try as tcltarget name */
381 for (target
= all_targets
; target
; target
= target
->next
) {
382 if (target
->cmd_name
== NULL
)
384 if (strcmp(id
, target
->cmd_name
) == 0)
388 /* It's OK to remove this fallback sometime after August 2010 or so */
390 /* no match, try as number */
392 if (parse_uint(id
, &num
) != ERROR_OK
)
395 for (target
= all_targets
; target
; target
= target
->next
) {
396 if (target
->target_number
== (int)num
) {
397 LOG_WARNING("use '%s' as target identifier, not '%u'",
398 target
->cmd_name
, num
);
406 /* returns a pointer to the n-th configured target */
407 static struct target
*get_target_by_num(int num
)
409 struct target
*target
= all_targets
;
412 if (target
->target_number
== num
)
414 target
= target
->next
;
420 struct target
*get_current_target(struct command_context
*cmd_ctx
)
422 struct target
*target
= get_target_by_num(cmd_ctx
->current_target
);
424 if (target
== NULL
) {
425 LOG_ERROR("BUG: current_target out of bounds");
432 int target_poll(struct target
*target
)
436 /* We can't poll until after examine */
437 if (!target_was_examined(target
)) {
438 /* Fail silently lest we pollute the log */
442 retval
= target
->type
->poll(target
);
443 if (retval
!= ERROR_OK
)
446 if (target
->halt_issued
) {
447 if (target
->state
== TARGET_HALTED
)
448 target
->halt_issued
= false;
450 long long t
= timeval_ms() - target
->halt_issued_time
;
452 target
->halt_issued
= false;
453 LOG_INFO("Halt timed out, wake up GDB.");
454 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
462 int target_halt(struct target
*target
)
465 /* We can't poll until after examine */
466 if (!target_was_examined(target
)) {
467 LOG_ERROR("Target not examined yet");
471 retval
= target
->type
->halt(target
);
472 if (retval
!= ERROR_OK
)
475 target
->halt_issued
= true;
476 target
->halt_issued_time
= timeval_ms();
482 * Make the target (re)start executing using its saved execution
483 * context (possibly with some modifications).
485 * @param target Which target should start executing.
486 * @param current True to use the target's saved program counter instead
487 * of the address parameter
488 * @param address Optionally used as the program counter.
489 * @param handle_breakpoints True iff breakpoints at the resumption PC
490 * should be skipped. (For example, maybe execution was stopped by
491 * such a breakpoint, in which case it would be counterprodutive to
493 * @param debug_execution False if all working areas allocated by OpenOCD
494 * should be released and/or restored to their original contents.
495 * (This would for example be true to run some downloaded "helper"
496 * algorithm code, which resides in one such working buffer and uses
497 * another for data storage.)
499 * @todo Resolve the ambiguity about what the "debug_execution" flag
500 * signifies. For example, Target implementations don't agree on how
501 * it relates to invalidation of the register cache, or to whether
502 * breakpoints and watchpoints should be enabled. (It would seem wrong
503 * to enable breakpoints when running downloaded "helper" algorithms
504 * (debug_execution true), since the breakpoints would be set to match
505 * target firmware being debugged, not the helper algorithm.... and
506 * enabling them could cause such helpers to malfunction (for example,
507 * by overwriting data with a breakpoint instruction. On the other
508 * hand the infrastructure for running such helpers might use this
509 * procedure but rely on hardware breakpoint to detect termination.)
511 int target_resume(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
515 /* We can't poll until after examine */
516 if (!target_was_examined(target
)) {
517 LOG_ERROR("Target not examined yet");
521 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_START
);
523 /* note that resume *must* be asynchronous. The CPU can halt before
524 * we poll. The CPU can even halt at the current PC as a result of
525 * a software breakpoint being inserted by (a bug?) the application.
527 retval
= target
->type
->resume(target
, current
, address
, handle_breakpoints
, debug_execution
);
528 if (retval
!= ERROR_OK
)
531 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_END
);
536 static int target_process_reset(struct command_context
*cmd_ctx
, enum target_reset_mode reset_mode
)
541 n
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
);
542 if (n
->name
== NULL
) {
543 LOG_ERROR("invalid reset mode");
547 /* disable polling during reset to make reset event scripts
548 * more predictable, i.e. dr/irscan & pathmove in events will
549 * not have JTAG operations injected into the middle of a sequence.
551 bool save_poll
= jtag_poll_get_enabled();
553 jtag_poll_set_enabled(false);
555 sprintf(buf
, "ocd_process_reset %s", n
->name
);
556 retval
= Jim_Eval(cmd_ctx
->interp
, buf
);
558 jtag_poll_set_enabled(save_poll
);
560 if (retval
!= JIM_OK
) {
561 Jim_MakeErrorMessage(cmd_ctx
->interp
);
562 command_print(NULL
, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx
->interp
), NULL
));
566 /* We want any events to be processed before the prompt */
567 retval
= target_call_timer_callbacks_now();
569 struct target
*target
;
570 for (target
= all_targets
; target
; target
= target
->next
)
571 target
->type
->check_reset(target
);
576 static int identity_virt2phys(struct target
*target
,
577 uint32_t virtual, uint32_t *physical
)
583 static int no_mmu(struct target
*target
, int *enabled
)
589 static int default_examine(struct target
*target
)
591 target_set_examined(target
);
595 /* no check by default */
596 static int default_check_reset(struct target
*target
)
601 int target_examine_one(struct target
*target
)
603 return target
->type
->examine(target
);
606 static int jtag_enable_callback(enum jtag_event event
, void *priv
)
608 struct target
*target
= priv
;
610 if (event
!= JTAG_TAP_EVENT_ENABLE
|| !target
->tap
->enabled
)
613 jtag_unregister_event_callback(jtag_enable_callback
, target
);
615 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_START
);
617 int retval
= target_examine_one(target
);
618 if (retval
!= ERROR_OK
)
621 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_END
);
626 /* Targets that correctly implement init + examine, i.e.
627 * no communication with target during init:
631 int target_examine(void)
633 int retval
= ERROR_OK
;
634 struct target
*target
;
636 for (target
= all_targets
; target
; target
= target
->next
) {
637 /* defer examination, but don't skip it */
638 if (!target
->tap
->enabled
) {
639 jtag_register_event_callback(jtag_enable_callback
,
644 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_START
);
646 retval
= target_examine_one(target
);
647 if (retval
!= ERROR_OK
)
650 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_END
);
655 const char *target_type_name(struct target
*target
)
657 return target
->type
->name
;
660 static int target_write_memory_imp(struct target
*target
, uint32_t address
,
661 uint32_t size
, uint32_t count
, const uint8_t *buffer
)
663 if (!target_was_examined(target
)) {
664 LOG_ERROR("Target not examined yet");
667 return target
->type
->write_memory_imp(target
, address
, size
, count
, buffer
);
670 static int target_read_memory_imp(struct target
*target
, uint32_t address
,
671 uint32_t size
, uint32_t count
, uint8_t *buffer
)
673 if (!target_was_examined(target
)) {
674 LOG_ERROR("Target not examined yet");
677 return target
->type
->read_memory_imp(target
, address
, size
, count
, buffer
);
680 static int target_soft_reset_halt_imp(struct target
*target
)
682 if (!target_was_examined(target
)) {
683 LOG_ERROR("Target not examined yet");
686 if (!target
->type
->soft_reset_halt_imp
) {
687 LOG_ERROR("Target %s does not support soft_reset_halt",
688 target_name(target
));
691 return target
->type
->soft_reset_halt_imp(target
);
695 * Downloads a target-specific native code algorithm to the target,
696 * and executes it. * Note that some targets may need to set up, enable,
697 * and tear down a breakpoint (hard or * soft) to detect algorithm
698 * termination, while others may support lower overhead schemes where
699 * soft breakpoints embedded in the algorithm automatically terminate the
702 * @param target used to run the algorithm
703 * @param arch_info target-specific description of the algorithm.
705 int target_run_algorithm(struct target
*target
,
706 int num_mem_params
, struct mem_param
*mem_params
,
707 int num_reg_params
, struct reg_param
*reg_param
,
708 uint32_t entry_point
, uint32_t exit_point
,
709 int timeout_ms
, void *arch_info
)
711 int retval
= ERROR_FAIL
;
713 if (!target_was_examined(target
)) {
714 LOG_ERROR("Target not examined yet");
717 if (!target
->type
->run_algorithm
) {
718 LOG_ERROR("Target type '%s' does not support %s",
719 target_type_name(target
), __func__
);
723 target
->running_alg
= true;
724 retval
= target
->type
->run_algorithm(target
,
725 num_mem_params
, mem_params
,
726 num_reg_params
, reg_param
,
727 entry_point
, exit_point
, timeout_ms
, arch_info
);
728 target
->running_alg
= false;
735 * Downloads a target-specific native code algorithm to the target,
736 * executes and leaves it running.
738 * @param target used to run the algorithm
739 * @param arch_info target-specific description of the algorithm.
741 int target_start_algorithm(struct target
*target
,
742 int num_mem_params
, struct mem_param
*mem_params
,
743 int num_reg_params
, struct reg_param
*reg_params
,
744 uint32_t entry_point
, uint32_t exit_point
,
747 int retval
= ERROR_FAIL
;
749 if (!target_was_examined(target
)) {
750 LOG_ERROR("Target not examined yet");
753 if (!target
->type
->start_algorithm
) {
754 LOG_ERROR("Target type '%s' does not support %s",
755 target_type_name(target
), __func__
);
758 if (target
->running_alg
) {
759 LOG_ERROR("Target is already running an algorithm");
763 target
->running_alg
= true;
764 retval
= target
->type
->start_algorithm(target
,
765 num_mem_params
, mem_params
,
766 num_reg_params
, reg_params
,
767 entry_point
, exit_point
, arch_info
);
774 * Waits for an algorithm started with target_start_algorithm() to complete.
776 * @param target used to run the algorithm
777 * @param arch_info target-specific description of the algorithm.
779 int target_wait_algorithm(struct target
*target
,
780 int num_mem_params
, struct mem_param
*mem_params
,
781 int num_reg_params
, struct reg_param
*reg_params
,
782 uint32_t exit_point
, int timeout_ms
,
785 int retval
= ERROR_FAIL
;
787 if (!target
->type
->wait_algorithm
) {
788 LOG_ERROR("Target type '%s' does not support %s",
789 target_type_name(target
), __func__
);
792 if (!target
->running_alg
) {
793 LOG_ERROR("Target is not running an algorithm");
797 retval
= target
->type
->wait_algorithm(target
,
798 num_mem_params
, mem_params
,
799 num_reg_params
, reg_params
,
800 exit_point
, timeout_ms
, arch_info
);
801 if (retval
!= ERROR_TARGET_TIMEOUT
)
802 target
->running_alg
= false;
809 * Executes a target-specific native code algorithm in the target.
810 * It differs from target_run_algorithm in that the algorithm is asynchronous.
811 * Because of this it requires an compliant algorithm:
812 * see contrib/loaders/flash/stm32f1x.S for example.
814 * @param target used to run the algorithm
817 int target_run_flash_async_algorithm(struct target
*target
,
818 uint8_t *buffer
, uint32_t count
, int block_size
,
819 int num_mem_params
, struct mem_param
*mem_params
,
820 int num_reg_params
, struct reg_param
*reg_params
,
821 uint32_t buffer_start
, uint32_t buffer_size
,
822 uint32_t entry_point
, uint32_t exit_point
, void *arch_info
)
826 /* Set up working area. First word is write pointer, second word is read pointer,
827 * rest is fifo data area. */
828 uint32_t wp_addr
= buffer_start
;
829 uint32_t rp_addr
= buffer_start
+ 4;
830 uint32_t fifo_start_addr
= buffer_start
+ 8;
831 uint32_t fifo_end_addr
= buffer_start
+ buffer_size
;
833 uint32_t wp
= fifo_start_addr
;
834 uint32_t rp
= fifo_start_addr
;
836 /* validate block_size is 2^n */
837 assert(!block_size
|| !(block_size
& (block_size
- 1)));
839 retval
= target_write_u32(target
, wp_addr
, wp
);
840 if (retval
!= ERROR_OK
)
842 retval
= target_write_u32(target
, rp_addr
, rp
);
843 if (retval
!= ERROR_OK
)
846 /* Start up algorithm on target and let it idle while writing the first chunk */
847 retval
= target_start_algorithm(target
, num_mem_params
, mem_params
,
848 num_reg_params
, reg_params
,
853 if (retval
!= ERROR_OK
) {
854 LOG_ERROR("error starting target flash write algorithm");
860 retval
= target_read_u32(target
, rp_addr
, &rp
);
861 if (retval
!= ERROR_OK
) {
862 LOG_ERROR("failed to get read pointer");
866 LOG_DEBUG("count 0x%" PRIx32
" wp 0x%" PRIx32
" rp 0x%" PRIx32
, count
, wp
, rp
);
869 LOG_ERROR("flash write algorithm aborted by target");
870 retval
= ERROR_FLASH_OPERATION_FAILED
;
874 if ((rp
& (block_size
- 1)) || rp
< fifo_start_addr
|| rp
>= fifo_end_addr
) {
875 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32
, rp
);
879 /* Count the number of bytes available in the fifo without
880 * crossing the wrap around. Make sure to not fill it completely,
881 * because that would make wp == rp and that's the empty condition. */
882 uint32_t thisrun_bytes
;
884 thisrun_bytes
= rp
- wp
- block_size
;
885 else if (rp
> fifo_start_addr
)
886 thisrun_bytes
= fifo_end_addr
- wp
;
888 thisrun_bytes
= fifo_end_addr
- wp
- block_size
;
890 if (thisrun_bytes
== 0) {
891 /* Throttle polling a bit if transfer is (much) faster than flash
892 * programming. The exact delay shouldn't matter as long as it's
893 * less than buffer size / flash speed. This is very unlikely to
894 * run when using high latency connections such as USB. */
899 /* Limit to the amount of data we actually want to write */
900 if (thisrun_bytes
> count
* block_size
)
901 thisrun_bytes
= count
* block_size
;
903 /* Write data to fifo */
904 retval
= target_write_buffer(target
, wp
, thisrun_bytes
, buffer
);
905 if (retval
!= ERROR_OK
)
908 /* Update counters and wrap write pointer */
909 buffer
+= thisrun_bytes
;
910 count
-= thisrun_bytes
/ block_size
;
912 if (wp
>= fifo_end_addr
)
913 wp
= fifo_start_addr
;
915 /* Store updated write pointer to target */
916 retval
= target_write_u32(target
, wp_addr
, wp
);
917 if (retval
!= ERROR_OK
)
921 if (retval
!= ERROR_OK
) {
922 /* abort flash write algorithm on target */
923 target_write_u32(target
, wp_addr
, 0);
926 int retval2
= target_wait_algorithm(target
, num_mem_params
, mem_params
,
927 num_reg_params
, reg_params
,
932 if (retval2
!= ERROR_OK
) {
933 LOG_ERROR("error waiting for target flash write algorithm");
940 int target_read_memory(struct target
*target
,
941 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
943 return target
->type
->read_memory(target
, address
, size
, count
, buffer
);
946 static int target_read_phys_memory(struct target
*target
,
947 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
949 return target
->type
->read_phys_memory(target
, address
, size
, count
, buffer
);
952 int target_write_memory(struct target
*target
,
953 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
955 return target
->type
->write_memory(target
, address
, size
, count
, buffer
);
958 static int target_write_phys_memory(struct target
*target
,
959 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
961 return target
->type
->write_phys_memory(target
, address
, size
, count
, buffer
);
964 int target_bulk_write_memory(struct target
*target
,
965 uint32_t address
, uint32_t count
, const uint8_t *buffer
)
967 return target
->type
->bulk_write_memory(target
, address
, count
, buffer
);
970 int target_add_breakpoint(struct target
*target
,
971 struct breakpoint
*breakpoint
)
973 if ((target
->state
!= TARGET_HALTED
) && (breakpoint
->type
!= BKPT_HARD
)) {
974 LOG_WARNING("target %s is not halted", target
->cmd_name
);
975 return ERROR_TARGET_NOT_HALTED
;
977 return target
->type
->add_breakpoint(target
, breakpoint
);
980 int target_add_context_breakpoint(struct target
*target
,
981 struct breakpoint
*breakpoint
)
983 if (target
->state
!= TARGET_HALTED
) {
984 LOG_WARNING("target %s is not halted", target
->cmd_name
);
985 return ERROR_TARGET_NOT_HALTED
;
987 return target
->type
->add_context_breakpoint(target
, breakpoint
);
990 int target_add_hybrid_breakpoint(struct target
*target
,
991 struct breakpoint
*breakpoint
)
993 if (target
->state
!= TARGET_HALTED
) {
994 LOG_WARNING("target %s is not halted", target
->cmd_name
);
995 return ERROR_TARGET_NOT_HALTED
;
997 return target
->type
->add_hybrid_breakpoint(target
, breakpoint
);
1000 int target_remove_breakpoint(struct target
*target
,
1001 struct breakpoint
*breakpoint
)
1003 return target
->type
->remove_breakpoint(target
, breakpoint
);
1006 int target_add_watchpoint(struct target
*target
,
1007 struct watchpoint
*watchpoint
)
1009 if (target
->state
!= TARGET_HALTED
) {
1010 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1011 return ERROR_TARGET_NOT_HALTED
;
1013 return target
->type
->add_watchpoint(target
, watchpoint
);
1015 int target_remove_watchpoint(struct target
*target
,
1016 struct watchpoint
*watchpoint
)
1018 return target
->type
->remove_watchpoint(target
, watchpoint
);
1021 int target_get_gdb_reg_list(struct target
*target
,
1022 struct reg
**reg_list
[], int *reg_list_size
)
1024 return target
->type
->get_gdb_reg_list(target
, reg_list
, reg_list_size
);
1026 int target_step(struct target
*target
,
1027 int current
, uint32_t address
, int handle_breakpoints
)
1029 return target
->type
->step(target
, current
, address
, handle_breakpoints
);
1033 * Reset the @c examined flag for the given target.
