ftdi: fix overflow if last field of a scan is empty
[openocd/libswd.git] / src / jtag / drivers / ftdi.c
blob46797d7dfe3952d0e3ca221849e0d4fb0c8dfef9
1 /**************************************************************************
2 * Copyright (C) 2012 by Andreas Fritiofson *
3 * andreas.fritiofson@gmail.com *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
19 ***************************************************************************/
21 /**
22 * @file
23 * JTAG adapters based on the FT2232 full and high speed USB parts are
24 * popular low cost JTAG debug solutions. Many FT2232 based JTAG adapters
25 * are discrete, but development boards may integrate them as alternatives
26 * to more capable (and expensive) third party JTAG pods.
28 * JTAG uses only one of the two communications channels ("MPSSE engines")
29 * on these devices. Adapters based on FT4232 parts have four ports/channels
30 * (A/B/C/D), instead of just two (A/B).
32 * Especially on development boards integrating one of these chips (as
33 * opposed to discrete pods/dongles), the additional channels can be used
34 * for a variety of purposes, but OpenOCD only uses one channel at a time.
36 * - As a USB-to-serial adapter for the target's console UART ...
37 * which may be able to support ROM boot loaders that load initial
38 * firmware images to flash (or SRAM).
40 * - On systems which support ARM's SWD in addition to JTAG, or instead
41 * of it, that second port can be used for reading SWV/SWO trace data.
43 * - Additional JTAG links, e.g. to a CPLD or * FPGA.
45 * FT2232 based JTAG adapters are "dumb" not "smart", because most JTAG
46 * request/response interactions involve round trips over the USB link.
47 * A "smart" JTAG adapter has intelligence close to the scan chain, so it
48 * can for example poll quickly for a status change (usually taking on the
49 * order of microseconds not milliseconds) before beginning a queued
50 * transaction which require the previous one to have completed.
52 * There are dozens of adapters of this type, differing in details which
53 * this driver needs to understand. Those "layout" details are required
54 * as part of FT2232 driver configuration.
56 * This code uses information contained in the MPSSE specification which was
57 * found here:
58 * http://www.ftdichip.com/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
59 * Hereafter this is called the "MPSSE Spec".
61 * The datasheet for the ftdichip.com's FT2232D part is here:
62 * http://www.ftdichip.com/Documents/DataSheets/DS_FT2232D.pdf
64 * Also note the issue with code 0x4b (clock data to TMS) noted in
65 * http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
66 * which can affect longer JTAG state paths.
69 #ifdef HAVE_CONFIG_H
70 #include "config.h"
71 #endif
73 /* project specific includes */
74 #include <jtag/interface.h>
75 #include <transport/transport.h>
76 #include <helper/time_support.h>
78 #if IS_CYGWIN == 1
79 #include <windows.h>
80 #endif
82 #include <assert.h>
84 /* FTDI access library includes */
85 #include "mpsse.h"
87 #define JTAG_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
89 static char *ftdi_device_desc;
90 static char *ftdi_serial;
91 static uint8_t ftdi_channel;
93 #define MAX_USB_IDS 8
94 /* vid = pid = 0 marks the end of the list */
95 static uint16_t ftdi_vid[MAX_USB_IDS + 1] = { 0 };
96 static uint16_t ftdi_pid[MAX_USB_IDS + 1] = { 0 };
