MIPS: remove unused arg from mips_ejtag_set_instr
[openocd/jflash.git] / src / target / arm920t.c
blob68d3997c9a66dc1b6b972a462327331df10b7497
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
19 ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
24 #include "arm920t.h"
25 #include <helper/time_support.h>
26 #include "target_type.h"
27 #include "register.h"
28 #include "arm_opcodes.h"
32 * For information about the ARM920T, see ARM DDI 0151C especially
33 * Chapter 9 about debug support, which shows how to manipulate each
34 * of the different scan chains:
36 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
37 * 1 ... debugging; watchpoint and breakpoint status, etc; also
38 * MMU and cache access in conjunction with scan chain 15
39 * 2 ... EmbeddedICE
40 * 3 ... external boundary scan (SoC-specific, unused here)
41 * 4 ... access to cache tag RAM
42 * 6 ... ETM9
43 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
44 * "interpreted" works with a few actual MRC/MCR instructions
45 * "physical" provides register-like behaviors. Section 9.6.7
46 * covers these details.
48 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
51 #if 0
52 #define _DEBUG_INSTRUCTION_EXECUTION_
53 #endif
55 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
56 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
57 * JTAG scan, while reads use two.
59 * Table 9-9 lists the thirteen registers which support physical access.
60 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
61 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
63 * x == bit[38]
64 * y == bits[37:34]
65 * z == bit[33]
67 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
69 /* Registers supporting physical Read access (from table 9-9) */
70 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
71 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
72 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
73 /* NOTE: several more registers support only physical read access */
75 /* Registers supporting physical Read/Write access (from table 9-9) */
76 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
77 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
78 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
79 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
80 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
82 static int arm920t_read_cp15_physical(struct target *target,
83 int reg_addr, uint32_t *value)
85 struct arm920t_common *arm920t = target_to_arm920(target);
86 struct arm_jtag *jtag_info;
87 struct scan_field fields[4];
88 uint8_t access_type_buf = 1;
89 uint8_t reg_addr_buf = reg_addr & 0x3f;
90 uint8_t nr_w_buf = 0;
92 jtag_info = &arm920t->arm7_9_common.jtag_info;
94 jtag_set_end_state(TAP_IDLE);
95 arm_jtag_scann(jtag_info, 0xf);
96 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
98 fields[0].num_bits = 1;
99 fields[0].out_value = &access_type_buf;
100 fields[0].in_value = NULL;
102 fields[1].num_bits = 32;
103 fields[1].out_value = NULL;
104 fields[1].in_value = NULL;
106 fields[2].num_bits = 6;
107 fields[2].out_value = &reg_addr_buf;
108 fields[2].in_value = NULL;
110 fields[3].num_bits = 1;
111 fields[3].out_value = &nr_w_buf;
112 fields[3].in_value = NULL;
114 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
116 fields[1].in_value = (uint8_t *)value;
118 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
120 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
122 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
123 jtag_execute_queue();
124 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
125 #endif
127 return ERROR_OK;
130 static int arm920t_write_cp15_physical(struct target *target,
131 int reg_addr, uint32_t value)
133 struct arm920t_common *arm920t = target_to_arm920(target);
134 struct arm_jtag *jtag_info;
135 struct scan_field fields[4];
136 uint8_t access_type_buf = 1;
137 uint8_t reg_addr_buf = reg_addr & 0x3f;
138 uint8_t nr_w_buf = 1;
139 uint8_t value_buf[4];
141 jtag_info = &arm920t->arm7_9_common.jtag_info;
143 buf_set_u32(value_buf, 0, 32, value);
145 jtag_set_end_state(TAP_IDLE);
146 arm_jtag_scann(jtag_info, 0xf);
147 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
149 fields[0].num_bits = 1;
150 fields[0].out_value = &access_type_buf;
151 fields[0].in_value = NULL;
153 fields[1].num_bits = 32;
154 fields[1].out_value = value_buf;
155 fields[1].in_value = NULL;
157 fields[2].num_bits = 6;
158 fields[2].out_value = &reg_addr_buf;
159 fields[2].in_value = NULL;
161 fields[3].num_bits = 1;
162 fields[3].out_value = &nr_w_buf;
163 fields[3].in_value = NULL;
165 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
167 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
168 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
169 #endif
171 return ERROR_OK;
174 /* See table 9-10 for scan chain 15 format during interpreted access mode.
175 * If the TESTSTATE register is set for interpreted access, certain CP15
176 * MRC and MCR instructions may be executed through scan chain 15.
178 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
179 * executed using scan chain 15 interpreted mode.
