kinetis: bugfix in kinetis_write() fallback path
[openocd/jflash.git] / src / target / mips32.c
blobab39e6e7f3da8b914ee423f7a8c00205139daf66
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2007,2008 Øyvind Harboe *
8 * oyvind.harboe@zylin.com *
9 * *
10 * Copyright (C) 2011 by Drasko DRASKOVIC *
11 * drasko.draskovic@gmail.com *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
33 #include "mips32.h"
34 #include "breakpoints.h"
35 #include "algorithm.h"
36 #include "register.h"
38 static char *mips32_core_reg_list[] = {
39 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
40 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
41 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
42 "t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra",
43 "status", "lo", "hi", "badvaddr", "cause", "pc"
46 static const char *mips_isa_strings[] = {
47 "MIPS32", "MIPS16e"
50 static struct mips32_core_reg mips32_core_reg_list_arch_info[MIPS32NUMCOREREGS] = {
51 {0, NULL, NULL},
52 {1, NULL, NULL},
53 {2, NULL, NULL},
54 {3, NULL, NULL},
55 {4, NULL, NULL},
56 {5, NULL, NULL},
57 {6, NULL, NULL},
58 {7, NULL, NULL},
59 {8, NULL, NULL},
60 {9, NULL, NULL},
61 {10, NULL, NULL},
62 {11, NULL, NULL},
63 {12, NULL, NULL},
64 {13, NULL, NULL},
65 {14, NULL, NULL},
66 {15, NULL, NULL},
67 {16, NULL, NULL},
68 {17, NULL, NULL},
69 {18, NULL, NULL},
70 {19, NULL, NULL},
71 {20, NULL, NULL},
72 {21, NULL, NULL},
73 {22, NULL, NULL},
74 {23, NULL, NULL},
75 {24, NULL, NULL},
76 {25, NULL, NULL},
77 {26, NULL, NULL},
78 {27, NULL, NULL},
79 {28, NULL, NULL},
80 {29, NULL, NULL},
81 {30, NULL, NULL},
82 {31, NULL, NULL},
84 {32, NULL, NULL},
85 {33, NULL, NULL},
86 {34, NULL, NULL},
87 {35, NULL, NULL},
88 {36, NULL, NULL},
89 {37, NULL, NULL},
92 /* number of mips dummy fp regs fp0 - fp31 + fsr and fir
93 * we also add 18 unknown registers to handle gdb requests */
95 #define MIPS32NUMFPREGS (34 + 18)
97 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
99 static struct reg mips32_gdb_dummy_fp_reg = {
100 .name = "GDB dummy floating-point register",
101 .value = mips32_gdb_dummy_fp_value,
102 .dirty = 0,
103 .valid = 1,
104 .size = 32,
105 .arch_info = NULL,
108 static int mips32_get_core_reg(struct reg *reg)
110 int retval;
111 struct mips32_core_reg *mips32_reg = reg->arch_info;
112 struct target *target = mips32_reg->target;
113 struct mips32_common *mips32_target = target_to_mips32(target);
115 if (target->state != TARGET_HALTED)
116 return ERROR_TARGET_NOT_HALTED;
118 retval = mips32_target->read_core_reg(target, mips32_reg->num);
120 return retval;
123 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
125 struct mips32_core_reg *mips32_reg = reg->arch_info;
126 struct target *target = mips32_reg->target;
127 uint32_t value = buf_get_u32(buf, 0, 32);
129 if (target->state != TARGET_HALTED)
130 return ERROR_TARGET_NOT_HALTED;
132 buf_set_u32(reg->value, 0, 32, value);
133 reg->dirty = 1;
134 reg->valid = 1;
136 return ERROR_OK;
139 static int mips32_read_core_reg(struct target *target, int num)
141 uint32_t reg_value;
143 /* get pointers to arch-specific information */
144 struct mips32_common *mips32 = target_to_mips32(target);
146 if ((num < 0) || (num >= MIPS32NUMCOREREGS))
147 return ERROR_COMMAND_SYNTAX_ERROR;
149 reg_value = mips32->core_regs[num];
150 buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
151 mips32->core_cache->reg_list[num].valid = 1;
152 mips32->core_cache->reg_list[num].dirty = 0;
154 return ERROR_OK;
157 static int mips32_write_core_reg(struct target *target, int num)
159 uint32_t reg_value;
161 /* get pointers to arch-specific information */
162 struct mips32_common *mips32 = target_to_mips32(target);
164 if ((num < 0) || (num >= MIPS32NUMCOREREGS))
165 return ERROR_COMMAND_SYNTAX_ERROR;
167 reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
168 mips32->core_regs[num] = reg_value;
169 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
170 mips32->core_cache->reg_list[num].valid = 1;
