ARM920T: review scope of functions
[openocd/jflash.git] / src / target / arm920t.c
blob658315b261cb742d9c405c15c1e6f73efbe45845
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
19 ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
24 #include "arm920t.h"
25 #include <helper/time_support.h>
26 #include "target_type.h"
27 #include "register.h"
28 #include "arm_opcodes.h"
32 * For information about the ARM920T, see ARM DDI 0151C especially
33 * Chapter 9 about debug support, which shows how to manipulate each
34 * of the different scan chains:
36 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
37 * 1 ... debugging; watchpoint and breakpoint status, etc; also
38 * MMU and cache access in conjunction with scan chain 15
39 * 2 ... EmbeddedICE
40 * 3 ... external boundary scan (SoC-specific, unused here)
41 * 4 ... access to cache tag RAM
42 * 6 ... ETM9
43 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
44 * "interpreted" works with a few actual MRC/MCR instructions
45 * "physical" provides register-like behaviors. Section 9.6.7
46 * covers these details.
48 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
51 #if 0
52 #define _DEBUG_INSTRUCTION_EXECUTION_
53 #endif
55 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
56 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
57 * JTAG scan, while reads use two.
59 * Table 9-9 lists the thirteen registers which support physical access.
60 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
61 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
63 * x == bit[38]
64 * y == bits[37:34]
65 * z == bit[33]
67 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
69 /* Registers supporting physical Read access (from table 9-9) */
70 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
71 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
72 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
73 /* NOTE: several more registers support only physical read access */
75 /* Registers supporting physical Read/Write access (from table 9-9) */
76 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
77 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
78 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
79 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
80 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
82 static int arm920t_read_cp15_physical(struct target *target,
83 int reg_addr, uint32_t *value)
85 struct arm920t_common *arm920t = target_to_arm920(target);
86 struct arm_jtag *jtag_info;
87 struct scan_field fields[4];
88 uint8_t access_type_buf = 1;
89 uint8_t reg_addr_buf = reg_addr & 0x3f;
90 uint8_t nr_w_buf = 0;
92 jtag_info = &arm920t->arm7_9_common.jtag_info;
94 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
95 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
97 fields[0].num_bits = 1;
98 fields[0].out_value = &access_type_buf;
99 fields[0].in_value = NULL;
101 fields[1].num_bits = 32;
102 fields[1].out_value = NULL;
103 fields[1].in_value = NULL;
105 fields[2].num_bits = 6;
106 fields[2].out_value = &reg_addr_buf;
107 fields[2].in_value = NULL;
109 fields[3].num_bits = 1;
110 fields[3].out_value = &nr_w_buf;
111 fields[3].in_value = NULL;
113 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
115 fields[1].in_value = (uint8_t *)value;
117 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
119 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
121 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
122 jtag_execute_queue();
123 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
124 #endif
126 return ERROR_OK;
129 static int arm920t_write_cp15_physical(struct target *target,
130 int reg_addr, uint32_t value)
132 struct arm920t_common *arm920t = target_to_arm920(target);
133 struct arm_jtag *jtag_info;
134 struct scan_field fields[4];
135 uint8_t access_type_buf = 1;
136 uint8_t reg_addr_buf = reg_addr & 0x3f;
137 uint8_t nr_w_buf = 1;
138 uint8_t value_buf[4];
140 jtag_info = &arm920t->arm7_9_common.jtag_info;
142 buf_set_u32(value_buf, 0, 32, value);
144 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
145 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
147 fields[0].num_bits = 1;
148 fields[0].out_value = &access_type_buf;
149 fields[0].in_value = NULL;
151 fields[1].num_bits = 32;
152 fields[1].out_value = value_buf;
153 fields[1].in_value = NULL;
155 fields[2].num_bits = 6;
156 fields[2].out_value = &reg_addr_buf;
157 fields[2].in_value = NULL;
159 fields[3].num_bits = 1;
160 fields[3].out_value = &nr_w_buf;
161 fields[3].in_value = NULL;
163 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
165 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
166 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
167 #endif
169 return ERROR_OK;
172 /* See table 9-10 for scan chain 15 format during interpreted access mode.
173 * If the TESTSTATE register is set for interpreted access, certain CP15
174 * MRC and MCR instructions may be executed through scan chain 15.
176 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
177 * executed using scan chain 15 interpreted mode.