181 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
182 uint32_t arm_opcode)
184 int retval;
185 struct arm920t_common *arm920t = target_to_arm920(target);
186 struct arm_jtag *jtag_info;
187 struct scan_field fields[4];
188 uint8_t access_type_buf = 0; /* interpreted access */
189 uint8_t reg_addr_buf = 0x0;
190 uint8_t nr_w_buf = 0;
191 uint8_t cp15_opcode_buf[4];
193 jtag_info = &arm920t->arm7_9_common.jtag_info;
195 jtag_set_end_state(TAP_IDLE);
196 arm_jtag_scann(jtag_info, 0xf);
197 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
199 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
201 fields[0].num_bits = 1;
202 fields[0].out_value = &access_type_buf;
203 fields[0].in_value = NULL;
205 fields[1].num_bits = 32;
206 fields[1].out_value = cp15_opcode_buf;
207 fields[1].in_value = NULL;
209 fields[2].num_bits = 6;
210 fields[2].out_value = &reg_addr_buf;
211 fields[2].in_value = NULL;
213 fields[3].num_bits = 1;
214 fields[3].out_value = &nr_w_buf;
215 fields[3].in_value = NULL;
217 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
219 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
220 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
221 retval = arm7_9_execute_sys_speed(target);
222 if (retval != ERROR_OK)
223 return retval;
225 if ((retval = jtag_execute_queue()) != ERROR_OK)
227 LOG_ERROR("failed executing JTAG queue");
228 return retval;
231 return ERROR_OK;
234 static int arm920t_read_cp15_interpreted(struct target *target,
235 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
237 struct arm *armv4_5 = target_to_arm(target);
238 uint32_t* regs_p[1];
239 uint32_t regs[2];
240 uint32_t cp15c15 = 0x0;
241 struct reg *r = armv4_5->core_cache->reg_list;
243 /* load address into R1 */
244 regs[1] = address;
245 arm9tdmi_write_core_regs(target, 0x2, regs);
247 /* read-modify-write CP15 test state register
248 * to enable interpreted access mode */
249 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
250 jtag_execute_queue();
251 cp15c15 |= 1; /* set interpret mode */
252 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
254 /* execute CP15 instruction and ARM load (reading from coprocessor) */
255 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
257 /* disable interpreted access mode */
258 cp15c15 &= ~1U; /* clear interpret mode */
259 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
261 /* retrieve value from R0 */
262 regs_p[0] = value;
263 arm9tdmi_read_core_regs(target, 0x1, regs_p);
264 jtag_execute_queue();
266 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
267 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
268 cp15_opcode, address, *value);
269 #endif
271 if (!is_arm_mode(armv4_5->core_mode))
272 return ERROR_FAIL;
274 r[0].dirty = 1;
275 r[1].dirty = 1;
277 return ERROR_OK;
280 static
281 int arm920t_write_cp15_interpreted(struct target *target,
282 uint32_t cp15_opcode, uint32_t value, uint32_t address)
284 uint32_t cp15c15 = 0x0;
285 struct arm *armv4_5 = target_to_arm(target);
286 uint32_t regs[2];
287 struct reg *r = armv4_5->core_cache->reg_list;
289 /* load value, address into R0, R1 */
290 regs[0] = value;
291 regs[1] = address;
292 arm9tdmi_write_core_regs(target, 0x3, regs);
294 /* read-modify-write CP15 test state register
295 * to enable interpreted access mode */
296 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
297 jtag_execute_queue();
298 cp15c15 |= 1; /* set interpret mode */
299 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
301 /* execute CP15 instruction and ARM store (writing to coprocessor) */
302 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
304 /* disable interpreted access mode */
305 cp15c15 &= ~1U; /* set interpret mode */
306 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
308 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
309 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
310 cp15_opcode, value, address);
311 #endif
313 if (!is_arm_mode(armv4_5->core_mode))
314 return ERROR_FAIL;
316 r[0].dirty = 1;
317 r[1].dirty = 1;
319 return ERROR_OK;
322 // EXPORTED to FA256
323 uint32_t arm920t_get_ttb(struct target *target)
325 int retval;
326 uint32_t ttb = 0x0;
328 if ((retval = arm920t_read_cp15_interpreted(target,
329 /* FIXME use opcode macro */
330 0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
331 return retval;
333 return ttb;
336 // EXPORTED to FA256
337 void arm920t_disable_mmu_caches(struct target *target, int mmu,
338 int d_u_cache, int i_cache)
340 uint32_t cp15_control;
342 /* read cp15 control register */
343 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
344 jtag_execute_queue();
346 if (mmu)
347 cp15_control &= ~0x1U;
349 if (d_u_cache)
350 cp15_control &= ~0x4U;
352 if (i_cache)
353 cp15_control &= ~0x1000U;
355 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
358 // EXPORTED to FA256
359 void arm920t_enable_mmu_caches(struct target *target, int mmu,
360 int d_u_cache, int i_cache)
362 uint32_t cp15_control;
364 /* read cp15 control register */
365 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
366 jtag_execute_queue();
368 if (mmu)
369 cp15_control |= 0x1U;
371 if (d_u_cache)
372 cp15_control |= 0x4U;
374 if (i_cache)
375 cp15_control |= 0x1000U;
377 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
380 // EXPORTED to FA256
381 void arm920t_post_debug_entry(struct target *target)
383 uint32_t cp15c15;
384 struct arm920t_common *arm920t = target_to_arm920(target);
386 /* examine cp15 control reg */
387 arm920t_read_cp15_physical(target,
388 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
389 jtag_execute_queue();
390 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
392 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
394 uint32_t cache_type_reg;
395 /* identify caches */
396 arm920t_read_cp15_physical(target,
397 CP15PHYS_CACHETYPE, &cache_type_reg);
398 jtag_execute_queue();
399 armv4_5_identify_cache(cache_type_reg,
400 &arm920t->armv4_5_mmu.armv4_5_cache);
403 arm920t->armv4_5_mmu.mmu_enabled =
404 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
405 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
406 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
407 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
408 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
410 /* save i/d fault status and address register */
411 /* FIXME use opcode macros */
412 arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
413 arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