171 mips32->core_cache->reg_list[num].dirty = 0;
173 return ERROR_OK;
176 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size)
178 /* get pointers to arch-specific information */
179 struct mips32_common *mips32 = target_to_mips32(target);
180 int i;
182 /* include floating point registers */
183 *reg_list_size = MIPS32NUMCOREREGS + MIPS32NUMFPREGS;
184 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
186 for (i = 0; i < MIPS32NUMCOREREGS; i++)
187 (*reg_list)[i] = &mips32->core_cache->reg_list[i];
189 /* add dummy floating points regs */
190 for (i = MIPS32NUMCOREREGS; i < (MIPS32NUMCOREREGS + MIPS32NUMFPREGS); i++)
191 (*reg_list)[i] = &mips32_gdb_dummy_fp_reg;
193 return ERROR_OK;
196 int mips32_save_context(struct target *target)
198 int i;
200 /* get pointers to arch-specific information */
201 struct mips32_common *mips32 = target_to_mips32(target);
202 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
204 /* read core registers */
205 mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
207 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
208 if (!mips32->core_cache->reg_list[i].valid)
209 mips32->read_core_reg(target, i);
212 return ERROR_OK;
215 int mips32_restore_context(struct target *target)
217 int i;
219 /* get pointers to arch-specific information */
220 struct mips32_common *mips32 = target_to_mips32(target);
221 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
223 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
224 if (mips32->core_cache->reg_list[i].dirty)
225 mips32->write_core_reg(target, i);
228 /* write core regs */
229 mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
231 return ERROR_OK;
234 int mips32_arch_state(struct target *target)
236 struct mips32_common *mips32 = target_to_mips32(target);
238 LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
239 mips_isa_strings[mips32->isa_mode],
240 debug_reason_name(target),
241 buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
243 return ERROR_OK;
246 static const struct reg_arch_type mips32_reg_type = {
247 .get = mips32_get_core_reg,
248 .set = mips32_set_core_reg,
251 struct reg_cache *mips32_build_reg_cache(struct target *target)
253 /* get pointers to arch-specific information */
254 struct mips32_common *mips32 = target_to_mips32(target);
256 int num_regs = MIPS32NUMCOREREGS;
257 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
258 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
259 struct reg *reg_list = malloc(sizeof(struct reg) * num_regs);
260 struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
261 int i;
263 register_init_dummy(&mips32_gdb_dummy_fp_reg);
265 /* Build the process context cache */
266 cache->name = "mips32 registers";
267 cache->next = NULL;
268 cache->reg_list = reg_list;
269 cache->num_regs = num_regs;
270 (*cache_p) = cache;
271 mips32->core_cache = cache;
273 for (i = 0; i < num_regs; i++) {
274 arch_info[i] = mips32_core_reg_list_arch_info[i];
275 arch_info[i].target = target;
276 arch_info[i].mips32_common = mips32;
277 reg_list[i].name = mips32_core_reg_list[i];
278 reg_list[i].size = 32;
279 reg_list[i].value = calloc(1, 4);
280 reg_list[i].dirty = 0;
281 reg_list[i].valid = 0;
282 reg_list[i].type = &mips32_reg_type;
283 reg_list[i].arch_info = &arch_info[i];
286 return cache;
289 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
291 target->arch_info = mips32;
292 mips32->common_magic = MIPS32_COMMON_MAGIC;
293 mips32->fast_data_area = NULL;
295 /* has breakpoint/watchpint unit been scanned */
296 mips32->bp_scanned = 0;
297 mips32->data_break_list = NULL;
299 mips32->ejtag_info.tap = tap;
300 mips32->read_core_reg = mips32_read_core_reg;
301 mips32->write_core_reg = mips32_write_core_reg;
303 return ERROR_OK;
306 /* run to exit point. return error if exit point was not reached. */
307 static int mips32_run_and_wait(struct target *target, uint32_t entry_point,
308 int timeout_ms, uint32_t exit_point, struct mips32_common *mips32)
310 uint32_t pc;