179 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
180 uint32_t arm_opcode)
182 int retval;
183 struct arm920t_common *arm920t = target_to_arm920(target);
184 struct arm_jtag *jtag_info;
185 struct scan_field fields[4];
186 uint8_t access_type_buf = 0; /* interpreted access */
187 uint8_t reg_addr_buf = 0x0;
188 uint8_t nr_w_buf = 0;
189 uint8_t cp15_opcode_buf[4];
191 jtag_info = &arm920t->arm7_9_common.jtag_info;
193 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
194 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
196 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
198 fields[0].num_bits = 1;
199 fields[0].out_value = &access_type_buf;
200 fields[0].in_value = NULL;
202 fields[1].num_bits = 32;
203 fields[1].out_value = cp15_opcode_buf;
204 fields[1].in_value = NULL;
206 fields[2].num_bits = 6;
207 fields[2].out_value = &reg_addr_buf;
208 fields[2].in_value = NULL;
210 fields[3].num_bits = 1;
211 fields[3].out_value = &nr_w_buf;
212 fields[3].in_value = NULL;
214 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
216 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
217 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
218 retval = arm7_9_execute_sys_speed(target);
219 if (retval != ERROR_OK)
220 return retval;
222 if ((retval = jtag_execute_queue()) != ERROR_OK)
224 LOG_ERROR("failed executing JTAG queue");
225 return retval;
228 return ERROR_OK;
231 static int arm920t_read_cp15_interpreted(struct target *target,
232 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
234 struct arm *armv4_5 = target_to_arm(target);
235 uint32_t* regs_p[1];
236 uint32_t regs[2];
237 uint32_t cp15c15 = 0x0;
238 struct reg *r = armv4_5->core_cache->reg_list;
240 /* load address into R1 */
241 regs[1] = address;
242 arm9tdmi_write_core_regs(target, 0x2, regs);
244 /* read-modify-write CP15 test state register
245 * to enable interpreted access mode */
246 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
247 jtag_execute_queue();
248 cp15c15 |= 1; /* set interpret mode */
249 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
251 /* execute CP15 instruction and ARM load (reading from coprocessor) */
252 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
254 /* disable interpreted access mode */
255 cp15c15 &= ~1U; /* clear interpret mode */
256 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
258 /* retrieve value from R0 */
259 regs_p[0] = value;
260 arm9tdmi_read_core_regs(target, 0x1, regs_p);
261 jtag_execute_queue();
263 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
264 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
265 cp15_opcode, address, *value);
266 #endif
268 if (!is_arm_mode(armv4_5->core_mode))
269 return ERROR_FAIL;
271 r[0].dirty = 1;
272 r[1].dirty = 1;
274 return ERROR_OK;
277 static
278 int arm920t_write_cp15_interpreted(struct target *target,
279 uint32_t cp15_opcode, uint32_t value, uint32_t address)
281 uint32_t cp15c15 = 0x0;
282 struct arm *armv4_5 = target_to_arm(target);
283 uint32_t regs[2];
284 struct reg *r = armv4_5->core_cache->reg_list;
286 /* load value, address into R0, R1 */
287 regs[0] = value;
288 regs[1] = address;
289 arm9tdmi_write_core_regs(target, 0x3, regs);
291 /* read-modify-write CP15 test state register
292 * to enable interpreted access mode */
293 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
294 jtag_execute_queue();
295 cp15c15 |= 1; /* set interpret mode */
296 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
298 /* execute CP15 instruction and ARM store (writing to coprocessor) */
299 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
301 /* disable interpreted access mode */
302 cp15c15 &= ~1U; /* set interpret mode */
303 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
305 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
306 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
307 cp15_opcode, value, address);
308 #endif
310 if (!is_arm_mode(armv4_5->core_mode))
311 return ERROR_FAIL;
313 r[0].dirty = 1;
314 r[1].dirty = 1;
316 return ERROR_OK;
319 // EXPORTED to FA256
320 uint32_t arm920t_get_ttb(struct target *target)
322 int retval;
323 uint32_t ttb = 0x0;
325 if ((retval = arm920t_read_cp15_interpreted(target,
326 /* FIXME use opcode macro */
327 0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
328 return retval;
330 return ttb;
333 // EXPORTED to FA256
334 void arm920t_disable_mmu_caches(struct target *target, int mmu,
335 int d_u_cache, int i_cache)
337 uint32_t cp15_control;
339 /* read cp15 control register */
340 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
341 jtag_execute_queue();
343 if (mmu)
344 cp15_control &= ~0x1U;
346 if (d_u_cache)
347 cp15_control &= ~0x4U;
349 if (i_cache)
350 cp15_control &= ~0x1000U;
352 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
355 // EXPORTED to FA256
356 void arm920t_enable_mmu_caches(struct target *target, int mmu,
357 int d_u_cache, int i_cache)
359 uint32_t cp15_control;
361 /* read cp15 control register */
362 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
363 jtag_execute_queue();
365 if (mmu)
366 cp15_control |= 0x1U;
368 if (d_u_cache)
369 cp15_control |= 0x4U;
371 if (i_cache)
372 cp15_control |= 0x1000U;
374 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
377 // EXPORTED to FA256
378 void arm920t_post_debug_entry(struct target *target)
380 uint32_t cp15c15;
381 struct arm920t_common *arm920t = target_to_arm920(target);
383 /* examine cp15 control reg */
384 arm920t_read_cp15_physical(target,
385 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
386 jtag_execute_queue();
387 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
389 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
391 uint32_t cache_type_reg;
392 /* identify caches */
393 arm920t_read_cp15_physical(target,
394 CP15PHYS_CACHETYPE, &cache_type_reg);
395 jtag_execute_queue();
396 armv4_5_identify_cache(cache_type_reg,
397 &arm920t->armv4_5_mmu.armv4_5_cache);
400 arm920t->armv4_5_mmu.mmu_enabled =
401 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
402 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
403 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
404 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
405 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
407 /* save i/d fault status and address register */
408 /* FIXME use opcode macros */
409 arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
410 arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
411 arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
