1 /**************************************************************************
2 * Copyright (C) 2012 by Andreas Fritiofson *
3 * andreas.fritiofson@gmail.com *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
19 ***************************************************************************/
23 * JTAG adapters based on the FT2232 full and high speed USB parts are
24 * popular low cost JTAG debug solutions. Many FT2232 based JTAG adapters
25 * are discrete, but development boards may integrate them as alternatives
26 * to more capable (and expensive) third party JTAG pods.
28 * JTAG uses only one of the two communications channels ("MPSSE engines")
29 * on these devices. Adapters based on FT4232 parts have four ports/channels
30 * (A/B/C/D), instead of just two (A/B).
32 * Especially on development boards integrating one of these chips (as
33 * opposed to discrete pods/dongles), the additional channels can be used
34 * for a variety of purposes, but OpenOCD only uses one channel at a time.
36 * - As a USB-to-serial adapter for the target's console UART ...
37 * which may be able to support ROM boot loaders that load initial
38 * firmware images to flash (or SRAM).
40 * - On systems which support ARM's SWD in addition to JTAG, or instead
41 * of it, that second port can be used for reading SWV/SWO trace data.
43 * - Additional JTAG links, e.g. to a CPLD or * FPGA.
45 * FT2232 based JTAG adapters are "dumb" not "smart", because most JTAG
46 * request/response interactions involve round trips over the USB link.
47 * A "smart" JTAG adapter has intelligence close to the scan chain, so it
48 * can for example poll quickly for a status change (usually taking on the
49 * order of microseconds not milliseconds) before beginning a queued
50 * transaction which require the previous one to have completed.
52 * There are dozens of adapters of this type, differing in details which
53 * this driver needs to understand. Those "layout" details are required
54 * as part of FT2232 driver configuration.
56 * This code uses information contained in the MPSSE specification which was
58 * http://www.ftdichip.com/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
59 * Hereafter this is called the "MPSSE Spec".
61 * The datasheet for the ftdichip.com's FT2232D part is here:
62 * http://www.ftdichip.com/Documents/DataSheets/DS_FT2232D.pdf
64 * Also note the issue with code 0x4b (clock data to TMS) noted in
65 * http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
66 * which can affect longer JTAG state paths.
73 /* project specific includes */
74 #include <jtag/interface.h>
75 #include <transport/transport.h>
76 #include <helper/time_support.h>
84 /* FTDI access library includes */
87 #define JTAG_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
89 static char *ftdi_device_desc
;
90 static char *ftdi_serial
;
91 static uint8_t ftdi_channel
;
94 /* vid = pid = 0 marks the end of the list */
95 static uint16_t ftdi_vid
[MAX_USB_IDS
+ 1] = { 0 };
96 static uint16_t ftdi_pid
[MAX_USB_IDS
+ 1] = { 0 };
98 static struct mpsse_ctx
*mpsse_ctx
;
109 static struct signal
*signals
;
111 static uint16_t output
;
112 static uint16_t direction
;
114 static struct signal
*find_signal_by_name(const char *name
)
116 for (struct signal
*sig
= signals
; sig
; sig
= sig
->next
) {
117 if (strcmp(name
, sig
->name
) == 0)
123 static struct signal
*create_signal(const char *name
)
125 struct signal
**psig
= &signals
;
127 psig
= &(*psig
)->next
;
129 *psig
= calloc(1, sizeof(**psig
));
131 (*psig
)->name
= strdup(name
);
132 if ((*psig
)->name
== NULL
) {
139 static int ftdi_set_signal(const struct signal
*s
, char value
)
145 if (s
->data_mask
== 0 && s
->oe_mask
== 0) {
146 LOG_ERROR("interface doesn't provide signal '%s'", s
->name
);
151 data
= s
->invert_data