98 static struct mpsse_ctx *mpsse_ctx;
100 struct signal {
101 const char *name;
102 uint16_t data_mask;
103 uint16_t oe_mask;
104 bool invert_data;
105 bool invert_oe;
106 struct signal *next;
109 static struct signal *signals;
111 static uint16_t output;
112 static uint16_t direction;
114 static struct signal *find_signal_by_name(const char *name)
116 for (struct signal *sig = signals; sig; sig = sig->next) {
117 if (strcmp(name, sig->name) == 0)
118 return sig;
120 return NULL;
123 static struct signal *create_signal(const char *name)
125 struct signal **psig = &signals;
126 while (*psig)
127 psig = &(*psig)->next;
129 *psig = calloc(1, sizeof(**psig));
130 if (*psig)
131 (*psig)->name = strdup(name);
132 if ((*psig)->name == NULL) {
133 free(*psig);
134 *psig = NULL;
136 return *psig;
139 static int ftdi_set_signal(const struct signal *s, char value)
141 int retval;
142 bool data;
143 bool oe;
145 if (s->data_mask == 0 && s->oe_mask == 0) {
146 LOG_ERROR("interface doesn't provide signal '%s'", s->name);
147 return ERROR_FAIL;
149 switch (value) {
150 case '0':
151 data = s->invert_data;
152 oe = !s->invert_oe;
153 break;
154 case '1':
155 if (s->data_mask == 0) {
156 LOG_ERROR("interface can't drive '%s' high", s->name);
157 return ERROR_FAIL;
159 data = !s->invert_data;
160 oe = !s->invert_oe;
161 break;
162 case 'z':
163 case 'Z':
164 if (s->oe_mask == 0) {
165 LOG_ERROR("interface can't tri-state '%s'", s->name);
166 return ERROR_FAIL;
168 data = s->invert_data;
169 oe = s->invert_oe;
170 break;
171 default:
172 assert(0 && "invalid signal level specifier");
173 return ERROR_FAIL;
176 output = data ? output | s->data_mask : output & ~s->data_mask;
177 if (s->oe_mask == s->data_mask)
178 direction = oe ? output | s->oe_mask : output & ~s->oe_mask;
179 else
180 output = oe ? output | s->oe_mask : output & ~s->oe_mask;
182 retval = mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
183 if (retval == ERROR_OK)
184 retval = mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
185 if (retval != ERROR_OK) {
186 LOG_ERROR("couldn't initialize FTDI GPIO");
187 return ERROR_JTAG_INIT_FAILED;
190 return ERROR_OK;
195 * Function move_to_state
196 * moves the TAP controller from the current state to a
197 * \a goal_state through a path given by tap_get_tms_path(). State transition
198 * logging is performed by delegation to clock_tms().
200 * @param goal_state is the destination state for the move.
202 static int move_to_state(tap_state_t goal_state)
204 tap_state_t start_state = tap_get_state();
206 /* goal_state is 1/2 of a tuple/pair of states which allow convenient
207 lookup of the required TMS pattern to move to this state from the
208 start state.
211 /* do the 2 lookups */
212 int tms_bits = tap_get_tms_path(start_state, goal_state);
213 int tms_count = tap_get_tms_path_len(start_state, goal_state);
215 DEBUG_JTAG_IO("start=%s goal=%s", tap_state_name(start_state), tap_state_name(goal_state));
217 /* Track state transitions step by step */
218 for (int i = 0; i < tms_count; i++)
219 tap_set_state(tap_state_transition(tap_get_state(), (tms_bits >> i) & 1));
221 return mpsse_clock_tms_cs_out(mpsse_ctx,
222 (uint8_t *)&tms_bits,
224 tms_count,
225 false,
226 JTAG_MODE);
229 static int ftdi_speed(int speed)
231 int retval;
232 retval = mpsse_set_frequency(mpsse_ctx, speed);
234 if (retval < 0) {