412 arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
414 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
415 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
416 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
418 if (arm920t->preserve_cache)
420 /* read-modify-write CP15 test state register
421 * to disable I/D-cache linefills */
422 arm920t_read_cp15_physical(target,
423 CP15PHYS_TESTSTATE, &cp15c15);
424 jtag_execute_queue();
425 cp15c15 |= 0x600;
426 arm920t_write_cp15_physical(target,
427 CP15PHYS_TESTSTATE, cp15c15);
431 // EXPORTED to FA256
432 void arm920t_pre_restore_context(struct target *target)
434 uint32_t cp15c15;
435 struct arm920t_common *arm920t = target_to_arm920(target);
437 /* restore i/d fault status and address register */
438 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
439 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
440 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
441 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
443 /* read-modify-write CP15 test state register
444 * to reenable I/D-cache linefills */
445 if (arm920t->preserve_cache)
447 arm920t_read_cp15_physical(target,
448 CP15PHYS_TESTSTATE, &cp15c15);
449 jtag_execute_queue();
450 cp15c15 &= ~0x600U;
451 arm920t_write_cp15_physical(target,
452 CP15PHYS_TESTSTATE, cp15c15);
456 static const char arm920_not[] = "target is not an ARM920";
458 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
459 struct arm920t_common *arm920t)
461 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
462 command_print(cmd_ctx, arm920_not);
463 return ERROR_TARGET_INVALID;
466 return ERROR_OK;
469 /** Logs summary of ARM920 state for a halted target. */
470 int arm920t_arch_state(struct target *target)
472 static const char *state[] =
474 "disabled", "enabled"
477 struct arm920t_common *arm920t = target_to_arm920(target);
478 struct arm *armv4_5;
480 if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
482 LOG_ERROR("BUG: %s", arm920_not);
483 return ERROR_TARGET_INVALID;
486 armv4_5 = &arm920t->arm7_9_common.armv4_5_common;
488 arm_arch_state(target);
489 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
490 state[arm920t->armv4_5_mmu.mmu_enabled],
491 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
492 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
494 return ERROR_OK;
497 static int arm920_mmu(struct target *target, int *enabled)
499 if (target->state != TARGET_HALTED) {
500 LOG_ERROR("%s: target not halted", __func__);
501 return ERROR_TARGET_INVALID;
504 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
505 return ERROR_OK;
508 static int arm920_virt2phys(struct target *target,
509 uint32_t virt, uint32_t *phys)
511 int type;
512 uint32_t cb;
513 int domain;
514 uint32_t ap;
515 struct arm920t_common *arm920t = target_to_arm920(target);
517 uint32_t ret = armv4_5_mmu_translate_va(target,
518 &arm920t->armv4_5_mmu, virt, &type, &cb, &domain, &ap);
519 if (type == -1)
521 return ret;
523 *phys = ret;
524 return ERROR_OK;
527 /** Reads a buffer, in the specified word size, with current MMU settings. */
528 int arm920t_read_memory(struct target *target, uint32_t address,
529 uint32_t size, uint32_t count, uint8_t *buffer)
531 int retval;
533 retval = arm7_9_read_memory(target, address, size, count, buffer);
535 return retval;
539 static int arm920t_read_phys_memory(struct target *target,
540 uint32_t address, uint32_t size,
541 uint32_t count, uint8_t *buffer)
543 struct arm920t_common *arm920t = target_to_arm920(target);
545 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
546 address, size, count, buffer);
549 static int arm920t_write_phys_memory(struct target *target,
550 uint32_t address, uint32_t size,
551 uint32_t count, uint8_t *buffer)
553 struct arm920t_common *arm920t = target_to_arm920(target);
555 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
556 address, size, count, buffer);
560 /** Writes a buffer, in the specified word size, with current MMU settings. */
561 int arm920t_write_memory(struct target *target, uint32_t address,
562 uint32_t size, uint32_t count, uint8_t *buffer)
564 int retval;
565 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
566 struct arm920t_common *arm920t = target_to_arm920(target);
568 /* FIX!!!! this should be cleaned up and made much more general. The
569 * plan is to write up and test on arm920t specifically and
570 * then generalize and clean up afterwards.
572 * Also it should be moved to the callbacks that handle breakpoints
573 * specifically and not the generic memory write fn's. See XScale code.
575 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
576 ((size==2) || (size==4)))
578 /* special case the handling of single word writes to
579 * bypass MMU, to allow implementation of breakpoints
580 * in memory marked read only
581 * by MMU
583 int type;
584 uint32_t cb;
585 int domain;
586 uint32_t ap;
587 uint32_t pa;
590 * We need physical address and cb
592 pa = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
593 address, &type, &cb, &domain, &ap);
594 if (type == -1)
595 return pa;
597 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
599 if (cb & 0x1)
601 LOG_DEBUG("D-Cache buffered, "
602 "drain write buffer");
604 * Buffered ?
605 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
608 retval = arm920t_write_cp15_interpreted(target,
609 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
610 0x0, 0);
611 if (retval != ERROR_OK)
612 return retval;
615 if (cb == 0x3)
618 * Write back memory ? -> clean cache
620 * There is no way to clean cache lines using
621 * cp15 scan chain, so copy the full cache
622 * line from cache to physical memory.
624 uint8_t data[32];
626 LOG_DEBUG("D-Cache in 'write back' mode, "
627 "flush cache line");
629 retval = target_read_memory(target,
630 address & cache_mask, 1,
631 sizeof(data), &data[0]);
632 if (retval != ERROR_OK)
633 return retval;
635 retval = armv4_5_mmu_write_physical(target,
636 &arm920t->armv4_5_mmu,
637 pa & cache_mask, 1,
638 sizeof(data), &data[0]);
639 if (retval != ERROR_OK)
640 return retval;
643 /* Cached ? */
644 if (cb & 0x2)
647 * Cached ? -> Invalidate data cache using MVA
649 * MCR p15,0,Rd,c7,c6,1
651 LOG_DEBUG("D-Cache enabled, "
652 "invalidate cache line");
654 retval = arm920t_write_cp15_interpreted(target,
655 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
656 address & cache_mask);
657 if (retval != ERROR_OK)
658 return retval;
662 /* write directly to physical memory,
663 * bypassing any read only MMU bits, etc.