;
155 if (s
->data_mask
== 0) {
156 LOG_ERROR("interface can't drive '%s' high", s
->name
);
159 data
= !s
->invert_data
;
164 if (s
->oe_mask
== 0) {
165 LOG_ERROR("interface can't tri-state '%s'", s
->name
);
168 data
= s
->invert_data
;
172 assert(0 && "invalid signal level specifier");
176 output
= data
? output
| s
->data_mask
: output
& ~s
->data_mask
;
177 if (s
->oe_mask
== s
->data_mask
)
178 direction
= oe
? output
| s
->oe_mask
: output
& ~s
->oe_mask
;
180 output
= oe
? output
| s
->oe_mask
: output
& ~s
->oe_mask
;
182 retval
= mpsse_set_data_bits_low_byte(mpsse_ctx
, output
& 0xff, direction
& 0xff);
183 if (retval
== ERROR_OK
)
184 retval
= mpsse_set_data_bits_high_byte(mpsse_ctx
, output
>> 8, direction
>> 8);
185 if (retval
!= ERROR_OK
) {
186 LOG_ERROR("couldn't initialize FTDI GPIO");
187 return ERROR_JTAG_INIT_FAILED
;
195 * Function move_to_state
196 * moves the TAP controller from the current state to a
197 * \a goal_state through a path given by tap_get_tms_path(). State transition
198 * logging is performed by delegation to clock_tms().
200 * @param goal_state is the destination state for the move.
202 static int move_to_state(tap_state_t goal_state
)
204 tap_state_t start_state
= tap_get_state();
206 /* goal_state is 1/2 of a tuple/pair of states which allow convenient
207 lookup of the required TMS pattern to move to this state from the
211 /* do the 2 lookups */
212 int tms_bits
= tap_get_tms_path(start_state
, goal_state
);
213 int tms_count
= tap_get_tms_path_len(start_state
, goal_state
);
215 DEBUG_JTAG_IO("start=%s goal=%s", tap_state_name(start_state
), tap_state_name(goal_state
));
217 /* Track state transitions step by step */
218 for (int i
= 0; i
< tms_count
; i
++)
219 tap_set_state(tap_state_transition(tap_get_state(), (tms_bits
>> i
) & 1));
221 return mpsse_clock_tms_cs_out(mpsse_ctx
,
222 (uint8_t *)&tms_bits
,
229 static int ftdi_speed(int speed
)
232 retval
= mpsse_set_frequency(mpsse_ctx
, speed
);
235 LOG_ERROR("couldn't set FTDI TCK speed");
242 static int ftdi_speed_div(int speed
, int *khz
)
248 static int ftdi_khz(int khz
, int *jtag_speed
)
250 *jtag_speed
= khz
* 1000;
254 static void ftdi_end_state(tap_state_t state
)
256 if (tap_is_state_stable(state
))
257 tap_set_end_state(state
);
259 LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state
));
264 static int ftdi_execute_runtest(struct jtag_command
*cmd
)
266 int retval
= ERROR_OK
;
270 DEBUG_JTAG_IO("runtest %i cycles, end in %s",
271 cmd
->cmd
.runtest
->num_cycles
,
272 tap_state_name(cmd
->cmd
.runtest
->end_state
));
274 if (tap_get_state() != TAP_IDLE
)
275 move_to_state(TAP_IDLE
);
277 /* TODO: Reuse ftdi_execute_stableclocks */
278 i
= cmd
->cmd
.runtest
->num_cycles
;
279 while (i
> 0 && retval
== ERROR_OK
) {
280 /* there are no state transitions in this code, so omit state tracking */
281 unsigned this_len
= i
> 7 ? 7 : i
;
282 retval
= mpsse_clock_tms_cs_out(mpsse_ctx
, &zero
, 0, this_len
, false, JTAG_MODE
);
286 ftdi_end_state(cmd
->cmd
.runtest
->end_state
);
288 if (tap_get_state() != tap_get_end_state())
289 move_to_state(tap_get_end_state());
291 DEBUG_JTAG_IO("runtest: %i, end in %s",
292 cmd
->cmd
.runtest
->num_cycles
,
293 tap_state_name(tap_get_end_state()));
297 static int ftdi_execute_statemove(struct jtag_command
*cmd
)
299 int retval
= ERROR_OK
;
301 DEBUG_JTAG_IO("statemove end in %s",
302 tap_state_name(cmd
->cmd
.statemove
->end_state
));
304 ftdi_end_state(cmd
->cmd
.statemove
->end_state
);
306 /* shortest-path move to desired end state */
307 if (tap_get_state() != tap_get_end_state() || tap_get_end_state() == TAP_RESET
)
308 move_to_state(tap_get_end_state());
314 * Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
315 * (or SWD) state machine. REVISIT: Not the best method, perhaps.