235 LOG_ERROR("couldn't set FTDI TCK speed");
236 return retval;
239 return ERROR_OK;
242 static int ftdi_speed_div(int speed, int *khz)
244 *khz = speed / 1000;
245 return ERROR_OK;
248 static int ftdi_khz(int khz, int *jtag_speed)
250 *jtag_speed = khz * 1000;
251 return ERROR_OK;
254 static void ftdi_end_state(tap_state_t state)
256 if (tap_is_state_stable(state))
257 tap_set_end_state(state);
258 else {
259 LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state));
260 exit(-1);
264 static int ftdi_execute_runtest(struct jtag_command *cmd)
266 int retval = ERROR_OK;
267 int i;
268 uint8_t zero = 0;
270 DEBUG_JTAG_IO("runtest %i cycles, end in %s",
271 cmd->cmd.runtest->num_cycles,
272 tap_state_name(cmd->cmd.runtest->end_state));
274 if (tap_get_state() != TAP_IDLE)
275 move_to_state(TAP_IDLE);
277 /* TODO: Reuse ftdi_execute_stableclocks */
278 i = cmd->cmd.runtest->num_cycles;
279 while (i > 0 && retval == ERROR_OK) {
280 /* there are no state transitions in this code, so omit state tracking */
281 unsigned this_len = i > 7 ? 7 : i;
282 retval = mpsse_clock_tms_cs_out(mpsse_ctx, &zero, 0, this_len, false, JTAG_MODE);
283 i -= this_len;
286 ftdi_end_state(cmd->cmd.runtest->end_state);
288 if (tap_get_state() != tap_get_end_state())
289 move_to_state(tap_get_end_state());
291 DEBUG_JTAG_IO("runtest: %i, end in %s",
292 cmd->cmd.runtest->num_cycles,
293 tap_state_name(tap_get_end_state()));
294 return retval;
297 static int ftdi_execute_statemove(struct jtag_command *cmd)
299 int retval = ERROR_OK;
301 DEBUG_JTAG_IO("statemove end in %s",
302 tap_state_name(cmd->cmd.statemove->end_state));
304 ftdi_end_state(cmd->cmd.statemove->end_state);
306 /* shortest-path move to desired end state */
307 if (tap_get_state() != tap_get_end_state() || tap_get_end_state() == TAP_RESET)
308 move_to_state(tap_get_end_state());
310 return retval;
314 * Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
315 * (or SWD) state machine. REVISIT: Not the best method, perhaps.
317 static int ftdi_execute_tms(struct jtag_command *cmd)
319 DEBUG_JTAG_IO("TMS: %d bits", cmd->cmd.tms->num_bits);
321 /* TODO: Missing tap state tracking, also missing from ft2232.c! */
322 return mpsse_clock_tms_cs_out(mpsse_ctx,
323 cmd->cmd.tms->bits,
325 cmd->cmd.tms->num_bits,
326 false,
327 JTAG_MODE);
330 static int ftdi_execute_pathmove(struct jtag_command *cmd)
332 int retval = ERROR_OK;
334 tap_state_t *path = cmd->cmd.pathmove->path;
335 int num_states = cmd->cmd.pathmove->num_states;
337 DEBUG_JTAG_IO("pathmove: %i states, current: %s end: %s", num_states,
338 tap_state_name(tap_get_state()),
339 tap_state_name(path[num_states-1]));
341 int state_count = 0;
342 unsigned bit_count = 0;
343 uint8_t tms_byte = 0;
345 DEBUG_JTAG_IO("-");
347 /* this loop verifies that the path is legal and logs each state in the path */
348 while (num_states-- && retval == ERROR_OK) {
350 /* either TMS=0 or TMS=1 must work ... */
351 if (tap_state_transition(tap_get_state(), false)
352 == path[state_count])
353 buf_set_u32(&tms_byte, bit_count++, 1, 0x0);
354 else if (tap_state_transition(tap_get_state(), true)
355 == path[state_count]) {
356 buf_set_u32(&tms_byte, bit_count++, 1, 0x1);
358 /* ... or else the caller goofed BADLY */
359 } else {
360 LOG_ERROR("BUG: %s -> %s isn't a valid "
361 "TAP state transition",
362 tap_state_name(tap_get_state()),
