docs: mention extended-remote support
[openocd/ntfreak.git] / src / target / arm920t.c
blob0e3c326aae89b16b6f9fa5f28f16488052707e92
2 /***************************************************************************
3 * Copyright (C) 2005 by Dominic Rath *
4 * Dominic.Rath@gmx.de *
5 * *
6 * This program is free software; you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation; either version 2 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program; if not, write to the *
18 * Free Software Foundation, Inc., *
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
20 ***************************************************************************/
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
26 #include "arm920t.h"
27 #include <helper/time_support.h>
28 #include "target_type.h"
29 #include "register.h"
30 #include "arm_opcodes.h"
33 * For information about the ARM920T, see ARM DDI 0151C especially
34 * Chapter 9 about debug support, which shows how to manipulate each
35 * of the different scan chains:
37 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
38 * 1 ... debugging; watchpoint and breakpoint status, etc; also
39 * MMU and cache access in conjunction with scan chain 15
40 * 2 ... EmbeddedICE
41 * 3 ... external boundary scan (SoC-specific, unused here)
42 * 4 ... access to cache tag RAM
43 * 6 ... ETM9
44 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
45 * "interpreted" works with a few actual MRC/MCR instructions
46 * "physical" provides register-like behaviors. Section 9.6.7
47 * covers these details.
49 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
52 #if 0
53 #define _DEBUG_INSTRUCTION_EXECUTION_
54 #endif
56 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
57 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
58 * JTAG scan, while reads use two.
60 * Table 9-9 lists the thirteen registers which support physical access.
61 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
62 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
64 * x == bit[38]
65 * y == bits[37:34]
66 * z == bit[33]
68 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
70 /* Registers supporting physical Read access (from table 9-9) */
71 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
72 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
73 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
74 /* NOTE: several more registers support only physical read access */
76 /* Registers supporting physical Read/Write access (from table 9-9) */
77 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
78 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
79 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
80 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
81 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
83 static int arm920t_read_cp15_physical(struct target *target,
84 int reg_addr, uint32_t *value)
86 struct arm920t_common *arm920t = target_to_arm920(target);
87 struct arm_jtag *jtag_info;
88 struct scan_field fields[4];
89 uint8_t access_type_buf = 1;
90 uint8_t reg_addr_buf = reg_addr & 0x3f;
91 uint8_t nr_w_buf = 0;
92 int retval;
94 jtag_info = &arm920t->arm7_9_common.jtag_info;
96 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
97 if (retval != ERROR_OK)
98 return retval;
99 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
100 if (retval != ERROR_OK)
101 return retval;
103 fields[0].num_bits = 1;
104 fields[0].out_value = &access_type_buf;
105 fields[0].in_value = NULL;
107 fields[1].num_bits = 32;
108 fields[1].out_value = NULL;
109 fields[1].in_value = NULL;
111 fields[2].num_bits = 6;
112 fields[2].out_value = &reg_addr_buf;
113 fields[2].in_value = NULL;
115 fields[3].num_bits = 1;
116 fields[3].out_value = &nr_w_buf;
117 fields[3].in_value = NULL;
119 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
121 fields[1].in_value = (uint8_t *)value;
123 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
125 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
127 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
128 jtag_execute_queue();
129 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
130 #endif
132 return ERROR_OK;
135 static int arm920t_write_cp15_physical(struct target *target,
136 int reg_addr, uint32_t value)
138 struct arm920t_common *arm920t = target_to_arm920(target);
139 struct arm_jtag *jtag_info;
140 struct scan_field fields[4];
141 uint8_t access_type_buf = 1;
142 uint8_t reg_addr_buf = reg_addr & 0x3f;
143 uint8_t nr_w_buf = 1;
144 uint8_t value_buf[4];
145 int retval;
147 jtag_info = &arm920t->arm7_9_common.jtag_info;
149 buf_set_u32(value_buf, 0, 32, value);
151 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
152 if (retval != ERROR_OK)
153 return retval;
154 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
155 if (retval != ERROR_OK)
156 return retval;
158 fields[0].num_bits = 1;
159 fields[0].out_value = &access_type_buf;
160 fields[0].in_value = NULL;
162 fields[1].num_bits = 32;
163 fields[1].out_value = value_buf;
164 fields[1].in_value = NULL;
166 fields[2].num_bits = 6;
167 fields[2].out_value = &reg_addr_buf;
168 fields[2].in_value = NULL;
170 fields[3].num_bits = 1;
171 fields[3].out_value = &nr_w_buf;
172 fields[3].in_value = NULL;
174 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
176 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
177 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
178 #endif
180 return ERROR_OK;
183 /* See table 9-10 for scan chain 15 format during interpreted access mode.
184 * If the TESTSTATE register is set for interpreted access, certain CP15
185 * MRC and MCR instructions may be executed through scan chain 15.
187 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
188 * executed using scan chain 15 interpreted mode.