317 static int ftdi_execute_tms(struct jtag_command
*cmd
)
319 DEBUG_JTAG_IO("TMS: %d bits", cmd
->cmd
.tms
->num_bits
);
321 /* TODO: Missing tap state tracking, also missing from ft2232.c! */
322 return mpsse_clock_tms_cs_out(mpsse_ctx
,
325 cmd
->cmd
.tms
->num_bits
,
330 static int ftdi_execute_pathmove(struct jtag_command
*cmd
)
332 int retval
= ERROR_OK
;
334 tap_state_t
*path
= cmd
->cmd
.pathmove
->path
;
335 int num_states
= cmd
->cmd
.pathmove
->num_states
;
337 DEBUG_JTAG_IO("pathmove: %i states, current: %s end: %s", num_states
,
338 tap_state_name(tap_get_state()),
339 tap_state_name(path
[num_states
-1]));
342 unsigned bit_count
= 0;
343 uint8_t tms_byte
= 0;
347 /* this loop verifies that the path is legal and logs each state in the path */
348 while (num_states
-- && retval
== ERROR_OK
) {
350 /* either TMS=0 or TMS=1 must work ... */
351 if (tap_state_transition(tap_get_state(), false)
352 == path
[state_count
])
353 buf_set_u32(&tms_byte
, bit_count
++, 1, 0x0);
354 else if (tap_state_transition(tap_get_state(), true)
355 == path
[state_count
]) {
356 buf_set_u32(&tms_byte
, bit_count
++, 1, 0x1);
358 /* ... or else the caller goofed BADLY */
360 LOG_ERROR("BUG: %s -> %s isn't a valid "
361 "TAP state transition",
362 tap_state_name(tap_get_state()),
363 tap_state_name(path
[state_count
]));
367 tap_set_state(path
[state_count
]);
370 if (bit_count
== 7 || num_states
== 0) {
371 retval
= mpsse_clock_tms_cs_out(mpsse_ctx
,
380 tap_set_end_state(tap_get_state());
385 static int ftdi_execute_scan(struct jtag_command
*cmd
)
387 int retval
= ERROR_OK
;
389 DEBUG_JTAG_IO("%s type:%d", cmd
->cmd
.scan
->ir_scan
? "IRSCAN" : "DRSCAN",
390 jtag_scan_type(cmd
->cmd
.scan
));
392 /* Make sure there are no trailing fields with num_bits == 0, or the logic below will fail. */
393 while (cmd
->cmd
.scan
->num_fields
> 0
394 && cmd
->cmd
.scan
->fields
[cmd
->cmd
.scan
->num_fields
- 1].num_bits
== 0) {
395 cmd
->cmd
.scan
->num_fields
--;
396 LOG_DEBUG("discarding trailing empty field");
399 if (cmd
->cmd
.scan
->num_fields
== 0) {
400 LOG_DEBUG("empty scan, doing nothing");
404 if (cmd
->cmd
.scan
->ir_scan
) {
405 if (tap_get_state() != TAP_IRSHIFT
)
406 move_to_state(TAP_IRSHIFT
);
408 if (tap_get_state() != TAP_DRSHIFT
)
409 move_to_state(TAP_DRSHIFT
);
412 ftdi_end_state(cmd
->cmd
.scan
->end_state
);
414 struct scan_field
*field
= cmd
->cmd
.scan
->fields
;
415 unsigned scan_size
= 0;
417 for (int i
= 0; i
< cmd
->cmd
.scan
->num_fields
; i
++, field
++) {
418 scan_size
+= field
->num_bits
;
419 DEBUG_JTAG_IO("%s%s field %d/%d %d bits",
420 field
->in_value