1034 * Pure paranoia -- targets are zeroed on allocation.
1036 static void target_reset_examined(struct target
*target
)
1038 target
->examined
= false;
1041 static int err_read_phys_memory(struct target
*target
, uint32_t address
,
1042 uint32_t size
, uint32_t count
, uint8_t *buffer
)
1044 LOG_ERROR("Not implemented: %s", __func__
);
1048 static int err_write_phys_memory(struct target
*target
, uint32_t address
,
1049 uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1051 LOG_ERROR("Not implemented: %s", __func__
);
1055 static int handle_target(void *priv
);
1057 static int target_init_one(struct command_context
*cmd_ctx
,
1058 struct target
*target
)
1060 target_reset_examined(target
);
1062 struct target_type
*type
= target
->type
;
1063 if (type
->examine
== NULL
)
1064 type
->examine
= default_examine
;
1066 if (type
->check_reset
== NULL
)
1067 type
->check_reset
= default_check_reset
;
1069 assert(type
->init_target
!= NULL
);
1071 int retval
= type
->init_target(cmd_ctx
, target
);
1072 if (ERROR_OK
!= retval
) {
1073 LOG_ERROR("target '%s' init failed", target_name(target
));
1078 * @todo get rid of those *memory_imp() methods, now that all
1079 * callers are using target_*_memory() accessors ... and make
1080 * sure the "physical" paths handle the same issues.
1082 /* a non-invasive way(in terms of patches) to add some code that
1083 * runs before the type->write/read_memory implementation
1085 type
->write_memory_imp
= target
->type
->write_memory
;
1086 type
->write_memory
= target_write_memory_imp
;
1088 type
->read_memory_imp
= target
->type
->read_memory
;
1089 type
->read_memory
= target_read_memory_imp
;
1091 type
->soft_reset_halt_imp
= target
->type
->soft_reset_halt
;
1092 type
->soft_reset_halt
= target_soft_reset_halt_imp
;
1094 /* Sanity-check MMU support ... stub in what we must, to help
1095 * implement it in stages, but warn if we need to do so.
1098 if (type
->write_phys_memory
== NULL
) {
1099 LOG_ERROR("type '%s' is missing write_phys_memory",
1101 type
->write_phys_memory
= err_write_phys_memory
;
1103 if (type
->read_phys_memory
== NULL
) {
1104 LOG_ERROR("type '%s' is missing read_phys_memory",
1106 type
->read_phys_memory
= err_read_phys_memory
;
1108 if (type
->virt2phys
== NULL
) {
1109 LOG_ERROR("type '%s' is missing virt2phys", type
->name
);
1110 type
->virt2phys
= identity_virt2phys
;
1113 /* Make sure no-MMU targets all behave the same: make no
1114 * distinction between physical and virtual addresses, and
1115 * ensure that virt2phys() is always an identity mapping.
1117 if (type
->write_phys_memory
|| type
->read_phys_memory
|| type
->virt2phys
)
1118 LOG_WARNING("type '%s' has bad MMU hooks", type
->name
);
1121 type
->write_phys_memory
= type
->write_memory
;
1122 type
->read_phys_memory
= type
->read_memory
;
1123 type
->virt2phys
= identity_virt2phys
;
1126 if (target
->type
->read_buffer
== NULL
)
1127 target
->type
->read_buffer
= target_read_buffer_default
;
1129 if (target
->type
->write_buffer
== NULL
)
1130 target
->type
->write_buffer
= target_write_buffer_default
;
1135 static int target_init(struct command_context
*cmd_ctx
)
1137 struct target
*target
;
1140 for (target
= all_targets
; target
; target
= target
->next
) {
1141 retval
= target_init_one(cmd_ctx
, target
);
1142 if (ERROR_OK
!= retval
)
1149 retval
= target_register_user_commands(cmd_ctx
);
1150 if (ERROR_OK
!= retval
)
1153 retval
= target_register_timer_callback(&handle_target
,
1154 polling_interval
, 1, cmd_ctx
->interp
);
1155 if (ERROR_OK
!= retval
)
1161 COMMAND_HANDLER(handle_target_init_command
)
1166 return ERROR_COMMAND_SYNTAX_ERROR
;
1168 static bool target_initialized
;
1169 if (target_initialized
) {
1170 LOG_INFO("'target init' has already been called");
1173 target_initialized
= true;
1175 retval
= command_run_line(CMD_CTX
, "init_targets");
1176 if (ERROR_OK
!= retval
)
1179 retval
= command_run_line(CMD_CTX
, "init_board");
1180 if (ERROR_OK
!= retval
)
1183 LOG_DEBUG("Initializing targets...");
1184 return target_init(CMD_CTX
);
1187 int target_register_event_callback(int (*callback
)(struct target
*target
,
1188 enum target_event event
, void *priv
), void *priv
)
1190 struct target_event_callback
**callbacks_p
= &target_event_callbacks
;
1192 if (callback
== NULL
)
1193 return ERROR_COMMAND_SYNTAX_ERROR
;
1196 while ((*callbacks_p
)->next
)
1197 callbacks_p
= &((*callbacks_p
)->next
);
1198 callbacks_p
= &((*callbacks_p
)->next
);
1201 (*callbacks_p
) = malloc(sizeof(struct target_event_callback
));
1202 (*callbacks_p
)->callback
= callback
;
1203 (*callbacks_p
)->priv
= priv
;
1204 (*callbacks_p
)->next
= NULL
;
1209 int target_register_timer_callback(int (*callback
)(void *priv
), int time_ms
, int periodic
, void *priv
)
1211 struct target_timer_callback
**callbacks_p
= &target_timer_callbacks
;
1214 if (callback
== NULL
)
1215 return ERROR_COMMAND_SYNTAX_ERROR
;
1218 while ((*callbacks_p
)->next
)
1219 callbacks_p
= &((*callbacks_p
)->next
);
1220 callbacks_p
= &((*callbacks_p
)->next
);
1223 (*callbacks_p
) = malloc(sizeof(struct target_timer_callback
));
1224 (*callbacks_p
)->callback
= callback
;
1225 (*callbacks_p
)->periodic
= periodic
;
1226 (*callbacks_p
)->time_ms
= time_ms
;
1228 gettimeofday(&now
, NULL
);
1229 (*callbacks_p
)->when
.tv_usec
= now
.tv_usec
+ (time_ms
% 1000) * 1000;
1230 time_ms
-= (time_ms
% 1000);
1231 (*callbacks_p
)->when
.tv_sec
= now
.tv_sec
+ (time_ms
/ 1000);
1232 if ((*callbacks_p
)->when
.tv_usec
> 1000000) {
1233 (*callbacks_p
)->when
.tv_usec
= (*callbacks_p
)->when
.tv_usec
- 1000000;
1234 (*callbacks_p
)->when
.tv_sec
+= 1;
1237 (*callbacks_p
)->priv
= priv
;
1238 (*callbacks_p
)->next
= NULL
;
1243 int target_unregister_event_callback(int (*callback
)(struct target
*target
,
1244 enum target_event event
, void *priv
), void *priv
)
1246 struct target_event_callback
**p
= &target_event_callbacks
;
1247 struct target_event_callback
*c
= target_event_callbacks
;
1249 if (callback
== NULL
)
1250 return ERROR_COMMAND_SYNTAX_ERROR
;
1253 struct target_event_callback
*next
= c
->next
;
1254 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1266 static int target_unregister_timer_callback(int (*callback
)(void *priv
), void *priv
)
1268 struct target_timer_callback
**p
= &target_timer_callbacks
;
1269 struct target_timer_callback
*c
= target_timer_callbacks
;
1271 if (callback
== NULL
)
1272 return ERROR_COMMAND_SYNTAX_ERROR
;
1275 struct target_timer_callback
*next
= c
->next
;
1276 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1288 int target_call_event_callbacks(struct target
*target
, enum target_event event
)
1290 struct target_event_callback
*callback
= target_event_callbacks
;
1291 struct target_event_callback
*next_callback
;
1293 if (event
== TARGET_EVENT_HALTED
) {
1294 /* execute early halted first */
1295 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
1298 LOG_DEBUG("target event %i (%s)", event
,
1299 Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
);
1301 target_handle_event(target
, event
);
1304 next_callback
= callback
->next
;
1305 callback
->callback(target
, event
, callback
->priv
);
1306 callback
= next_callback
;
1312 static int target_timer_callback_periodic_restart(
1313 struct target_timer_callback
*cb
, struct timeval
*now
)
1315 int time_ms
= cb
->time_ms
;
1316 cb
->when
.tv_usec
= now
->tv_usec
+ (time_ms
% 1000) * 1000;
1317 time_ms
-= (time_ms
% 1000);
1318 cb
->when
.tv_sec
= now
->tv_sec
+ time_ms
/ 1000;
1319 if (cb
->when
.tv_usec
> 1000000) {
1320 cb
->when
.tv_usec
= cb
->when
.tv_usec
- 1000000;
1321 cb
->when
.tv_sec
+= 1;
1326 static int target_call_timer_callback(struct target_timer_callback
*cb
,
1327 struct timeval
*now
)
1329 cb
->callback(cb
->priv
);
1332 return target_timer_callback_periodic_restart(cb
, now
);
1334 return target_unregister_timer_callback(cb
->callback
, cb
->priv
);
1337 static int target_call_timer_callbacks_check_time(int checktime
)
1342 gettimeofday(&now
, NULL
);
1344 struct target_timer_callback
*callback
= target_timer_callbacks
;
1346 /* cleaning up may unregister and free this callback */
1347 struct target_timer_callback
*next_callback
= callback
->next
;
1349 bool call_it
= callback
->callback
&&
1350 ((!checktime
&& callback
->periodic
) ||
1351 now
.tv_sec
> callback
->when
.tv_sec
||
1352 (now
.tv_sec
== callback
->when
.tv_sec
&&
1353 now
.tv_usec
>= callback
->when
.tv_usec
));
1356 int retval
= target_call_timer_callback(callback
, &now
);
1357 if (retval
!= ERROR_OK
)
1361 callback
= next_callback
;
1367 int target_call_timer_callbacks(void)
1369 return target_call_timer_callbacks_check_time(1);
1372 /* invoke periodic callbacks immediately */
1373 int target_call_timer_callbacks_now(void)
1375 return target_call_timer_callbacks_check_time(0);
1378 /* Prints the working area layout for debug purposes */
1379 static void print_wa_layout(struct target
*target
)
1381 struct working_area
*c
= target
->working_areas
;
1384 LOG_DEBUG("%c%c 0x%08"PRIx32
"-0x%08"PRIx32
" (%"PRIu32
" bytes)",
1385 c
->backup
? 'b' : ' ', c
->free
? ' ' : '*',
1386 c
->address
, c
->address
+ c
->size
- 1, c
->size
);
1391 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1392 static void target_split_working_area(struct working_area
*area
, uint32_t size
)
1394 assert(area
->free
); /* Shouldn't split an allocated area */
1395 assert(size
<= area
->size
); /* Caller should guarantee this */
1397 /* Split only if not already the right size */
1398 if (size
< area
->size
) {
1399 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1404 new_wa
->next
= area
->next
;
1405 new_wa
->size
= area
->size
- size
;
1406 new_wa
->address
= area
->address
+ size
;
1407 new_wa
->backup
= NULL
;
1408 new_wa
->free
= true;
1410 area
->next
= new_wa
;
1413 /* If backup memory was allocated to this area, it has the wrong size
1414 * now so free it and it will be reallocated if/when needed */
1417 area
->backup
= NULL
;
1422 /* Merge all adjacent free areas into one */
1423 static void target_merge_working_areas(struct target
*target
)
1425 struct working_area
*c
= target
->working_areas
;
1427 while (c
&& c
->next
) {
1428 assert(c
->next
->address
== c
->address
+ c
->size
); /* This is an invariant */
1430 /* Find two adjacent free areas */
1431 if (c
->free
&& c
->next
->free
) {
1432 /* Merge the last into the first */
1433 c
->size
+= c
->next
->size
;
1435 /* Remove the last */
1436 struct working_area
*to_be_freed
= c
->next
;
1437 c
->next
= c
->next
->next
;
1438 if (to_be_freed
->backup
)
1439 free(to_be_freed
->backup
);
1442 /* If backup memory was allocated to the remaining area, it's has
1443 * the wrong size now */
1454 int target_alloc_working_area_try(struct target
*target
, uint32_t size
, struct working_area
**area
)
1456 /* Reevaluate working area address based on MMU state*/
1457 if (target
->working_areas
== NULL
) {
1461 retval
= target
->type
->mmu(target
, &enabled
);
1462 if (retval
!= ERROR_OK
)
1466 if (target
->working_area_phys_spec
) {
1467 LOG_DEBUG("MMU disabled, using physical "
1468 "address for working memory 0x%08"PRIx32
,
1469 target
->working_area_phys
);
1470 target
->working_area
= target
->working_area_phys
;
1472 LOG_ERROR("No working memory available. "
1473 "Specify -work-area-phys to target.");
1474 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1477 if (target
->working_area_virt_spec
) {
1478 LOG_DEBUG("MMU enabled, using virtual "
1479 "address for working memory 0x%08"PRIx32
,
1480 target
->working_area_virt
);
1481 target
->working_area
= target
->working_area_virt
;
1483 LOG_ERROR("No working memory available. "
1484 "Specify -work-area-virt to target.");
1485 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1489 /* Set up initial working area on first call */
1490 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1492 new_wa
->next
= NULL
;
1493 new_wa
->size
= target
->working_area_size
& ~3UL; /* 4-byte align */
1494 new_wa
->address
= target
->working_area
;
1495 new_wa
->backup
= NULL
;
1496 new_wa
->free
= true;
1499 target
->working_areas
= new_wa
;
1502 /* only allocate multiples of 4 byte */
1504 size
= (size
+ 3) & (~3UL);
1506 struct working_area
*c
= target
->working_areas
;
1508 /* Find the first large enough working area */
1510 if (c
->free
&& c
->size
>= size
)
1516 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1518 /* Split the working area into the requested size */
1519 target_split_working_area(c
, size
);
1521 LOG_DEBUG("allocated new working area of %"PRIu32
" bytes at address 0x%08"PRIx32
, size
, c
->address
);
1523 if (target
->backup_working_area
) {
1524 if (c
->backup
== NULL
) {
1525 c
->backup
= malloc(c
->size
);
1526 if (c
->backup
== NULL
)
1530 int retval
= target_read_memory(target
, c
->address
, 4, c
->size
/ 4, c
->backup
);
1531 if (retval
!= ERROR_OK
)
1535 /* mark as used, and return the new (reused) area */
1539 print_wa_layout(target
);
1544 int target_alloc_working_area(struct target
*target
, uint32_t size
, struct working_area
**area
)
1548 retval
= target_alloc_working_area_try(target
, size
, area
);
1549 if (retval
== ERROR_TARGET_RESOURCE_NOT_AVAILABLE
)
1550 LOG_WARNING("not enough working area available(requested %"PRIu32
")", size
);
1555 static int target_restore_working_area(struct target
*target
, struct working_area
*area
)
1557 int retval
= ERROR_OK
;
1559 if (target
->backup_working_area
&& area
->backup
!= NULL
) {
1560 retval
= target_write_memory(target
, area
->address
, 4, area
->size
/ 4, area
->backup
);
1561 if (retval
!= ERROR_OK
)
1562 LOG_ERROR("failed to restore %"PRIu32
" bytes of working area at address 0x%08"PRIx32
,
1563 area
->size
, area
->address
);
1569 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1570 static int target_free_working_area_restore(struct target
*target
, struct working_area
*area
, int restore
)
1572 int retval
= ERROR_OK
;
1578 retval
= target_restore_working_area(target
, area
);
1579 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1580 if (retval