190 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
191 uint32_t arm_opcode)
193 int retval;
194 struct arm920t_common *arm920t = target_to_arm920(target);
195 struct arm_jtag *jtag_info;
196 struct scan_field fields[4];
197 uint8_t access_type_buf = 0; /* interpreted access */
198 uint8_t reg_addr_buf = 0x0;
199 uint8_t nr_w_buf = 0;
200 uint8_t cp15_opcode_buf[4];
202 jtag_info = &arm920t->arm7_9_common.jtag_info;
204 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
205 if (retval != ERROR_OK)
206 return retval;
207 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
208 if (retval != ERROR_OK)
209 return retval;
211 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
213 fields[0].num_bits = 1;
214 fields[0].out_value = &access_type_buf;
215 fields[0].in_value = NULL;
217 fields[1].num_bits = 32;
218 fields[1].out_value = cp15_opcode_buf;
219 fields[1].in_value = NULL;
221 fields[2].num_bits = 6;
222 fields[2].out_value = &reg_addr_buf;
223 fields[2].in_value = NULL;
225 fields[3].num_bits = 1;
226 fields[3].out_value = &nr_w_buf;
227 fields[3].in_value = NULL;
229 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
231 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
232 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
233 retval = arm7_9_execute_sys_speed(target);
234 if (retval != ERROR_OK)
235 return retval;
237 retval = jtag_execute_queue();
238 if (retval != ERROR_OK) {
239 LOG_ERROR("failed executing JTAG queue");
240 return retval;
243 return ERROR_OK;
246 static int arm920t_read_cp15_interpreted(struct target *target,
247 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
249 struct arm *arm = target_to_arm(target);
250 uint32_t *regs_p[1];
251 uint32_t regs[2];
252 uint32_t cp15c15 = 0x0;
253 struct reg *r = arm->core_cache->reg_list;
255 /* load address into R1 */
256 regs[1] = address;
257 arm9tdmi_write_core_regs(target, 0x2, regs);
259 /* read-modify-write CP15 test state register
260 * to enable interpreted access mode */
261 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
262 jtag_execute_queue();
263 cp15c15 |= 1; /* set interpret mode */
264 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
266 /* execute CP15 instruction and ARM load (reading from coprocessor) */
267 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
269 /* disable interpreted access mode */
270 cp15c15 &= ~1U; /* clear interpret mode */
271 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
273 /* retrieve value from R0 */
274 regs_p[0] = value;
275 arm9tdmi_read_core_regs(target, 0x1, regs_p);
276 jtag_execute_queue();
278 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
279 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
280 cp15_opcode, address, *value);
281 #endif
283 if (!is_arm_mode(arm->core_mode)) {
284 LOG_ERROR("not a valid arm core mode - communication failure?");
285 return ERROR_FAIL;
288 r[0].dirty = 1;
289 r[1].dirty = 1;
291 return ERROR_OK;
294 static
295 int arm920t_write_cp15_interpreted(struct target *target,
296 uint32_t cp15_opcode, uint32_t value, uint32_t address)
298 uint32_t cp15c15 = 0x0;
299 struct arm *arm = target_to_arm(target);
300 uint32_t regs[2];
301 struct reg *r = arm->core_cache->reg_list;
303 /* load value, address into R0, R1 */
304 regs[0] = value;
305 regs[1] = address;
306 arm9tdmi_write_core_regs(target, 0x3, regs);
308 /* read-modify-write CP15 test state register
309 * to enable interpreted access mode */
310 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
311 jtag_execute_queue();
312 cp15c15 |= 1; /* set interpret mode */
313 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
315 /* execute CP15 instruction and ARM store (writing to coprocessor) */
316 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
318 /* disable interpreted access mode */
319 cp15c15 &= ~1U; /* set interpret mode */
320 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
322 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
323 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
324 cp15_opcode, value, address);
325 #endif
327 if (!is_arm_mode(arm->core_mode)) {
328 LOG_ERROR("not a valid arm core mode - communication failure?");
329 return ERROR_FAIL;
332 r[0].dirty = 1;
333 r[1].dirty = 1;
335 return ERROR_OK;
338 /* EXPORTED to FA256 */
339 int arm920t_get_ttb(struct target *target, uint32_t *result)
341 int retval;
342 uint32_t ttb = 0x0;
344 retval = arm920t_read_cp15_interpreted(target,
345 /* FIXME use opcode macro */
346 0xeebf0f51, 0x0, &ttb);
347 if (retval != ERROR_OK)
348 return retval;
350 *result = ttb;
351 return ERROR_OK;
354 /* EXPORTED to FA256 */
355 int arm920t_disable_mmu_caches(struct target *target, int mmu,
356 int d_u_cache, int i_cache)
358 uint32_t cp15_control;
359 int retval;
361 /* read cp15 control register */
362 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
363 if (retval != ERROR_OK)
364 return retval;
365 retval = jtag_execute_queue();
366 if (retval != ERROR_OK)
367 return retval;
369 if (mmu)
370 cp15_control &= ~0x1U;
372 if (d_u_cache)
373 cp15_control &= ~0x4U;
375 if (i_cache)
376 cp15_control &= ~0x1000U;
378 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
379 return retval;
382 /* EXPORTED to FA256 */
383 int arm920t_enable_mmu_caches(struct target *target, int mmu,
384 int d_u_cache, int i_cache)
386 uint32_t cp15_control;
387 int retval;
389 /* read cp15 control register */
390 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
391 if (retval != ERROR_OK)
392 return retval;
393 retval = jtag_execute_queue();
394 if (retval != ERROR_OK)
395 return retval;
397 if (mmu)
398 cp15_control |= 0x1U;
400 if (d_u_cache)
401 cp15_control |= 0x4U;
403 if (i_cache)
404 cp15_control |= 0x1000U;
406 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
407 return retval;
410 /* EXPORTED to FA256 */
411 int arm920t_post_debug_entry(struct target *target)
413 uint32_t cp15c15;
414 struct arm920t_common *arm920t = target_to_arm920(target);
415 int retval;
417 /* examine cp15 control reg */
418 retval = arm920t_read_cp15_physical(target,
419 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
420 if (retval != ERROR_OK)
421 return retval;
422 retval = jtag_execute_queue();
423 if (retval != ERROR_OK)
424 return retval;
425 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
427 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1) {
428 uint32_t cache_type_reg;
429 /* identify caches */
430 retval = arm920t_read_cp15_physical(target,
431 CP15PHYS_CACHETYPE, &cache_type_reg);
432 if (retval != ERROR_OK)
433 return retval;
434 retval = jtag_execute_queue();
435 if (retval != ERROR_OK)
436 return retval;
437 armv4_5_identify_cache(cache_type_reg,
438 &arm920t->armv4_5_mmu.armv4_5_cache);
441 arm920t->armv4_5_mmu.mmu_enabled =
442 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
443 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
444 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
445 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
446 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