665 retval = armv4_5_mmu_write_physical(target,
666 &arm920t->armv4_5_mmu, pa, size,
667 count, buffer);
668 if (retval != ERROR_OK)
669 return retval;
670 } else
672 if ((retval = arm7_9_write_memory(target, address,
673 size, count, buffer)) != ERROR_OK)
674 return retval;
677 /* If ICache is enabled, we have to invalidate affected ICache lines
678 * the DCache is forced to write-through,
679 * so we don't have to clean it here
681 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
683 if (count <= 1)
685 /* invalidate ICache single entry with MVA
686 * mcr 15, 0, r0, cr7, cr5, {1}
688 LOG_DEBUG("I-Cache enabled, "
689 "invalidating affected I-Cache line");
690 retval = arm920t_write_cp15_interpreted(target,
691 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
692 0x0, address & cache_mask);
693 if (retval != ERROR_OK)
694 return retval;
696 else
698 /* invalidate ICache
699 * mcr 15, 0, r0, cr7, cr5, {0}
701 retval = arm920t_write_cp15_interpreted(target,
702 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
703 0x0, 0x0);
704 if (retval != ERROR_OK)
705 return retval;
709 return retval;
712 // EXPORTED to FA256
713 int arm920t_soft_reset_halt(struct target *target)
715 int retval = ERROR_OK;
716 struct arm920t_common *arm920t = target_to_arm920(target);
717 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
718 struct arm *armv4_5 = &arm7_9->armv4_5_common;
719 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
721 if ((retval = target_halt(target)) != ERROR_OK)
723 return retval;
726 long long then = timeval_ms();
727 int timeout;
728 while (!(timeout = ((timeval_ms()-then) > 1000)))
730 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)
731 == 0)
733 embeddedice_read_reg(dbg_stat);
734 if ((retval = jtag_execute_queue()) != ERROR_OK)
736 return retval;
738 } else
740 break;
742 if (debug_level >= 3)
744 /* do not eat all CPU, time out after 1 se*/
745 alive_sleep(100);
746 } else
748 keep_alive();
751 if (timeout)
753 LOG_ERROR("Failed to halt CPU after 1 sec");
754 return ERROR_TARGET_TIMEOUT;
757 target->state = TARGET_HALTED;
759 /* SVC, ARM state, IRQ and FIQ disabled */
760 uint32_t cpsr;
762 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
763 cpsr &= ~0xff;
764 cpsr |= 0xd3;
765 arm_set_cpsr(armv4_5, cpsr);
766 armv4_5->cpsr->dirty = 1;
768 /* start fetching from 0x0 */
769 buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
770 armv4_5->pc->dirty = 1;
771 armv4_5->pc->valid = 1;
773 arm920t_disable_mmu_caches(target, 1, 1, 1);
774 arm920t->armv4_5_mmu.mmu_enabled = 0;
775 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
776 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
778 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
781 /* FIXME remove forward decls */
782 static int arm920t_mrc(struct target *target, int cpnum,
783 uint32_t op1, uint32_t op2,
784 uint32_t CRn, uint32_t CRm,
785 uint32_t *value);
786 static int arm920t_mcr(struct target *target, int cpnum,
787 uint32_t op1, uint32_t op2,
788 uint32_t CRn, uint32_t CRm,
789 uint32_t value);
791 static int arm920t_init_arch_info(struct target *target,
792 struct arm920t_common *arm920t, struct jtag_tap *tap)
794 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
796 arm7_9->armv4_5_common.mrc = arm920t_mrc;
797 arm7_9->armv4_5_common.mcr = arm920t_mcr;
799 /* initialize arm7/arm9 specific info (including armv4_5) */
800 arm9tdmi_init_arch_info(target, arm7_9, tap);
802 arm920t->common_magic = ARM920T_COMMON_MAGIC;
804 arm7_9->post_debug_entry = arm920t_post_debug_entry;
805 arm7_9->pre_restore_context = arm920t_pre_restore_context;
807 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
808 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
809 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
810 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
811 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
812 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
813 arm920t->armv4_5_mmu.has_tiny_pages = 1;
814 arm920t->armv4_5_mmu.mmu_enabled = 0;
816 /* disabling linefills leads to lockups, so keep them enabled for now
817 * this doesn't affect correctness, but might affect timing issues, if
818 * important data is evicted from the cache during the debug session
819 * */
820 arm920t->preserve_cache = 0;
822 /* override hw single-step capability from ARM9TDMI */
823 arm7_9->has_single_step = 1;
825 return ERROR_OK;
828 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
830 struct arm920t_common *arm920t;
832 arm920t = calloc(1,sizeof(struct arm920t_common));
833 return arm920t_init_arch_info(target, arm920t, target->tap);
836 COMMAND_HANDLER(arm920t_handle_read_cache_command)
838 int retval = ERROR_OK;
839 struct target *target = get_current_target(CMD_CTX);
840 struct arm920t_common *arm920t = target_to_arm920(target);
841 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
842 struct arm *armv4_5 = &arm7_9->armv4_5_common;
843 uint32_t cp15c15;
844 uint32_t cp15_ctrl, cp15_ctrl_saved;
845 uint32_t regs[16];
846 uint32_t *regs_p[16];
847 uint32_t C15_C_D_Ind, C15_C_I_Ind;
848 int i;
849 FILE *output;
850 struct arm920t_cache_line d_cache[8][64], i_cache[8][64];
851 int segment, index;
852 struct reg *r;
854 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
855 if (retval != ERROR_OK)
856 return retval;
858 if (CMD_ARGC != 1)
860 command_print(CMD_CTX, "usage: arm920t read_cache <filename>");
861 return ERROR_OK;
864 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
866 LOG_DEBUG("error opening cache content file");
867 return ERROR_OK;
870 for (i = 0; i < 16; i++)
871 regs_p[i] = &regs[i];
873 /* disable MMU and Caches */
874 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
875 if ((retval = jtag_execute_queue()) != ERROR_OK)
877 return retval;
879 cp15_ctrl_saved = cp15_ctrl;
880 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
881 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