363 tap_state_name(path[state_count]));
364 exit(-1);
367 tap_set_state(path[state_count]);
368 state_count++;
370 if (bit_count == 7 || num_states == 0) {
371 retval = mpsse_clock_tms_cs_out(mpsse_ctx,
372 &tms_byte,
374 bit_count,
375 false,
376 JTAG_MODE);
377 bit_count = 0;
380 tap_set_end_state(tap_get_state());
382 return retval;
385 static int ftdi_execute_scan(struct jtag_command *cmd)
387 int retval = ERROR_OK;
389 DEBUG_JTAG_IO("%s type:%d", cmd->cmd.scan->ir_scan ? "IRSCAN" : "DRSCAN",
390 jtag_scan_type(cmd->cmd.scan));
392 /* Make sure there are no trailing fields with num_bits == 0, or the logic below will fail. */
393 while (cmd->cmd.scan->num_fields > 0
394 && cmd->cmd.scan->fields[cmd->cmd.scan->num_fields - 1].num_bits == 0) {
395 cmd->cmd.scan->num_fields--;
396 LOG_DEBUG("discarding trailing empty field");
399 if (cmd->cmd.scan->num_fields == 0) {
400 LOG_DEBUG("empty scan, doing nothing");
401 return retval;
404 if (cmd->cmd.scan->ir_scan) {
405 if (tap_get_state() != TAP_IRSHIFT)
406 move_to_state(TAP_IRSHIFT);
407 } else {
408 if (tap_get_state() != TAP_DRSHIFT)
409 move_to_state(TAP_DRSHIFT);
412 ftdi_end_state(cmd->cmd.scan->end_state);
414 struct scan_field *field = cmd->cmd.scan->fields;
415 unsigned scan_size = 0;
417 for (int i = 0; i < cmd->cmd.scan->num_fields; i++, field++) {
418 scan_size += field->num_bits;
419 DEBUG_JTAG_IO("%s%s field %d/%d %d bits",
420 field->in_value ? "in" : "",
421 field->out_value ? "out" : "",
423 cmd->cmd.scan->num_fields,
424 field->num_bits);
426 if (i == cmd->cmd.scan->num_fields - 1 && tap_get_state() != tap_get_end_state()) {
427 /* Last field, and we're leaving IRSHIFT/DRSHIFT. Clock last bit during tap
428 * movement. This last field can't have length zero, it was checked above. */
429 mpsse_clock_data(mpsse_ctx,
430 field->out_value,
432 field->in_value,
434 field->num_bits - 1,
435 JTAG_MODE);
436 uint8_t last_bit = 0;
437 if (field->out_value)
438 bit_copy(&last_bit, 0, field->out_value, field->num_bits - 1, 1);
439 uint8_t tms_bits = 0x01;
440 retval = mpsse_clock_tms_cs(mpsse_ctx,
441 &tms_bits,
443 field->in_value,
444 field->num_bits - 1,
446 last_bit,
447 JTAG_MODE);
448 tap_set_state(tap_state_transition(tap_get_state(), 1));
449 retval = mpsse_clock_tms_cs_out(mpsse_ctx,
450 &tms_bits,
453 last_bit,
454 JTAG_MODE);
455 tap_set_state(tap_state_transition(tap_get_state(), 0));
456 } else
457 mpsse_clock_data(mpsse_ctx,
458 field->out_value,
460 field->in_value,
462 field->num_bits,
463 JTAG_MODE);
464 if (retval != ERROR_OK) {
465 LOG_ERROR("failed to add field %d in scan", i);
466 return retval;
470 if (tap_get_state() != tap_get_end_state())
471 move_to_state(tap_get_end_state());
473 DEBUG_JTAG_IO("%s scan, %i bits, end in %s",
474 (cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size,
475 tap_state_name(tap_get_end_state()));
476 return retval;
480 static int ftdi_execute_reset(struct jtag_command *cmd)
482 DEBUG_JTAG_IO("reset trst: %i srst %i",
483 cmd->cmd.reset->trst, cmd->cmd.reset->srst);
485 if (cmd->cmd.reset->trst == 1
486 || (cmd->cmd.reset->srst
487 && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
488 tap_set_state(TAP_RESET);
490 struct signal *trst = find_signal_by_name("nTRST");
491 if (trst && cmd->cmd.reset->trst == 1) {
492 ftdi_set_signal(trst, '0');
493 } else if (trst && cmd->cmd.reset->trst == 0) {