!= ERROR_OK
)
1586 LOG_DEBUG("freed %"PRIu32
" bytes of working area at address 0x%08"PRIx32
,
1587 area
->size
, area
->address
);
1589 target_merge_working_areas(target
);
1591 print_wa_layout(target
);
1596 int target_free_working_area(struct target
*target
, struct working_area
*area
)
1598 return target_free_working_area_restore(target
, area
, 1);
1601 /* free resources and restore memory, if restoring memory fails,
1602 * free up resources anyway
1604 static void target_free_all_working_areas_restore(struct target
*target
, int restore
)
1606 struct working_area
*c
= target
->working_areas
;
1608 LOG_DEBUG("freeing all working areas");
1610 /* Loop through all areas, restoring the allocated ones and marking them as free */
1614 target_restore_working_area(target
, c
);
1620 /* Run a merge pass to combine all areas into one */
1621 target_merge_working_areas(target
);
1623 print_wa_layout(target
);
1626 void target_free_all_working_areas(struct target
*target
)
1628 target_free_all_working_areas_restore(target
, 1);
1631 /* Find the largest number of bytes that can be allocated */
1632 uint32_t target_get_working_area_avail(struct target
*target
)
1634 struct working_area
*c
= target
->working_areas
;
1635 uint32_t max_size
= 0;
1638 return target
->working_area_size
;
1641 if (c
->free
&& max_size
< c
->size
)
1650 int target_arch_state(struct target
*target
)
1653 if (target
== NULL
) {
1654 LOG_USER("No target has been configured");
1658 LOG_USER("target state: %s", target_state_name(target
));
1660 if (target
->state
!= TARGET_HALTED
)
1663 retval
= target
->type
->arch_state(target
);
1667 /* Single aligned words are guaranteed to use 16 or 32 bit access
1668 * mode respectively, otherwise data is handled as quickly as
1671 int target_write_buffer(struct target
*target
, uint32_t address
, uint32_t size
, const uint8_t *buffer
)
1673 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1674 (int)size
, (unsigned)address
);
1676 if (!target_was_examined(target
)) {
1677 LOG_ERROR("Target not examined yet");
1684 if ((address
+ size
- 1) < address
) {
1685 /* GDB can request this when e.g. PC is 0xfffffffc*/
1686 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1692 return target
->type
->write_buffer(target
, address
, size
, buffer
);
1695 static int target_write_buffer_default(struct target
*target
, uint32_t address
, uint32_t size
, const uint8_t *buffer
)
1697 int retval
= ERROR_OK
;
1699 if (((address
% 2) == 0) && (size
== 2))
1700 return target_write_memory(target
, address
, 2, 1, buffer
);
1702 /* handle unaligned head bytes */
1704 uint32_t unaligned
= 4 - (address
% 4);
1706 if (unaligned
> size
)
1709 retval
= target_write_memory(target
, address
, 1, unaligned
, buffer
);
1710 if (retval
!= ERROR_OK
)
1713 buffer
+= unaligned
;
1714 address
+= unaligned
;
1718 /* handle aligned words */
1720 int aligned
= size
- (size
% 4);
1722 /* use bulk writes above a certain limit. This may have to be changed */
1723 if (aligned
> 128) {
1724 retval
= target
->type
->bulk_write_memory(target
, address
, aligned
/ 4, buffer
);
1725 if (retval
!= ERROR_OK
)
1728 retval
= target_write_memory(target
, address
, 4, aligned
/ 4, buffer
);
1729 if (retval
!= ERROR_OK
)
1738 /* handle tail writes of less than 4 bytes */
1740 retval
= target_write_memory(target
, address
, 1, size
, buffer
);
1741 if (retval
!= ERROR_OK
)
1748 /* Single aligned words are guaranteed to use 16 or 32 bit access
1749 * mode respectively, otherwise data is handled as quickly as
1752 int target_read_buffer(struct target
*target
, uint32_t address
, uint32_t size
, uint8_t *buffer
)
1754 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1755 (int)size
, (unsigned)address
);
1757 if (!target_was_examined(target
)) {
1758 LOG_ERROR("Target not examined yet");
1765 if ((address
+ size
- 1) < address
) {
1766 /* GDB can request this when e.g. PC is 0xfffffffc*/
1767 LOG_ERROR("address + size wrapped(0x%08" PRIx32
", 0x%08" PRIx32
")",
1773 return target
->type
->read_buffer(target
, address
, size
, buffer
);
1776 static int target_read_buffer_default(struct target
*target
, uint32_t address
, uint32_t size
, uint8_t *buffer
)
1778 int retval
= ERROR_OK
;
1780 if (((address
% 2) == 0) && (size
== 2))
1781 return target_read_memory(target
, address
, 2, 1, buffer
);
1783 /* handle unaligned head bytes */
1785 uint32_t unaligned
= 4 - (address
% 4);
1787 if (unaligned
> size
)
1790 retval
= target_read_memory(target
, address
, 1, unaligned
, buffer
);
1791 if (retval
!= ERROR_OK
)
1794 buffer
+= unaligned
;
1795 address
+= unaligned
;
1799 /* handle aligned words */
1801 int aligned
= size
- (size
% 4);
1803 retval
= target_read_memory(target
, address
, 4, aligned
/ 4, buffer
);
1804 if (retval
!= ERROR_OK
)
1812 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1814 int aligned
= size
- (size
% 2);
1815 retval
= target_read_memory(target
, address
, 2, aligned
/ 2, buffer
);
1816 if (retval
!= ERROR_OK
)
1823 /* handle tail writes of less than 4 bytes */
1825 retval
= target_read_memory(target
, address
, 1, size
, buffer
);
1826 if (retval
!= ERROR_OK
)
1833 int target_checksum_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t* crc
)
1838 uint32_t checksum
= 0;
1839 if (!target_was_examined(target
)) {
1840 LOG_ERROR("Target not examined yet");
1844 retval
= target
->type
->checksum_memory(target
, address
, size
, &checksum
);
1845 if (retval
!= ERROR_OK
) {
1846 buffer
= malloc(size
);
1847 if (buffer
== NULL
) {
1848 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size
);
1849 return ERROR_COMMAND_SYNTAX_ERROR
;
1851 retval
= target_read_buffer(target
, address
, size
, buffer
);
1852 if (retval
!= ERROR_OK
) {
1857 /* convert to target endianness */
1858 for (i
= 0; i
< (size
/sizeof(uint32_t)); i
++) {
1859 uint32_t target_data
;
1860 target_data
= target_buffer_get_u32(target
, &buffer
[i
*sizeof(uint32_t)]);
1861 target_buffer_set_u32(target
, &buffer
[i
*sizeof(uint32_t)], target_data
);
1864 retval
= image_calculate_checksum(buffer
, size
, &checksum
);
1873 int target_blank_check_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t* blank
)
1876 if (!target_was_examined(target
)) {
1877 LOG_ERROR("Target not examined yet");
1881 if (target
->type
->blank_check_memory
== 0)
1882 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1884 retval
= target
->type
->blank_check_memory(target
, address
, size
, blank
);
1889 int target_read_u32(struct target
*target
, uint32_t address
, uint32_t *value
)
1891 uint8_t value_buf
[4];
1892 if (!target_was_examined(target
)) {
1893 LOG_ERROR("Target not examined yet");
1897 int retval
= target_read_memory(target
, address
, 4, 1, value_buf
);
1899 if (retval
== ERROR_OK
) {
1900 *value
= target_buffer_get_u32(target
, value_buf
);
1901 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
1906 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
1913 int target_read_u16(struct target
*target
, uint32_t address
, uint16_t *value
)
1915 uint8_t value_buf
[2];
1916 if (!target_was_examined(target
)) {
1917 LOG_ERROR("Target not examined yet");
1921 int retval
= target_read_memory(target
, address
, 2, 1, value_buf
);
1923 if (retval
== ERROR_OK
) {
1924 *value
= target_buffer_get_u16(target
, value_buf
);
1925 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%4.4x",
1930 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
1937 int target_read_u8(struct target
*target
, uint32_t address
, uint8_t *value
)
1939 int retval
= target_read_memory(target
, address
, 1, 1, value
);
1940 if (!target_was_examined(target
)) {
1941 LOG_ERROR("Target not examined yet");
1945 if (retval
== ERROR_OK
) {
1946 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2x",
1951 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
1958 int target_write_u32(struct target
*target
, uint32_t address
, uint32_t value
)
1961 uint8_t value_buf
[4];
1962 if (!target_was_examined(target
)) {
1963 LOG_ERROR("Target not examined yet");
1967 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
1971 target_buffer_set_u32(target
, value_buf
, value
);
1972 retval
= target_write_memory(target
, address
, 4, 1, value_buf
);
1973 if (retval
!= ERROR_OK
)
1974 LOG_DEBUG("failed: %i", retval
);
1979 int target_write_u16(struct target
*target
, uint32_t address
, uint16_t value
)
1982 uint8_t value_buf
[2];
1983 if (!target_was_examined(target
)) {
1984 LOG_ERROR("Target not examined yet");
1988 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8x",
1992 target_buffer_set_u16(target
, value_buf
, value
);
1993 retval
= target_write_memory(target
, address
, 2, 1, value_buf
);
1994 if (retval
!= ERROR_OK
)
1995 LOG_DEBUG("failed: %i", retval
);
2000 int target_write_u8(struct target
*target
, uint32_t address
, uint8_t value
)
2003 if (!target_was_examined(target
)) {
2004 LOG_ERROR("Target not examined yet");
2008 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2x",
2011 retval
= target_write_memory(target
, address
, 1, 1, &value
);
2012 if (retval
!= ERROR_OK
)
2013 LOG_DEBUG("failed: %i", retval
);
2018 static int find_target(struct command_context
*cmd_ctx
, const char *name
)
2020 struct target
*target
= get_target(name
);
2021 if (target
== NULL
) {
2022 LOG_ERROR("Target: %s is unknown, try one of:\n", name
);
2025 if (!target
->tap
->enabled
) {
2026 LOG_USER("Target: TAP %s is disabled, "
2027 "can't be the current target\n",
2028 target
->tap
->dotted_name
);
2032 cmd_ctx
->current_target
= target
->target_number
;
2037 COMMAND_HANDLER(handle_targets_command
)
2039 int retval
= ERROR_OK
;
2040 if (CMD_ARGC
== 1) {
2041 retval
= find_target(CMD_CTX
, CMD_ARGV
[0]);
2042 if (retval
== ERROR_OK
) {
2048 struct target
*target
= all_targets
;
2049 command_print(CMD_CTX
, " TargetName Type Endian TapName State ");
2050 command_print(CMD_CTX
, "-- ------------------ ---------- ------ ------------------ ------------");
2055 if (target
->tap
->enabled
)
2056 state
= target_state_name(target
);
2058 state
= "tap-disabled";
2060 if (CMD_CTX
->current_target
== target
->target_number
)
2063 /* keep columns lined up to match the headers above */
2064 command_print(CMD_CTX
,
2065 "%2d%c %-18s %-10s %-6s %-18s %s",
2066 target
->target_number
,
2068 target_name(target
),
2069 target_type_name(target
),
2070 Jim_Nvp_value2name_simple(nvp_target_endian
,
2071 target
->endianness
)->name
,
2072 target
->tap
->dotted_name
,
2074 target
= target
->next
;
2080 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2082 static int powerDropout
;
2083 static int srstAsserted
;
2085 static int runPowerRestore
;
2086 static int runPowerDropout
;
2087 static int runSrstAsserted
;
2088 static int runSrstDeasserted
;
2090 static int sense_handler(void)
2092 static int prevSrstAsserted
;
2093 static int prevPowerdropout
;
2095 int retval
= jtag_power_dropout(&powerDropout
);
2096 if (retval
!= ERROR_OK
)
2100 powerRestored
= prevPowerdropout
&& !powerDropout
;
2102 runPowerRestore
= 1;
2104 long long current
= timeval_ms();
2105 static long long lastPower
;
2106 int waitMore
= lastPower
+ 2000 > current
;
2107 if (powerDropout
&& !waitMore
) {
2108 runPowerDropout
= 1;
2109 lastPower
= current
;
2112 retval
= jtag_srst_asserted(&srstAsserted
);
2113 if (retval
!= ERROR_OK
)
2117 srstDeasserted
= prevSrstAsserted
&& !srstAsserted
;
2119 static long long lastSrst
;
2120 waitMore
= lastSrst
+ 2000 > current
;
2121 if (srstDeasserted
&& !waitMore
) {
2122 runSrstDeasserted
= 1;
2126 if (!prevSrstAsserted
&& srstAsserted
)
2127 runSrstAsserted
= 1;
2129 prevSrstAsserted
= srstAsserted
;
2130 prevPowerdropout
= powerDropout
;
2132 if (srstDeasserted
|| powerRestored
) {
2133 /* Other than logging the event we can't do anything here.
2134 * Issuing a reset is a particularly bad idea as we might
2135 * be inside a reset already.
2142 static int backoff_times
;
2143 static int backoff_count
;
2145 /* process target state changes */
2146 static int handle_target(void *priv
)
2148 Jim_Interp
*interp
= (Jim_Interp
*)priv
;
2149 int retval
= ERROR_OK
;
2151 if (!is_jtag_poll_safe()) {
2152 /* polling is disabled currently */
2156 /* we do not want to recurse here... */
2157 static int recursive
;
2161 /* danger! running these procedures can trigger srst assertions and power dropouts.
2162 * We need to avoid an infinite loop/recursion here and we do that by
2163 * clearing the flags after running these events.
2165 int did_something
= 0;
2166 if (runSrstAsserted
) {
2167 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2168 Jim_Eval(interp
, "srst_asserted");
2171 if (runSrstDeasserted
) {
2172 Jim_Eval(interp
, "srst_deasserted");
2175 if (runPowerDropout
) {
2176 LOG_INFO("Power dropout detected, running power_dropout proc.");
2177 Jim_Eval(interp
, "power_dropout");
2180 if (runPowerRestore
) {
2181 Jim_Eval(interp
, "power_restore");
2185 if (did_something
) {
2186 /* clear detect flags */
2190 /* clear action flags */
2192 runSrstAsserted
= 0;
2193 runSrstDeasserted
= 0;
2194 runPowerRestore
= 0;
2195 runPowerDropout
= 0;
2200 if (backoff_times
> backoff_count
) {
2201 /* do not poll this time as we failed previously */
2207 /* Poll targets for state changes unless that's globally disabled.
2208 * Skip targets that are currently disabled.
2210 for (struct target
*target
= all_targets
;
2211 is_jtag_poll_safe() && target
;
2212 target
= target
->next
) {
2213 if (!target
->tap
->enabled
)
2216 /* only poll target if we've got power and srst isn't asserted */
2217 if (!powerDropout
&& !srstAsserted
) {
2218 /* polling may fail silently until the target has been examined */
2219 retval
= target_poll(target
);
2220 if (retval
!= ERROR_OK
) {
2221 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2222 if (backoff_times
* polling_interval
< 5000) {
2226 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms",
2227 backoff_times
* polling_interval
);
2229 /* Tell GDB to halt the debugger. This allows the user to
2230 * run monitor commands to handle the situation.