882 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
884 /* read CP15 test state register */
885 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
886 jtag_execute_queue();
888 /* read DCache content */
889 fprintf(output, "DCache:\n");
891 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
892 for (segment = 0;
893 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
894 segment++)
896 fprintf(output, "\nsegment: %i\n----------", segment);
898 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
899 regs[0] = 0x0 | (segment << 5);
900 arm9tdmi_write_core_regs(target, 0x1, regs);
902 /* set interpret mode */
903 cp15c15 |= 0x1;
904 arm920t_write_cp15_physical(target,
905 CP15PHYS_TESTSTATE, cp15c15);
907 /* D CAM Read, loads current victim into C15.C.D.Ind */
908 arm920t_execute_cp15(target,
909 ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
911 /* read current victim */
912 arm920t_read_cp15_physical(target,
913 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
915 /* clear interpret mode */
916 cp15c15 &= ~0x1;
917 arm920t_write_cp15_physical(target,
918 CP15PHYS_TESTSTATE, cp15c15);
920 for (index = 0; index < 64; index++)
922 /* Ra:
923 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
925 regs[0] = 0x0 | (segment << 5) | (index << 26);
926 arm9tdmi_write_core_regs(target, 0x1, regs);
928 /* set interpret mode */
929 cp15c15 |= 0x1;
930 arm920t_write_cp15_physical(target,
931 CP15PHYS_TESTSTATE, cp15c15);
933 /* Write DCache victim */
934 arm920t_execute_cp15(target,
935 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
937 /* Read D RAM */
938 arm920t_execute_cp15(target,
939 ARMV4_5_MCR(15,2,0,15,10,2),
940 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
942 /* Read D CAM */
943 arm920t_execute_cp15(target,
944 ARMV4_5_MCR(15,2,0,15,6,2),
945 ARMV4_5_LDR(9, 0));
947 /* clear interpret mode */
948 cp15c15 &= ~0x1;
949 arm920t_write_cp15_physical(target,
950 CP15PHYS_TESTSTATE, cp15c15);
952 /* read D RAM and CAM content */
953 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
954 if ((retval = jtag_execute_queue()) != ERROR_OK)
956 return retval;
959 d_cache[segment][index].cam = regs[9];
961 /* mask LFSR[6] */
962 regs[9] &= 0xfffffffe;
963 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
964 PRIx32 ", content (%s):\n",
965 segment, index, regs[9],
966 (regs[9] & 0x10) ? "valid" : "invalid");
968 for (i = 1; i < 9; i++)
970 d_cache[segment][index].data[i] = regs[i];
971 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
972 i-1, regs[i]);
977 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
978 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
979 arm9tdmi_write_core_regs(target, 0x1, regs);
981 /* set interpret mode */
982 cp15c15 |= 0x1;
983 arm920t_write_cp15_physical(target,
984 CP15PHYS_TESTSTATE, cp15c15);
986 /* Write DCache victim */
987 arm920t_execute_cp15(target,
988 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
990 /* clear interpret mode */
991 cp15c15 &= ~0x1;
992 arm920t_write_cp15_physical(target,
993 CP15PHYS_TESTSTATE, cp15c15);
996 /* read ICache content */
997 fprintf(output, "ICache:\n");
999 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1000 for (segment = 0;
1001 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1002 segment++)
1004 fprintf(output, "segment: %i\n----------", segment);
1006 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1007 regs[0] = 0x0 | (segment << 5);
1008 arm9tdmi_write_core_regs(target, 0x1, regs);
1010 /* set interpret mode */
1011 cp15c15 |= 0x1;
1012 arm920t_write_cp15_physical(target,
1013 CP15PHYS_TESTSTATE, cp15c15);
1015 /* I CAM Read, loads current victim into C15.C.I.Ind */
1016 arm920t_execute_cp15(target,
1017 ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
1019 /* read current victim */
1020 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1021 &C15_C_I_Ind);
1023 /* clear interpret mode */
1024 cp15c15 &= ~0x1;
1025 arm920t_write_cp15_physical(target,
1026 CP15PHYS_TESTSTATE, cp15c15);
1028 for (index = 0; index < 64; index++)
1030 /* Ra:
1031 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1033 regs[0] = 0x0 | (segment << 5) | (index << 26);
1034 arm9tdmi_write_core_regs(target, 0x1, regs);
1036 /* set interpret mode */
1037 cp15c15 |= 0x1;
1038 arm920t_write_cp15_physical(target,
1039 CP15PHYS_TESTSTATE, cp15c15);
1041 /* Write ICache victim */
1042 arm920t_execute_cp15(target,
1043 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1045 /* Read I RAM */
1046 arm920t_execute_cp15(target,
1047 ARMV4_5_MCR(15,2,0,15,9,2),
1048 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1050 /* Read I CAM */
1051 arm920t_execute_cp15(target,
1052 ARMV4_5_MCR(15,2,0,15,5,2),
1053 ARMV4_5_LDR(9, 0));
1055 /* clear interpret mode */
1056 cp15c15 &= ~0x1;
1057 arm920t_write_cp15_physical(target,
1058 CP15PHYS_TESTSTATE, cp15c15);
1060 /* read I RAM and CAM content */
1061 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1062 if ((retval = jtag_execute_queue()) != ERROR_OK)
1064 return retval;
1067 i_cache[segment][index].cam = regs[9];
1069 /* mask LFSR[6] */
1070 regs[9] &= 0xfffffffe;
1071 fprintf(output, "\nsegment: %i, index: %i, "
1072 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1073 segment, index, regs[9],
1074 (regs[9] & 0x10) ? "valid" : "invalid");
1076 for (i = 1; i < 9; i++)
1078 i_cache[segment][index].data[i] = regs[i];
1079 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1080 i-1, regs[i]);
1084 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1085 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1086 arm9tdmi_write_core_regs(target, 0x1, regs);
1088 /* set interpret mode */
1089 cp15c15 |= 0x1;
1090 arm920t_write_cp15_physical(target,
1091 CP15PHYS_TESTSTATE, cp15c15);
1093 /* Write ICache victim */
1094 arm920t_execute_cp15(target,
1095 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1097 /* clear interpret mode */