448 /* save i/d fault status and address register
449 * FIXME use opcode macros */
450 retval = arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
451 if (retval != ERROR_OK)
452 return retval;
453 retval = arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
454 if (retval != ERROR_OK)
455 return retval;
456 retval = arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
457 if (retval != ERROR_OK)
458 return retval;
459 retval = arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
460 if (retval != ERROR_OK)
461 return retval;
463 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
464 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
465 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
467 if (arm920t->preserve_cache) {
468 /* read-modify-write CP15 test state register
469 * to disable I/D-cache linefills */
470 retval = arm920t_read_cp15_physical(target,
471 CP15PHYS_TESTSTATE, &cp15c15);
472 if (retval != ERROR_OK)
473 return retval;
474 retval = jtag_execute_queue();
475 if (retval != ERROR_OK)
476 return retval;
477 cp15c15 |= 0x600;
478 retval = arm920t_write_cp15_physical(target,
479 CP15PHYS_TESTSTATE, cp15c15);
480 if (retval != ERROR_OK)
481 return retval;
483 return ERROR_OK;
486 /* EXPORTED to FA256 */
487 void arm920t_pre_restore_context(struct target *target)
489 uint32_t cp15c15;
490 struct arm920t_common *arm920t = target_to_arm920(target);
492 /* restore i/d fault status and address register */
493 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
494 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
495 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
496 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
498 /* read-modify-write CP15 test state register
499 * to reenable I/D-cache linefills */
500 if (arm920t->preserve_cache) {
501 arm920t_read_cp15_physical(target,
502 CP15PHYS_TESTSTATE, &cp15c15);
503 jtag_execute_queue();
504 cp15c15 &= ~0x600U;
505 arm920t_write_cp15_physical(target,
506 CP15PHYS_TESTSTATE, cp15c15);
510 static const char arm920_not[] = "target is not an ARM920";
512 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
513 struct arm920t_common *arm920t)
515 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
516 command_print(cmd_ctx, arm920_not);
517 return ERROR_TARGET_INVALID;
520 return ERROR_OK;
523 /** Logs summary of ARM920 state for a halted target. */
524 int arm920t_arch_state(struct target *target)
526 static const char *state[] = {
527 "disabled", "enabled"
530 struct arm920t_common *arm920t = target_to_arm920(target);
532 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
533 LOG_ERROR("BUG: %s", arm920_not);
534 return ERROR_TARGET_INVALID;
537 arm_arch_state(target);
538 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
539 state[arm920t->armv4_5_mmu.mmu_enabled],
540 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
541 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
543 return ERROR_OK;
546 static int arm920_mmu(struct target *target, int *enabled)
548 if (target->state != TARGET_HALTED) {
549 LOG_ERROR("%s: target not halted", __func__);
550 return ERROR_TARGET_INVALID;
553 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
554 return ERROR_OK;
557 static int arm920_virt2phys(struct target *target,
558 uint32_t virt, uint32_t *phys)
560 uint32_t cb;
561 struct arm920t_common *arm920t = target_to_arm920(target);
563 uint32_t ret;
564 int retval = armv4_5_mmu_translate_va(target,
565 &arm920t->armv4_5_mmu, virt, &cb, &ret);
566 if (retval != ERROR_OK)
567 return retval;
568 *phys = ret;
569 return ERROR_OK;
572 /** Reads a buffer, in the specified word size, with current MMU settings. */
573 int arm920t_read_memory(struct target *target, uint32_t address,
574 uint32_t size, uint32_t count, uint8_t *buffer)
576 int retval;
578 retval = arm7_9_read_memory(target, address, size, count, buffer);
580 return retval;
584 static int arm920t_read_phys_memory(struct target *target,
585 uint32_t address, uint32_t size,
586 uint32_t count, uint8_t *buffer)
588 struct arm920t_common *arm920t = target_to_arm920(target);
590 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
591 address, size, count, buffer);
594 static int arm920t_write_phys_memory(struct target *target,
595 uint32_t address, uint32_t size,
596 uint32_t count, const uint8_t *buffer)
598 struct arm920t_common *arm920t = target_to_arm920(target);
600 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
601 address, size, count, buffer);
604 /** Writes a buffer, in the specified word size, with current MMU settings. */
605 int arm920t_write_memory(struct target *target, uint32_t address,
606 uint32_t size, uint32_t count, const uint8_t *buffer)
608 int retval;
609 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
610 struct arm920t_common *arm920t = target_to_arm920(target);
612 /* FIX!!!! this should be cleaned up and made much more general. The
613 * plan is to write up and test on arm920t specifically and
614 * then generalize and clean up afterwards.
616 * Also it should be moved to the callbacks that handle breakpoints
617 * specifically and not the generic memory write fn's. See XScale code.
619 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
620 ((size == 2) || (size == 4))) {
621 /* special case the handling of single word writes to
622 * bypass MMU, to allow implementation of breakpoints
623 * in memory marked read only
624 * by MMU
626 uint32_t cb;
627 uint32_t pa;
630 * We need physical address and cb
632 retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
633 address, &cb, &pa);
634 if (retval != ERROR_OK)
635 return retval;
637 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled) {
638 if (cb & 0x1) {
639 LOG_DEBUG("D-Cache buffered, "
640 "drain write buffer");
642 * Buffered ?
643 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
646 retval = arm920t_write_cp15_interpreted(target,
647 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
648 0x0, 0);
649 if (retval != ERROR_OK)
650 return retval;
653 if (cb == 0x3) {
655 * Write back memory ? -> clean cache
657 * There is no way to clean cache lines using
658 * cp15 scan chain, so copy the full cache
659 * line from cache to physical memory.
661 uint8_t data[32];
663 LOG_DEBUG("D-Cache in 'write back' mode, "
664 "flush cache line");
666 retval = target_read_memory(target,
667 address & cache_mask, 1,
668 sizeof(data), &data[0]);
669 if (retval != ERROR_OK)
670 return retval;
672 retval = armv4_5_mmu_write_physical(target,
673 &arm920t->armv4_5_mmu,
674 pa & cache_mask, 1,
675 sizeof(data), &data[0]);
676 if (retval != ERROR_OK)
677 return retval;
680 /* Cached ? */
681 if (cb & 0x2) {
683 * Cached ? -> Invalidate data cache using MVA
685 * MCR p15,0,Rd,c7,c6,1
687 LOG_DEBUG("D-Cache enabled, "
688 "invalidate cache line");
690 retval = arm920t_write_cp15_interpreted(target,
691 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
692 address & cache_mask);
693 if (retval != ERROR_OK)
694 return retval;
698 /* write directly to physical memory,
699 * bypassing any read only MMU bits, etc.