414 arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
415 arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
417 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
418 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
419 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
421 if (arm920t->preserve_cache)
423 /* read-modify-write CP15 test state register
424 * to disable I/D-cache linefills */
425 arm920t_read_cp15_physical(target,
426 CP15PHYS_TESTSTATE, &cp15c15);
427 jtag_execute_queue();
428 cp15c15 |= 0x600;
429 arm920t_write_cp15_physical(target,
430 CP15PHYS_TESTSTATE, cp15c15);
434 // EXPORTED to FA256
435 void arm920t_pre_restore_context(struct target *target)
437 uint32_t cp15c15;
438 struct arm920t_common *arm920t = target_to_arm920(target);
440 /* restore i/d fault status and address register */
441 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
442 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
443 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
444 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
446 /* read-modify-write CP15 test state register
447 * to reenable I/D-cache linefills */
448 if (arm920t->preserve_cache)
450 arm920t_read_cp15_physical(target,
451 CP15PHYS_TESTSTATE, &cp15c15);
452 jtag_execute_queue();
453 cp15c15 &= ~0x600U;
454 arm920t_write_cp15_physical(target,
455 CP15PHYS_TESTSTATE, cp15c15);
459 static const char arm920_not[] = "target is not an ARM920";
461 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
462 struct arm920t_common *arm920t)
464 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
465 command_print(cmd_ctx, arm920_not);
466 return ERROR_TARGET_INVALID;
469 return ERROR_OK;
472 /** Logs summary of ARM920 state for a halted target. */
473 int arm920t_arch_state(struct target *target)
475 static const char *state[] =
477 "disabled", "enabled"
480 struct arm920t_common *arm920t = target_to_arm920(target);
481 struct arm *armv4_5;
483 if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
485 LOG_ERROR("BUG: %s", arm920_not);
486 return ERROR_TARGET_INVALID;
489 armv4_5 = &arm920t->arm7_9_common.armv4_5_common;
491 arm_arch_state(target);
492 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
493 state[arm920t->armv4_5_mmu.mmu_enabled],
494 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
495 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
497 return ERROR_OK;
500 static int arm920_mmu(struct target *target, int *enabled)
502 if (target->state != TARGET_HALTED) {
503 LOG_ERROR("%s: target not halted", __func__);
504 return ERROR_TARGET_INVALID;
507 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
508 return ERROR_OK;
511 static int arm920_virt2phys(struct target *target,
512 uint32_t virt, uint32_t *phys)
514 int type;
515 uint32_t cb;
516 int domain;
517 uint32_t ap;
518 struct arm920t_common *arm920t = target_to_arm920(target);
520 uint32_t ret = armv4_5_mmu_translate_va(target,
521 &arm920t->armv4_5_mmu, virt, &type, &cb, &domain, &ap);
522 if (type == -1)
524 return ret;
526 *phys = ret;
527 return ERROR_OK;
530 /** Reads a buffer, in the specified word size, with current MMU settings. */
531 int arm920t_read_memory(struct target *target, uint32_t address,
532 uint32_t size, uint32_t count, uint8_t *buffer)
534 int retval;
536 retval = arm7_9_read_memory(target, address, size, count, buffer);
538 return retval;
542 static int arm920t_read_phys_memory(struct target *target,
543 uint32_t address, uint32_t size,
544 uint32_t count, uint8_t *buffer)
546 struct arm920t_common *arm920t = target_to_arm920(target);
548 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
549 address, size, count, buffer);
552 static int arm920t_write_phys_memory(struct target *target,
553 uint32_t address, uint32_t size,
554 uint32_t count, uint8_t *buffer)
556 struct arm920t_common *arm920t = target_to_arm920(target);
558 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
559 address, size, count, buffer);
563 /** Writes a buffer, in the specified word size, with current MMU settings. */
564 int arm920t_write_memory(struct target *target, uint32_t address,
565 uint32_t size, uint32_t count, uint8_t *buffer)
567 int retval;
568 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
569 struct arm920t_common *arm920t = target_to_arm920(target);
571 /* FIX!!!! this should be cleaned up and made much more general. The
572 * plan is to write up and test on arm920t specifically and
573 * then generalize and clean up afterwards. */
574 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
575 ((size==2) || (size==4)))
577 /* special case the handling of single word writes to
578 * bypass MMU, to allow implementation of breakpoints
579 * in memory marked read only
580 * by MMU
582 int type;
583 uint32_t cb;
584 int domain;
585 uint32_t ap;
586 uint32_t pa;
589 * We need physical address and cb
591 pa = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
592 address, &type, &cb, &domain, &ap);
593 if (type == -1)
594 return pa;
596 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
598 if (cb & 0x1)
600 LOG_DEBUG("D-Cache buffered, "
601 "drain write buffer");
603 * Buffered ?
604 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
607 retval = arm920t_write_cp15_interpreted(target,
608 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
609 0x0, 0);
610 if (retval != ERROR_OK)
611 return retval;
614 if (cb == 0x3)
617 * Write back memory ? -> clean cache
619 * There is no way to clean cache lines using
620 * cp15 scan chain, so copy the full cache
621 * line from cache to physical memory.
623 uint8_t data[32];
625 LOG_DEBUG("D-Cache in 'write back' mode, "
626 "flush cache line");
628 retval = target_read_memory(target,
629 address & cache_mask, 1,
630 sizeof(data), &data[0]);
631 if (retval != ERROR_OK)
632 return retval;
634 retval = armv4_5_mmu_write_physical(target,
635 &arm920t->armv4_5_mmu,
636 pa & cache_mask, 1,
637 sizeof(data), &data[0]);
638 if (retval != ERROR_OK)
639 return retval;
642 /* Cached ? */
643 if (cb & 0x2)
646 * Cached ? -> Invalidate data cache using MVA
648 * MCR p15,0,Rd,c7,c6,1
650 LOG_DEBUG("D-Cache enabled, "
651 "invalidate cache line");
653 retval = arm920t_write_cp15_interpreted(target,
654 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
655 address & cache_mask);
656 if (retval != ERROR_OK)
657 return retval;
661 /* write directly to physical memory,
662 * bypassing any read only MMU bits, etc.