1098 cp15c15 &= ~0x1;
1099 arm920t_write_cp15_physical(target,
1100 CP15PHYS_TESTSTATE, cp15c15);
1103 /* restore CP15 MMU and Cache settings */
1104 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1106 command_print(CMD_CTX, "cache content successfully output to %s",
1107 CMD_ARGV[0]);
1109 fclose(output);
1111 if (!is_arm_mode(armv4_5->core_mode))
1112 return ERROR_FAIL;
1114 /* force writeback of the valid data */
1115 r = armv4_5->core_cache->reg_list;
1116 r[0].dirty = r[0].valid;
1117 r[1].dirty = r[1].valid;
1118 r[2].dirty = r[2].valid;
1119 r[3].dirty = r[3].valid;
1120 r[4].dirty = r[4].valid;
1121 r[5].dirty = r[5].valid;
1122 r[6].dirty = r[6].valid;
1123 r[7].dirty = r[7].valid;
1125 r = arm_reg_current(armv4_5, 8);
1126 r->dirty = r->valid;
1128 r = arm_reg_current(armv4_5, 9);
1129 r->dirty = r->valid;
1131 return ERROR_OK;
1134 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1136 int retval = ERROR_OK;
1137 struct target *target = get_current_target(CMD_CTX);
1138 struct arm920t_common *arm920t = target_to_arm920(target);
1139 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1140 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1141 uint32_t cp15c15;
1142 uint32_t cp15_ctrl, cp15_ctrl_saved;
1143 uint32_t regs[16];
1144 uint32_t *regs_p[16];
1145 int i;
1146 FILE *output;
1147 uint32_t Dlockdown, Ilockdown;
1148 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1149 int victim;
1150 struct reg *r;
1152 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1153 if (retval != ERROR_OK)
1154 return retval;
1156 if (CMD_ARGC != 1)
1158 command_print(CMD_CTX, "usage: arm920t read_mmu <filename>");
1159 return ERROR_OK;
1162 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
1164 LOG_DEBUG("error opening mmu content file");
1165 return ERROR_OK;
1168 for (i = 0; i < 16; i++)
1169 regs_p[i] = &regs[i];
1171 /* disable MMU and Caches */
1172 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1173 if ((retval = jtag_execute_queue()) != ERROR_OK)
1175 return retval;
1177 cp15_ctrl_saved = cp15_ctrl;
1178 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1179 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1180 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1182 /* read CP15 test state register */
1183 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1184 if ((retval = jtag_execute_queue()) != ERROR_OK)
1186 return retval;
1189 /* prepare reading D TLB content
1190 * */
1192 /* set interpret mode */
1193 cp15c15 |= 0x1;
1194 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1196 /* Read D TLB lockdown */
1197 arm920t_execute_cp15(target,
1198 ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
1200 /* clear interpret mode */
1201 cp15c15 &= ~0x1;
1202 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1204 /* read D TLB lockdown stored to r1 */
1205 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1206 if ((retval = jtag_execute_queue()) != ERROR_OK)
1208 return retval;
1210 Dlockdown = regs[1];
1212 for (victim = 0; victim < 64; victim += 8)
1214 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1215 * base remains unchanged, victim goes through entries 0 to 63
1217 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1218 arm9tdmi_write_core_regs(target, 0x2, regs);
1220 /* set interpret mode */
1221 cp15c15 |= 0x1;
1222 arm920t_write_cp15_physical(target,
1223 CP15PHYS_TESTSTATE, cp15c15);
1225 /* Write D TLB lockdown */
1226 arm920t_execute_cp15(target,
1227 ARMV4_5_MCR(15,0,0,10,0,0),
1228 ARMV4_5_STR(1, 0));
1230 /* Read D TLB CAM */
1231 arm920t_execute_cp15(target,
1232 ARMV4_5_MCR(15,4,0,15,6,4),
1233 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1235 /* clear interpret mode */
1236 cp15c15 &= ~0x1;
1237 arm920t_write_cp15_physical(target,
1238 CP15PHYS_TESTSTATE, cp15c15);
1240 /* read D TLB CAM content stored to r2-r9 */
1241 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1242 if ((retval = jtag_execute_queue()) != ERROR_OK)
1244 return retval;
1247 for (i = 0; i < 8; i++)
1248 d_tlb[victim + i].cam = regs[i + 2];
1251 for (victim = 0; victim < 64; victim++)
1253 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1254 * base remains unchanged, victim goes through entries 0 to 63
1256 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1257 arm9tdmi_write_core_regs(target, 0x2, regs);
1259 /* set interpret mode */
1260 cp15c15 |= 0x1;
1261 arm920t_write_cp15_physical(target,
1262 CP15PHYS_TESTSTATE, cp15c15);
1264 /* Write D TLB lockdown */
1265 arm920t_execute_cp15(target,
1266 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1268 /* Read D TLB RAM1 */
1269 arm920t_execute_cp15(target,
1270 ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
1272 /* Read D TLB RAM2 */
1273 arm920t_execute_cp15(target,
1274 ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
1276 /* clear interpret mode */
1277 cp15c15 &= ~0x1;
1278 arm920t_write_cp15_physical(target,
1279 CP15PHYS_TESTSTATE, cp15c15);
1281 /* read D TLB RAM content stored to r2 and r3 */
1282 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1283 if ((retval = jtag_execute_queue()) != ERROR_OK)
1285 return retval;
1288 d_tlb[victim].ram1 = regs[2];
1289 d_tlb[victim].ram2 = regs[3];
1292 /* restore D TLB lockdown */
1293 regs[1] = Dlockdown;
1294 arm9tdmi_write_core_regs(target, 0x2, regs);
1296 /* Write D TLB lockdown */
1297 arm920t_execute_cp15(target,
1298 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1300 /* prepare reading I TLB content
1301 * */
1303 /* set interpret mode */
1304 cp15c15 |= 0x1;
1305 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1307 /* Read I TLB lockdown */
1308 arm920t_execute_cp15(target,
1309 ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
1311 /* clear interpret mode */
1312 cp15c15 &= ~0x1;
1313 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1315 /* read I TLB lockdown stored to r1 */