701 retval = armv4_5_mmu_write_physical(target,
702 &arm920t->armv4_5_mmu, pa, size,
703 count, buffer);
704 if (retval != ERROR_OK)
705 return retval;
706 } else {
707 retval = arm7_9_write_memory(target, address, size, count, buffer);
708 if (retval != ERROR_OK)
709 return retval;
712 /* If ICache is enabled, we have to invalidate affected ICache lines
713 * the DCache is forced to write-through,
714 * so we don't have to clean it here
716 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled) {
717 if (count <= 1) {
718 /* invalidate ICache single entry with MVA
719 * mcr 15, 0, r0, cr7, cr5, {1}
721 LOG_DEBUG("I-Cache enabled, "
722 "invalidating affected I-Cache line");
723 retval = arm920t_write_cp15_interpreted(target,
724 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
725 0x0, address & cache_mask);
726 if (retval != ERROR_OK)
727 return retval;
728 } else {
729 /* invalidate ICache
730 * mcr 15, 0, r0, cr7, cr5, {0}
732 retval = arm920t_write_cp15_interpreted(target,
733 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
734 0x0, 0x0);
735 if (retval != ERROR_OK)
736 return retval;
740 return ERROR_OK;
743 /* EXPORTED to FA256 */
744 int arm920t_soft_reset_halt(struct target *target)
746 int retval = ERROR_OK;
747 struct arm920t_common *arm920t = target_to_arm920(target);
748 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
749 struct arm *arm = &arm7_9->arm;
750 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
752 retval = target_halt(target);
753 if (retval != ERROR_OK)
754 return retval;
756 long long then = timeval_ms();
757 int timeout;
758 while (!(timeout = ((timeval_ms()-then) > 1000))) {
759 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0) {
760 embeddedice_read_reg(dbg_stat);
761 retval = jtag_execute_queue();
762 if (retval != ERROR_OK)
763 return retval;
764 } else
765 break;
766 if (debug_level >= 3) {
767 /* do not eat all CPU, time out after 1 se*/
768 alive_sleep(100);
769 } else
770 keep_alive();
772 if (timeout) {
773 LOG_ERROR("Failed to halt CPU after 1 sec");
774 return ERROR_TARGET_TIMEOUT;
777 target->state = TARGET_HALTED;
779 /* SVC, ARM state, IRQ and FIQ disabled */
780 uint32_t cpsr;
782 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
783 cpsr &= ~0xff;
784 cpsr |= 0xd3;
785 arm_set_cpsr(arm, cpsr);
786 arm->cpsr->dirty = 1;
788 /* start fetching from 0x0 */
789 buf_set_u32(arm->pc->value, 0, 32, 0x0);
790 arm->pc->dirty = 1;
791 arm->pc->valid = 1;
793 arm920t_disable_mmu_caches(target, 1, 1, 1);
794 arm920t->armv4_5_mmu.mmu_enabled = 0;
795 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
796 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
798 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
801 /* FIXME remove forward decls */
802 static int arm920t_mrc(struct target *target, int cpnum,
803 uint32_t op1, uint32_t op2,
804 uint32_t CRn, uint32_t CRm,
805 uint32_t *value);
806 static int arm920t_mcr(struct target *target, int cpnum,
807 uint32_t op1, uint32_t op2,
808 uint32_t CRn, uint32_t CRm,
809 uint32_t value);
811 static int arm920t_init_arch_info(struct target *target,
812 struct arm920t_common *arm920t, struct jtag_tap *tap)
814 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
816 arm7_9->arm.mrc = arm920t_mrc;
817 arm7_9->arm.mcr = arm920t_mcr;
819 /* initialize arm7/arm9 specific info (including armv4_5) */
820 arm9tdmi_init_arch_info(target, arm7_9, tap);
822 arm920t->common_magic = ARM920T_COMMON_MAGIC;
824 arm7_9->post_debug_entry = arm920t_post_debug_entry;
825 arm7_9->pre_restore_context = arm920t_pre_restore_context;
827 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
828 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
829 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
830 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
831 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
832 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
833 arm920t->armv4_5_mmu.has_tiny_pages = 1;
834 arm920t->armv4_5_mmu.mmu_enabled = 0;
836 /* disabling linefills leads to lockups, so keep them enabled for now
837 * this doesn't affect correctness, but might affect timing issues, if
838 * important data is evicted from the cache during the debug session
839 * */
840 arm920t->preserve_cache = 0;
842 /* override hw single-step capability from ARM9TDMI */
843 arm7_9->has_single_step = 1;
845 return ERROR_OK;
848 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
850 struct arm920t_common *arm920t;
852 arm920t = calloc(1, sizeof(struct arm920t_common));
853 return arm920t_init_arch_info(target, arm920t, target->tap);
856 COMMAND_HANDLER(arm920t_handle_read_cache_command)
858 int retval = ERROR_OK;
859 struct target *target = get_current_target(CMD_CTX);
860 struct arm920t_common *arm920t = target_to_arm920(target);
861 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
862 struct arm *arm = &arm7_9->arm;
863 uint32_t cp15c15;
864 uint32_t cp15_ctrl, cp15_ctrl_saved;
865 uint32_t regs[16];
866 uint32_t *regs_p[16];
867 uint32_t C15_C_D_Ind, C15_C_I_Ind;
868 int i;
869 FILE *output;
870 int segment, index_t;
871 struct reg *r;
873 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
874 if (retval != ERROR_OK)
875 return retval;
877 if (CMD_ARGC != 1)
878 return ERROR_COMMAND_SYNTAX_ERROR;
880 output = fopen(CMD_ARGV[0], "w");
881 if (output == NULL) {
882 LOG_DEBUG("error opening cache content file");
883 return ERROR_OK;
886 for (i = 0; i < 16; i++)
887 regs_p[i] = &regs[i];
889 /* disable MMU and Caches */
890 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
891 retval = jtag_execute_queue();
892 if (retval != ERROR_OK)
893 return retval;
894 cp15_ctrl_saved = cp15_ctrl;
895 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
896 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
897 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
899 /* read CP15 test state register */