? "in" : "",
421 field
->out_value
? "out" : "",
423 cmd
->cmd
.scan
->num_fields
,
426 if (i
== cmd
->cmd
.scan
->num_fields
- 1 && tap_get_state() != tap_get_end_state()) {
427 /* Last field, and we're leaving IRSHIFT/DRSHIFT. Clock last bit during tap
428 * movement. This last field can't have length zero, it was checked above. */
429 mpsse_clock_data(mpsse_ctx
,
436 uint8_t last_bit
= 0;
437 if (field
->out_value
)
438 bit_copy(&last_bit
, 0, field
->out_value
, field
->num_bits
- 1, 1);
439 uint8_t tms_bits
= 0x01;
440 retval
= mpsse_clock_tms_cs(mpsse_ctx
,
448 tap_set_state(tap_state_transition(tap_get_state(), 1));
449 retval
= mpsse_clock_tms_cs_out(mpsse_ctx
,
455 tap_set_state(tap_state_transition(tap_get_state(), 0));
457 mpsse_clock_data(mpsse_ctx
,
464 if (retval
!= ERROR_OK
) {
465 LOG_ERROR("failed to add field %d in scan", i
);
470 if (tap_get_state() != tap_get_end_state())
471 move_to_state(tap_get_end_state());
473 DEBUG_JTAG_IO("%s scan, %i bits, end in %s",
474 (cmd
->cmd
.scan
->ir_scan
) ? "IR" : "DR", scan_size
,
475 tap_state_name(tap_get_end_state()));
480 static int ftdi_execute_reset(struct jtag_command
*cmd
)
482 DEBUG_JTAG_IO("reset trst: %i srst %i",
483 cmd
->cmd
.reset
->trst
, cmd
->cmd
.reset
->srst
);
485 if (cmd
->cmd
.reset
->trst
== 1
486 || (cmd
->cmd
.reset
->srst
487 && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST
)))
488 tap_set_state(TAP_RESET
);
490 struct signal
*trst
= find_signal_by_name("nTRST");
491 if (trst
&& cmd
->cmd
.reset
->trst
== 1) {
492 ftdi_set_signal(trst
, '0');
493 } else if (trst
&& cmd
->cmd
.reset
->trst
== 0) {
494 if (jtag_get_reset_config() & RESET_TRST_OPEN_DRAIN
)
495 ftdi_set_signal(trst
, 'z');
497 ftdi_set_signal(trst
, '1');
500 struct signal
*srst
= find_signal_by_name("nSRST");
501 if (srst
&& cmd
->cmd
.reset
->srst
== 1) {
502 ftdi_set_signal(srst
, '0');
503 } else if (srst
&& cmd
->cmd
.reset
->srst
== 0) {
504 if (jtag_get_reset_config() & RESET_SRST_PUSH_PULL
)
505 ftdi_set_signal(srst
, '1');
507 ftdi_set_signal(srst
, 'z');
510 DEBUG_JTAG_IO("trst: %i, srst: %i",
511 cmd
->cmd
.reset
->trst
, cmd
->cmd
.reset
->srst
);
515 static int ftdi_execute_sleep(struct jtag_command
*cmd
)
517 int retval
= ERROR_OK
;
519 DEBUG_JTAG_IO("sleep %" PRIi32
, cmd
->cmd
.sleep
->us
);
521 retval
= mpsse_flush(mpsse_ctx
);
522 jtag_sleep(cmd
->cmd
.sleep
->us
);
523 DEBUG_JTAG_IO("sleep %" PRIi32
" usec while in %s",
525 tap_state_name(tap_get_state()));
529 static int ftdi_execute_stableclocks(struct jtag_command
*cmd
)
531 int retval
= ERROR_OK
;
533 /* this is only allowed while in a stable state. A check for a stable