664 retval = armv4_5_mmu_write_physical(target,
665 &arm920t->armv4_5_mmu, pa, size,
666 count, buffer);
667 if (retval != ERROR_OK)
668 return retval;
669 } else
671 if ((retval = arm7_9_write_memory(target, address,
672 size, count, buffer)) != ERROR_OK)
673 return retval;
676 /* If ICache is enabled, we have to invalidate affected ICache lines
677 * the DCache is forced to write-through,
678 * so we don't have to clean it here
680 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
682 if (count <= 1)
684 /* invalidate ICache single entry with MVA
685 * mcr 15, 0, r0, cr7, cr5, {1}
687 LOG_DEBUG("I-Cache enabled, "
688 "invalidating affected I-Cache line");
689 retval = arm920t_write_cp15_interpreted(target,
690 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
691 0x0, address & cache_mask);
692 if (retval != ERROR_OK)
693 return retval;
695 else
697 /* invalidate ICache
698 * mcr 15, 0, r0, cr7, cr5, {0}
700 retval = arm920t_write_cp15_interpreted(target,
701 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
702 0x0, 0x0);
703 if (retval != ERROR_OK)
704 return retval;
708 return retval;
711 // EXPORTED to FA256
712 int arm920t_soft_reset_halt(struct target *target)
714 int retval = ERROR_OK;
715 struct arm920t_common *arm920t = target_to_arm920(target);
716 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
717 struct arm *armv4_5 = &arm7_9->armv4_5_common;
718 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
720 if ((retval = target_halt(target)) != ERROR_OK)
722 return retval;
725 long long then = timeval_ms();
726 int timeout;
727 while (!(timeout = ((timeval_ms()-then) > 1000)))
729 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)
730 == 0)
732 embeddedice_read_reg(dbg_stat);
733 if ((retval = jtag_execute_queue()) != ERROR_OK)
735 return retval;
737 } else
739 break;
741 if (debug_level >= 3)
743 /* do not eat all CPU, time out after 1 se*/
744 alive_sleep(100);
745 } else
747 keep_alive();
750 if (timeout)
752 LOG_ERROR("Failed to halt CPU after 1 sec");
753 return ERROR_TARGET_TIMEOUT;
756 target->state = TARGET_HALTED;
758 /* SVC, ARM state, IRQ and FIQ disabled */
759 uint32_t cpsr;
761 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
762 cpsr &= ~0xff;
763 cpsr |= 0xd3;
764 arm_set_cpsr(armv4_5, cpsr);
765 armv4_5->cpsr->dirty = 1;
767 /* start fetching from 0x0 */
768 buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
769 armv4_5->pc->dirty = 1;
770 armv4_5->pc->valid = 1;
772 arm920t_disable_mmu_caches(target, 1, 1, 1);
773 arm920t->armv4_5_mmu.mmu_enabled = 0;
774 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
775 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
777 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
780 /* FIXME remove forward decls */
781 static int arm920t_mrc(struct target *target, int cpnum,
782 uint32_t op1, uint32_t op2,
783 uint32_t CRn, uint32_t CRm,
784 uint32_t *value);
785 static int arm920t_mcr(struct target *target, int cpnum,
786 uint32_t op1, uint32_t op2,
787 uint32_t CRn, uint32_t CRm,
788 uint32_t value);
790 int arm920t_init_arch_info(struct target *target,
791 struct arm920t_common *arm920t, struct jtag_tap *tap)
793 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
795 arm7_9->armv4_5_common.mrc = arm920t_mrc;
796 arm7_9->armv4_5_common.mcr = arm920t_mcr;
798 /* initialize arm7/arm9 specific info (including armv4_5) */
799 arm9tdmi_init_arch_info(target, arm7_9, tap);
801 arm920t->common_magic = ARM920T_COMMON_MAGIC;
803 arm7_9->post_debug_entry = arm920t_post_debug_entry;
804 arm7_9->pre_restore_context = arm920t_pre_restore_context;
806 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
807 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
808 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
809 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
810 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
811 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
812 arm920t->armv4_5_mmu.has_tiny_pages = 1;
813 arm920t->armv4_5_mmu.mmu_enabled = 0;
815 /* disabling linefills leads to lockups, so keep them enabled for now
816 * this doesn't affect correctness, but might affect timing issues, if
817 * important data is evicted from the cache during the debug session
818 * */
819 arm920t->preserve_cache = 0;
821 /* override hw single-step capability from ARM9TDMI */
822 arm7_9->has_single_step = 1;
824 return ERROR_OK;
827 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
829 struct arm920t_common *arm920t;
831 arm920t = calloc(1,sizeof(struct arm920t_common));
832 return arm920t_init_arch_info(target, arm920t, target->tap);
835 COMMAND_HANDLER(arm920t_handle_read_cache_command)
837 int retval = ERROR_OK;
838 struct target *target = get_current_target(CMD_CTX);
839 struct arm920t_common *arm920t = target_to_arm920(target);
840 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
841 struct arm *armv4_5 = &arm7_9->armv4_5_common;
842 uint32_t cp15c15;
843 uint32_t cp15_ctrl, cp15_ctrl_saved;
844 uint32_t regs[16];
845 uint32_t *regs_p[16];
846 uint32_t C15_C_D_Ind, C15_C_I_Ind;
847 int i;
848 FILE *output;
849 struct arm920t_cache_line d_cache[8][64], i_cache[8][64];
850 int segment, index;
851 struct reg *r;
853 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
854 if (retval != ERROR_OK)
855 return retval;
857 if (CMD_ARGC != 1)
859 command_print(CMD_CTX, "usage: arm920t read_cache <filename>");
860 return ERROR_OK;
863 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
865 LOG_DEBUG("error opening cache content file");
866 return ERROR_OK;
869 for (i = 0; i < 16; i++)
870 regs_p[i] = &regs[i];
872 /* disable MMU and Caches */
873 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
874 if ((retval = jtag_execute_queue()) != ERROR_OK)
876 return retval;
878 cp15_ctrl_saved = cp15_ctrl;
879 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
880 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