311 int retval;
312 /* This code relies on the target specific resume() and poll()->debug_entry()
313 * sequence to write register values to the processor and the read them back */
314 retval = target_resume(target, 0, entry_point, 0, 1);
315 if (retval != ERROR_OK)
316 return retval;
318 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
319 /* If the target fails to halt due to the breakpoint, force a halt */
320 if (retval != ERROR_OK || target->state != TARGET_HALTED) {
321 retval = target_halt(target);
322 if (retval != ERROR_OK)
323 return retval;
324 retval = target_wait_state(target, TARGET_HALTED, 500);
325 if (retval != ERROR_OK)
326 return retval;
327 return ERROR_TARGET_TIMEOUT;
330 pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
331 if (exit_point && (pc != exit_point)) {
332 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
333 return ERROR_TARGET_TIMEOUT;
336 return ERROR_OK;
339 int mips32_run_algorithm(struct target *target, int num_mem_params,
340 struct mem_param *mem_params, int num_reg_params,
341 struct reg_param *reg_params, uint32_t entry_point,
342 uint32_t exit_point, int timeout_ms, void *arch_info)
344 struct mips32_common *mips32 = target_to_mips32(target);
345 struct mips32_algorithm *mips32_algorithm_info = arch_info;
346 enum mips32_isa_mode isa_mode = mips32->isa_mode;
348 uint32_t context[MIPS32NUMCOREREGS];
349 int i;
350 int retval = ERROR_OK;
352 LOG_DEBUG("Running algorithm");
354 /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
355 * at the exit point */
357 if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
358 LOG_ERROR("current target isn't a MIPS32 target");
359 return ERROR_TARGET_INVALID;
362 if (target->state != TARGET_HALTED) {
363 LOG_WARNING("target not halted");
364 return ERROR_TARGET_NOT_HALTED;
367 /* refresh core register cache */
368 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
369 if (!mips32->core_cache->reg_list[i].valid)
370 mips32->read_core_reg(target, i);
371 context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
374 for (i = 0; i < num_mem_params; i++) {
375 retval = target_write_buffer(target, mem_params[i].address,
376 mem_params[i].size, mem_params[i].value);
377 if (retval != ERROR_OK)
378 return retval;
381 for (i = 0; i < num_reg_params; i++) {
382 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
384 if (!reg) {
385 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
386 return ERROR_COMMAND_SYNTAX_ERROR;
389 if (reg->size != reg_params[i].size) {
390 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
391 reg_params[i].reg_name);
392 return ERROR_COMMAND_SYNTAX_ERROR;
395 mips32_set_core_reg(reg, reg_params[i].value);
398 mips32->isa_mode = mips32_algorithm_info->isa_mode;
400 retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
402 if (retval != ERROR_OK)
403 return retval;
405 for (i = 0; i < num_mem_params; i++) {
406 if (mem_params[i].direction != PARAM_OUT) {
407 retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
408 mem_params[i].value);
409 if (retval != ERROR_OK)
410 return retval;
414 for (i = 0; i < num_reg_params; i++) {
415 if (reg_params[i].direction != PARAM_OUT) {
416 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
417 if (!reg) {
418 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
419 return ERROR_COMMAND_SYNTAX_ERROR;
422 if (reg->size != reg_params[i].size) {
423 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
424 reg_params[i].reg_name);
425 return ERROR_COMMAND_SYNTAX_ERROR;
428 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
432 /* restore everything we saved before */
433 for (i = 0; i < MIPS32NUMCOREREGS; i++) {
434 uint32_t regvalue;
435 regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
436 if (regvalue != context[i]) {
437 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
438 mips32->core_cache->reg_list[i].name, context[i]);
439 buf_set_u32(mips32->core_cache->reg_list[i].value,
440 0, 32, context[i]);
441 mips32->core_cache->reg_list[i].valid = 1;