494 if (jtag_get_reset_config() & RESET_TRST_OPEN_DRAIN)
495 ftdi_set_signal(trst, 'z');
496 else
497 ftdi_set_signal(trst, '1');
500 struct signal *srst = find_signal_by_name("nSRST");
501 if (srst && cmd->cmd.reset->srst == 1) {
502 ftdi_set_signal(srst, '0');
503 } else if (srst && cmd->cmd.reset->srst == 0) {
504 if (jtag_get_reset_config() & RESET_SRST_PUSH_PULL)
505 ftdi_set_signal(srst, '1');
506 else
507 ftdi_set_signal(srst, 'z');
510 DEBUG_JTAG_IO("trst: %i, srst: %i",
511 cmd->cmd.reset->trst, cmd->cmd.reset->srst);
512 return ERROR_OK;
515 static int ftdi_execute_sleep(struct jtag_command *cmd)
517 int retval = ERROR_OK;
519 DEBUG_JTAG_IO("sleep %" PRIi32, cmd->cmd.sleep->us);
521 retval = mpsse_flush(mpsse_ctx);
522 jtag_sleep(cmd->cmd.sleep->us);
523 DEBUG_JTAG_IO("sleep %" PRIi32 " usec while in %s",
524 cmd->cmd.sleep->us,
525 tap_state_name(tap_get_state()));
526 return retval;
529 static int ftdi_execute_stableclocks(struct jtag_command *cmd)
531 int retval = ERROR_OK;
533 /* this is only allowed while in a stable state. A check for a stable
534 * state was done in jtag_add_clocks()
536 int num_cycles = cmd->cmd.stableclocks->num_cycles;
538 /* 7 bits of either ones or zeros. */
539 uint8_t tms = tap_get_state() == TAP_RESET ? 0x7f : 0x00;
541 /* TODO: Use mpsse_clock_data with in=out=0 for this, if TMS can be set to
542 * the correct level and remain there during the scan */
543 while (num_cycles > 0 && retval == ERROR_OK) {
544 /* there are no state transitions in this code, so omit state tracking */
545 unsigned this_len = num_cycles > 7 ? 7 : num_cycles;
546 retval = mpsse_clock_tms_cs_out(mpsse_ctx, &tms, 0, this_len, false, JTAG_MODE);
547 num_cycles -= this_len;
550 DEBUG_JTAG_IO("clocks %i while in %s",
551 cmd->cmd.stableclocks->num_cycles,
552 tap_state_name(tap_get_state()));
553 return retval;
556 static int ftdi_execute_command(struct jtag_command *cmd)
558 int retval;
560 switch (cmd->type) {
561 case JTAG_RESET:
562 retval = ftdi_execute_reset(cmd);
563 break;
564 case JTAG_RUNTEST:
565 retval = ftdi_execute_runtest(cmd);
566 break;
567 case JTAG_TLR_RESET:
568 retval = ftdi_execute_statemove(cmd);
569 break;
570 case JTAG_PATHMOVE:
571 retval = ftdi_execute_pathmove(cmd);
572 break;
573 case JTAG_SCAN:
574 retval = ftdi_execute_scan(cmd);
575 break;
576 case JTAG_SLEEP:
577 retval = ftdi_execute_sleep(cmd);
578 break;
579 case JTAG_STABLECLOCKS:
580 retval = ftdi_execute_stableclocks(cmd);
581 break;
582 case JTAG_TMS:
583 retval = ftdi_execute_tms(cmd);
584 break;
585 default:
586 LOG_ERROR("BUG: unknown JTAG command type encountered: %d", cmd->type);
587 retval = ERROR_JTAG_QUEUE_FAILED;
588 break;
590 return retval;
593 static int ftdi_execute_queue(void)
595 int retval = ERROR_OK;
597 /* blink, if the current layout has that feature */
598 struct signal *led = find_signal_by_name("LED");
599 if (led)
600 ftdi_set_signal(led, '1');
602 for (struct jtag_command *cmd = jtag_command_queue; cmd; cmd = cmd->next) {
603 /* fill the write buffer with the desired command */
604 if (ftdi_execute_command(cmd) != ERROR_OK)
605 retval = ERROR_JTAG_QUEUE_FAILED;
608 if (led)
609 ftdi_set_signal(led, '0');
611 retval = mpsse_flush(mpsse_ctx);
612 if (retval != ERROR_OK)
613 LOG_ERROR("error while flushing MPSSE queue: %d", retval);
615 return retval;
618 static int ftdi_initialize(void)
620 int retval;
