Make ARM NAND I/O operations aware of last op
[openocd/libswd.git] / src / flash / arm_nandio.c
blob1b43b5f14fa1f84ade05e751290b9c26375d6c79
1 /*
2 * Copyright (C) 2009 by Marvell Semiconductors, Inc.
3 * Written by Nicolas Pitre <nico at marvell.com>
5 * Copyright (C) 2009 by David Brownell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the
19 * Free Software Foundation, Inc.,
20 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
27 #include "arm_nandio.h"
28 #include <target/armv4_5.h>
29 #include <target/algorithm.h>
31 /**
32 * Copies code to a working area. This will allocate room for the code plus the
33 * additional amount requested if the working area pointer is null.
35 * @param target Pointer to the target to copy code to
36 * @param code Pointer to the code area to be copied
37 * @param code_size Size of the code being copied
38 * @param additional Size of the additional area to be allocated in addition to
39 * code
40 * @param area Pointer to a pointer to a working area to copy code to
41 * @return Success or failure of the operation
43 int arm_code_to_working_area(struct target *target,
44 const uint32_t *code, unsigned code_size,
45 unsigned additional, struct working_area **area)
47 uint8_t code_buf[code_size];
48 unsigned i;
49 int retval;
50 unsigned size = code_size + additional;
52 /* REVISIT this assumes size doesn't ever change.
53 * That's usually correct; but there are boards with
54 * both large and small page chips, where it won't be...
57 /* make sure we have a working area */
58 if (NULL == *area) {
59 retval = target_alloc_working_area(target, size, area);
60 if (retval != ERROR_OK) {
61 LOG_DEBUG("%s: no %d byte buffer", __FUNCTION__, (int) size);
62 return ERROR_NAND_NO_BUFFER;
66 /* buffer code in target endianness */
67 for (i = 0; i < code_size / 4; i++)
68 target_buffer_set_u32(target, code_buf + i * 4, code[i]);
70 /* copy code to work area */
71 retval = target_write_memory(target, (*area)->address,
72 4, code_size / 4, code_buf);
74 return retval;
77 /**
78 * ARM-specific bulk write from buffer to address of 8-bit wide NAND.
79 * For now this only supports ARMv4 and ARMv5 cores.
81 * Enhancements to target_run_algorithm() could enable:
82 * - ARMv6 and ARMv7 cores in ARM mode
84 * Different code fragments could handle:
85 * - Thumb2 cores like Cortex-M (needs different byteswapping)
86 * - 16-bit wide data (needs different setup too)
88 * @param nand Pointer to the arm_nand_data struct that defines the I/O
89 * @param data Pointer to the data to be copied to flash
90 * @param size Size of the data being copied
91 * @return Success or failure of the operation
93 int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
95 struct target *target = nand->target;
96 struct armv4_5_algorithm algo;
97 struct arm *armv4_5 = target->arch_info;
98 struct reg_param reg_params[3];
99 uint32_t target_buf;
100 uint32_t exit = 0;
101 int retval;
103 /* Inputs:
104 * r0 NAND data address (byte wide)
105 * r1 buffer address
106 * r2 buffer length
108 static const uint32_t code[] = {
109 0xe4d13001, /* s: ldrb r3, [r1], #1 */
110 0xe5c03000, /* strb r3, [r0] */
111 0xe2522001, /* subs r2, r2, #1 */
112 0x1afffffb, /* bne s */
114 /* exit: ARMv4 needs hardware breakpoint */
115 0xe1200070, /* e: bkpt #0 */
118 if (nand->op != ARM_NAND_WRITE || !nand->copy_area) {
119 retval = arm_code_to_working_area(target, code, sizeof(code),
120 nand->chunk_size, &nand->copy_area);
121 if (retval != ERROR_OK) {
122 return retval;
126 nand->op = ARM_NAND_WRITE;
128 /* copy data to work area */
129 target_buf = nand->copy_area->address + sizeof(code);
130 retval = target_bulk_write_memory(target, target_buf, size / 4, data);
131 if (retval == ERROR_OK && (size & 3) != 0)