442 mips32->core_cache->reg_list[i].dirty = 1;
446 mips32->isa_mode = isa_mode;
448 return ERROR_OK;
451 int mips32_examine(struct target *target)
453 struct mips32_common *mips32 = target_to_mips32(target);
455 if (!target_was_examined(target)) {
456 target_set_examined(target);
458 /* we will configure later */
459 mips32->bp_scanned = 0;
460 mips32->num_inst_bpoints = 0;
461 mips32->num_data_bpoints = 0;
462 mips32->num_inst_bpoints_avail = 0;
463 mips32->num_data_bpoints_avail = 0;
466 return ERROR_OK;
469 int mips32_configure_break_unit(struct target *target)
471 /* get pointers to arch-specific information */
472 struct mips32_common *mips32 = target_to_mips32(target);
473 int retval;
474 uint32_t dcr, bpinfo;
475 int i;
477 if (mips32->bp_scanned)
478 return ERROR_OK;
480 /* get info about breakpoint support */
481 retval = target_read_u32(target, EJTAG_DCR, &dcr);
482 if (retval != ERROR_OK)
483 return retval;
485 if (dcr & EJTAG_DCR_IB) {
486 /* get number of inst breakpoints */
487 retval = target_read_u32(target, EJTAG_IBS, &bpinfo);
488 if (retval != ERROR_OK)
489 return retval;
491 mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
492 mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
493 mips32->inst_break_list = calloc(mips32->num_inst_bpoints, sizeof(struct mips32_comparator));
494 for (i = 0; i < mips32->num_inst_bpoints; i++)
495 mips32->inst_break_list[i].reg_address = EJTAG_IBA1 + (0x100 * i);
497 /* clear IBIS reg */
498 retval = target_write_u32(target, EJTAG_IBS, 0);
499 if (retval != ERROR_OK)
500 return retval;
503 if (dcr & EJTAG_DCR_DB) {
504 /* get number of data breakpoints */
505 retval = target_read_u32(target, EJTAG_DBS, &bpinfo);
506 if (retval != ERROR_OK)
507 return retval;
509 mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
510 mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
511 mips32->data_break_list = calloc(mips32->num_data_bpoints, sizeof(struct mips32_comparator));
512 for (i = 0; i < mips32->num_data_bpoints; i++)
513 mips32->data_break_list[i].reg_address = EJTAG_DBA1 + (0x100 * i);
515 /* clear DBIS reg */
516 retval = target_write_u32(target, EJTAG_DBS, 0);
517 if (retval != ERROR_OK)
518 return retval;
521 /* check if target endianness settings matches debug control register */
522 if (((dcr & EJTAG_DCR_ENM) && (target->endianness == TARGET_LITTLE_ENDIAN)) ||
523 (!(dcr & EJTAG_DCR_ENM) && (target->endianness == TARGET_BIG_ENDIAN)))
524 LOG_WARNING("DCR endianness settings does not match target settings");
526 LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
527 mips32->num_data_bpoints);
529 mips32->bp_scanned = 1;
531 return ERROR_OK;
534 int mips32_enable_interrupts(struct target *target, int enable)
536 int retval;
537 int update = 0;
538 uint32_t dcr;
540 /* read debug control register */
541 retval = target_read_u32(target, EJTAG_DCR, &dcr);
542 if (retval != ERROR_OK)
543 return retval;
545 if (enable) {
546 if (!(dcr & EJTAG_DCR_INTE)) {
547 /* enable interrupts */
548 dcr |= EJTAG_DCR_INTE;
549 update = 1;
551 } else {
552 if (dcr & EJTAG_DCR_INTE) {
553 /* disable interrupts */
554 dcr &= ~EJTAG_DCR_INTE;
555 update = 1;
559 if (update) {
560 retval = target_write_u32(target, EJTAG_DCR, dcr);
561 if (retval != ERROR_OK)
562 return retval;
565 return ERROR_OK;
568 int mips32_checksum_memory(struct target *target, uint32_t address,
569 uint32_t count, uint32_t *checksum)
571 struct working_area *crc_algorithm;
572 struct reg_param reg_params[2];
573 struct mips32_algorithm mips32_info;
574 int retval;
575 uint32_t i;
577 /* see contib/loaders/checksum/mips32.s for src */
579 static const uint32_t mips_crc_code[] = {
580 0x248C0000, /* addiu $t4, $a0, 0 */
581 0x24AA0000, /* addiu $t2, $a1, 0 */
582 0x2404FFFF, /* addiu $a0, $zero, 0xffffffff */
583 0x10000010, /* beq $zero, $zero, ncomp */
584 0x240B0000, /* addiu $t3, $zero, 0 */
585 /* nbyte: */
586 0x81850000, /* lb $a1, ($t4) */
587 0x218C0001, /* addi $t4, $t4, 1 */