534 * state was done in jtag_add_clocks()
536 int num_cycles
= cmd
->cmd
.stableclocks
->num_cycles
;
538 /* 7 bits of either ones or zeros. */
539 uint8_t tms
= tap_get_state() == TAP_RESET
? 0x7f : 0x00;
541 /* TODO: Use mpsse_clock_data with in=out=0 for this, if TMS can be set to
542 * the correct level and remain there during the scan */
543 while (num_cycles
> 0 && retval
== ERROR_OK
) {
544 /* there are no state transitions in this code, so omit state tracking */
545 unsigned this_len
= num_cycles
> 7 ? 7 : num_cycles
;
546 retval
= mpsse_clock_tms_cs_out(mpsse_ctx
, &tms
, 0, this_len
, false, JTAG_MODE
);
547 num_cycles
-= this_len
;
550 DEBUG_JTAG_IO("clocks %i while in %s",
551 cmd
->cmd
.stableclocks
->num_cycles
,
552 tap_state_name(tap_get_state()));
556 static int ftdi_execute_command(struct jtag_command
*cmd
)
562 retval
= ftdi_execute_reset(cmd
);
565 retval
= ftdi_execute_runtest(cmd
);
568 retval
= ftdi_execute_statemove(cmd
);
571 retval
= ftdi_execute_pathmove(cmd
);
574 retval
= ftdi_execute_scan(cmd
);
577 retval
= ftdi_execute_sleep(cmd
);
579 case JTAG_STABLECLOCKS
:
580 retval
= ftdi_execute_stableclocks(cmd
);
583 retval
= ftdi_execute_tms(cmd
);
586 LOG_ERROR("BUG: unknown JTAG command type encountered: %d", cmd
->type
);
587 retval
= ERROR_JTAG_QUEUE_FAILED
;
593 static int ftdi_execute_queue(void)
595 int retval
= ERROR_OK
;
597 /* blink, if the current layout has that feature */
598 struct signal
*led
= find_signal_by_name("LED");
600 ftdi_set_signal(led
, '1');
602 for (struct jtag_command
*cmd
= jtag_command_queue
; cmd
; cmd
= cmd
->next
) {
603 /* fill the write buffer with the desired command */
604 if (ftdi_execute_command(cmd
) != ERROR_OK
)
605 retval
= ERROR_JTAG_QUEUE_FAILED
;
609 ftdi_set_signal(led
, '0');
611 retval
= mpsse_flush(mpsse_ctx
);
612 if (retval
!= ERROR_OK
)
613 LOG_ERROR("error while flushing MPSSE queue: %d", retval
);
618 static int ftdi_initialize(void)
622 if (tap_get_tms_path_len(TAP_IRPAUSE
, TAP_IRPAUSE
) == 7)
623 LOG_DEBUG("ftdi interface using 7 step jtag state transitions");
625 LOG_DEBUG("ftdi interface using shortest path jtag state transitions");
627 for (int i
= 0; ftdi_vid
[i
] || ftdi_pid
[i
]; i
++) {
628 mpsse_ctx
= mpsse_open(&ftdi_vid
[i
], &ftdi_pid
[i
], ftdi_device_desc
,
629 ftdi_serial
, ftdi_channel
);
635 return ERROR_JTAG_INIT_FAILED
;
637 retval
= mpsse_set_data_bits_low_byte(mpsse_ctx
, output
& 0xff, direction
& 0xff);
638 if (retval
== ERROR_OK
)
639 retval
= mpsse_set_data_bits_high_byte(mpsse_ctx
, output
>> 8, direction
>> 8);
640 if (retval