2232 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
2235 /* Since we succeeded, we reset backoff count */
2236 if (backoff_times
> 0)
2237 LOG_USER("Polling succeeded again");
2245 COMMAND_HANDLER(handle_reg_command
)
2247 struct target
*target
;
2248 struct reg
*reg
= NULL
;
2254 target
= get_current_target(CMD_CTX
);
2256 /* list all available registers for the current target */
2257 if (CMD_ARGC
== 0) {
2258 struct reg_cache
*cache
= target
->reg_cache
;
2264 command_print(CMD_CTX
, "===== %s", cache
->name
);
2266 for (i
= 0, reg
= cache
->reg_list
;
2267 i
< cache
->num_regs
;
2268 i
++, reg
++, count
++) {
2269 /* only print cached values if they are valid */
2271 value
= buf_to_str(reg
->value
,
2273 command_print(CMD_CTX
,
2274 "(%i) %s (/%" PRIu32
"): 0x%s%s",
2282 command_print(CMD_CTX
, "(%i) %s (/%" PRIu32
")",
2287 cache
= cache
->next
;
2293 /* access a single register by its ordinal number */
2294 if ((CMD_ARGV
[0][0] >= '0') && (CMD_ARGV
[0][0] <= '9')) {
2296 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], num
);
2298 struct reg_cache
*cache
= target
->reg_cache
;
2302 for (i
= 0; i
< cache
->num_regs
; i
++) {
2303 if (count
++ == num
) {
2304 reg
= &cache
->reg_list
[i
];
2310 cache
= cache
->next
;
2314 command_print(CMD_CTX
, "%i is out of bounds, the current target "
2315 "has only %i registers (0 - %i)", num
, count
, count
- 1);
2319 /* access a single register by its name */
2320 reg
= register_get_by_name(target
->reg_cache
, CMD_ARGV
[0], 1);
2323 command_print(CMD_CTX
, "register %s not found in current target", CMD_ARGV
[0]);
2328 assert(reg
!= NULL
); /* give clang a hint that we *know* reg is != NULL here */
2330 /* display a register */
2331 if ((CMD_ARGC
== 1) || ((CMD_ARGC
== 2) && !((CMD_ARGV
[1][0] >= '0')
2332 && (CMD_ARGV
[1][0] <= '9')))) {
2333 if ((CMD_ARGC
== 2) && (strcmp(CMD_ARGV
[1], "force") == 0))
2336 if (reg
->valid
== 0)
2337 reg
->type
->get(reg
);
2338 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2339 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2344 /* set register value */
2345 if (CMD_ARGC
== 2) {
2346 uint8_t *buf
= malloc(DIV_ROUND_UP(reg
->size
, 8));
2349 str_to_buf(CMD_ARGV
[1], strlen(CMD_ARGV
[1]), buf
, reg
->size
, 0);
2351 reg
->type
->set(reg
, buf
);
2353 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2354 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2362 return ERROR_COMMAND_SYNTAX_ERROR
;
2365 COMMAND_HANDLER(handle_poll_command
)
2367 int retval
= ERROR_OK
;
2368 struct target
*target
= get_current_target(CMD_CTX
);
2370 if (CMD_ARGC
== 0) {
2371 command_print(CMD_CTX
, "background polling: %s",
2372 jtag_poll_get_enabled() ? "on" : "off");
2373 command_print(CMD_CTX
, "TAP: %s (%s)",
2374 target
->tap
->dotted_name
,
2375 target
->tap
->enabled
? "enabled" : "disabled");
2376 if (!target
->tap
->enabled
)
2378 retval
= target_poll(target
);
2379 if (retval
!= ERROR_OK
)
2381 retval
= target_arch_state(target
);
2382 if (retval
!= ERROR_OK
)
2384 } else if (CMD_ARGC
== 1) {
2386 COMMAND_PARSE_ON_OFF(CMD_ARGV
[0], enable
);
2387 jtag_poll_set_enabled(enable
);
2389 return ERROR_COMMAND_SYNTAX_ERROR
;
2394 COMMAND_HANDLER(handle_wait_halt_command
)
2397 return ERROR_COMMAND_SYNTAX_ERROR
;
2400 if (1 == CMD_ARGC
) {
2401 int retval
= parse_uint(CMD_ARGV
[0], &ms
);
2402 if (ERROR_OK
!= retval
)
2403 return ERROR_COMMAND_SYNTAX_ERROR
;
2404 /* convert seconds (given) to milliseconds (needed) */
2408 struct target
*target
= get_current_target(CMD_CTX
);
2409 return target_wait_state(target
, TARGET_HALTED
, ms
);
2412 /* wait for target state to change. The trick here is to have a low
2413 * latency for short waits and not to suck up all the CPU time
2416 * After 500ms, keep_alive() is invoked
2418 int target_wait_state(struct target
*target
, enum target_state state
, int ms
)
2421 long long then
= 0, cur
;
2425 retval
= target_poll(target
);
2426 if (retval
!= ERROR_OK
)
2428 if (target
->state
== state
)
2433 then
= timeval_ms();
2434 LOG_DEBUG("waiting for target %s...",
2435 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2441 if ((cur
-then
) > ms
) {
2442 LOG_ERROR("timed out while waiting for target %s",
2443 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2451 COMMAND_HANDLER(handle_halt_command
)
2455 struct target
*target
= get_current_target(CMD_CTX
);
2456 int retval
= target_halt(target
);
2457 if (ERROR_OK
!= retval
)
2460 if (CMD_ARGC
== 1) {
2461 unsigned wait_local
;
2462 retval
= parse_uint(CMD_ARGV
[0], &wait_local
);
2463 if (ERROR_OK
!= retval
)
2464 return ERROR_COMMAND_SYNTAX_ERROR
;
2469 return CALL_COMMAND_HANDLER(handle_wait_halt_command
);
2472 COMMAND_HANDLER(handle_soft_reset_halt_command
)
2474 struct target
*target
= get_current_target(CMD_CTX
);
2476 LOG_USER("requesting target halt and executing a soft reset");
2478 target
->type
->soft_reset_halt(target
);
2483 COMMAND_HANDLER(handle_reset_command
)
2486 return ERROR_COMMAND_SYNTAX_ERROR
;
2488 enum target_reset_mode reset_mode
= RESET_RUN
;
2489 if (CMD_ARGC
== 1) {
2491 n
= Jim_Nvp_name2value_simple(nvp_reset_modes
, CMD_ARGV
[0]);
2492 if ((n
->name
== NULL
) || (n
->value
== RESET_UNKNOWN
))
2493 return ERROR_COMMAND_SYNTAX_ERROR
;
2494 reset_mode
= n
->value
;
2497 /* reset *all* targets */
2498 return target_process_reset(CMD_CTX
, reset_mode
);
2502 COMMAND_HANDLER(handle_resume_command
)
2506 return ERROR_COMMAND_SYNTAX_ERROR
;
2508 struct target
*target
= get_current_target(CMD_CTX
);
2510 /* with no CMD_ARGV, resume from current pc, addr = 0,
2511 * with one arguments, addr = CMD_ARGV[0],
2512 * handle breakpoints, not debugging */
2514 if (CMD_ARGC
== 1) {
2515 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
2519 return target_resume(target
, current
, addr
, 1, 0);
2522 COMMAND_HANDLER(handle_step_command
)
2525 return ERROR_COMMAND_SYNTAX_ERROR
;
2529 /* with no CMD_ARGV, step from current pc, addr = 0,
2530 * with one argument addr = CMD_ARGV[0],
2531 * handle breakpoints, debugging */
2534 if (CMD_ARGC
== 1) {
2535 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
2539 struct target
*target
= get_current_target(CMD_CTX
);
2541 return target
->type
->step(target
, current_pc
, addr
, 1);
2544 static void handle_md_output(struct command_context
*cmd_ctx
,
2545 struct target
*target
, uint32_t address
, unsigned size
,
2546 unsigned count
, const uint8_t *buffer
)
2548 const unsigned line_bytecnt
= 32;
2549 unsigned line_modulo
= line_bytecnt
/ size
;
2551 char output
[line_bytecnt
* 4 + 1];
2552 unsigned output_len
= 0;
2554 const char *value_fmt
;
2557 value_fmt
= "%8.8x ";
2560 value_fmt
= "%4.4x ";
2563 value_fmt
= "%2.2x ";
2566 /* "can't happen", caller checked */
2567 LOG_ERROR("invalid memory read size: %u", size
);
2571 for (unsigned i
= 0; i
< count
; i
++) {
2572 if (i
% line_modulo
== 0) {
2573 output_len
+= snprintf(output
+ output_len
,
2574 sizeof(output
) - output_len
,
2576 (unsigned)(address
+ (i
*size
)));
2580 const uint8_t *value_ptr
= buffer
+ i
* size
;
2583 value
= target_buffer_get_u32(target
, value_ptr
);
2586 value
= target_buffer_get_u16(target
, value_ptr
);
2591 output_len
+= snprintf(output
+ output_len
,
2592 sizeof(output
) - output_len
,
2595 if ((i
% line_modulo
== line_modulo
- 1) || (i
== count
- 1)) {
2596 command_print(cmd_ctx
, "%s", output
);
2602 COMMAND_HANDLER(handle_md_command
)
2605 return ERROR_COMMAND_SYNTAX_ERROR
;
2608 switch (CMD_NAME
[2]) {
2619 return ERROR_COMMAND_SYNTAX_ERROR
;
2622 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
2623 int (*fn
)(struct target
*target
,
2624 uint32_t address
, uint32_t size_value
, uint32_t count
, uint8_t *buffer
);
2628 fn
= target_read_phys_memory
;
2630 fn
= target_read_memory
;
2631 if ((CMD_ARGC
< 1) || (CMD_ARGC
> 2))
2632 return ERROR_COMMAND_SYNTAX_ERROR
;
2635 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], address
);
2639 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[1], count
);
2641 uint8_t *buffer
= calloc(count
, size
);
2643 struct target
*target
= get_current_target(CMD_CTX
);
2644 int retval
= fn(target
, address
, size
, count
, buffer
);
2645 if (ERROR_OK
== retval
)
2646 handle_md_output(CMD_CTX
, target
, address
, size
, count
, buffer
);
2653 typedef int (*target_write_fn
)(struct target
*target
,
2654 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
);
2656 static int target_write_memory_fast(struct target
*target
,
2657 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
2659 return target_write_buffer(target
, address
, size
* count
, buffer
);
2662 static int target_fill_mem(struct target
*target
,
2671 /* We have to write in reasonably large chunks to be able
2672 * to fill large memory areas with any sane speed */
2673 const unsigned chunk_size
= 16384;
2674 uint8_t *target_buf
= malloc(chunk_size
* data_size
);
2675 if (target_buf
== NULL
) {
2676 LOG_ERROR("Out of memory");
2680 for (unsigned i
= 0; i
< chunk_size
; i
++) {
2681 switch (data_size
) {
2683 target_buffer_set_u32(target
, target_buf
+ i
* data_size
, b
);
2686 target_buffer_set_u16(target
, target_buf
+ i
* data_size
, b
);
2689 target_buffer_set_u8(target
, target_buf
+ i
* data_size
, b
);
2696 int retval
= ERROR_OK
;
2698 for (unsigned x
= 0; x
< c
; x
+= chunk_size
) {
2701 if (current
> chunk_size
)
2702 current
= chunk_size
;
2703 retval
= fn(target
, address
+ x
* data_size
, data_size
, current
, target_buf
);
2704 if (retval
!= ERROR_OK
)
2706 /* avoid GDB timeouts */
2715 COMMAND_HANDLER(handle_mw_command
)
2718 return ERROR_COMMAND_SYNTAX_ERROR
;
2719 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
2724 fn
= target_write_phys_memory
;
2726 fn
= target_write_memory_fast
;
2727 if ((CMD_ARGC
< 2) || (CMD_ARGC
> 3))
2728 return ERROR_COMMAND_SYNTAX_ERROR
;
2731 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], address
);
2734 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], value
);
2738 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[2], count
);
2740 struct target
*target
= get_current_target(CMD_CTX
);
2742 switch (CMD_NAME
[2]) {
2753 return ERROR_COMMAND_SYNTAX_ERROR
;
2756 return target_fill_mem(target
, address
, fn
, wordsize
, value
, count
);
2759 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV
, struct image
*image
,
2760 uint32_t *min_address
, uint32_t *max_address
)
2762 if (CMD_ARGC
< 1 || CMD_ARGC
> 5)
2763 return ERROR_COMMAND_SYNTAX_ERROR
;
2765 /* a base address isn't always necessary,
2766 * default to 0x0 (i.e. don't relocate) */
2767 if (CMD_ARGC
>= 2) {
2769 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], addr
);
2770 image
->base_address
= addr
;
2771 image
->base_address_set
= 1;
2773 image
->base_address_set
= 0;
2775 image
->start_address_set
= 0;
2778 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[3], *min_address
);
2779 if (CMD_ARGC
== 5) {
2780 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[4], *max_address
);
2781 /* use size (given) to find max (required) */
2782 *max_address
+= *min_address
;
2785 if (*min_address
> *max_address
)
2786 return ERROR_COMMAND_SYNTAX_ERROR
;
2791 COMMAND_HANDLER(handle_load_image_command
)
2795 uint32_t image_size
;
2796 uint32_t min_address
= 0;
2797 uint32_t max_address
= 0xffffffff;
2801 int retval
= CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV
,
2802 &image
, &min_address
, &max_address
);
2803 if (ERROR_OK
!= retval
)
2806 struct target
*target
= get_current_target(CMD_CTX
);
2808 struct duration bench
;
2809 duration_start(&bench
);
2811 if (image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
>= 3) ? CMD_ARGV
[2] : NULL
) != ERROR_OK
)
2816 for (i
= 0; i
< image
.num_sections
; i
++) {
2817 buffer
= malloc(image
.sections
[i
].size
);
2818 if (buffer
== NULL
) {
2819 command_print(CMD_CTX
,
2820 "error allocating buffer for section (%d bytes)",
2821 (int)(image
.sections
[i
].size
));
2825 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
2826 if (retval
!= ERROR_OK
) {
2831 uint32_t offset
= 0;
2832 uint32_t length
= buf_cnt
;
2834 /* DANGER!!! beware of unsigned comparision here!!! */
2836 if ((image
.sections
[i
].base_address
+ buf_cnt
>= min_address
) &&
2837 (image
.sections
[i
].base_address
< max_address
)) {
2839 if (image
.sections
[i
].base_address
< min_address
) {
2840 /* clip addresses below */
2841 offset
+= min_address
-image
.sections
[i
].base_address
;
2845 if (image
.sections
[i
].base_address
+ buf_cnt
> max_address
)
2846 length
-= (image
.sections
[i
].base_address
+ buf_cnt
)-max_address
;
2848 retval
= target_write_buffer(target
,
2849 image
.sections
[i
].base_address
+ offset
, length
, buffer
+ offset
);
2850 if (retval
!= ERROR_OK
) {
2854 image_size
+= length
;
2855 command_print(CMD_CTX
, "%u bytes written at address 0x%8.8" PRIx32
"",
2856 (unsigned int)length
,
2857 image
.sections
[i
].base_address
+ offset
);
2863 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
2864 command_print(CMD_CTX
, "downloaded %" PRIu32
" bytes "
2865 "in %fs (%0.3f KiB/s)", image_size
,
2866 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
2869 image_close(&image
);
2875 COMMAND_HANDLER(handle_dump_image_command
)
2877 struct fileio fileio
;
2879 int retval
, retvaltemp
;
2880 uint32_t address
, size
;
2881 struct duration bench
;
2882 struct target
*target
= get_current_target(CMD_CTX
);
2885 return ERROR_COMMAND_SYNTAX_ERROR
;
2887 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], address
);
2888 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], size
);
2890 uint32_t buf_size
= (size
> 4096) ? 4096 : size
;
2891 buffer
= malloc(buf_size
);
2895 retval
= fileio_open(&fileio
, CMD_ARGV
[0], FILEIO_WRITE
, FILEIO_BINARY
);
2896 if (retval
!= ERROR_OK
) {
2901 duration_start(&bench
);
2904 size_t size_written
;
2905 uint32_t this_run_size
= (size
> buf_size
) ? buf_size
: size
;
2906 retval
= target_read_buffer(target
, address
, this_run_size
, buffer
);
2907 if (retval
!= ERROR_OK
)
2910 retval
= fileio_write(&fileio
, this_run_size
, buffer
, &size_written
);
2911 if (retval
!= ERROR_OK
)
2914 size
-= this_run_size
;
2915 address
+= this_run_size
;
2920 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
2922 retval
= fileio_size(&fileio
, &filesize
);
2923 if (retval
!= ERROR_OK
)
2925 command_print(CMD_CTX
,
2926 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize
,
2927 duration_elapsed(&bench
), duration_kbps(&bench
, filesize
));
2930 retvaltemp
= fileio_close(&fileio
);
2931 if (retvaltemp
!= ERROR_OK
)
2937 static COMMAND_HELPER(handle_verify_image_command_internal
, int verify
)
2941 uint32_t image_size
;
2944 uint32_t checksum
= 0;
2945 uint32_t mem_checksum
= 0;
2949 struct target
*target
= get_current_target(CMD_CTX
);
2952 return ERROR_COMMAND_SYNTAX_ERROR
;
2955 LOG_ERROR("no target selected");
2959 struct duration bench
;
2960 duration_start(&bench
);
2962 if (CMD_ARGC
>= 2) {
2964 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], addr
);
2965 image
.base_address
= addr
;
2966 image
.base_address_set
= 1;
2968 image
.base_address_set
= 0;
2969 image
.base_address
= 0x0;
2972 image
.start_address_set
= 0;
2974 retval
= image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
== 3) ? CMD_ARGV
[2] : NULL
);
2975 if (retval
!= ERROR_OK
)
2981 for (i
= 0; i
< image
.num_sections
; i
++) {
2982 buffer
= malloc(image
.sections
[i
].size
);
2983 if (buffer
== NULL
) {
2984 command_print(CMD_CTX
,
2985 "error allocating buffer for section (%d bytes)",
2986 (int)(image
.sections
[i
].size
));
2989 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
2990 if (retval
!= ERROR_OK
) {
2996 /* calculate checksum of image */
2997 retval
= image_calculate_checksum(buffer
, buf_cnt
, &checksum
);
2998 if (retval
!= ERROR_OK
) {
3003 retval
= target_checksum_memory(target
, image
.sections
[i
].base_address
, buf_cnt
, &mem_checksum
);
3004 if (retval
!= ERROR_OK
) {
3009 if (checksum
!= mem_checksum
) {
3010 /* failed crc checksum, fall back to a binary compare */
3014 LOG_ERROR("checksum mismatch - attempting binary compare");
3016 data
= (uint8_t *)malloc(buf_cnt
);
3018 /* Can we use 32bit word accesses? */
3020 int count
= buf_cnt
;
3021 if ((count
% 4) == 0) {
3025 retval
= target_read_memory(target
, image
.sections
[i
].base_address
, size
, count
, data
);
3026 if (retval
== ERROR_OK
) {
3028 for (t
= 0; t
< buf_cnt
; t
++) {
3029 if (data
[t
] != buffer
[t
]) {
3030 command_print(CMD_CTX
,
3031 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3033 (unsigned)(t
+ image
.sections
[i
].base_address
),
3036 if (diffs
++ >= 127) {
3037 command_print(CMD_CTX
, "More than 128 errors, the rest are not printed.");
3049 command_print(CMD_CTX
, "address 0x%08" PRIx32
" length 0x%08zx",
3050 image
.sections
[i
].base_address
,
3055 image_size
+= buf_cnt
;
3058 command_print(CMD_CTX
, "No more differences found.");
3061 retval
= ERROR_FAIL
;
3062 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3063 command_print(CMD_CTX
, "verified %" PRIu32
" bytes "
3064 "in %fs (%0.3f KiB/s)", image_size
,
3065 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
3068 image_close(&image
);
3073 COMMAND_HANDLER(handle_verify_image_command
)
3075 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, 1);
3078 COMMAND_HANDLER(handle_test_image_command
)
3080 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, 0);
3083 static int handle_bp_command_list(struct command_context
*cmd_ctx
)
3085 struct target
*target
= get_current_target(cmd_ctx
);
3086 struct breakpoint
*breakpoint
= target
->breakpoints
;
3087 while (breakpoint
) {
3088 if (breakpoint
->type
== BKPT_SOFT
) {
3089 char *buf
= buf_to_str(breakpoint
->orig_instr
,
3090 breakpoint
->length
, 16);
3091 command_print(cmd_ctx
, "IVA breakpoint: 0x%8.8" PRIx32
", 0x%x, %i, 0x%s",
3092 breakpoint
->address
,
3094 breakpoint
->set
, buf
);
3097 if ((breakpoint
->address
== 0) && (breakpoint
->asid
!= 0))
3098 command_print(cmd_ctx
, "Context breakpoint: 0x%8.8" PRIx32
", 0x%x, %i",
3100 breakpoint
->length
, breakpoint
->set
);
3101 else if ((breakpoint
->address
!= 0) && (breakpoint
->asid
!= 0)) {
3102 command_print(cmd_ctx
, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32
", 0x%x, %i",
3103 breakpoint
->address
,
3104 breakpoint
->length
, breakpoint
->set
);
3105 command_print(cmd_ctx
, "\t|--->linked with ContextID: 0x%8.8" PRIx32
,
3108 command_print(cmd_ctx
, "Breakpoint(IVA): 0x%8.8" PRIx32
", 0x%x, %i",
3109 breakpoint
->address
,
3110 breakpoint
->length
, breakpoint
->set
);
3113 breakpoint
= breakpoint
->next
;
3118 static int handle_bp_command_set(struct command_context
*cmd_ctx
,
3119 uint32_t addr
, uint32_t asid
, uint32_t length
, int hw
)
3121 struct target
*target
= get_current_target(cmd_ctx
);
3124 int retval
= breakpoint_add(target
, addr
, length
, hw
);
3125 if (ERROR_OK
== retval
)
3126 command_print(cmd_ctx
, "breakpoint set at 0x%8.8" PRIx32
"", addr
);
3128 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3131 } else if (addr
== 0) {
3132 int retval
= context_breakpoint_add(target
, asid
, length
, hw
);
3133 if (ERROR_OK
== retval
)
3134 command_print(cmd_ctx
, "Context breakpoint set at 0x%8.8" PRIx32
"", asid
);
3136 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3140 int retval
= hybrid_breakpoint_add(target
, addr
, asid
, length
, hw
);
3141 if (ERROR_OK
== retval
)
3142 command_print(cmd_ctx
, "Hybrid breakpoint set at 0x%8.8" PRIx32
"", asid
);
3144 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3151 COMMAND_HANDLER(handle_bp_command
)
3160 return handle_bp_command_list(CMD_CTX
);
3164 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3165 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3166 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3169 if (strcmp(CMD_ARGV
[2], "hw") == 0) {
3171 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3173 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3176 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3177 } else if (strcmp(CMD_ARGV
[2], "hw_ctx") == 0) {
3179 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], asid
);
3180 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3182 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3187 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3188 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], asid
);
3189 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], length
);
3190 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3193 return ERROR_COMMAND_SYNTAX_ERROR
;
3197 COMMAND_HANDLER(handle_rbp_command
)
3200 return ERROR_COMMAND_SYNTAX_ERROR
;
3203 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3205 struct target
*target
= get_current_target(CMD_CTX
);
3206 breakpoint_remove(target
, addr
);
3211 COMMAND_HANDLER(handle_wp_command
)
3213 struct target
*target
= get_current_target(CMD_CTX
);
3215 if (CMD_ARGC
== 0) {
3216 struct watchpoint
*watchpoint
= target
->watchpoints
;
3218 while (watchpoint
) {
3219 command_print(CMD_CTX
, "address: 0x%8.8" PRIx32
3220 ", len: 0x%8.8" PRIx32
3221 ", r/w/a: %i, value: 0x%8.8" PRIx32
3222 ", mask: 0x%8.8" PRIx32
,
3223 watchpoint
->address
,
3225 (int)watchpoint
->rw
,
3228 watchpoint
= watchpoint
->next
;
3233 enum watchpoint_rw type
= WPT_ACCESS
;
3235 uint32_t length
= 0;
3236 uint32_t data_value
= 0x0;
3237 uint32_t data_mask
= 0xffffffff;
3241 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[4], data_mask
);
3244 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[3], data_value
);
3247 switch (CMD_ARGV
[2][0]) {
3258 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV
[2][0]);
3259 return ERROR_COMMAND_SYNTAX_ERROR
;
3263 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3264 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3268 return ERROR_COMMAND_SYNTAX_ERROR
;
3271 int retval
= watchpoint_add(target
, addr
, length
, type
,
3272 data_value
, data_mask
);
3273 if (ERROR_OK
!= retval
)
3274 LOG_ERROR("Failure setting watchpoints");
3279 COMMAND_HANDLER(handle_rwp_command
)
3282 return ERROR_COMMAND_SYNTAX_ERROR
;
3285 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3287 struct target
*target
= get_current_target(CMD_CTX
);
3288 watchpoint_remove(target
, addr
);
3294 * Translate a virtual address to a physical address.