900 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
901 jtag_execute_queue();
903 /* read DCache content */
904 fprintf(output, "DCache:\n");
906 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
907 for (segment = 0;
908 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
909 segment++) {
910 fprintf(output, "\nsegment: %i\n----------", segment);
912 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
913 regs[0] = 0x0 | (segment << 5);
914 arm9tdmi_write_core_regs(target, 0x1, regs);
916 /* set interpret mode */
917 cp15c15 |= 0x1;
918 arm920t_write_cp15_physical(target,
919 CP15PHYS_TESTSTATE, cp15c15);
921 /* D CAM Read, loads current victim into C15.C.D.Ind */
922 arm920t_execute_cp15(target,
923 ARMV4_5_MCR(15, 2, 0, 15, 6, 2), ARMV4_5_LDR(1, 0));
925 /* read current victim */
926 arm920t_read_cp15_physical(target,
927 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
929 /* clear interpret mode */
930 cp15c15 &= ~0x1;
931 arm920t_write_cp15_physical(target,
932 CP15PHYS_TESTSTATE, cp15c15);
934 for (index_t = 0; index_t < 64; index_t++) {
935 /* Ra:
936 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
938 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
939 arm9tdmi_write_core_regs(target, 0x1, regs);
941 /* set interpret mode */
942 cp15c15 |= 0x1;
943 arm920t_write_cp15_physical(target,
944 CP15PHYS_TESTSTATE, cp15c15);
946 /* Write DCache victim */
947 arm920t_execute_cp15(target,
948 ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
950 /* Read D RAM */
951 arm920t_execute_cp15(target,
952 ARMV4_5_MCR(15, 2, 0, 15, 10, 2),
953 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
955 /* Read D CAM */
956 arm920t_execute_cp15(target,
957 ARMV4_5_MCR(15, 2, 0, 15, 6, 2),
958 ARMV4_5_LDR(9, 0));
960 /* clear interpret mode */
961 cp15c15 &= ~0x1;
962 arm920t_write_cp15_physical(target,
963 CP15PHYS_TESTSTATE, cp15c15);
965 /* read D RAM and CAM content */
966 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
967 retval = jtag_execute_queue();
968 if (retval != ERROR_OK)
969 return retval;
971 /* mask LFSR[6] */
972 regs[9] &= 0xfffffffe;
973 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
974 PRIx32 ", content (%s):\n",
975 segment, index_t, regs[9],
976 (regs[9] & 0x10) ? "valid" : "invalid");
978 for (i = 1; i < 9; i++) {
979 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
980 i-1, regs[i]);
985 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
986 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
987 arm9tdmi_write_core_regs(target, 0x1, regs);
989 /* set interpret mode */
990 cp15c15 |= 0x1;
991 arm920t_write_cp15_physical(target,
992 CP15PHYS_TESTSTATE, cp15c15);
994 /* Write DCache victim */
995 arm920t_execute_cp15(target,
996 ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
998 /* clear interpret mode */
999 cp15c15 &= ~0x1;
1000 arm920t_write_cp15_physical(target,
1001 CP15PHYS_TESTSTATE, cp15c15);
1004 /* read ICache content */
1005 fprintf(output, "ICache:\n");
1007 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1008 for (segment = 0;
1009 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1010 segment++) {
1011 fprintf(output, "segment: %i\n----------", segment);
1013 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1014 regs[0] = 0x0 | (segment << 5);
1015 arm9tdmi_write_core_regs(target, 0x1, regs);
1017 /* set interpret mode */
1018 cp15c15 |= 0x1;
1019 arm920t_write_cp15_physical(target,
1020 CP15PHYS_TESTSTATE, cp15c15);
1022 /* I CAM Read, loads current victim into C15.C.I.Ind */
1023 arm920t_execute_cp15(target,
1024 ARMV4_5_MCR(15, 2, 0, 15, 5, 2), ARMV4_5_LDR(1, 0));
1026 /* read current victim */
1027 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1028 &C15_C_I_Ind);
1030 /* clear interpret mode */
1031 cp15c15 &= ~0x1;
1032 arm920t_write_cp15_physical(target,
1033 CP15PHYS_TESTSTATE, cp15c15);
1035 for (index_t = 0; index_t < 64; index_t++) {
1036 /* Ra:
1037 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1039 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
1040 arm9tdmi_write_core_regs(target, 0x1, regs);
1042 /* set interpret mode */
1043 cp15c15 |= 0x1;
1044 arm920t_write_cp15_physical(target,
1045 CP15PHYS_TESTSTATE, cp15c15);
1047 /* Write ICache victim */
1048 arm920t_execute_cp15(target,
1049 ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
1051 /* Read I RAM */
1052 arm920t_execute_cp15(target,
1053 ARMV4_5_MCR(15, 2, 0, 15, 9, 2),
1054 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1056 /* Read I CAM */
1057 arm920t_execute_cp15(target,
1058 ARMV4_5_MCR(15, 2, 0, 15, 5, 2),
1059 ARMV4_5_LDR(9, 0));
1061 /* clear interpret mode */
1062 cp15c15 &= ~0x1;
1063 arm920t_write_cp15_physical(target,
1064 CP15PHYS_TESTSTATE, cp15c15);
1066 /* read I RAM and CAM content */
1067 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1068 retval = jtag_execute_queue();
1069 if (retval != ERROR_OK)
1070 return retval;
1072 /* mask LFSR[6] */
1073 regs[9] &= 0xfffffffe;
1074 fprintf(output, "\nsegment: %i, index: %i, "
1075 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1076 segment, index_t, regs[9],
1077 (regs[9] & 0x10) ? "valid" : "invalid");
1079 for (i = 1; i < 9; i++) {
1080 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1081 i-1, regs[i]);
1085 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1086 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1087 arm9tdmi_write_core_regs(target, 0x1, regs);
1089 /* set interpret mode */
1090 cp15c15 |= 0x1;
1091 arm920t_write_cp15_physical(target,
1092 CP15PHYS_TESTSTATE, cp15c15);
1094 /* Write ICache victim */
1095 arm920t_execute_cp15(target,
1096 ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
1098 /* clear interpret mode */
1099 cp15c15 &= ~0x1;
1100 arm920t_write_cp15_physical(target,
1101 CP15PHYS_TESTSTATE, cp15c15);
1104 /* restore CP15 MMU and Cache settings */