881 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
883 /* read CP15 test state register */
884 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
885 jtag_execute_queue();
887 /* read DCache content */
888 fprintf(output, "DCache:\n");
890 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
891 for (segment = 0;
892 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
893 segment++)
895 fprintf(output, "\nsegment: %i\n----------", segment);
897 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
898 regs[0] = 0x0 | (segment << 5);
899 arm9tdmi_write_core_regs(target, 0x1, regs);
901 /* set interpret mode */
902 cp15c15 |= 0x1;
903 arm920t_write_cp15_physical(target,
904 CP15PHYS_TESTSTATE, cp15c15);
906 /* D CAM Read, loads current victim into C15.C.D.Ind */
907 arm920t_execute_cp15(target,
908 ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
910 /* read current victim */
911 arm920t_read_cp15_physical(target,
912 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
914 /* clear interpret mode */
915 cp15c15 &= ~0x1;
916 arm920t_write_cp15_physical(target,
917 CP15PHYS_TESTSTATE, cp15c15);
919 for (index = 0; index < 64; index++)
921 /* Ra:
922 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
924 regs[0] = 0x0 | (segment << 5) | (index << 26);
925 arm9tdmi_write_core_regs(target, 0x1, regs);
927 /* set interpret mode */
928 cp15c15 |= 0x1;
929 arm920t_write_cp15_physical(target,
930 CP15PHYS_TESTSTATE, cp15c15);
932 /* Write DCache victim */
933 arm920t_execute_cp15(target,
934 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
936 /* Read D RAM */
937 arm920t_execute_cp15(target,
938 ARMV4_5_MCR(15,2,0,15,10,2),
939 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
941 /* Read D CAM */
942 arm920t_execute_cp15(target,
943 ARMV4_5_MCR(15,2,0,15,6,2),
944 ARMV4_5_LDR(9, 0));
946 /* clear interpret mode */
947 cp15c15 &= ~0x1;
948 arm920t_write_cp15_physical(target,
949 CP15PHYS_TESTSTATE, cp15c15);
951 /* read D RAM and CAM content */
952 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
953 if ((retval = jtag_execute_queue()) != ERROR_OK)
955 return retval;
958 d_cache[segment][index].cam = regs[9];
960 /* mask LFSR[6] */
961 regs[9] &= 0xfffffffe;
962 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
963 PRIx32 ", content (%s):\n",
964 segment, index, regs[9],
965 (regs[9] & 0x10) ? "valid" : "invalid");
967 for (i = 1; i < 9; i++)
969 d_cache[segment][index].data[i] = regs[i];
970 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
971 i-1, regs[i]);
976 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
977 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
978 arm9tdmi_write_core_regs(target, 0x1, regs);
980 /* set interpret mode */
981 cp15c15 |= 0x1;
982 arm920t_write_cp15_physical(target,
983 CP15PHYS_TESTSTATE, cp15c15);
985 /* Write DCache victim */
986 arm920t_execute_cp15(target,
987 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
989 /* clear interpret mode */
990 cp15c15 &= ~0x1;
991 arm920t_write_cp15_physical(target,
992 CP15PHYS_TESTSTATE, cp15c15);
995 /* read ICache content */
996 fprintf(output, "ICache:\n");
998 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
999 for (segment = 0;
1000 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1001 segment++)
1003 fprintf(output, "segment: %i\n----------", segment);
1005 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1006 regs[0] = 0x0 | (segment << 5);
1007 arm9tdmi_write_core_regs(target, 0x1, regs);
1009 /* set interpret mode */
1010 cp15c15 |= 0x1;
1011 arm920t_write_cp15_physical(target,
1012 CP15PHYS_TESTSTATE, cp15c15);
1014 /* I CAM Read, loads current victim into C15.C.I.Ind */
1015 arm920t_execute_cp15(target,
1016 ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
1018 /* read current victim */
1019 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1020 &C15_C_I_Ind);
1022 /* clear interpret mode */
1023 cp15c15 &= ~0x1;
1024 arm920t_write_cp15_physical(target,
1025 CP15PHYS_TESTSTATE, cp15c15);
1027 for (index = 0; index < 64; index++)
1029 /* Ra:
1030 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1032 regs[0] = 0x0 | (segment << 5) | (index << 26);
1033 arm9tdmi_write_core_regs(target, 0x1, regs);
1035 /* set interpret mode */
1036 cp15c15 |= 0x1;
1037 arm920t_write_cp15_physical(target,
1038 CP15PHYS_TESTSTATE, cp15c15);
1040 /* Write ICache victim */
1041 arm920t_execute_cp15(target,
1042 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1044 /* Read I RAM */
1045 arm920t_execute_cp15(target,
1046 ARMV4_5_MCR(15,2,0,15,9,2),
1047 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1049 /* Read I CAM */
1050 arm920t_execute_cp15(target,
1051 ARMV4_5_MCR(15,2,0,15,5,2),
1052 ARMV4_5_LDR(9, 0));
1054 /* clear interpret mode */
1055 cp15c15 &= ~0x1;
1056 arm920t_write_cp15_physical(target,
1057 CP15PHYS_TESTSTATE, cp15c15);
1059 /* read I RAM and CAM content */
1060 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1061 if ((retval = jtag_execute_queue()) != ERROR_OK)
1063 return retval;
1066 i_cache[segment][index].cam = regs[9];
1068 /* mask LFSR[6] */
1069 regs[9] &= 0xfffffffe;
1070 fprintf(output, "\nsegment: %i, index: %i, "
1071 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1072 segment, index, regs[9],
1073 (regs[9] & 0x10) ? "valid" : "invalid");
1075 for (i = 1; i < 9; i++)
1077 i_cache[segment][index].data[i] = regs[i];
1078 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1079 i-1, regs[i]);
1083 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1084 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1085 arm9tdmi_write_core_regs(target, 0x1, regs);
1087 /* set interpret mode */
1088 cp15c15 |= 0x1;
1089 arm920t_write_cp15_physical(target,
1090 CP15PHYS_TESTSTATE, cp15c15);
1092 /* Write ICache victim */
1093 arm920t_execute_cp15(target,
1094 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1096 /* clear interpret mode */