3296 * The low-level target implementation must have logged a detailed error
3297 * which is forwarded to telnet/GDB session.
3299 COMMAND_HANDLER(handle_virt2phys_command
)
3302 return ERROR_COMMAND_SYNTAX_ERROR
;
3305 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], va
);
3308 struct target
*target
= get_current_target(CMD_CTX
);
3309 int retval
= target
->type
->virt2phys(target
, va
, &pa
);
3310 if (retval
== ERROR_OK
)
3311 command_print(CMD_CTX
, "Physical address 0x%08" PRIx32
"", pa
);
3316 static void writeData(FILE *f
, const void *data
, size_t len
)
3318 size_t written
= fwrite(data
, 1, len
, f
);
3320 LOG_ERROR("failed to write %zu bytes: %s", len
, strerror(errno
));
3323 static void writeLong(FILE *f
, int l
)
3326 for (i
= 0; i
< 4; i
++) {
3327 char c
= (l
>> (i
*8))&0xff;
3328 writeData(f
, &c
, 1);
3333 static void writeString(FILE *f
, char *s
)
3335 writeData(f
, s
, strlen(s
));
3338 /* Dump a gmon.out histogram file. */
3339 static void writeGmon(uint32_t *samples
, uint32_t sampleNum
, const char *filename
)
3342 FILE *f
= fopen(filename
, "w");
3345 writeString(f
, "gmon");
3346 writeLong(f
, 0x00000001); /* Version */
3347 writeLong(f
, 0); /* padding */
3348 writeLong(f
, 0); /* padding */
3349 writeLong(f
, 0); /* padding */
3351 uint8_t zero
= 0; /* GMON_TAG_TIME_HIST */
3352 writeData(f
, &zero
, 1);
3354 /* figure out bucket size */
3355 uint32_t min
= samples
[0];
3356 uint32_t max
= samples
[0];
3357 for (i
= 0; i
< sampleNum
; i
++) {
3358 if (min
> samples
[i
])
3360 if (max
< samples
[i
])
3364 int addressSpace
= (max
- min
+ 1);
3365 assert(addressSpace
>= 2);
3367 static const uint32_t maxBuckets
= 16 * 1024; /* maximum buckets. */
3368 uint32_t length
= addressSpace
;
3369 if (length
> maxBuckets
)
3370 length
= maxBuckets
;
3371 int *buckets
= malloc(sizeof(int)*length
);
3372 if (buckets
== NULL
) {
3376 memset(buckets
, 0, sizeof(int) * length
);
3377 for (i
= 0; i
< sampleNum
; i
++) {
3378 uint32_t address
= samples
[i
];
3379 long long a
= address
- min
;
3380 long long b
= length
- 1;
3381 long long c
= addressSpace
- 1;
3382 int index_t
= (a
* b
) / c
; /* danger!!!! int32 overflows */
3386 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3387 writeLong(f
, min
); /* low_pc */
3388 writeLong(f
, max
); /* high_pc */
3389 writeLong(f
, length
); /* # of samples */
3390 writeLong(f
, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3391 writeString(f
, "seconds");
3392 for (i
= 0; i
< (15-strlen("seconds")); i
++)
3393 writeData(f
, &zero
, 1);
3394 writeString(f
, "s");
3396 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3398 char *data
= malloc(2 * length
);
3400 for (i
= 0; i
< length
; i
++) {
3405 data
[i
* 2] = val
&0xff;
3406 data
[i
* 2 + 1] = (val
>> 8) & 0xff;
3409 writeData(f
, data
, length
* 2);
3417 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3418 * which will be used as a random sampling of PC */
3419 COMMAND_HANDLER(handle_profile_command
)
3421 struct target
*target
= get_current_target(CMD_CTX
);
3422 struct timeval timeout
, now
;
3424 gettimeofday(&timeout
, NULL
);
3426 return ERROR_COMMAND_SYNTAX_ERROR
;
3428 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], offset
);
3430 timeval_add_time(&timeout
, offset
, 0);
3433 * @todo: Some cores let us sample the PC without the
3434 * annoying halt/resume step; for example, ARMv7 PCSR.
3435 * Provide a way to use that more efficient mechanism.
3438 command_print(CMD_CTX
, "Starting profiling. Halting and resuming the target as often as we can...");
3440 static const int maxSample
= 10000;
3441 uint32_t *samples
= malloc(sizeof(uint32_t)*maxSample
);
3442 if (samples
== NULL
)
3446 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3447 struct reg
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
3449 int retval
= ERROR_OK
;
3451 target_poll(target
);
3452 if (target
->state
== TARGET_HALTED
) {
3453 uint32_t t
= *((uint32_t *)reg
->value
);
3454 samples
[numSamples
++] = t
;
3455 /* current pc, addr = 0, do not handle breakpoints, not debugging */
3456 retval
= target_resume(target
, 1, 0, 0, 0);
3457 target_poll(target
);
3458 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3459 } else if (target
->state
== TARGET_RUNNING
) {
3460 /* We want to quickly sample the PC. */
3461 retval
= target_halt(target
);
3462 if (retval
!= ERROR_OK
) {
3467 command_print(CMD_CTX
, "Target not halted or running");
3471 if (retval
!= ERROR_OK
)
3474 gettimeofday(&now
, NULL
);
3475 if ((numSamples
>= maxSample
) || ((now
.tv_sec
>= timeout
.tv_sec
)
3476 && (now
.tv_usec
>= timeout
.tv_usec
))) {
3477 command_print(CMD_CTX
, "Profiling completed. %d samples.", numSamples
);
3478 retval
= target_poll(target
);
3479 if (retval
!= ERROR_OK
) {
3483 if (target
->state
== TARGET_HALTED
) {
3484 /* current pc, addr = 0, do not handle
3485 * breakpoints, not debugging */
3486 target_resume(target
, 1, 0, 0, 0);
3488 retval
= target_poll(target
);
3489 if (retval
!= ERROR_OK
) {
3493 writeGmon(samples
, numSamples
, CMD_ARGV
[1]);
3494 command_print(CMD_CTX
, "Wrote %s", CMD_ARGV
[1]);
3503 static int new_int_array_element(Jim_Interp
*interp
, const char *varname
, int idx
, uint32_t val
)
3506 Jim_Obj
*nameObjPtr
, *valObjPtr
;
3509 namebuf
= alloc_printf("%s(%d)", varname
, idx
);
3513 nameObjPtr
= Jim_NewStringObj(interp
, namebuf
, -1);
3514 valObjPtr
= Jim_NewIntObj(interp
, val
);
3515 if (!nameObjPtr
|| !valObjPtr
) {
3520 Jim_IncrRefCount(nameObjPtr
);
3521 Jim_IncrRefCount(valObjPtr
);
3522 result
= Jim_SetVariable(interp
, nameObjPtr
, valObjPtr
);
3523 Jim_DecrRefCount(interp
, nameObjPtr
);
3524 Jim_DecrRefCount(interp
, valObjPtr
);
3526 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3530 static int jim_mem2array(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
3532 struct command_context
*context
;
3533 struct target
*target
;
3535 context
= current_command_context(interp
);
3536 assert(context
!= NULL
);
3538 target
= get_current_target(context
);
3539 if (target
== NULL
) {
3540 LOG_ERROR("mem2array: no current target");
3544 return target_mem2array(interp
, target
, argc
- 1, argv
+ 1);
3547 static int target_mem2array(Jim_Interp
*interp
, struct target
*target
, int argc
, Jim_Obj
*const *argv
)
3555 const char *varname
;
3559 /* argv[1] = name of array to receive the data
3560 * argv[2] = desired width
3561 * argv[3] = memory address
3562 * argv[4] = count of times to read
3565 Jim_WrongNumArgs(interp
, 1, argv
, "varname width addr nelems");
3568 varname
= Jim_GetString(argv
[0], &len
);
3569 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3571 e
= Jim_GetLong(interp
, argv
[1], &l
);
3576 e
= Jim_GetLong(interp
, argv
[2], &l
);
3580 e
= Jim_GetLong(interp
, argv
[3], &l
);
3595 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3596 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "Invalid width param, must be 8/16/32", NULL
);
3600 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3601 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "mem2array: zero width read?", NULL
);
3604 if ((addr
+ (len
* width
)) < addr
) {
3605 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3606 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "mem2array: addr + len - wraps to zero?", NULL
);
3609 /* absurd transfer size? */
3611 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3612 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "mem2array: absurd > 64K item request", NULL
);
3617 ((width
== 2) && ((addr
& 1) == 0)) ||
3618 ((width
== 4) && ((addr
& 3) == 0))) {
3622 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3623 sprintf(buf
, "mem2array address: 0x%08" PRIx32
" is not aligned for %" PRId32
" byte reads",
3626 Jim_AppendStrings(interp
, Jim_GetResult(interp
), buf
, NULL
);
3635 size_t buffersize
= 4096;
3636 uint8_t *buffer
= malloc(buffersize
);
3643 /* Slurp... in buffer size chunks */
3645 count
= len
; /* in objects.. */
3646 if (count
> (buffersize
/ width
))
3647 count
= (buffersize
/ width
);
3649 retval
= target_read_memory(target
, addr
, width
, count
, buffer
);
3650 if (retval
!= ERROR_OK
) {
3652 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3656 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3657 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "mem2array: cannot read memory", NULL
);
3661 v
= 0; /* shut up gcc */
3662 for (i
= 0; i
< count
; i
++, n
++) {
3665 v
= target_buffer_get_u32(target
, &buffer
[i
*width
]);
3668 v
= target_buffer_get_u16(target
, &buffer
[i
*width
]);
3671 v
= buffer
[i
] & 0x0ff;
3674 new_int_array_element(interp
, varname
, n
, v
);
3682 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3687 static int get_int_array_element(Jim_Interp
*interp
, const char *varname
, int idx
, uint32_t *val
)
3690 Jim_Obj
*nameObjPtr
, *valObjPtr
;
3694 namebuf
= alloc_printf("%s(%d)", varname
, idx
);
3698 nameObjPtr
= Jim_NewStringObj(interp
, namebuf
, -1);
3704 Jim_IncrRefCount(nameObjPtr
);
3705 valObjPtr
= Jim_GetVariable(interp
, nameObjPtr
, JIM_ERRMSG
);
3706 Jim_DecrRefCount(interp
, nameObjPtr
);
3708 if (valObjPtr
== NULL
)
3711 result
= Jim_GetLong(interp
, valObjPtr
, &l
);
3712 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3717 static int jim_array2mem(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
3719 struct command_context
*context
;
3720 struct target
*target
;
3722 context
= current_command_context(interp
);
3723 assert(context
!= NULL
);
3725 target
= get_current_target(context
);
3726 if (target
== NULL
) {
3727 LOG_ERROR("array2mem: no current target");
3731 return target_array2mem(interp
, target
, argc
-1, argv
+ 1);
3734 static int target_array2mem(Jim_Interp
*interp
, struct target
*target
,
3735 int argc
, Jim_Obj
*const *argv
)
3743 const char *varname
;
3747 /* argv[1] = name of array to get the data
3748 * argv[2] = desired width
3749 * argv[3] = memory address
3750 * argv[4] = count to write
3753 Jim_WrongNumArgs(interp
, 0, argv
, "varname width addr nelems");
3756 varname
= Jim_GetString(argv
[0], &len
);
3757 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3759 e
= Jim_GetLong(interp
, argv
[1], &l
);
3764 e
= Jim_GetLong(interp
, argv
[2], &l
);
3768 e
= Jim_GetLong(interp
, argv
[3], &l
);
3783 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3784 Jim_AppendStrings(interp
, Jim_GetResult(interp
),
3785 "Invalid width param, must be 8/16/32", NULL
);
3789 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3790 Jim_AppendStrings(interp
, Jim_GetResult(interp
),
3791 "array2mem: zero width read?", NULL
);
3794 if ((addr
+ (len
* width
)) < addr
) {
3795 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3796 Jim_AppendStrings(interp
, Jim_GetResult(interp
),
3797 "array2mem: addr + len - wraps to zero?", NULL
);
3800 /* absurd transfer size? */
3802 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3803 Jim_AppendStrings(interp
, Jim_GetResult(interp
),
3804 "array2mem: absurd > 64K item request", NULL
);
3809 ((width
== 2) && ((addr
& 1) == 0)) ||
3810 ((width
== 4) && ((addr
& 3) == 0))) {
3814 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3815 sprintf(buf
, "array2mem address: 0x%08x is not aligned for %d byte reads",
3818 Jim_AppendStrings(interp
, Jim_GetResult(interp
), buf
, NULL
);
3829 size_t buffersize
= 4096;
3830 uint8_t *buffer
= malloc(buffersize
);
3835 /* Slurp... in buffer size chunks */
3837 count
= len
; /* in objects.. */
3838 if (count
> (buffersize
/ width
))
3839 count
= (buffersize
/ width
);
3841 v
= 0; /* shut up gcc */
3842 for (i
= 0; i
< count
; i
++, n
++) {
3843 get_int_array_element(interp
, varname
, n
, &v
);
3846 target_buffer_set_u32(target
, &buffer
[i
* width
], v
);
3849 target_buffer_set_u16(target
, &buffer
[i
* width
], v
);
3852 buffer
[i
] = v
& 0x0ff;
3858 retval
= target_write_memory(target
, addr
, width
, count
, buffer
);
3859 if (retval
!= ERROR_OK
) {
3861 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3865 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3866 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "array2mem: cannot read memory", NULL
);
3874 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3879 /* FIX? should we propagate errors here rather than printing them
3882 void target_handle_event(struct target
*target
, enum target_event e
)
3884 struct target_event_action
*teap
;
3886 for (teap
= target
->event_action
; teap
!= NULL
; teap
= teap
->next
) {
3887 if (teap
->event
== e
) {
3888 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3889 target
->target_number
,
3890 target_name(target
),
3891 target_type_name(target
),
3893 Jim_Nvp_value2name_simple(nvp_target_event
, e
)->name
,
3894 Jim_GetString(teap
->body
, NULL
));
3895 if (Jim_EvalObj(teap
->interp
, teap
->body
) != JIM_OK
) {
3896 Jim_MakeErrorMessage(teap
->interp
);
3897 command_print(NULL
, "%s\n", Jim_GetString(Jim_GetResult(teap
->interp
), NULL
));
3904 * Returns true only if the target has a handler for the specified event.