1316 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1317 if ((retval = jtag_execute_queue()) != ERROR_OK)
1319 return retval;
1321 Ilockdown = regs[1];
1323 for (victim = 0; victim < 64; victim += 8)
1325 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1326 * base remains unchanged, victim goes through entries 0 to 63
1328 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1329 arm9tdmi_write_core_regs(target, 0x2, regs);
1331 /* set interpret mode */
1332 cp15c15 |= 0x1;
1333 arm920t_write_cp15_physical(target,
1334 CP15PHYS_TESTSTATE, cp15c15);
1336 /* Write I TLB lockdown */
1337 arm920t_execute_cp15(target,
1338 ARMV4_5_MCR(15,0,0,10,0,1),
1339 ARMV4_5_STR(1, 0));
1341 /* Read I TLB CAM */
1342 arm920t_execute_cp15(target,
1343 ARMV4_5_MCR(15,4,0,15,5,4),
1344 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1346 /* clear interpret mode */
1347 cp15c15 &= ~0x1;
1348 arm920t_write_cp15_physical(target,
1349 CP15PHYS_TESTSTATE, cp15c15);
1351 /* read I TLB CAM content stored to r2-r9 */
1352 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1353 if ((retval = jtag_execute_queue()) != ERROR_OK)
1355 return retval;
1358 for (i = 0; i < 8; i++)
1359 i_tlb[i + victim].cam = regs[i + 2];
1362 for (victim = 0; victim < 64; victim++)
1364 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1365 * base remains unchanged, victim goes through entries 0 to 63
1367 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1368 arm9tdmi_write_core_regs(target, 0x2, regs);
1370 /* set interpret mode */
1371 cp15c15 |= 0x1;
1372 arm920t_write_cp15_physical(target,
1373 CP15PHYS_TESTSTATE, cp15c15);
1375 /* Write I TLB lockdown */
1376 arm920t_execute_cp15(target,
1377 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1379 /* Read I TLB RAM1 */
1380 arm920t_execute_cp15(target,
1381 ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
1383 /* Read I TLB RAM2 */
1384 arm920t_execute_cp15(target,
1385 ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
1387 /* clear interpret mode */
1388 cp15c15 &= ~0x1;
1389 arm920t_write_cp15_physical(target,
1390 CP15PHYS_TESTSTATE, cp15c15);
1392 /* read I TLB RAM content stored to r2 and r3 */
1393 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1394 if ((retval = jtag_execute_queue()) != ERROR_OK)
1396 return retval;
1399 i_tlb[victim].ram1 = regs[2];
1400 i_tlb[victim].ram2 = regs[3];
1403 /* restore I TLB lockdown */
1404 regs[1] = Ilockdown;
1405 arm9tdmi_write_core_regs(target, 0x2, regs);
1407 /* Write I TLB lockdown */
1408 arm920t_execute_cp15(target,
1409 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1411 /* restore CP15 MMU and Cache settings */
1412 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1414 /* output data to file */
1415 fprintf(output, "D TLB content:\n");
1416 for (i = 0; i < 64; i++)
1418 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1419 " 0x%8.8" PRIx32 " %s\n",
1420 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1421 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1424 fprintf(output, "\n\nI TLB content:\n");
1425 for (i = 0; i < 64; i++)
1427 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1428 " 0x%8.8" PRIx32 " %s\n",
1429 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1430 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1433 command_print(CMD_CTX, "mmu content successfully output to %s",
1434 CMD_ARGV[0]);
1436 fclose(output);
1438 if (!is_arm_mode(armv4_5->core_mode))
1439 return ERROR_FAIL;
1441 /* force writeback of the valid data */
1442 r = armv4_5->core_cache->reg_list;
1443 r[0].dirty = r[0].valid;
1444 r[1].dirty = r[1].valid;
1445 r[2].dirty = r[2].valid;
1446 r[3].dirty = r[3].valid;
1447 r[4].dirty = r[4].valid;
1448 r[5].dirty = r[5].valid;
1449 r[6].dirty = r[6].valid;
1450 r[7].dirty = r[7].valid;
1452 r = arm_reg_current(armv4_5, 8);
1453 r->dirty = r->valid;
1455 r = arm_reg_current(armv4_5, 9);
1456 r->dirty = r->valid;
1458 return ERROR_OK;
1461 COMMAND_HANDLER(arm920t_handle_cp15_command)
1463 int retval;
1464 struct target *target = get_current_target(CMD_CTX);
1465 struct arm920t_common *arm920t = target_to_arm920(target);
1467 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1468 if (retval != ERROR_OK)
1469 return retval;
1471 if (target->state != TARGET_HALTED)
1473 command_print(CMD_CTX, "target must be stopped for "
1474 "\"%s\" command", CMD_NAME);
1475 return ERROR_OK;
1478 /* one argument, read a register.
1479 * two arguments, write it.
1481 if (CMD_ARGC >= 1)
1483 int address;
1484 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1486 if (CMD_ARGC == 1)
1488 uint32_t value;
1489 if ((retval = arm920t_read_cp15_physical(target,
1490 address, &value)) != ERROR_OK)
1492 command_print(CMD_CTX,
1493 "couldn't access reg %i", address);
1494 return ERROR_OK;
1496 if ((retval = jtag_execute_queue()) != ERROR_OK)
1498 return retval;
1501 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1502 address, value);
1504 else if (CMD_ARGC == 2)
1506 uint32_t value;
1507 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1508 retval = arm920t_write_cp15_physical(target,
1509 address, value);
1510 if (retval != ERROR_OK)
1512 command_print(CMD_CTX,
1513 "couldn't access reg %i", address);
1514 /* REVISIT why lie? "return retval"? */
1515 return ERROR_OK;
1517 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1518 address, value);
1522 return ERROR_OK;
1525 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1527 int retval;
1528 struct target *target = get_current_target(CMD_CTX);
1529 struct arm920t_common *arm920t = target_to_arm920(target);
1531 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1532 if (retval != ERROR_OK)
1533 return retval;
1536 if (target->state != TARGET_HALTED)
1538 command_print(CMD_CTX, "target must be stopped for "
1539 "\"%s\" command", CMD_NAME);
1540 return ERROR_OK;
1543 /* one argument, read a register.
1544 * two arguments, write it.