1097 cp15c15 &= ~0x1;
1098 arm920t_write_cp15_physical(target,
1099 CP15PHYS_TESTSTATE, cp15c15);
1102 /* restore CP15 MMU and Cache settings */
1103 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1105 command_print(CMD_CTX, "cache content successfully output to %s",
1106 CMD_ARGV[0]);
1108 fclose(output);
1110 if (!is_arm_mode(armv4_5->core_mode))
1111 return ERROR_FAIL;
1113 /* force writeback of the valid data */
1114 r = armv4_5->core_cache->reg_list;
1115 r[0].dirty = r[0].valid;
1116 r[1].dirty = r[1].valid;
1117 r[2].dirty = r[2].valid;
1118 r[3].dirty = r[3].valid;
1119 r[4].dirty = r[4].valid;
1120 r[5].dirty = r[5].valid;
1121 r[6].dirty = r[6].valid;
1122 r[7].dirty = r[7].valid;
1124 r = arm_reg_current(armv4_5, 8);
1125 r->dirty = r->valid;
1127 r = arm_reg_current(armv4_5, 9);
1128 r->dirty = r->valid;
1130 return ERROR_OK;
1133 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1135 int retval = ERROR_OK;
1136 struct target *target = get_current_target(CMD_CTX);
1137 struct arm920t_common *arm920t = target_to_arm920(target);
1138 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1139 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1140 uint32_t cp15c15;
1141 uint32_t cp15_ctrl, cp15_ctrl_saved;
1142 uint32_t regs[16];
1143 uint32_t *regs_p[16];
1144 int i;
1145 FILE *output;
1146 uint32_t Dlockdown, Ilockdown;
1147 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1148 int victim;
1149 struct reg *r;
1151 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1152 if (retval != ERROR_OK)
1153 return retval;
1155 if (CMD_ARGC != 1)
1157 command_print(CMD_CTX, "usage: arm920t read_mmu <filename>");
1158 return ERROR_OK;
1161 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
1163 LOG_DEBUG("error opening mmu content file");
1164 return ERROR_OK;
1167 for (i = 0; i < 16; i++)
1168 regs_p[i] = &regs[i];
1170 /* disable MMU and Caches */
1171 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1172 if ((retval = jtag_execute_queue()) != ERROR_OK)
1174 return retval;
1176 cp15_ctrl_saved = cp15_ctrl;
1177 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1178 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1179 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1181 /* read CP15 test state register */
1182 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1183 if ((retval = jtag_execute_queue()) != ERROR_OK)
1185 return retval;
1188 /* prepare reading D TLB content
1189 * */
1191 /* set interpret mode */
1192 cp15c15 |= 0x1;
1193 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1195 /* Read D TLB lockdown */
1196 arm920t_execute_cp15(target,
1197 ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
1199 /* clear interpret mode */
1200 cp15c15 &= ~0x1;
1201 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1203 /* read D TLB lockdown stored to r1 */
1204 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1205 if ((retval = jtag_execute_queue()) != ERROR_OK)
1207 return retval;
1209 Dlockdown = regs[1];
1211 for (victim = 0; victim < 64; victim += 8)
1213 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1214 * base remains unchanged, victim goes through entries 0 to 63
1216 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1217 arm9tdmi_write_core_regs(target, 0x2, regs);
1219 /* set interpret mode */
1220 cp15c15 |= 0x1;
1221 arm920t_write_cp15_physical(target,
1222 CP15PHYS_TESTSTATE, cp15c15);
1224 /* Write D TLB lockdown */
1225 arm920t_execute_cp15(target,
1226 ARMV4_5_MCR(15,0,0,10,0,0),
1227 ARMV4_5_STR(1, 0));
1229 /* Read D TLB CAM */
1230 arm920t_execute_cp15(target,
1231 ARMV4_5_MCR(15,4,0,15,6,4),
1232 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1234 /* clear interpret mode */
1235 cp15c15 &= ~0x1;
1236 arm920t_write_cp15_physical(target,
1237 CP15PHYS_TESTSTATE, cp15c15);
1239 /* read D TLB CAM content stored to r2-r9 */
1240 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1241 if ((retval = jtag_execute_queue()) != ERROR_OK)
1243 return retval;
1246 for (i = 0; i < 8; i++)
1247 d_tlb[victim + i].cam = regs[i + 2];
1250 for (victim = 0; victim < 64; victim++)
1252 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1253 * base remains unchanged, victim goes through entries 0 to 63
1255 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1256 arm9tdmi_write_core_regs(target, 0x2, regs);
1258 /* set interpret mode */
1259 cp15c15 |= 0x1;
1260 arm920t_write_cp15_physical(target,
1261 CP15PHYS_TESTSTATE, cp15c15);
1263 /* Write D TLB lockdown */
1264 arm920t_execute_cp15(target,
1265 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1267 /* Read D TLB RAM1 */
1268 arm920t_execute_cp15(target,
1269 ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
1271 /* Read D TLB RAM2 */
1272 arm920t_execute_cp15(target,
1273 ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
1275 /* clear interpret mode */
1276 cp15c15 &= ~0x1;
1277 arm920t_write_cp15_physical(target,
1278 CP15PHYS_TESTSTATE, cp15c15);
1280 /* read D TLB RAM content stored to r2 and r3 */
1281 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1282 if ((retval = jtag_execute_queue()) != ERROR_OK)
1284 return retval;
1287 d_tlb[victim].ram1 = regs[2];
1288 d_tlb[victim].ram2 = regs[3];
1291 /* restore D TLB lockdown */
1292 regs[1] = Dlockdown;
1293 arm9tdmi_write_core_regs(target, 0x2, regs);
1295 /* Write D TLB lockdown */
1296 arm920t_execute_cp15(target,
1297 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1299 /* prepare reading I TLB content
1300 * */
1302 /* set interpret mode */
1303 cp15c15 |= 0x1;
1304 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1306 /* Read I TLB lockdown */
1307 arm920t_execute_cp15(target,
1308 ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
1310 /* clear interpret mode */
1311 cp15c15 &= ~0x1;
1312 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1314 /* read I TLB lockdown stored to r1 */