1105 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1107 command_print(CMD_CTX, "cache content successfully output to %s",
1108 CMD_ARGV[0]);
1110 fclose(output);
1112 if (!is_arm_mode(arm->core_mode)) {
1113 LOG_ERROR("not a valid arm core mode - communication failure?");
1114 return ERROR_FAIL;
1117 /* force writeback of the valid data */
1118 r = arm->core_cache->reg_list;
1119 r[0].dirty = r[0].valid;
1120 r[1].dirty = r[1].valid;
1121 r[2].dirty = r[2].valid;
1122 r[3].dirty = r[3].valid;
1123 r[4].dirty = r[4].valid;
1124 r[5].dirty = r[5].valid;
1125 r[6].dirty = r[6].valid;
1126 r[7].dirty = r[7].valid;
1128 r = arm_reg_current(arm, 8);
1129 r->dirty = r->valid;
1131 r = arm_reg_current(arm, 9);
1132 r->dirty = r->valid;
1134 return ERROR_OK;
1137 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1139 int retval = ERROR_OK;
1140 struct target *target = get_current_target(CMD_CTX);
1141 struct arm920t_common *arm920t = target_to_arm920(target);
1142 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1143 struct arm *arm = &arm7_9->arm;
1144 uint32_t cp15c15;
1145 uint32_t cp15_ctrl, cp15_ctrl_saved;
1146 uint32_t regs[16];
1147 uint32_t *regs_p[16];
1148 int i;
1149 FILE *output;
1150 uint32_t Dlockdown, Ilockdown;
1151 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1152 int victim;
1153 struct reg *r;
1155 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1156 if (retval != ERROR_OK)
1157 return retval;
1159 if (CMD_ARGC != 1)
1160 return ERROR_COMMAND_SYNTAX_ERROR;
1162 output = fopen(CMD_ARGV[0], "w");
1163 if (output == NULL) {
1164 LOG_DEBUG("error opening mmu content file");
1165 return ERROR_OK;
1168 for (i = 0; i < 16; i++)
1169 regs_p[i] = &regs[i];
1171 /* disable MMU and Caches */
1172 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1173 retval = jtag_execute_queue();
1174 if (retval != ERROR_OK)
1175 return retval;
1176 cp15_ctrl_saved = cp15_ctrl;
1177 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1178 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1179 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1181 /* read CP15 test state register */
1182 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1183 retval = jtag_execute_queue();
1184 if (retval != ERROR_OK)
1185 return retval;
1187 /* prepare reading D TLB content
1188 * */
1190 /* set interpret mode */
1191 cp15c15 |= 0x1;
1192 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1194 /* Read D TLB lockdown */
1195 arm920t_execute_cp15(target,
1196 ARMV4_5_MRC(15, 0, 0, 10, 0, 0), ARMV4_5_LDR(1, 0));
1198 /* clear interpret mode */
1199 cp15c15 &= ~0x1;
1200 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1202 /* read D TLB lockdown stored to r1 */
1203 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1204 retval = jtag_execute_queue();
1205 if (retval != ERROR_OK)
1206 return retval;
1207 Dlockdown = regs[1];
1209 for (victim = 0; victim < 64; victim += 8) {
1210 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1211 * base remains unchanged, victim goes through entries 0 to 63
1213 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1214 arm9tdmi_write_core_regs(target, 0x2, regs);
1216 /* set interpret mode */
1217 cp15c15 |= 0x1;
1218 arm920t_write_cp15_physical(target,
1219 CP15PHYS_TESTSTATE, cp15c15);
1221 /* Write D TLB lockdown */
1222 arm920t_execute_cp15(target,
1223 ARMV4_5_MCR(15, 0, 0, 10, 0, 0),
1224 ARMV4_5_STR(1, 0));
1226 /* Read D TLB CAM */
1227 arm920t_execute_cp15(target,
1228 ARMV4_5_MCR(15, 4, 0, 15, 6, 4),
1229 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1231 /* clear interpret mode */
1232 cp15c15 &= ~0x1;
1233 arm920t_write_cp15_physical(target,
1234 CP15PHYS_TESTSTATE, cp15c15);
1236 /* read D TLB CAM content stored to r2-r9 */
1237 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1238 retval = jtag_execute_queue();
1239 if (retval != ERROR_OK)
1240 return retval;
1242 for (i = 0; i < 8; i++)
1243 d_tlb[victim + i].cam = regs[i + 2];
1246 for (victim = 0; victim < 64; victim++) {
1247 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1248 * base remains unchanged, victim goes through entries 0 to 63
1250 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1251 arm9tdmi_write_core_regs(target, 0x2, regs);
1253 /* set interpret mode */
1254 cp15c15 |= 0x1;
1255 arm920t_write_cp15_physical(target,
1256 CP15PHYS_TESTSTATE, cp15c15);
1258 /* Write D TLB lockdown */
1259 arm920t_execute_cp15(target,
1260 ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
1262 /* Read D TLB RAM1 */
1263 arm920t_execute_cp15(target,
1264 ARMV4_5_MCR(15, 4, 0, 15, 10, 4), ARMV4_5_LDR(2, 0));
1266 /* Read D TLB RAM2 */
1267 arm920t_execute_cp15(target,
1268 ARMV4_5_MCR(15, 4, 0, 15, 2, 5), ARMV4_5_LDR(3, 0));
1270 /* clear interpret mode */
1271 cp15c15 &= ~0x1;
1272 arm920t_write_cp15_physical(target,
1273 CP15PHYS_TESTSTATE, cp15c15);
1275 /* read D TLB RAM content stored to r2 and r3 */
1276 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1277 retval = jtag_execute_queue();
1278 if (retval != ERROR_OK)
1279 return retval;
1281 d_tlb[victim].ram1 = regs[2];
1282 d_tlb[victim].ram2 = regs[3];
1285 /* restore D TLB lockdown */
1286 regs[1] = Dlockdown;
1287 arm9tdmi_write_core_regs(target, 0x2, regs);
1289 /* Write D TLB lockdown */
1290 arm920t_execute_cp15(target,
1291 ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
1293 /* prepare reading I TLB content
1294 * */
1296 /* set interpret mode */
1297 cp15c15 |= 0x1;
1298 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1300 /* Read I TLB lockdown */
1301 arm920t_execute_cp15(target,
1302 ARMV4_5_MRC(15, 0, 0, 10, 0, 1), ARMV4_5_LDR(1, 0));
1304 /* clear interpret mode */
1305 cp15c15 &= ~0x1;
1306 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1308 /* read I TLB lockdown stored to r1 */
1309 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1310 retval = jtag_execute_queue();
1311 if (retval != ERROR_OK)
1312 return retval;