3906 bool target_has_event_action(struct target
*target
, enum target_event event
)
3908 struct target_event_action
*teap
;
3910 for (teap
= target
->event_action
; teap
!= NULL
; teap
= teap
->next
) {
3911 if (teap
->event
== event
)
3917 enum target_cfg_param
{
3920 TCFG_WORK_AREA_VIRT
,
3921 TCFG_WORK_AREA_PHYS
,
3922 TCFG_WORK_AREA_SIZE
,
3923 TCFG_WORK_AREA_BACKUP
,
3927 TCFG_CHAIN_POSITION
,
3932 static Jim_Nvp nvp_config_opts
[] = {
3933 { .name
= "-type", .value
= TCFG_TYPE
},
3934 { .name
= "-event", .value
= TCFG_EVENT
},
3935 { .name
= "-work-area-virt", .value
= TCFG_WORK_AREA_VIRT
},
3936 { .name
= "-work-area-phys", .value
= TCFG_WORK_AREA_PHYS
},
3937 { .name
= "-work-area-size", .value
= TCFG_WORK_AREA_SIZE
},
3938 { .name
= "-work-area-backup", .value
= TCFG_WORK_AREA_BACKUP
},
3939 { .name
= "-endian" , .value
= TCFG_ENDIAN
},
3940 { .name
= "-variant", .value
= TCFG_VARIANT
},
3941 { .name
= "-coreid", .value
= TCFG_COREID
},
3942 { .name
= "-chain-position", .value
= TCFG_CHAIN_POSITION
},
3943 { .name
= "-dbgbase", .value
= TCFG_DBGBASE
},
3944 { .name
= "-rtos", .value
= TCFG_RTOS
},
3945 { .name
= NULL
, .value
= -1 }
3948 static int target_configure(Jim_GetOptInfo
*goi
, struct target
*target
)
3956 /* parse config or cget options ... */
3957 while (goi
->argc
> 0) {
3958 Jim_SetEmptyResult(goi
->interp
);
3959 /* Jim_GetOpt_Debug(goi); */
3961 if (target
->type
->target_jim_configure
) {
3962 /* target defines a configure function */
3963 /* target gets first dibs on parameters */
3964 e
= (*(target
->type
->target_jim_configure
))(target
, goi
);
3973 /* otherwise we 'continue' below */
3975 e
= Jim_GetOpt_Nvp(goi
, nvp_config_opts
, &n
);
3977 Jim_GetOpt_NvpUnknown(goi
, nvp_config_opts
, 0);
3983 if (goi
->isconfigure
) {
3984 Jim_SetResultFormatted(goi
->interp
,
3985 "not settable: %s", n
->name
);
3989 if (goi
->argc
!= 0) {
3990 Jim_WrongNumArgs(goi
->interp
,
3991 goi
->argc
, goi
->argv
,
3996 Jim_SetResultString(goi
->interp
,
3997 target_type_name(target
), -1);
4001 if (goi
->argc
== 0) {
4002 Jim_WrongNumArgs(goi
->interp
, goi
->argc
, goi
->argv
, "-event ?event-name? ...");
4006 e
= Jim_GetOpt_Nvp(goi
, nvp_target_event
, &n
);
4008 Jim_GetOpt_NvpUnknown(goi
, nvp_target_event
, 1);
4012 if (goi
->isconfigure
) {
4013 if (goi
->argc
!= 1) {
4014 Jim_WrongNumArgs(goi
->interp
, goi
->argc
, goi
->argv
, "-event ?event-name? ?EVENT-BODY?");
4018 if (goi
->argc
!= 0) {
4019 Jim_WrongNumArgs(goi
->interp
, goi
->argc
, goi
->argv
, "-event ?event-name?");
4025 struct target_event_action
*teap
;
4027 teap
= target
->event_action
;
4028 /* replace existing? */
4030 if (teap
->event
== (enum target_event
)n
->value
)
4035 if (goi
->isconfigure
) {
4036 bool replace
= true;
4039 teap
= calloc(1, sizeof(*teap
));
4042 teap
->event
= n
->value
;
4043 teap
->interp
= goi
->interp
;
4044 Jim_GetOpt_Obj(goi
, &o
);
4046 Jim_DecrRefCount(teap
->interp
, teap
->body
);
4047 teap
->body
= Jim_DuplicateObj(goi
->interp
, o
);
4050 * Tcl/TK - "tk events" have a nice feature.
4051 * See the "BIND" command.
4052 * We should support that here.
4053 * You can specify %X and %Y in the event code.
4054 * The idea is: %T - target name.
4055 * The idea is: %N - target number
4056 * The idea is: %E - event name.
4058 Jim_IncrRefCount(teap
->body
);
4061 /* add to head of event list */
4062 teap
->next
= target
->event_action
;
4063 target
->event_action
= teap
;
4065 Jim_SetEmptyResult(goi
->interp
);
4069 Jim_SetEmptyResult(goi
->interp
);
4071 Jim_SetResult(goi
->interp
, Jim_DuplicateObj(goi
->interp
, teap
->body
));
4077 case TCFG_WORK_AREA_VIRT
:
4078 if (goi
->isconfigure
) {
4079 target_free_all_working_areas(target
);
4080 e
= Jim_GetOpt_Wide(goi
, &w
);
4083 target
->working_area_virt
= w
;
4084 target
->working_area_virt_spec
= true;
4089 Jim_SetResult(goi
->interp
, Jim_NewIntObj(goi
->interp
, target
->working_area_virt
));
4093 case TCFG_WORK_AREA_PHYS
:
4094 if (goi
->isconfigure
) {
4095 target_free_all_working_areas(target
);
4096 e
= Jim_GetOpt_Wide(goi
, &w
);
4099 target
->working_area_phys
= w
;
4100 target
->working_area_phys_spec
= true;
4105 Jim_SetResult(goi
->interp
, Jim_NewIntObj(goi
->interp
, target
->working_area_phys
));
4109 case TCFG_WORK_AREA_SIZE
:
4110 if (goi
->isconfigure
) {
4111 target_free_all_working_areas(target
);
4112 e
= Jim_GetOpt_Wide(goi
, &w
);
4115 target
->working_area_size
= w
;
4120 Jim_SetResult(goi
->interp
, Jim_NewIntObj(goi
->interp
, target
->working_area_size
));
4124 case TCFG_WORK_AREA_BACKUP
:
4125 if (goi
->isconfigure
) {
4126 target_free_all_working_areas(target
);
4127 e
= Jim_GetOpt_Wide(goi
, &w
);
4130 /* make this exactly 1 or 0 */
4131 target
->backup_working_area
= (!!w
);
4136 Jim_SetResult(goi
->interp
, Jim_NewIntObj(goi
->interp
, target
->backup_working_area
));
4137 /* loop for more e*/
4142 if (goi
->isconfigure
) {
4143 e
= Jim_GetOpt_Nvp(goi
, nvp_target_endian
, &n
);
4145 Jim_GetOpt_NvpUnknown(goi
, nvp_target_endian
, 1);
4148 target
->endianness
= n
->value
;
4153 n
= Jim_Nvp_value2name_simple(nvp_target_endian
, target
->endianness
);
4154 if (n
->name
== NULL
) {
4155 target
->endianness
= TARGET_LITTLE_ENDIAN
;
4156 n
= Jim_Nvp_value2name_simple(nvp_target_endian
, target
->endianness
);
4158 Jim_SetResultString(goi
->interp
, n
->name
, -1);
4163 if (goi
->isconfigure
) {
4164 if (goi
->argc
< 1) {
4165 Jim_SetResultFormatted(goi
->interp
,
4170 if (target
->variant
)
4171 free((void *)(target
->variant
));
4172 e
= Jim_GetOpt_String(goi
, &cp
, NULL
);
4175 target
->variant
= strdup(cp
);
4180 Jim_SetResultString(goi
->interp
, target
->variant
, -1);
4185 if (goi
->isconfigure
) {
4186 e
= Jim_GetOpt_Wide(goi
, &w
);
4189 target
->coreid
= (int32_t)w
;
4194 Jim_SetResult(goi
->interp
, Jim_NewIntObj(goi
->interp
, target
->working_area_size
));
4198 case TCFG_CHAIN_POSITION
:
4199 if (goi
->isconfigure
) {
4201 struct jtag_tap
*tap
;
4202 target_free_all_working_areas(target
);
4203 e
= Jim_GetOpt_Obj(goi
, &o_t
);
4206 tap
= jtag_tap_by_jim_obj(goi
->interp
, o_t
);
4209 /* make this exactly 1 or 0 */
4215 Jim_SetResultString(goi
->interp
, target
->tap
->dotted_name
, -1);
4216 /* loop for more e*/
4219 if (goi
->isconfigure
) {
4220 e
= Jim_GetOpt_Wide(goi
, &w
);
4223 target
->dbgbase
= (uint32_t)w
;
4224 target
->dbgbase_set
= true;
4229 Jim_SetResult(goi
->interp
, Jim_NewIntObj(goi
->interp
, target
->dbgbase
));
4236 int result
= rtos_create(goi
, target
);
4237 if (result
!= JIM_OK
)
4243 } /* while (goi->argc) */
4246 /* done - we return */
4250 static int jim_target_configure(Jim_Interp
*interp
, int argc
, Jim_Obj
* const *argv
)
4254 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
4255 goi
.isconfigure
= !strcmp(Jim_GetString(argv
[0], NULL
), "configure");
4256 int need_args
= 1 + goi
.isconfigure
;
4257 if (goi
.argc
< need_args
) {
4258 Jim_WrongNumArgs(goi
.interp
, goi
.argc
, goi
.argv
,
4260 ? "missing: -option VALUE ..."
4261 : "missing: -option ...");
4264 struct target
*target
= Jim_CmdPrivData(goi
.interp
);
4265 return target_configure(&goi
, target
);
4268 static int jim_target_mw(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4270 const char *cmd_name
= Jim_GetString(argv
[0], NULL
);
4273 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
4275 if (goi
.argc
< 2 || goi
.argc
> 4) {
4276 Jim_SetResultFormatted(goi
.interp
,
4277 "usage: %s [phys] <address> <data> [<count>]", cmd_name
);
4282 fn
= target_write_memory_fast
;
4285 if (strcmp(Jim_GetString(argv
[1], NULL
), "phys") == 0) {
4287 struct Jim_Obj
*obj
;
4288 e
= Jim_GetOpt_Obj(&goi
, &obj
);
4292 fn
= target_write_phys_memory
;
4296 e
= Jim_GetOpt_Wide(&goi
, &a
);
4301 e
= Jim_GetOpt_Wide(&goi
, &b
);
4306 if (goi
.argc
== 1) {
4307 e
= Jim_GetOpt_Wide(&goi
, &c
);
4312 /* all args must be consumed */
4316 struct target
*target
= Jim_CmdPrivData(goi
.interp
);
4318 if (strcasecmp(cmd_name
, "mww") == 0)
4320 else if (strcasecmp(cmd_name
, "mwh") == 0)
4322 else if (strcasecmp(cmd_name
, "mwb") == 0)
4325 LOG_ERROR("command '%s' unknown: ", cmd_name
);
4329 return (target_fill_mem(target
, a
, fn
, data_size
, b
, c
) == ERROR_OK
) ? JIM_OK
: JIM_ERR
;
4333 * @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4335 * Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4336 * mdh [phys] <address> [<count>] - for 16 bit reads
4337 * mdb [phys] <address> [<count>] - for 8 bit reads
4339 * Count defaults to 1.
4341 * Calls target_read_memory or target_read_phys_memory depending on
4342 * the presence of the "phys" argument
4343 * Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4344 * to int representation in base16.
4345 * Also outputs read data in a human readable form using command_print
4347 * @param phys if present target_read_phys_memory will be used instead of target_read_memory
4348 * @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4349 * @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4350 * @returns: JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4351 * on success, with [<count>] number of elements.