622 if (tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRPAUSE) == 7)
623 LOG_DEBUG("ftdi interface using 7 step jtag state transitions");
624 else
625 LOG_DEBUG("ftdi interface using shortest path jtag state transitions");
627 for (int i = 0; ftdi_vid[i] || ftdi_pid[i]; i++) {
628 mpsse_ctx = mpsse_open(&ftdi_vid[i], &ftdi_pid[i], ftdi_device_desc,
629 ftdi_serial, ftdi_channel);
630 if (mpsse_ctx)
631 break;
634 if (!mpsse_ctx)
635 return ERROR_JTAG_INIT_FAILED;
637 retval = mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
638 if (retval == ERROR_OK)
639 retval = mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
640 if (retval != ERROR_OK) {
641 LOG_ERROR("couldn't initialize FTDI with 'JTAGkey' layout");
642 return ERROR_JTAG_INIT_FAILED;
645 retval = mpsse_loopback_config(mpsse_ctx, false);
646 if (retval != ERROR_OK) {
647 LOG_ERROR("couldn't write to FTDI to disable loopback");
648 return ERROR_JTAG_INIT_FAILED;
651 return mpsse_flush(mpsse_ctx);
654 static int ftdi_quit(void)
656 mpsse_close(mpsse_ctx);
658 return ERROR_OK;
661 COMMAND_HANDLER(ftdi_handle_device_desc_command)
663 if (CMD_ARGC == 1) {
664 if (ftdi_device_desc)
665 free(ftdi_device_desc);
666 ftdi_device_desc = strdup(CMD_ARGV[0]);
667 } else {
668 LOG_ERROR("expected exactly one argument to ftdi_device_desc <description>");
671 return ERROR_OK;
674 COMMAND_HANDLER(ftdi_handle_serial_command)
676 if (CMD_ARGC == 1) {
677 if (ftdi_serial)
678 free(ftdi_serial);
679 ftdi_serial = strdup(CMD_ARGV[0]);
680 } else {
681 return ERROR_COMMAND_SYNTAX_ERROR;
684 return ERROR_OK;
687 COMMAND_HANDLER(ftdi_handle_channel_command)
689 if (CMD_ARGC == 1)
690 COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], ftdi_channel);
691 else
692 return ERROR_COMMAND_SYNTAX_ERROR;
694 return ERROR_OK;
697 COMMAND_HANDLER(ftdi_handle_layout_init_command)
699 if (CMD_ARGC != 2)
700 return ERROR_COMMAND_SYNTAX_ERROR;
702 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], output);
703 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], direction);
705 return ERROR_OK;
708 COMMAND_HANDLER(ftdi_handle_layout_signal_command)
710 if (CMD_ARGC < 1)
711 return ERROR_COMMAND_SYNTAX_ERROR;
713 bool invert_data = false;
714 uint16_t data_mask = 0;
715 bool invert_oe = false;
716 uint16_t oe_mask = 0;
717 for (unsigned i = 1; i < CMD_ARGC; i += 2) {
718 if (strcmp("-data", CMD_ARGV[i]) == 0) {
719 invert_data = false;
720 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
721 } else if (strcmp("-ndata", CMD_ARGV[i]) == 0) {
722 invert_data = true;
723 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
724 } else if (strcmp("-oe", CMD_ARGV[i]) == 0) {
725 invert_oe = false;
726 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
727 } else if (strcmp("-noe", CMD_ARGV[i]) == 0) {
728 invert_oe = true;
729 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
730 } else {
731 LOG_ERROR("unknown option '%s'", CMD_ARGV[i]);
732 return ERROR_COMMAND_SYNTAX_ERROR;
736 struct signal *sig;
737 sig = find_signal_by_name(CMD_ARGV[0]);
738 if (!sig)
739 sig = create_signal(CMD_ARGV[0]);
740 if (!sig) {
741 LOG_ERROR("failed to create signal %s", CMD_ARGV[0]);
742 return ERROR_FAIL;
745 sig->invert_data = invert_data;
746 sig->data_mask = data_mask;
747 sig->invert_oe = invert_oe;
748 sig->oe_mask = oe_mask;
750 return ERROR_OK;