1313 Ilockdown = regs[1];
1315 for (victim = 0; victim < 64; victim += 8) {
1316 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1317 * base remains unchanged, victim goes through entries 0 to 63
1319 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1320 arm9tdmi_write_core_regs(target, 0x2, regs);
1322 /* set interpret mode */
1323 cp15c15 |= 0x1;
1324 arm920t_write_cp15_physical(target,
1325 CP15PHYS_TESTSTATE, cp15c15);
1327 /* Write I TLB lockdown */
1328 arm920t_execute_cp15(target,
1329 ARMV4_5_MCR(15, 0, 0, 10, 0, 1),
1330 ARMV4_5_STR(1, 0));
1332 /* Read I TLB CAM */
1333 arm920t_execute_cp15(target,
1334 ARMV4_5_MCR(15, 4, 0, 15, 5, 4),
1335 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1337 /* clear interpret mode */
1338 cp15c15 &= ~0x1;
1339 arm920t_write_cp15_physical(target,
1340 CP15PHYS_TESTSTATE, cp15c15);
1342 /* read I TLB CAM content stored to r2-r9 */
1343 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1344 retval = jtag_execute_queue();
1345 if (retval != ERROR_OK)
1346 return retval;
1348 for (i = 0; i < 8; i++)
1349 i_tlb[i + victim].cam = regs[i + 2];
1352 for (victim = 0; victim < 64; victim++) {
1353 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1354 * base remains unchanged, victim goes through entries 0 to 63
1356 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1357 arm9tdmi_write_core_regs(target, 0x2, regs);
1359 /* set interpret mode */
1360 cp15c15 |= 0x1;
1361 arm920t_write_cp15_physical(target,
1362 CP15PHYS_TESTSTATE, cp15c15);
1364 /* Write I TLB lockdown */
1365 arm920t_execute_cp15(target,
1366 ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
1368 /* Read I TLB RAM1 */
1369 arm920t_execute_cp15(target,
1370 ARMV4_5_MCR(15, 4, 0, 15, 9, 4), ARMV4_5_LDR(2, 0));
1372 /* Read I TLB RAM2 */
1373 arm920t_execute_cp15(target,
1374 ARMV4_5_MCR(15, 4, 0, 15, 1, 5), ARMV4_5_LDR(3, 0));
1376 /* clear interpret mode */
1377 cp15c15 &= ~0x1;
1378 arm920t_write_cp15_physical(target,
1379 CP15PHYS_TESTSTATE, cp15c15);
1381 /* read I TLB RAM content stored to r2 and r3 */
1382 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1383 retval = jtag_execute_queue();
1384 if (retval != ERROR_OK)
1385 return retval;
1387 i_tlb[victim].ram1 = regs[2];
1388 i_tlb[victim].ram2 = regs[3];
1391 /* restore I TLB lockdown */
1392 regs[1] = Ilockdown;
1393 arm9tdmi_write_core_regs(target, 0x2, regs);
1395 /* Write I TLB lockdown */
1396 arm920t_execute_cp15(target,
1397 ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
1399 /* restore CP15 MMU and Cache settings */
1400 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1402 /* output data to file */
1403 fprintf(output, "D TLB content:\n");
1404 for (i = 0; i < 64; i++) {
1405 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1406 " 0x%8.8" PRIx32 " %s\n",
1407 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1408 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1411 fprintf(output, "\n\nI TLB content:\n");
1412 for (i = 0; i < 64; i++) {
1413 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1414 " 0x%8.8" PRIx32 " %s\n",
1415 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1416 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1419 command_print(CMD_CTX, "mmu content successfully output to %s",
1420 CMD_ARGV[0]);
1422 fclose(output);
1424 if (!is_arm_mode(arm->core_mode)) {
1425 LOG_ERROR("not a valid arm core mode - communication failure?");
1426 return ERROR_FAIL;
1429 /* force writeback of the valid data */
1430 r = arm->core_cache->reg_list;
1431 r[0].dirty = r[0].valid;
1432 r[1].dirty = r[1].valid;
1433 r[2].dirty = r[2].valid;
1434 r[3].dirty = r[3].valid;
1435 r[4].dirty = r[4].valid;
1436 r[5].dirty = r[5].valid;
1437 r[6].dirty = r[6].valid;
1438 r[7].dirty = r[7].valid;
1440 r = arm_reg_current(arm, 8);
1441 r->dirty = r->valid;
1443 r = arm_reg_current(arm, 9);
1444 r->dirty = r->valid;
1446 return ERROR_OK;
1449 COMMAND_HANDLER(arm920t_handle_cp15_command)
1451 int retval;
1452 struct target *target = get_current_target(CMD_CTX);
1453 struct arm920t_common *arm920t = target_to_arm920(target);
1455 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1456 if (retval != ERROR_OK)
1457 return retval;
1459 if (target->state != TARGET_HALTED) {
1460 command_print(CMD_CTX, "target must be stopped for "
1461 "\"%s\" command", CMD_NAME);
1462 return ERROR_OK;
1465 /* one argument, read a register.
1466 * two arguments, write it.
1468 if (CMD_ARGC >= 1) {
1469 int address;
1470 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1472 if (CMD_ARGC == 1) {
1473 uint32_t value;
1474 retval = arm920t_read_cp15_physical(target, address, &value);
1475 if (retval != ERROR_OK) {
1476 command_print(CMD_CTX,
1477 "couldn't access reg %i", address);
1478 return ERROR_OK;
1480 retval = jtag_execute_queue();
1481 if (retval != ERROR_OK)
1482 return retval;
1484 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1485 address, value);
1486 } else if (CMD_ARGC == 2) {
1487 uint32_t value;
1488 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1489 retval = arm920t_write_cp15_physical(target,
1490 address, value);
1491 if (retval != ERROR_OK) {
1492 command_print(CMD_CTX,
1493 "couldn't access reg %i", address);
1494 /* REVISIT why lie? "return retval"? */
1495 return ERROR_OK;
1497 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1498 address, value);
1502 return ERROR_OK;
1505 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1507 int retval;
1508 struct target *target = get_current_target(CMD_CTX);
1509 struct arm920t_common *arm920t = target_to_arm920(target);
1511 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1512 if (retval != ERROR_OK)
1513 return retval;
1516 if (target->state != TARGET_HALTED) {
1517 command_print(CMD_CTX, "target must be stopped for "
1518 "\"%s\" command", CMD_NAME);
1519 return ERROR_OK;
1522 /* one argument, read a register.
1523 * two arguments, write it.