132 retval = target_write_memory(target,
133 target_buf + (size & ~3),
134 1, size & 3, data + (size & ~3));
135 if (retval != ERROR_OK)
136 return retval;
138 /* set up algorithm and parameters */
139 algo.common_magic = ARMV4_5_COMMON_MAGIC;
140 algo.core_mode = ARMV4_5_MODE_SVC;
141 algo.core_state = ARMV4_5_STATE_ARM;
143 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
144 init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
145 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
147 buf_set_u32(reg_params[0].value, 0, 32, nand->data);
148 buf_set_u32(reg_params[1].value, 0, 32, target_buf);
149 buf_set_u32(reg_params[2].value, 0, 32, size);
151 /* armv4 must exit using a hardware breakpoint */
152 if (armv4_5->is_armv4)
153 exit = nand->copy_area->address + sizeof(code) - 4;
155 /* use alg to write data from work area to NAND chip */
156 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
157 nand->copy_area->address, exit, 1000, &algo);
158 if (retval != ERROR_OK)
159 LOG_ERROR("error executing hosted NAND write");
161 destroy_reg_param(&reg_params[0]);
162 destroy_reg_param(&reg_params[1]);
163 destroy_reg_param(&reg_params[2]);
165 return retval;
169 * Uses an on-chip algorithm for an ARM device to read from a NAND device and
170 * store the data into the host machine's memory.
172 * @param nand Pointer to the arm_nand_data struct that defines the I/O
173 * @param data Pointer to the data buffer to store the read data
174 * @param size Amount of data to be stored to the buffer.
175 * @return Success or failure of the operation
177 int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
179 struct target *target = nand->target;
180 struct armv4_5_algorithm algo;
181 struct arm *armv4_5 = target->arch_info;
182 struct reg_param reg_params[3];
183 uint32_t target_buf;
184 uint32_t exit = 0;
185 int retval;
187 /* Inputs:
188 * r0 buffer address
189 * r1 NAND data address (byte wide)
190 * r2 buffer length
192 static const uint32_t code[] = {
193 0xe5d13000, /* s: ldrb r3, [r1] */
194 0xe4c03001, /* strb r3, [r0], #1 */
195 0xe2522001, /* subs r2, r2, #1 */
196 0x1afffffb, /* bne s */
198 /* exit: ARMv4 needs hardware breakpoint */
199 0xe1200070, /* e: bkpt #0 */
202 /* create the copy area if not yet available */
203 if (nand->op != ARM_NAND_READ || !nand->copy_area) {
204 retval = arm_code_to_working_area(target, code, sizeof(code),
205 nand->chunk_size, &nand->copy_area);
206 if (retval != ERROR_OK) {
207 return retval;
211 nand->op = ARM_NAND_READ;
212 target_buf = nand->copy_area->address + sizeof(code);
214 /* set up algorithm and parameters */
215 algo.common_magic = ARMV4_5_COMMON_MAGIC;
216 algo.core_mode = ARMV4_5_MODE_SVC;
217 algo.core_state = ARMV4_5_STATE_ARM;
219 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
220 init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
221 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
223 buf_set_u32(reg_params[0].value, 0, 32, target_buf);
224 buf_set_u32(reg_params[1].value, 0, 32, nand->data);
225 buf_set_u32(reg_params[2].value, 0, 32, size);
227 /* armv4 must exit using a hardware breakpoint */
228 if (armv4_5->is_armv4)
229 exit = nand->copy_area->address + sizeof(code) - 4;
231 /* use alg to write data from NAND chip to work area */
232 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
233 nand->copy_area->address, exit, 1000, &algo);
234 if (retval != ERROR_OK)
235 LOG_ERROR("error executing hosted NAND read");
237 destroy_reg_param(&reg_params[0]);
238 destroy_reg_param(&reg_params[1]);
239 destroy_reg_param(&reg_params[2]);
241 /* read from work area to the host's memory */
242 retval = target_read_buffer(target, target_buf, size, data);
244 return retval;