753 COMMAND_HANDLER(ftdi_handle_set_signal_command)
755 if (CMD_ARGC < 2)
756 return ERROR_COMMAND_SYNTAX_ERROR;
758 struct signal *sig;
759 sig = find_signal_by_name(CMD_ARGV[0]);
760 if (!sig) {
761 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
762 return ERROR_FAIL;
765 switch (*CMD_ARGV[1]) {
766 case '0':
767 case '1':
768 case 'z':
769 case 'Z':
770 /* single character level specifier only */
771 if (CMD_ARGV[1][1] == '\0') {
772 ftdi_set_signal(sig, *CMD_ARGV[1]);
773 break;
775 default:
776 LOG_ERROR("unknown signal level '%s', use 0, 1 or z", CMD_ARGV[1]);
777 return ERROR_COMMAND_SYNTAX_ERROR;
780 return mpsse_flush(mpsse_ctx);
783 COMMAND_HANDLER(ftdi_handle_vid_pid_command)
785 if (CMD_ARGC > MAX_USB_IDS * 2) {
786 LOG_WARNING("ignoring extra IDs in ftdi_vid_pid "
787 "(maximum is %d pairs)", MAX_USB_IDS);
788 CMD_ARGC = MAX_USB_IDS * 2;
790 if (CMD_ARGC < 2 || (CMD_ARGC & 1)) {
791 LOG_WARNING("incomplete ftdi_vid_pid configuration directive");
792 if (CMD_ARGC < 2)
793 return ERROR_COMMAND_SYNTAX_ERROR;
794 /* remove the incomplete trailing id */
795 CMD_ARGC -= 1;
798 unsigned i;
799 for (i = 0; i < CMD_ARGC; i += 2) {
800 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i], ftdi_vid[i >> 1]);
801 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], ftdi_pid[i >> 1]);
805 * Explicitly terminate, in case there are multiples instances of
806 * ftdi_vid_pid.
808 ftdi_vid[i >> 1] = ftdi_pid[i >> 1] = 0;
810 return ERROR_OK;
813 static const struct command_registration ftdi_command_handlers[] = {
815 .name = "ftdi_device_desc",
816 .handler = &ftdi_handle_device_desc_command,
817 .mode = COMMAND_CONFIG,
818 .help = "set the USB device description of the FTDI device",
819 .usage = "description_string",
822 .name = "ftdi_serial",
823 .handler = &ftdi_handle_serial_command,
824 .mode = COMMAND_CONFIG,
825 .help = "set the serial number of the FTDI device",
826 .usage = "serial_string",
829 .name = "ftdi_channel",
830 .handler = &ftdi_handle_channel_command,
831 .mode = COMMAND_CONFIG,
832 .help = "set the channel of the FTDI device that is used as JTAG",
833 .usage = "(0-3)",
836 .name = "ftdi_layout_init",
837 .handler = &ftdi_handle_layout_init_command,
838 .mode = COMMAND_CONFIG,
839 .help = "initialize the FTDI GPIO signals used "
840 "to control output-enables and reset signals",
841 .usage = "data direction",
844 .name = "ftdi_layout_signal",
845 .handler = &ftdi_handle_layout_signal_command,
846 .mode = COMMAND_ANY,
847 .help = "define a signal controlled by one or more FTDI GPIO as data "
848 "and/or output enable",
849 .usage = "name [-data mask|-ndata mask] [-oe mask|-noe mask]",
852 .name = "ftdi_set_signal",
853 .handler = &ftdi_handle_set_signal_command,
854 .mode = COMMAND_EXEC,
855 .help = "control a layout-specific signal",
856 .usage = "name (1|0|z)",
859 .name = "ftdi_vid_pid",
860 .handler = &ftdi_handle_vid_pid_command,
861 .mode = COMMAND_CONFIG,
862 .help = "the vendor ID and product ID of the FTDI device",
863 .usage = "(vid pid)* ",
865 COMMAND_REGISTRATION_DONE
868 struct jtag_interface ftdi_interface = {
869 .name = "ftdi",
870 .supported = DEBUG_CAP_TMS_SEQ,
871 .commands = ftdi_command_handlers,
872 .transports = jtag_only,
874 .init = ftdi_initialize,
875 .quit = ftdi_quit,
876 .speed = ftdi_speed,
877 .speed_div = ftdi_speed_div,
878 .khz = ftdi_khz,
879 .execute_queue = ftdi_execute_queue,