1525 if (CMD_ARGC >= 1) {
1526 uint32_t opcode;
1527 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1529 if (CMD_ARGC == 1) {
1530 uint32_t value;
1531 retval = arm920t_read_cp15_interpreted(target,
1532 opcode, 0x0, &value);
1533 if (retval != ERROR_OK) {
1534 command_print(CMD_CTX,
1535 "couldn't execute %8.8" PRIx32,
1536 opcode);
1537 /* REVISIT why lie? "return retval"? */
1538 return ERROR_OK;
1541 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1542 opcode, value);
1543 } else if (CMD_ARGC == 2) {
1544 uint32_t value;
1545 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1546 retval = arm920t_write_cp15_interpreted(target,
1547 opcode, value, 0);
1548 if (retval != ERROR_OK) {
1549 command_print(CMD_CTX,
1550 "couldn't execute %8.8" PRIx32,
1551 opcode);
1552 /* REVISIT why lie? "return retval"? */
1553 return ERROR_OK;
1555 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1556 opcode, value);
1557 } else if (CMD_ARGC == 3) {
1558 uint32_t value;
1559 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1560 uint32_t address;
1561 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1562 retval = arm920t_write_cp15_interpreted(target,
1563 opcode, value, address);
1564 if (retval != ERROR_OK) {
1565 command_print(CMD_CTX,
1566 "couldn't execute %8.8" PRIx32, opcode);
1567 /* REVISIT why lie? "return retval"? */
1568 return ERROR_OK;
1570 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1571 " %8.8" PRIx32, opcode, value, address);
1573 } else
1574 return ERROR_COMMAND_SYNTAX_ERROR;
1576 return ERROR_OK;
1579 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1581 int retval;
1582 struct target *target = get_current_target(CMD_CTX);
1583 struct arm920t_common *arm920t = target_to_arm920(target);
1585 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1586 if (retval != ERROR_OK)
1587 return retval;
1589 return armv4_5_handle_cache_info_command(CMD_CTX,
1590 &arm920t->armv4_5_mmu.armv4_5_cache);
1594 static int arm920t_mrc(struct target *target, int cpnum,
1595 uint32_t op1, uint32_t op2,
1596 uint32_t CRn, uint32_t CRm,
1597 uint32_t *value)
1599 if (cpnum != 15) {
1600 LOG_ERROR("Only cp15 is supported");
1601 return ERROR_FAIL;
1604 /* read "to" r0 */
1605 return arm920t_read_cp15_interpreted(target,
1606 ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1607 0, value);
1610 static int arm920t_mcr(struct target *target, int cpnum,
1611 uint32_t op1, uint32_t op2,
1612 uint32_t CRn, uint32_t CRm,
1613 uint32_t value)
1615 if (cpnum != 15) {
1616 LOG_ERROR("Only cp15 is supported");
1617 return ERROR_FAIL;
1620 /* write "from" r0 */
1621 return arm920t_write_cp15_interpreted(target,
1622 ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1623 0, value);
1626 static const struct command_registration arm920t_exec_command_handlers[] = {
1628 .name = "cp15",
1629 .handler = arm920t_handle_cp15_command,
1630 .mode = COMMAND_EXEC,
1631 .help = "display/modify cp15 register",
1632 .usage = "regnum [value]",
1635 .name = "cp15i",
1636 .handler = arm920t_handle_cp15i_command,
1637 .mode = COMMAND_EXEC,
1638 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1639 .help = "display/modify cp15 register using ARM opcode"
1640 " (DEPRECATED)",
1641 .usage = "instruction [value [address]]",
1644 .name = "cache_info",
1645 .handler = arm920t_handle_cache_info_command,
1646 .mode = COMMAND_EXEC,
1647 .usage = "",
1648 .help = "display information about target caches",
1651 .name = "read_cache",
1652 .handler = arm920t_handle_read_cache_command,
1653 .mode = COMMAND_EXEC,
1654 .help = "dump I/D cache content to file",
1655 .usage = "filename",
1658 .name = "read_mmu",
1659 .handler = arm920t_handle_read_mmu_command,
1660 .mode = COMMAND_EXEC,
1661 .help = "dump I/D mmu content to file",
1662 .usage = "filename",
1664 COMMAND_REGISTRATION_DONE
1666 const struct command_registration arm920t_command_handlers[] = {
1668 .chain = arm9tdmi_command_handlers,
1671 .name = "arm920t",
1672 .mode = COMMAND_ANY,
1673 .help = "arm920t command group",
1674 .usage = "",
1675 .chain = arm920t_exec_command_handlers,
1677 COMMAND_REGISTRATION_DONE
1680 /** Holds methods for ARM920 targets. */
1681 struct target_type arm920t_target = {
1682 .name = "arm920t",
1684 .poll = arm7_9_poll,
1685 .arch_state = arm920t_arch_state,
1687 .target_request_data = arm7_9_target_request_data,
1689 .halt = arm7_9_halt,
1690 .resume = arm7_9_resume,
1691 .step = arm7_9_step,
1693 .assert_reset = arm7_9_assert_reset,
1694 .deassert_reset = arm7_9_deassert_reset,
1695 .soft_reset_halt = arm920t_soft_reset_halt,
1697 .get_gdb_reg_list = arm_get_gdb_reg_list,
1699 .read_memory = arm920t_read_memory,
1700 .write_memory = arm920t_write_memory,
1701 .read_phys_memory = arm920t_read_phys_memory,
1702 .write_phys_memory = arm920t_write_phys_memory,
1703 .mmu = arm920_mmu,
1704 .virt2phys = arm920_virt2phys,
1706 .bulk_write_memory = arm7_9_bulk_write_memory,
1708 .checksum_memory = arm_checksum_memory,
1709 .blank_check_memory = arm_blank_check_memory,
1711 .run_algorithm = armv4_5_run_algorithm,
1713 .add_breakpoint = arm7_9_add_breakpoint,
1714 .remove_breakpoint = arm7_9_remove_breakpoint,
1715 .add_watchpoint = arm7_9_add_watchpoint,
1716 .remove_watchpoint = arm7_9_remove_watchpoint,
1718 .commands = arm920t_command_handlers,
1719 .target_create = arm920t_target_create,
1720 .init_target = arm9tdmi_init_target,
1721 .examine = arm7_9_examine,
1722 .check_reset = arm7_9_check_reset,