4353 * In case of little endian target:
4354 * Example1: "mdw 0x00000000" returns "10123456"
4355 * Exmaple2: "mdh 0x00000000 1" returns "3456"
4356 * Example3: "mdb 0x00000000" returns "56"
4357 * Example4: "mdh 0x00000000 2" returns "3456 1012"
4358 * Example5: "mdb 0x00000000 3" returns "56 34 12"
4360 static int jim_target_md(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4362 const char *cmd_name
= Jim_GetString(argv
[0], NULL
);
4365 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
4367 if ((goi
.argc
< 1) || (goi
.argc
> 3)) {
4368 Jim_SetResultFormatted(goi
.interp
,
4369 "usage: %s [phys] <address> [<count>]", cmd_name
);
4373 int (*fn
)(struct target
*target
,
4374 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
);
4375 fn
= target_read_memory
;
4378 if (strcmp(Jim_GetString(argv
[1], NULL
), "phys") == 0) {
4380 struct Jim_Obj
*obj
;
4381 e
= Jim_GetOpt_Obj(&goi
, &obj
);
4385 fn
= target_read_phys_memory
;
4388 /* Read address parameter */
4390 e
= Jim_GetOpt_Wide(&goi
, &addr
);
4394 /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4396 if (goi
.argc
== 1) {
4397 e
= Jim_GetOpt_Wide(&goi
, &count
);
4403 /* all args must be consumed */
4407 jim_wide dwidth
= 1; /* shut up gcc */
4408 if (strcasecmp(cmd_name
, "mdw") == 0)
4410 else if (strcasecmp(cmd_name
, "mdh") == 0)
4412 else if (strcasecmp(cmd_name
, "mdb") == 0)
4415 LOG_ERROR("command '%s' unknown: ", cmd_name
);
4419 /* convert count to "bytes" */
4420 int bytes
= count
* dwidth
;
4422 struct target
*target
= Jim_CmdPrivData(goi
.interp
);
4423 uint8_t target_buf
[32];
4426 y
= (bytes
< 16) ? bytes
: 16; /* y = min(bytes, 16); */
4428 /* Try to read out next block */
4429 e
= fn(target
, addr
, dwidth
, y
/ dwidth
, target_buf
);
4431 if (e
!= ERROR_OK
) {
4432 Jim_SetResultFormatted(interp
, "error reading target @ 0x%08lx", (long)addr
);
4436 command_print_sameline(NULL
, "0x%08x ", (int)(addr
));
4439 for (x
= 0; x
< 16 && x
< y
; x
+= 4) {
4440 z
= target_buffer_get_u32(target
, &(target_buf
[x
]));
4441 command_print_sameline(NULL
, "%08x ", (int)(z
));
4443 for (; (x
< 16) ; x
+= 4)
4444 command_print_sameline(NULL
, " ");
4447 for (x
= 0; x
< 16 && x
< y
; x
+= 2) {
4448 z
= target_buffer_get_u16(target
, &(target_buf
[x
]));
4449 command_print_sameline(NULL
, "%04x ", (int)(z
));
4451 for (; (x
< 16) ; x
+= 2)
4452 command_print_sameline(NULL
, " ");
4456 for (x
= 0 ; (x
< 16) && (x
< y
) ; x
+= 1) {
4457 z
= target_buffer_get_u8(target
, &(target_buf
[x
]));
4458 command_print_sameline(NULL
, "%02x ", (int)(z
));
4460 for (; (x
< 16) ; x
+= 1)
4461 command_print_sameline(NULL
, " ");
4464 /* ascii-ify the bytes */
4465 for (x
= 0 ; x
< y
; x
++) {
4466 if ((target_buf
[x
] >= 0x20) &&
4467 (target_buf
[x
] <= 0x7e)) {
4471 target_buf
[x
] = '.';
4476 target_buf
[x
] = ' ';
4481 /* print - with a newline */
4482 command_print_sameline(NULL
, "%s\n", target_buf
);
4490 static int jim_target_mem2array(Jim_Interp
*interp
,
4491 int argc
, Jim_Obj
*const *argv
)
4493 struct target
*target
= Jim_CmdPrivData(interp
);
4494 return target_mem2array(interp
, target
, argc
- 1, argv
+ 1);
4497 static int jim_target_array2mem(Jim_Interp
*interp
,
4498 int argc
, Jim_Obj
*const *argv
)
4500 struct target
*target
= Jim_CmdPrivData(interp
);
4501 return target_array2mem(interp
, target
, argc
- 1, argv
+ 1);
4504 static int jim_target_tap_disabled(Jim_Interp
*interp
)
4506 Jim_SetResultFormatted(interp
, "[TAP is disabled]");
4510 static int jim_target_examine(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4513 Jim_WrongNumArgs(interp
, 1, argv
, "[no parameters]");
4516 struct target
*target
= Jim_CmdPrivData(interp
);
4517 if (!target
->tap
->enabled
)
4518 return jim_target_tap_disabled(interp
);
4520 int e
= target
->type
->examine(target
);
4526 static int jim_target_halt_gdb(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4529 Jim_WrongNumArgs(interp
, 1, argv
, "[no parameters]");
4532 struct target
*target
= Jim_CmdPrivData(interp
);
4534 if (target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
) != ERROR_OK
)
4540 static int jim_target_poll(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4543 Jim_WrongNumArgs(interp
, 1, argv
, "[no parameters]");
4546 struct target
*target
= Jim_CmdPrivData(interp
);
4547 if (!target
->tap
->enabled
)
4548 return jim_target_tap_disabled(interp
);
4551 if (!(target_was_examined(target
)))
4552 e
= ERROR_TARGET_NOT_EXAMINED
;
4554 e
= target
->type
->poll(target
);
4560 static int jim_target_reset(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4563 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
4565 if (goi
.argc
!= 2) {
4566 Jim_WrongNumArgs(interp
, 0, argv
,
4567 "([tT]|[fF]|assert|deassert) BOOL");
4572 int e
= Jim_GetOpt_Nvp(&goi
, nvp_assert
, &n
);
4574 Jim_GetOpt_NvpUnknown(&goi
, nvp_assert
, 1);
4577 /* the halt or not param */
4579 e
= Jim_GetOpt_Wide(&goi
, &a
);
4583 struct target
*target
= Jim_CmdPrivData(goi
.interp
);
4584 if (!target
->tap
->enabled
)
4585 return jim_target_tap_disabled(interp
);
4586 if (!(target_was_examined(target
))) {
4587 LOG_ERROR("Target not examined yet");
4588 return ERROR_TARGET_NOT_EXAMINED
;
4590 if (!target
->type
->assert_reset
|| !target
->type
->deassert_reset
) {
4591 Jim_SetResultFormatted(interp
,
4592 "No target-specific reset for %s",
4593 target_name(target
));
4596 /* determine if we should halt or not. */
4597 target
->reset_halt
= !!a
;
4598 /* When this happens - all workareas are invalid. */
4599 target_free_all_working_areas_restore(target
, 0);
4602 if (n
->value
== NVP_ASSERT
)
4603 e
= target
->type
->assert_reset(target
);
4605 e
= target
->type
->deassert_reset(target
);
4606 return (e
== ERROR_OK
) ? JIM_OK
: JIM_ERR
;
4609 static int jim_target_halt(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4612 Jim_WrongNumArgs(interp
, 1, argv
, "[no parameters]");
4615 struct target
*target
= Jim_CmdPrivData(interp
);
4616 if (!target
->tap
->enabled
)
4617 return jim_target_tap_disabled(interp
);
4618 int e
= target
->type
->halt(target
);
4619 return (e
== ERROR_OK
) ? JIM_OK
: JIM_ERR
;
4622 static int jim_target_wait_state(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4625 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
4627 /* params: <name> statename timeoutmsecs */
4628 if (goi
.argc
!= 2) {
4629 const char *cmd_name
= Jim_GetString(argv
[0], NULL
);
4630 Jim_SetResultFormatted(goi
.interp
,
4631 "%s <state_name> <timeout_in_msec>", cmd_name
);
4636 int e
= Jim_GetOpt_Nvp(&goi
, nvp_target_state
, &n
);
4638 Jim_GetOpt_NvpUnknown(&goi
, nvp_target_state
, 1);
4642 e
= Jim_GetOpt_Wide(&goi
, &a
);
4645 struct target
*target
= Jim_CmdPrivData(interp
);
4646 if (!target
->tap
->enabled
)
4647 return jim_target_tap_disabled(interp
);
4649 e
= target_wait_state(target
, n
->value
, a
);
4650 if (e
!= ERROR_OK
) {
4651 Jim_Obj
*eObj
= Jim_NewIntObj(interp
, e
);
4652 Jim_SetResultFormatted(goi
.interp
,
4653 "target: %s wait %s fails (%#s) %s",
4654 target_name(target
), n
->name
,
4655 eObj
, target_strerror_safe(e
));
4656 Jim_FreeNewObj(interp
, eObj
);
4661 /* List for human, Events defined for this target.
4662 * scripts/programs should use 'name cget -event NAME'
4664 static int jim_target_event_list(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4666 struct command_context
*cmd_ctx
= current_command_context(interp
);
4667 assert(cmd_ctx
!= NULL
);
4669 struct target
*target
= Jim_CmdPrivData(interp
);
4670 struct target_event_action
*teap
= target
->event_action
;
4671 command_print(cmd_ctx
, "Event actions for target (%d) %s\n",
4672 target
->target_number
,
4673 target_name(target
));
4674 command_print(cmd_ctx
, "%-25s | Body", "Event");
4675 command_print(cmd_ctx
, "------------------------- | "
4676 "----------------------------------------");
4678 Jim_Nvp
*opt
= Jim_Nvp_value2name_simple(nvp_target_event
, teap
->event
);
4679 command_print(cmd_ctx
, "%-25s | %s",
4680 opt
->name
, Jim_GetString(teap
->body
, NULL
));
4683 command_print(cmd_ctx
, "***END***");
4686 static int jim_target_current_state(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4689 Jim_WrongNumArgs(interp
, 1, argv
, "[no parameters]");
4692 struct target
*target
= Jim_CmdPrivData(interp
);
4693 Jim_SetResultString(interp
, target_state_name(target
), -1);
4696 static int jim_target_invoke_event(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
4699 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
4700 if (goi
.argc
!= 1) {
4701 const char *cmd_name
= Jim_GetString(argv
[0], NULL
);
4702 Jim_SetResultFormatted(goi
.interp
, "%s <eventname>", cmd_name
);
4706 int e
= Jim_GetOpt_Nvp(&goi
, nvp_target_event
, &n
);
4708 Jim_GetOpt_NvpUnknown(&goi
, nvp_target_event
, 1);
4711 struct target
*target
= Jim_CmdPrivData(interp
);
4712 target_handle_event(target
, n
->value
);
4716 static const struct command_registration target_instance_command_handlers
[] = {
4718 .name
= "configure",
4719 .mode
= COMMAND_CONFIG
,
4720 .jim_handler
= jim_target_configure
,
4721 .help
= "configure a new target for use",
4722 .usage
= "[target_attribute ...]",
4726 .mode
= COMMAND_ANY
,
4727 .jim_handler
= jim_target_configure
,
4728 .help
= "returns the specified target attribute",
4729 .usage
= "target_attribute",
4733 .mode
= COMMAND_EXEC
,
4734 .jim_handler
= jim_target_mw
,
4735 .help
= "Write 32-bit word(s) to target memory",
4736 .usage
= "address data [count]",
4740 .mode
= COMMAND_EXEC
,
4741 .jim_handler
= jim_target_mw
,
4742 .help
= "Write 16-bit half-word(s) to target memory",
4743 .usage
= "address data [count]",
4747 .mode
= COMMAND_EXEC
,
4748 .jim_handler
= jim_target_mw
,
4749 .help
= "Write byte(s) to target memory",
4750 .usage
= "address data [count]",
4754 .mode
= COMMAND_EXEC
,
4755 .jim_handler
= jim_target_md
,
4756 .help
= "Display target memory as 32-bit words",
4757 .usage
= "address [count]",
4761 .mode
= COMMAND_EXEC
,
4762 .jim_handler
= jim_target_md
,
4763 .help
= "Display target memory as 16-bit half-words",
4764 .usage
= "address [count]",
4768 .mode
= COMMAND_EXEC
,
4769 .jim_handler
= jim_target_md
,
4770 .help
= "Display target memory as 8-bit bytes",
4771 .usage
= "address [count]",
4774 .name
= "array2mem",
4775 .mode
= COMMAND_EXEC
,
4776 .jim_handler
= jim_target_array2mem
,
4777 .help
= "Writes Tcl array of 8/16/32 bit numbers "
4779 .usage
= "arrayname bitwidth address count",
4782 .name
= "mem2array",
4783 .mode
= COMMAND_EXEC
,
4784 .jim_handler
= jim_target_mem2array
,
4785 .help
= "Loads Tcl array of 8/16/32 bit numbers "
4786 "from target memory",
4787 .usage
= "arrayname bitwidth address count",
4790 .name
= "eventlist",
4791 .mode
= COMMAND_EXEC
,
4792 .jim_handler
= jim_target_event_list
,
4793 .help
= "displays a table of events defined for this target",
4797 .mode
= COMMAND_EXEC
,
4798 .jim_handler
= jim_target_current_state
,
4799 .help
= "displays the current state of this target",
4802 .name
= "arp_examine",
4803 .mode
= COMMAND_EXEC
,
4804 .jim_handler
= jim_target_examine
,
4805 .help
= "used internally for reset processing",
4808 .name
= "arp_halt_gdb",
4809 .mode
= COMMAND_EXEC
,
4810 .jim_handler
= jim_target_halt_gdb
,
4811 .help
= "used internally for reset processing to halt GDB",
4815 .mode
= COMMAND_EXEC
,
4816 .jim_handler
= jim_target_poll
,
4817 .help
= "used internally for reset processing",
4820 .name
= "arp_reset",
4821 .mode
= COMMAND_EXEC
,
4822 .jim_handler
= jim_target_reset
,
4823 .help
= "used internally for reset processing",
4827 .mode
= COMMAND_EXEC
,
4828 .jim_handler
= jim_target_halt
,
4829 .help
= "used internally for reset processing",
4832 .name
= "arp_waitstate",
4833 .mode
= COMMAND_EXEC
,
4834 .jim_handler
= jim_target_wait_state
,
4835 .help
= "used internally for reset processing",
4838 .name
= "invoke-event",
4839 .mode
= COMMAND_EXEC
,
4840 .jim_handler
= jim_target_invoke_event
,
4841 .help
= "invoke handler for specified event",
4842 .usage
= "event_name",
4844 COMMAND_REGISTRATION_DONE
4847 static int target_create(Jim_GetOptInfo
*goi
)
4855 struct target
*target
;
4856 struct command_context
*cmd_ctx
;
4858 cmd_ctx
= current_command_context(goi
->interp
);
4859 assert(cmd_ctx
!= NULL
);
4861 if (goi
->argc
< 3) {
4862 Jim_WrongNumArgs(goi
->interp
, 1, goi
->argv
, "?name? ?type? ..options...");
4867 Jim_GetOpt_Obj(goi
, &new_cmd
);
4868 /* does this command exist? */
4869 cmd
= Jim_GetCommand(goi
->interp
, new_cmd
, JIM_ERRMSG
);
4871 cp
= Jim_GetString(new_cmd
, NULL
);
4872 Jim_SetResultFormatted(goi
->interp
, "Command/target: %s Exists", cp
);
4877 e
= Jim_GetOpt_String(goi
, &cp2
, NULL
);
4881 /* now does target type exist */
4882 for (x
= 0 ; target_types
[x
] ; x
++) {
4883 if (0 == strcmp(cp
, target_types
[x
]->name
)) {
4888 if (target_types
[x
] == NULL
) {
4889 Jim_SetResultFormatted(goi
->interp
, "Unknown target type %s, try one of ", cp
);
4890 for (x
= 0 ; target_types
[x
] ; x
++) {
4891 if (target_types
[x
+ 1]) {
4892 Jim_AppendStrings(goi
->interp
,
4893 Jim_GetResult(goi
->interp
),
4894 target_types
[x
]->name
,
4897 Jim_AppendStrings(goi
->interp
,
4898 Jim_GetResult(goi
->interp
),
4900 target_types
[x
]->name
, NULL
);
4907 target
= calloc(1, sizeof(struct target
));
4908 /* set target number */
4909 target
->target_number
= new_target_number();
4911 /* allocate memory for each unique target type */
4912 target
->type
= (struct target_type
*)calloc(1, sizeof(struct target_type
));
4914 memcpy(target
->type
, target_types
[x
], sizeof(struct target_type
));
4916 /* will be set by "-endian" */
4917 target
->endianness
= TARGET_ENDIAN_UNKNOWN
;
4919 /* default to first core, override with -coreid */
4922 target
->working_area
= 0x0;
4923 target
->working_area_size
= 0x0;
4924 target
->working_areas
= NULL
;
4925 target
->backup_working_area
= 0;
4927 target
->state
= TARGET_UNKNOWN
;
4928 target
->debug_reason
= DBG_REASON_UNDEFINED
;
4929 target
->reg_cache
= NULL
;
4930 target
->breakpoints
= NULL
;
4931 target
->watchpoints
= NULL
;
4932 target
->next
= NULL
;
4933 target
->arch_info
= NULL
;
4935 target
->display
= 1;
4937 target
->halt_issued
= false;
4939 /* initialize trace information */
4940 target
->trace_info
= malloc(sizeof(struct trace
));
4941 target
->trace_info
->num_trace_points
= 0;
4942 target
->trace_info
->trace_points_size
= 0;
4943 target
->trace_info
->trace_points
= NULL
;
4944 target
->trace_info
->trace_history_size
= 0;
4945 target
->trace_info
->trace_history
= NULL
;
4946 target
->trace_info
->trace_history_pos
= 0;
4947 target
->trace_info
->trace_history_overflowed
= 0;
4949 target
->dbgmsg
= NULL
;
4950 target
->dbg_msg_enabled
= 0;
4952 target
->endianness
= TARGET_ENDIAN_UNKNOWN
;
4954 target
->rtos
= NULL
;
4955 target
->rtos_auto_detect
= false;
4957 /* Do the rest as "configure" options */
4958 goi
->isconfigure
= 1;
4959 e
= target_configure(goi
, target
);
4961 if (target
->tap
== NULL
) {
4962 Jim_SetResultString(goi
->interp
, "-chain-position required when creating target", -1);
4972 if (target
->endianness
== TARGET_ENDIAN_UNKNOWN
) {
4973 /* default endian to little if not specified */
4974 target
->endianness
= TARGET_LITTLE_ENDIAN
;
4977 /* incase variant is not set */
4978 if (!target
->variant
)
4979 target
->variant
= strdup("");
4981 cp
= Jim_GetString(new_cmd
, NULL
);
4982 target
->cmd_name
= strdup(cp
);
4984 /* create the target specific commands */
4985 if (target
->type
->commands
) {
4986 e
= register_commands(cmd_ctx
, NULL
, target
->type
->commands
);
4988 LOG_ERROR("unable to register '%s' commands", cp
);
4990 if (target
->type
->target_create
)
4991 (*(target
->type
->target_create
))(target
, goi
->interp
);
4993 /* append to end of list */
4995 struct target
**tpp
;
4996 tpp
= &(all_targets
);
4998 tpp
= &((*tpp
)->next
);
5002 /* now - create the new target name command */
5003 const const struct command_registration target_subcommands
[] = {
5005 .chain
= target_instance_command_handlers
,
5008 .chain
= target
->type
->commands
,
5010 COMMAND_REGISTRATION_DONE
5012 const const struct command_registration target_commands