!= ERROR_OK
) {
641 LOG_ERROR("couldn't initialize FTDI with 'JTAGkey' layout");
642 return ERROR_JTAG_INIT_FAILED
;
645 retval
= mpsse_loopback_config(mpsse_ctx
, false);
646 if (retval
!= ERROR_OK
) {
647 LOG_ERROR("couldn't write to FTDI to disable loopback");
648 return ERROR_JTAG_INIT_FAILED
;
651 return mpsse_flush(mpsse_ctx
);
654 static int ftdi_quit(void)
656 mpsse_close(mpsse_ctx
);
661 COMMAND_HANDLER(ftdi_handle_device_desc_command
)
664 if (ftdi_device_desc
)
665 free(ftdi_device_desc
);
666 ftdi_device_desc
= strdup(CMD_ARGV
[0]);
668 LOG_ERROR("expected exactly one argument to ftdi_device_desc <description>");
674 COMMAND_HANDLER(ftdi_handle_serial_command
)
679 ftdi_serial
= strdup(CMD_ARGV
[0]);
681 return ERROR_COMMAND_SYNTAX_ERROR
;
687 COMMAND_HANDLER(ftdi_handle_channel_command
)
690 COMMAND_PARSE_NUMBER(u8
, CMD_ARGV
[0], ftdi_channel
);
692 return ERROR_COMMAND_SYNTAX_ERROR
;
697 COMMAND_HANDLER(ftdi_handle_layout_init_command
)
700 return ERROR_COMMAND_SYNTAX_ERROR
;
702 COMMAND_PARSE_NUMBER(u16
, CMD_ARGV
[0], output
);
703 COMMAND_PARSE_NUMBER(u16
, CMD_ARGV
[1], direction
);
708 COMMAND_HANDLER(ftdi_handle_layout_signal_command
)
711 return ERROR_COMMAND_SYNTAX_ERROR
;
713 bool invert_data
= false;
714 uint16_t data_mask
= 0;
715 bool invert_oe
= false;
716 uint16_t oe_mask
= 0;
717 for (unsigned i
= 1; i
< CMD_ARGC
; i
+= 2) {
718 if (strcmp("-data", CMD_ARGV
[i
]) == 0) {
720 COMMAND_PARSE_NUMBER(u16
, CMD_ARGV
[i
+ 1], data_mask
);
721 } else if (strcmp("-ndata", CMD_ARGV
[i
]) == 0) {
723 COMMAND_PARSE_NUMBER(u16
, CMD_ARGV
[i
+ 1], data_mask
);
724 } else if (strcmp("-oe", CMD_ARGV
[i
]) == 0) {
726 COMMAND_PARSE_NUMBER(u16
, CMD_ARGV
[i
+ 1], oe_mask
);
727 } else if (strcmp("-noe", CMD_ARGV
[i
]) == 0) {
729 COMMAND_PARSE_NUMBER(u16
, CMD_ARGV
[i
+ 1], oe_mask
);
731 LOG_ERROR("unknown option '%s'", CMD_ARGV
[i
]);
732 return ERROR_COMMAND_SYNTAX_ERROR
;
737 sig
= find_signal_by_name(CMD_ARGV
[0]);
739 sig
= create_signal(CMD_ARGV
[0]);
741 LOG_ERROR("failed to create signal %s", CMD_ARGV
[0]);
745 sig
->invert_data
= invert_data
;
746 sig
->data_mask
= data_mask
;
747 sig
->invert_oe
= invert_oe
;
748 sig
->oe_mask
= oe_mask
;
753 COMMAND_HANDLER(ftdi_handle_set_signal_command
)
756 return ERROR_COMMAND_SYNTAX_ERROR
;
759 sig
= find_signal_by_name(CMD_ARGV
[0]);
761 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV
[0]);
765 switch (*CMD_ARGV
[1]) {
770 /* single character level specifier only */
771 if (CMD_ARGV
[1][1] == '\0') {
772 ftdi_set_signal(sig
, *CMD_ARGV
[1]);
776 LOG_ERROR("unknown signal level '%s', use 0, 1 or z", CMD_ARGV