1546 if (CMD_ARGC >= 1)
1548 uint32_t opcode;
1549 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1551 if (CMD_ARGC == 1)
1553 uint32_t value;
1554 retval = arm920t_read_cp15_interpreted(target,
1555 opcode, 0x0, &value);
1556 if (retval != ERROR_OK)
1558 command_print(CMD_CTX,
1559 "couldn't execute %8.8" PRIx32,
1560 opcode);
1561 /* REVISIT why lie? "return retval"? */
1562 return ERROR_OK;
1565 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1566 opcode, value);
1568 else if (CMD_ARGC == 2)
1570 uint32_t value;
1571 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1572 retval = arm920t_write_cp15_interpreted(target,
1573 opcode, value, 0);
1574 if (retval != ERROR_OK)
1576 command_print(CMD_CTX,
1577 "couldn't execute %8.8" PRIx32,
1578 opcode);
1579 /* REVISIT why lie? "return retval"? */
1580 return ERROR_OK;
1582 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1583 opcode, value);
1585 else if (CMD_ARGC == 3)
1587 uint32_t value;
1588 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1589 uint32_t address;
1590 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1591 retval = arm920t_write_cp15_interpreted(target,
1592 opcode, value, address);
1593 if (retval != ERROR_OK)
1595 command_print(CMD_CTX,
1596 "couldn't execute %8.8" PRIx32, opcode);
1597 /* REVISIT why lie? "return retval"? */
1598 return ERROR_OK;
1600 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1601 " %8.8" PRIx32, opcode, value, address);
1604 else
1606 command_print(CMD_CTX,
1607 "usage: arm920t cp15i <opcode> [value] [address]");
1610 return ERROR_OK;
1613 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1615 int retval;
1616 struct target *target = get_current_target(CMD_CTX);
1617 struct arm920t_common *arm920t = target_to_arm920(target);
1619 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1620 if (retval != ERROR_OK)
1621 return retval;
1623 return armv4_5_handle_cache_info_command(CMD_CTX,
1624 &arm920t->armv4_5_mmu.armv4_5_cache);
1628 static int arm920t_mrc(struct target *target, int cpnum,
1629 uint32_t op1, uint32_t op2,
1630 uint32_t CRn, uint32_t CRm,
1631 uint32_t *value)
1633 if (cpnum!=15)
1635 LOG_ERROR("Only cp15 is supported");
1636 return ERROR_FAIL;
1639 /* read "to" r0 */
1640 return arm920t_read_cp15_interpreted(target,
1641 ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1642 0, value);
1645 static int arm920t_mcr(struct target *target, int cpnum,
1646 uint32_t op1, uint32_t op2,
1647 uint32_t CRn, uint32_t CRm,
1648 uint32_t value)
1650 if (cpnum!=15)
1652 LOG_ERROR("Only cp15 is supported");
1653 return ERROR_FAIL;
1656 /* write "from" r0 */
1657 return arm920t_write_cp15_interpreted(target,
1658 ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1659 0, value);
1662 static const struct command_registration arm920t_exec_command_handlers[] = {
1664 .name = "cp15",
1665 .handler = arm920t_handle_cp15_command,
1666 .mode = COMMAND_EXEC,
1667 .help = "display/modify cp15 register",
1668 .usage = "regnum [value]",
1671 .name = "cp15i",
1672 .handler = arm920t_handle_cp15i_command,
1673 .mode = COMMAND_EXEC,
1674 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1675 .help = "display/modify cp15 register using ARM opcode"
1676 " (DEPRECATED)",
1677 .usage = "instruction [value [address]]",
1680 .name = "cache_info",
1681 .handler = arm920t_handle_cache_info_command,
1682 .mode = COMMAND_EXEC,
1683 .help = "display information about target caches",
1686 .name = "read_cache",
1687 .handler = arm920t_handle_read_cache_command,
1688 .mode = COMMAND_EXEC,
1689 .help = "dump I/D cache content to file",
1690 .usage = "filename",
1693 .name = "read_mmu",
1694 .handler = arm920t_handle_read_mmu_command,
1695 .mode = COMMAND_EXEC,
1696 .help = "dump I/D mmu content to file",
1697 .usage = "filename",
1699 COMMAND_REGISTRATION_DONE
1701 const struct command_registration arm920t_command_handlers[] = {
1703 .chain = arm9tdmi_command_handlers,
1706 .name = "arm920t",
1707 .mode = COMMAND_ANY,
1708 .help = "arm920t command group",
1709 .chain = arm920t_exec_command_handlers,
1711 COMMAND_REGISTRATION_DONE
1714 /** Holds methods for ARM920 targets. */
1715 struct target_type arm920t_target =
1717 .name = "arm920t",
1719 .poll = arm7_9_poll,
1720 .arch_state = arm920t_arch_state,
1722 .target_request_data = arm7_9_target_request_data,
1724 .halt = arm7_9_halt,
1725 .resume = arm7_9_resume,
1726 .step = arm7_9_step,
1728 .assert_reset = arm7_9_assert_reset,
1729 .deassert_reset = arm7_9_deassert_reset,
1730 .soft_reset_halt = arm920t_soft_reset_halt,
1732 .get_gdb_reg_list = arm_get_gdb_reg_list,
1734 .read_memory = arm920t_read_memory,
1735 .write_memory = arm920t_write_memory,
1736 .read_phys_memory = arm920t_read_phys_memory,
1737 .write_phys_memory = arm920t_write_phys_memory,
1738 .mmu = arm920_mmu,
1739 .virt2phys = arm920_virt2phys,
1741 .bulk_write_memory = arm7_9_bulk_write_memory,
1743 .checksum_memory = arm_checksum_memory,
1744 .blank_check_memory = arm_blank_check_memory,
1746 .run_algorithm = armv4_5_run_algorithm,
1748 .add_breakpoint = arm7_9_add_breakpoint,
1749 .remove_breakpoint = arm7_9_remove_breakpoint,
1750 .add_watchpoint = arm7_9_add_watchpoint,
1751 .remove_watchpoint = arm7_9_remove_watchpoint,
1753 .commands = arm920t_command_handlers,
1754 .target_create = arm920t_target_create,
1755 .init_target = arm9tdmi_init_target,
1756 .examine = arm7_9_examine,
1757 .check_reset = arm7_9_check_reset,