[] = {
5015 .mode
= COMMAND_ANY
,
5016 .help
= "target command group",
5018 .chain
= target_subcommands
,
5020 COMMAND_REGISTRATION_DONE
5022 e
= register_commands(cmd_ctx
, NULL
, target_commands
);
5026 struct command
*c
= command_find_in_context(cmd_ctx
, cp
);
5028 command_set_handler_data(c
, target
);
5030 return (ERROR_OK
== e
) ? JIM_OK
: JIM_ERR
;
5033 static int jim_target_current(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5036 Jim_WrongNumArgs(interp
, 1, argv
, "Too many parameters");
5039 struct command_context
*cmd_ctx
= current_command_context(interp
);
5040 assert(cmd_ctx
!= NULL
);
5042 Jim_SetResultString(interp
, get_current_target(cmd_ctx
)->cmd_name
, -1);
5046 static int jim_target_types(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5049 Jim_WrongNumArgs(interp
, 1, argv
, "Too many parameters");
5052 Jim_SetResult(interp
, Jim_NewListObj(interp
, NULL
, 0));
5053 for (unsigned x
= 0; NULL
!= target_types
[x
]; x
++) {
5054 Jim_ListAppendElement(interp
, Jim_GetResult(interp
),
5055 Jim_NewStringObj(interp
, target_types
[x
]->name
, -1));
5060 static int jim_target_names(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5063 Jim_WrongNumArgs(interp
, 1, argv
, "Too many parameters");
5066 Jim_SetResult(interp
, Jim_NewListObj(interp
, NULL
, 0));
5067 struct target
*target
= all_targets
;
5069 Jim_ListAppendElement(interp
, Jim_GetResult(interp
),
5070 Jim_NewStringObj(interp
, target_name(target
), -1));
5071 target
= target
->next
;
5076 static int jim_target_smp(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5079 const char *targetname
;
5081 struct target
*target
= (struct target
*) NULL
;
5082 struct target_list
*head
, *curr
, *new;
5083 curr
= (struct target_list
*) NULL
;
5084 head
= (struct target_list
*) NULL
;
5087 LOG_DEBUG("%d", argc
);
5088 /* argv[1] = target to associate in smp
5089 * argv[2] = target to assoicate in smp
5093 for (i
= 1; i
< argc
; i
++) {
5095 targetname
= Jim_GetString(argv
[i
], &len
);
5096 target
= get_target(targetname
);
5097 LOG_DEBUG("%s ", targetname
);
5099 new = malloc(sizeof(struct target_list
));
5100 new->target
= target
;
5101 new->next
= (struct target_list
*)NULL
;
5102 if (head
== (struct target_list
*)NULL
) {
5111 /* now parse the list of cpu and put the target in smp mode*/
5114 while (curr
!= (struct target_list
*)NULL
) {
5115 target
= curr
->target
;
5117 target
->head
= head
;
5121 if (target
&& target
->rtos
)
5122 retval
= rtos_smp_init(head
->target
);
5128 static int jim_target_create(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5131 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
5133 Jim_WrongNumArgs(goi
.interp
, goi
.argc
, goi
.argv
,
5134 "<name> <target_type> [<target_options> ...]");
5137 return target_create(&goi
);
5140 static int jim_target_number(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5143 Jim_GetOpt_Setup(&goi
, interp
, argc
- 1, argv
+ 1);
5145 /* It's OK to remove this mechanism sometime after August 2010 or so */
5146 LOG_WARNING("don't use numbers as target identifiers; use names");
5147 if (goi
.argc
!= 1) {
5148 Jim_SetResultFormatted(goi
.interp
, "usage: target number <number>");
5152 int e
= Jim_GetOpt_Wide(&goi
, &w
);
5156 struct target
*target
;
5157 for (target
= all_targets
; NULL
!= target
; target
= target
->next
) {
5158 if (target
->target_number
!= w
)
5161 Jim_SetResultString(goi
.interp
, target_name(target
), -1);
5165 Jim_Obj
*wObj
= Jim_NewIntObj(goi
.interp
, w
);
5166 Jim_SetResultFormatted(goi
.interp
,
5167 "Target: number %#s does not exist", wObj
);
5168 Jim_FreeNewObj(interp
, wObj
);
5173 static int jim_target_count(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
5176 Jim_WrongNumArgs(interp
, 1, argv
, "<no parameters>");
5180 struct target
*target
= all_targets
;
5181 while (NULL
!= target
) {
5182 target
= target
->next
;
5185 Jim_SetResult(interp
, Jim_NewIntObj(interp
, count
));
5189 static const struct command_registration target_subcommand_handlers
[] = {
5192 .mode
= COMMAND_CONFIG
,
5193 .handler
= handle_target_init_command
,
5194 .help
= "initialize targets",
5198 /* REVISIT this should be COMMAND_CONFIG ... */
5199 .mode
= COMMAND_ANY
,
5200 .jim_handler
= jim_target_create
,
5201 .usage
= "name type '-chain-position' name [options ...]",
5202 .help
= "Creates and selects a new target",
5206 .mode
= COMMAND_ANY
,
5207 .jim_handler
= jim_target_current
,
5208 .help
= "Returns the currently selected target",
5212 .mode
= COMMAND_ANY
,
5213 .jim_handler
= jim_target_types
,
5214 .help
= "Returns the available target types as "
5215 "a list of strings",
5219 .mode
= COMMAND_ANY
,
5220 .jim_handler
= jim_target_names
,
5221 .help
= "Returns the names of all targets as a list of strings",
5225 .mode
= COMMAND_ANY
,
5226 .jim_handler
= jim_target_number
,
5228 .help
= "Returns the name of the numbered target "
5233 .mode
= COMMAND_ANY
,
5234 .jim_handler
= jim_target_count
,
5235 .help
= "Returns the number of targets as an integer "
5240 .mode
= COMMAND_ANY
,
5241 .jim_handler
= jim_target_smp
,
5242 .usage
= "targetname1 targetname2 ...",
5243 .help
= "gather several target in a smp list"
5246 COMMAND_REGISTRATION_DONE
5256 static int fastload_num
;
5257 static struct FastLoad
*fastload
;
5259 static void free_fastload(void)
5261 if (fastload
!= NULL
) {
5263 for (i
= 0; i
< fastload_num
; i
++) {
5264 if (fastload
[i
].data
)
5265 free(fastload
[i
].data
);
5272 COMMAND_HANDLER(handle_fast_load_image_command
)
5276 uint32_t image_size
;
5277 uint32_t min_address
= 0;
5278 uint32_t max_address
= 0xffffffff;
5283 int retval
= CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV
,
5284 &image
, &min_address
, &max_address
);
5285 if (ERROR_OK
!= retval
)
5288 struct duration bench
;
5289 duration_start(&bench
);
5291 retval
= image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
>= 3) ? CMD_ARGV
[2] : NULL
);
5292 if (retval
!= ERROR_OK
)
5297 fastload_num
= image
.num_sections
;
5298 fastload
= (struct FastLoad
*)malloc(sizeof(struct FastLoad
)*image
.num_sections
);
5299 if (fastload
== NULL
) {
5300 command_print(CMD_CTX
, "out of memory");
5301 image_close(&image
);
5304 memset(fastload
, 0, sizeof(struct FastLoad
)*image
.num_sections
);
5305 for (i
= 0; i
< image
.num_sections
; i
++) {
5306 buffer
= malloc(image
.sections
[i
].size
);
5307 if (buffer
== NULL
) {
5308 command_print(CMD_CTX
, "error allocating buffer for section (%d bytes)",
5309 (int)(image
.sections
[i
].size
));
5310 retval
= ERROR_FAIL
;
5314 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
5315 if (retval
!= ERROR_OK
) {
5320 uint32_t offset
= 0;
5321 uint32_t length
= buf_cnt
;
5323 /* DANGER!!! beware of unsigned comparision here!!! */
5325 if ((image
.sections
[i
].base_address
+ buf_cnt
>= min_address
) &&
5326 (image
.sections
[i
].base_address
< max_address
)) {
5327 if (image
.sections
[i
].base_address
< min_address
) {
5328 /* clip addresses below */
5329 offset
+= min_address
-image
.sections
[i
].base_address
;
5333 if (image
.sections
[i
].base_address
+ buf_cnt
> max_address
)
5334 length
-= (image
.sections
[i
].base_address
+ buf_cnt
)-max_address
;
5336 fastload
[i
].address
= image
.sections
[i
].base_address
+ offset
;
5337 fastload
[i
].data
= malloc(length
);
5338 if (fastload
[i
].data
== NULL
) {
5340 command_print(CMD_CTX
, "error allocating buffer for section (%d bytes)",
5342 retval
= ERROR_FAIL
;
5345 memcpy(fastload
[i
].data
, buffer
+ offset
, length
);
5346 fastload
[i
].length
= length
;
5348 image_size
+= length
;
5349 command_print(CMD_CTX
, "%u bytes written at address 0x%8.8x",
5350 (unsigned int)length
,
5351 ((unsigned int)(image
.sections
[i
].base_address
+ offset
)));
5357 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
5358 command_print(CMD_CTX
, "Loaded %" PRIu32
" bytes "
5359 "in %fs (%0.3f KiB/s)", image_size
,
5360 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
5362 command_print(CMD_CTX
,
5363 "WARNING: image has not been loaded to target!"
5364 "You can issue a 'fast_load' to finish loading.");
5367 image_close(&image
);
5369 if (retval
!= ERROR_OK
)
5375 COMMAND_HANDLER(handle_fast_load_command
)
5378 return ERROR_COMMAND_SYNTAX_ERROR
;
5379 if (fastload
== NULL
) {
5380 LOG_ERROR("No image in memory");
5384 int ms
= timeval_ms();
5386 int retval
= ERROR_OK
;
5387 for (i
= 0; i
< fastload_num
; i
++) {
5388 struct target
*target
= get_current_target(CMD_CTX
);
5389 command_print(CMD_CTX
, "Write to 0x%08x, length 0x%08x",
5390 (unsigned int)(fastload
[i
].address
),
5391 (unsigned int)(fastload
[i
].length
));
5392 retval
= target_write_buffer(target
, fastload
[i
].address
, fastload
[i
].length
, fastload
[i
].data
);
5393 if (retval
!= ERROR_OK
)
5395 size
+= fastload
[i
].length
;
5397 if (retval
== ERROR_OK
) {
5398 int after
= timeval_ms();
5399 command_print(CMD_CTX
, "Loaded image %f kBytes/s", (float)(size
/1024.0)/((float)(after
-ms
)/1000.0));
5404 static const struct command_registration target_command_handlers
[] = {
5407 .handler
= handle_targets_command
,
5408 .mode
= COMMAND_ANY
,
5409 .help
= "change current default target (one parameter) "
5410 "or prints table of all targets (no parameters)",
5411 .usage
= "[target]",
5415 .mode
= COMMAND_CONFIG
,
5416 .help
= "configure target",
5418 .chain
= target_subcommand_handlers
,
5420 COMMAND_REGISTRATION_DONE
5423 int target_register_commands(struct command_context
*cmd_ctx
)
5425 return register_commands(cmd_ctx
, NULL
, target_command_handlers
);
5428 static bool target_reset_nag
= true;
5430 bool get_target_reset_nag(void)
5432 return target_reset_nag
;
5435 COMMAND_HANDLER(handle_target_reset_nag
)
5437 return CALL_COMMAND_HANDLER(handle_command_parse_bool
,
5438 &target_reset_nag
, "Nag after each reset about options to improve "
5442 COMMAND_HANDLER(handle_ps_command
)
5444 struct target
*target
= get_current_target(CMD_CTX
);
5446 if (target
->state
!= TARGET_HALTED
) {
5447 LOG_INFO("target not halted !!");
5451 if ((target
->rtos
) && (target
->rtos
->type
)
5452 && (target
->rtos
->type
->ps_command
)) {
5453 display
= target
->rtos
->type
->ps_command(target
);
5454 command_print(CMD_CTX
, "%s", display
);
5459 return ERROR_TARGET_FAILURE
;
5463 static const struct command_registration target_exec_command_handlers
[] = {
5465 .name
= "fast_load_image",
5466 .handler
= handle_fast_load_image_command
,
5467 .mode
= COMMAND_ANY
,
5468 .help
= "Load image into server memory for later use by "
5469 "fast_load; primarily for profiling",
5470 .usage
= "filename address ['bin'|'ihex'|'elf'|'s19'] "
5471 "[min_address [max_length]]",
5474 .name
= "fast_load",
5475 .handler
= handle_fast_load_command
,
5476 .mode
= COMMAND_EXEC
,
5477 .help
= "loads active fast load image to current target "
5478 "- mainly for profiling purposes",
5483 .handler
= handle_profile_command
,
5484 .mode
= COMMAND_EXEC
,
5485 .usage
= "seconds filename",
5486 .help
= "profiling samples the CPU PC",
5488 /** @todo don't register virt2phys() unless target supports it */
5490 .name
= "virt2phys",
5491 .handler
= handle_virt2phys_command
,
5492 .mode
= COMMAND_ANY
,
5493 .help
= "translate a virtual address into a physical address",
5494 .usage
= "virtual_address",
5498 .handler
= handle_reg_command
,
5499 .mode
= COMMAND_EXEC
,
5500 .help
= "display or set a register; with no arguments, "
5501 "displays all registers and their values",
5502 .usage
= "[(register_name|register_number) [value]]",
5506 .handler
= handle_poll_command
,
5507 .mode
= COMMAND_EXEC
,
5508 .help
= "poll target state; or reconfigure background polling",
5509 .usage
= "['on'|'off']",
5512 .name
= "wait_halt",
5513 .handler
= handle_wait_halt_command
,
5514 .mode
= COMMAND_EXEC
,
5515 .help
= "wait up to the specified number of milliseconds "
5516 "(default 5) for a previously requested halt",
5517 .usage
= "[milliseconds]",
5521 .handler
= handle_halt_command
,
5522 .mode
= COMMAND_EXEC
,
5523 .help
= "request target to halt, then wait up to the specified"
5524 "number of milliseconds (default 5) for it to complete",
5525 .usage
= "[milliseconds]",
5529 .handler
= handle_resume_command
,
5530 .mode
= COMMAND_EXEC
,
5531 .help
= "resume target execution from current PC or address",
5532 .usage
= "[address]",
5536 .handler
= handle_reset_command
,
5537 .mode
= COMMAND_EXEC
,
5538 .usage
= "[run|halt|init]",
5539 .help
= "Reset all targets into the specified mode."
5540 "Default reset mode is run, if not given.",
5543 .name
= "soft_reset_halt",
5544 .handler
= handle_soft_reset_halt_command
,
5545 .mode
= COMMAND_EXEC
,
5547 .help
= "halt the target and do a soft reset",
5551 .handler
= handle_step_command
,
5552 .mode
= COMMAND_EXEC
,
5553 .help
= "step one instruction from current PC or address",
5554 .usage
= "[address]",
5558 .handler
= handle_md_command
,
5559 .mode
= COMMAND_EXEC
,
5560 .help
= "display memory words",
5561 .usage
= "['phys'] address [count]",
5565 .handler
= handle_md_command
,
5566 .mode
= COMMAND_EXEC
,
5567 .help
= "display memory half-words",
5568 .usage
= "['phys'] address [count]",
5572 .handler
= handle_md_command
,
5573 .mode
= COMMAND_EXEC
,
5574 .help
= "display memory bytes",
5575 .usage
= "['phys'] address [count]",
5579 .handler
= handle_mw_command
,
5580 .mode
= COMMAND_EXEC
,
5581 .help
= "write memory word",
5582 .usage
= "['phys'] address value [count]",
5586 .handler
= handle_mw_command
,
5587 .mode
= COMMAND_EXEC
,
5588 .help
= "write memory half-word",
5589 .usage
= "['phys'] address value [count]",
5593 .handler
= handle_mw_command
,
5594 .mode
= COMMAND_EXEC
,
5595 .help
= "write memory byte",
5596 .usage
= "['phys'] address value [count]",
5600 .handler
= handle_bp_command
,
5601 .mode
= COMMAND_EXEC
,
5602 .help
= "list or set hardware or software breakpoint",
5603 .usage
= "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5607 .handler
= handle_rbp_command
,
5608 .mode
= COMMAND_EXEC
,
5609 .help
= "remove breakpoint",
5614 .handler
= handle_wp_command
,
5615 .mode
= COMMAND_EXEC
,
5616 .help
= "list (no params) or create watchpoints",
5617 .usage
= "[address length [('r'|'w'|'a') value [mask]]]",
5621 .handler
= handle_rwp_command
,
5622 .mode
= COMMAND_EXEC
,
5623 .help
= "remove watchpoint",
5627 .name
= "load_image",
5628 .handler
= handle_load_image_command
,
5629 .mode
= COMMAND_EXEC
,
5630 .usage
= "filename address ['bin'|'ihex'|'elf'|'s19'] "
5631 "[min_address] [max_length]",
5634 .name
= "dump_image",
5635 .handler
= handle_dump_image_command
,
5636 .mode
= COMMAND_EXEC
,
5637 .usage
= "filename address size",
5640 .name
= "verify_image",
5641 .handler
= handle_verify_image_command
,
5642 .mode
= COMMAND_EXEC
,
5643 .usage
= "filename [offset [type]]",
5646 .name
= "test_image",
5647 .handler
= handle_test_image_command
,
5648 .mode
= COMMAND_EXEC
,
5649 .usage
= "filename [offset [type]]",
5652 .name
= "mem2array",
5653 .mode
= COMMAND_EXEC
,
5654 .jim_handler
= jim_mem2array
,
5655 .help
= "read 8/16/32 bit memory and return as a TCL array "
5656 "for script processing",
5657 .usage
= "arrayname bitwidth address count",
5660 .name
= "array2mem",
5661 .mode
= COMMAND_EXEC
,
5662 .jim_handler
= jim_array2mem
,
5663 .help
= "convert a TCL array to memory locations "
5664 "and write the 8/16/32 bit values",
5665 .usage
= "arrayname bitwidth address count",
5668 .name
= "reset_nag",
5669 .handler
= handle_target_reset_nag
,
5670 .mode
= COMMAND_ANY
,
5671 .help
= "Nag after each reset about options that could have been "
5672 "enabled to improve performance. ",
5673 .usage
= "['enable'|'disable']",
5677 .handler
= handle_ps_command
,
5678 .mode
= COMMAND_EXEC
,
5679 .help
= "list all tasks ",
5683 COMMAND_REGISTRATION_DONE
5685 static int target_register_user_commands(struct command_context
*cmd_ctx
)
5687 int retval
= ERROR_OK
;
5688 retval
= target_request_register_commands(cmd_ctx
);
5689 if (retval
!= ERROR_OK
)
5692 retval
= trace_register_commands(cmd_ctx
);
5693 if (retval
!= ERROR_OK
)
5697 return register_commands(cmd_ctx
, NULL
, target_exec_command_handlers
);