[1]);
777 return ERROR_COMMAND_SYNTAX_ERROR
;
780 return mpsse_flush(mpsse_ctx
);
783 COMMAND_HANDLER(ftdi_handle_vid_pid_command
)
785 if (CMD_ARGC
> MAX_USB_IDS
* 2) {
786 LOG_WARNING("ignoring extra IDs in ftdi_vid_pid "
787 "(maximum is %d pairs)", MAX_USB_IDS
);
788 CMD_ARGC
= MAX_USB_IDS
* 2;
790 if (CMD_ARGC
< 2 || (CMD_ARGC
& 1)) {
791 LOG_WARNING("incomplete ftdi_vid_pid configuration directive");
793 return ERROR_COMMAND_SYNTAX_ERROR
;
794 /* remove the incomplete trailing id */
799 for (i
= 0; i
< CMD_ARGC
; i
+= 2) {
800 COMMAND_PARSE_NUMBER(u16
, CMD_ARGV
[i
], ftdi_vid
[i
>> 1]);
801 COMMAND_PARSE_NUMBER(u16
, CMD_ARGV
[i
+ 1], ftdi_pid
[i
>> 1]);
805 * Explicitly terminate, in case there are multiples instances of
808 ftdi_vid
[i
>> 1] = ftdi_pid
[i
>> 1] = 0;
813 static const struct command_registration ftdi_command_handlers
[] = {
815 .name
= "ftdi_device_desc",
816 .handler
= &ftdi_handle_device_desc_command
,
817 .mode
= COMMAND_CONFIG
,
818 .help
= "set the USB device description of the FTDI device",
819 .usage
= "description_string",
822 .name
= "ftdi_serial",
823 .handler
= &ftdi_handle_serial_command
,
824 .mode
= COMMAND_CONFIG
,
825 .help
= "set the serial number of the FTDI device",
826 .usage
= "serial_string",
829 .name
= "ftdi_channel",
830 .handler
= &ftdi_handle_channel_command
,
831 .mode
= COMMAND_CONFIG
,
832 .help
= "set the channel of the FTDI device that is used as JTAG",
836 .name
= "ftdi_layout_init",
837 .handler
= &ftdi_handle_layout_init_command
,
838 .mode
= COMMAND_CONFIG
,
839 .help
= "initialize the FTDI GPIO signals used "
840 "to control output-enables and reset signals",
841 .usage
= "data direction",
844 .name
= "ftdi_layout_signal",
845 .handler
= &ftdi_handle_layout_signal_command
,
847 .help
= "define a signal controlled by one or more FTDI GPIO as data "
848 "and/or output enable",
849 .usage
= "name [-data mask|-ndata mask] [-oe mask|-noe mask]",
852 .name
= "ftdi_set_signal",
853 .handler
= &ftdi_handle_set_signal_command
,
854 .mode
= COMMAND_EXEC
,
855 .help
= "control a layout-specific signal",
856 .usage
= "name (1|0|z)",
859 .name
= "ftdi_vid_pid",
860 .handler
= &ftdi_handle_vid_pid_command
,
861 .mode
= COMMAND_CONFIG
,
862 .help
= "the vendor ID and product ID of the FTDI device",
863 .usage
= "(vid pid)* ",
865 COMMAND_REGISTRATION_DONE
868 struct jtag_interface ftdi_interface
= {
870 .supported
= DEBUG_CAP_TMS_SEQ
,
871 .commands
= ftdi_command_handlers
,
872 .transports
= jtag_only
,
874 .init
= ftdi_initialize
,
877 .speed_div
= ftdi_speed_div
,
879 .execute_queue
= ftdi_execute_queue
,