1315 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1316 if ((retval = jtag_execute_queue()) != ERROR_OK)
1318 return retval;
1320 Ilockdown = regs[1];
1322 for (victim = 0; victim < 64; victim += 8)
1324 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1325 * base remains unchanged, victim goes through entries 0 to 63
1327 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1328 arm9tdmi_write_core_regs(target, 0x2, regs);
1330 /* set interpret mode */
1331 cp15c15 |= 0x1;
1332 arm920t_write_cp15_physical(target,
1333 CP15PHYS_TESTSTATE, cp15c15);
1335 /* Write I TLB lockdown */
1336 arm920t_execute_cp15(target,
1337 ARMV4_5_MCR(15,0,0,10,0,1),
1338 ARMV4_5_STR(1, 0));
1340 /* Read I TLB CAM */
1341 arm920t_execute_cp15(target,
1342 ARMV4_5_MCR(15,4,0,15,5,4),
1343 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1345 /* clear interpret mode */
1346 cp15c15 &= ~0x1;
1347 arm920t_write_cp15_physical(target,
1348 CP15PHYS_TESTSTATE, cp15c15);
1350 /* read I TLB CAM content stored to r2-r9 */
1351 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1352 if ((retval = jtag_execute_queue()) != ERROR_OK)
1354 return retval;
1357 for (i = 0; i < 8; i++)
1358 i_tlb[i + victim].cam = regs[i + 2];
1361 for (victim = 0; victim < 64; victim++)
1363 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1364 * base remains unchanged, victim goes through entries 0 to 63
1366 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1367 arm9tdmi_write_core_regs(target, 0x2, regs);
1369 /* set interpret mode */
1370 cp15c15 |= 0x1;
1371 arm920t_write_cp15_physical(target,
1372 CP15PHYS_TESTSTATE, cp15c15);
1374 /* Write I TLB lockdown */
1375 arm920t_execute_cp15(target,
1376 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1378 /* Read I TLB RAM1 */
1379 arm920t_execute_cp15(target,
1380 ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
1382 /* Read I TLB RAM2 */
1383 arm920t_execute_cp15(target,
1384 ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
1386 /* clear interpret mode */
1387 cp15c15 &= ~0x1;
1388 arm920t_write_cp15_physical(target,
1389 CP15PHYS_TESTSTATE, cp15c15);
1391 /* read I TLB RAM content stored to r2 and r3 */
1392 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1393 if ((retval = jtag_execute_queue()) != ERROR_OK)
1395 return retval;
1398 i_tlb[victim].ram1 = regs[2];
1399 i_tlb[victim].ram2 = regs[3];
1402 /* restore I TLB lockdown */
1403 regs[1] = Ilockdown;
1404 arm9tdmi_write_core_regs(target, 0x2, regs);
1406 /* Write I TLB lockdown */
1407 arm920t_execute_cp15(target,
1408 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1410 /* restore CP15 MMU and Cache settings */
1411 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1413 /* output data to file */
1414 fprintf(output, "D TLB content:\n");
1415 for (i = 0; i < 64; i++)
1417 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1418 " 0x%8.8" PRIx32 " %s\n",
1419 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1420 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1423 fprintf(output, "\n\nI TLB content:\n");
1424 for (i = 0; i < 64; i++)
1426 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1427 " 0x%8.8" PRIx32 " %s\n",
1428 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1429 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1432 command_print(CMD_CTX, "mmu content successfully output to %s",
1433 CMD_ARGV[0]);
1435 fclose(output);
1437 if (!is_arm_mode(armv4_5->core_mode))
1438 return ERROR_FAIL;
1440 /* force writeback of the valid data */
1441 r = armv4_5->core_cache->reg_list;
1442 r[0].dirty = r[0].valid;
1443 r[1].dirty = r[1].valid;
1444 r[2].dirty = r[2].valid;
1445 r[3].dirty = r[3].valid;
1446 r[4].dirty = r[4].valid;
1447 r[5].dirty = r[5].valid;
1448 r[6].dirty = r[6].valid;
1449 r[7].dirty = r[7].valid;
1451 r = arm_reg_current(armv4_5, 8);
1452 r->dirty = r->valid;
1454 r = arm_reg_current(armv4_5, 9);
1455 r->dirty = r->valid;
1457 return ERROR_OK;
1460 COMMAND_HANDLER(arm920t_handle_cp15_command)
1462 int retval;
1463 struct target *target = get_current_target(CMD_CTX);
1464 struct arm920t_common *arm920t = target_to_arm920(target);
1466 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1467 if (retval != ERROR_OK)
1468 return retval;
1470 if (target->state != TARGET_HALTED)
1472 command_print(CMD_CTX, "target must be stopped for "
1473 "\"%s\" command", CMD_NAME);
1474 return ERROR_OK;
1477 /* one argument, read a register.
1478 * two arguments, write it.
1480 if (CMD_ARGC >= 1)
1482 int address;
1483 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1485 if (CMD_ARGC == 1)
1487 uint32_t value;
1488 if ((retval = arm920t_read_cp15_physical(target,
1489 address, &value)) != ERROR_OK)
1491 command_print(CMD_CTX,
1492 "couldn't access reg %i", address);
1493 return ERROR_OK;
1495 if ((retval = jtag_execute_queue()) != ERROR_OK)
1497 return retval;
1500 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1501 address, value);
1503 else if (CMD_ARGC == 2)
1505 uint32_t value;
1506 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1507 retval = arm920t_write_cp15_physical(target,
1508 address, value);
1509 if (retval != ERROR_OK)
1511 command_print(CMD_CTX,
1512 "couldn't access reg %i", address);
1513 /* REVISIT why lie? "return retval"? */
1514 return ERROR_OK;
1516 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1517 address, value);
1521 return ERROR_OK;
1524 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1526 int retval;
1527 struct target *target = get_current_target(CMD_CTX);
1528 struct arm920t_common *arm920t = target_to_arm920(target);
1530 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1531 if (retval != ERROR_OK)
1532 return retval;
1535 if (target->state != TARGET_HALTED)
1537 command_print(CMD_CTX, "target must be stopped for "
1538 "\"%s\" command", CMD_NAME);
1539 return ERROR_OK;
1542 /* one argument, read a register.
1543 * two arguments, write it.
1545 if (CMD_ARGC >= 1)
1547 uint32_t opcode;
1548 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1550 if (CMD_ARGC == 1)
1552 uint32_t value;
1553 retval = arm920t_read_cp15_interpreted(target,
1554 opcode, 0x0, &value);
1555 if (retval != ERROR_OK)
1557 command_print(CMD_CTX,
1558 "couldn't execute %8.8" PRIx32,
1559 opcode);
1560 /* REVISIT why lie? "return retval"? */
1561 return ERROR_OK;
1564 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1565 opcode, value);
1567 else if (CMD_ARGC == 2)
1569 uint32_t value;
1570 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1571 retval = arm920t_write_cp15_interpreted(target,
1572 opcode, value, 0);
1573 if (retval != ERROR_OK)
1575 command_print(CMD_CTX,
1576 "couldn't execute %8.8" PRIx32,
1577 opcode);
1578 /* REVISIT why lie? "return retval"? */
1579 return ERROR_OK;
1581 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1582 opcode, value);
1584 else if (CMD_ARGC == 3)
1586 uint32_t value;
1587 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1588 uint32_t address;
1589 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1590 retval = arm920t_write_cp15_interpreted(target,
1591 opcode, value, address);
1592 if (retval != ERROR_OK)
1594 command_print(CMD_CTX,
1595 "couldn't execute %8.8" PRIx32, opcode);
1596 /* REVISIT why lie? "return retval"? */
1597 return ERROR_OK;
1599 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1600 " %8.8" PRIx32, opcode, value, address);
1603 else
1605 command_print(CMD_CTX,
1606 "usage: arm920t cp15i <opcode> [value] [address]");
1609 return ERROR_OK;
1612 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1614 int retval;
1615 struct target *target = get_current_target(CMD_CTX);
1616 struct arm920t_common *arm920t = target_to_arm920(target);
1618 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1619 if (retval != ERROR_OK)
1620 return retval;
1622 return armv4_5_handle_cache_info_command(CMD_CTX,
1623 &arm920t->armv4_5_mmu.armv4_5_cache);
1627 static int arm920t_mrc(struct target *target, int cpnum,
1628 uint32_t op1, uint32_t op2,
1629 uint32_t CRn, uint32_t CRm,
1630 uint32_t *value)
1632 if (cpnum!=15)
1634 LOG_ERROR("Only cp15 is supported");
1635 return ERROR_FAIL;
1638 /* read "to" r0 */
1639 return arm920t_read_cp15_interpreted(target,
1640 ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1641 0, value);
1644 static int arm920t_mcr(struct target *target, int cpnum,
1645 uint32_t op1, uint32_t op2,
1646 uint32_t CRn, uint32_t CRm,
1647 uint32_t value)
1649 if (cpnum!=15)
1651 LOG_ERROR("Only cp15 is supported");
1652 return ERROR_FAIL;
1655 /* write "from" r0 */
1656 return arm920t_write_cp15_interpreted(target,
1657 ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1658 0, value);
1661 static const struct command_registration arm920t_exec_command_handlers[] = {
1663 .name = "cp15",
1664 .handler = arm920t_handle_cp15_command,
1665 .mode = COMMAND_EXEC,
1666 .help = "display/modify cp15 register",
1667 .usage = "regnum [value]",
1670 .name = "cp15i",
1671 .handler = arm920t_handle_cp15i_command,
1672 .mode = COMMAND_EXEC,
1673 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1674 .help = "display/modify cp15 register using ARM opcode"
1675 " (DEPRECATED)",
1676 .usage = "instruction [value [address]]",
1679 .name = "cache_info",
1680 .handler = arm920t_handle_cache_info_command,
1681 .mode = COMMAND_EXEC,
1682 .help = "display information about target caches",
1685 .name = "read_cache",
1686 .handler = arm920t_handle_read_cache_command,
1687 .mode = COMMAND_EXEC,
1688 .help = "dump I/D cache content to file",
1689 .usage = "filename",
1692 .name = "read_mmu",
1693 .handler = arm920t_handle_read_mmu_command,
1694 .mode = COMMAND_EXEC,
1695 .help = "dump I/D mmu content to file",
1696 .usage = "filename",
1698 COMMAND_REGISTRATION_DONE
1700 const struct command_registration arm920t_command_handlers[] = {
1702 .chain = arm9tdmi_command_handlers,
1705 .name = "arm920t",
1706 .mode = COMMAND_ANY,
1707 .help = "arm920t command group",
1708 .chain = arm920t_exec_command_handlers,
1710 COMMAND_REGISTRATION_DONE
1713 /** Holds methods for ARM920 targets. */
1714 struct target_type arm920t_target =
1716 .name = "arm920t",
1718 .poll = arm7_9_poll,
1719 .arch_state = arm920t_arch_state,
1721 .target_request_data = arm7_9_target_request_data,
1723 .halt = arm7_9_halt,
1724 .resume = arm7_9_resume,
1725 .step = arm7_9_step,
1727 .assert_reset = arm7_9_assert_reset,
1728 .deassert_reset = arm7_9_deassert_reset,
1729 .soft_reset_halt = arm920t_soft_reset_halt,
1731 .get_gdb_reg_list = arm_get_gdb_reg_list,
1733 .read_memory = arm920t_read_memory,
1734 .write_memory = arm920t_write_memory,
1735 .read_phys_memory = arm920t_read_phys_memory,
1736 .write_phys_memory = arm920t_write_phys_memory,
1737 .mmu = arm920_mmu,
1738 .virt2phys = arm920_virt2phys,
1740 .bulk_write_memory = arm7_9_bulk_write_memory,
1742 .checksum_memory = arm_checksum_memory,
1743 .blank_check_memory = arm_blank_check_memory,
1745 .run_algorithm = armv4_5_run_algorithm,
1747 .add_breakpoint = arm7_9_add_breakpoint,
1748 .remove_breakpoint = arm7_9_remove_breakpoint,
1749 .add_watchpoint = arm7_9_add_watchpoint,
1750 .remove_watchpoint = arm7_9_remove_watchpoint,
1752 .commands = arm920t_command_handlers,
1753 .target_create = arm920t_target_create,
1754 .init_target = arm9tdmi_init_target,
1755 .examine = arm7_9_examine,
1756 .check_reset = arm7_9_check_reset,