588 0x00052E00, /* sll $a1, $a1, 24 */
589 0x3C0204C1, /* lui $v0, 0x04c1 */
590 0x00852026, /* xor $a0, $a0, $a1 */
591 0x34471DB7, /* ori $a3, $v0, 0x1db7 */
592 0x00003021, /* addu $a2, $zero, $zero */
593 /* loop: */
594 0x00044040, /* sll $t0, $a0, 1 */
595 0x24C60001, /* addiu $a2, $a2, 1 */
596 0x28840000, /* slti $a0, $a0, 0 */
597 0x01074826, /* xor $t1, $t0, $a3 */
598 0x0124400B, /* movn $t0, $t1, $a0 */
599 0x28C30008, /* slti $v1, $a2, 8 */
600 0x1460FFF9, /* bne $v1, $zero, loop */
601 0x01002021, /* addu $a0, $t0, $zero */
602 /* ncomp: */
603 0x154BFFF0, /* bne $t2, $t3, nbyte */
604 0x256B0001, /* addiu $t3, $t3, 1 */
605 0x7000003F, /* sdbbp */
608 /* make sure we have a working area */
609 if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
610 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
612 /* convert flash writing code into a buffer in target endianness */
613 for (i = 0; i < ARRAY_SIZE(mips_crc_code); i++)
614 target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), mips_crc_code[i]);
616 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
617 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
619 init_reg_param(&reg_params[0], "a0", 32, PARAM_IN_OUT);
620 buf_set_u32(reg_params[0].value, 0, 32, address);
622 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
623 buf_set_u32(reg_params[1].value, 0, 32, count);
625 int timeout = 20000 * (1 + (count / (1024 * 1024)));
627 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
628 crc_algorithm->address, crc_algorithm->address + (sizeof(mips_crc_code)-4), timeout,
629 &mips32_info);
630 if (retval != ERROR_OK) {
631 destroy_reg_param(&reg_params[0]);
632 destroy_reg_param(&reg_params[1]);
633 target_free_working_area(target, crc_algorithm);
634 return retval;
637 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
639 destroy_reg_param(&reg_params[0]);
640 destroy_reg_param(&reg_params[1]);
642 target_free_working_area(target, crc_algorithm);
644 return ERROR_OK;
647 /** Checks whether a memory region is zeroed. */
648 int mips32_blank_check_memory(struct target *target,
649 uint32_t address, uint32_t count, uint32_t *blank)
651 struct working_area *erase_check_algorithm;
652 struct reg_param reg_params[3];
653 struct mips32_algorithm mips32_info;
654 int retval;
655 uint32_t i;
657 static const uint32_t erase_check_code[] = {
658 /* nbyte: */
659 0x80880000, /* lb $t0, ($a0) */
660 0x00C83024, /* and $a2, $a2, $t0 */
661 0x24A5FFFF, /* addiu $a1, $a1, -1 */
662 0x14A0FFFC, /* bne $a1, $zero, nbyte */
663 0x24840001, /* addiu $a0, $a0, 1 */
664 0x7000003F /* sdbbp */
667 /* make sure we have a working area */
668 if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
669 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
671 /* convert flash writing code into a buffer in target endianness */
672 for (i = 0; i < ARRAY_SIZE(erase_check_code); i++) {
673 target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t),
674 erase_check_code[i]);
677 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
678 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
680 init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);
681 buf_set_u32(reg_params[0].value, 0, 32, address);
683 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
684 buf_set_u32(reg_params[1].value, 0, 32, count);
686 init_reg_param(&reg_params[2], "a2", 32, PARAM_IN_OUT);
687 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
689 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
690 erase_check_algorithm->address,
691 erase_check_algorithm->address + (sizeof(erase_check_code)-4),
692 10000, &mips32_info);
693 if (retval != ERROR_OK) {
694 destroy_reg_param(&reg_params[0]);
695 destroy_reg_param(&reg_params[1]);
696 destroy_reg_param(&reg_params[2]);
697 target_free_working_area(target, erase_check_algorithm);
698 return retval;
701 *blank = buf_get_u32(reg_params[2].value, 0, 32);
703 destroy_reg_param(&reg_params[0]);
704 destroy_reg_param(&reg_params[1]);
705 destroy_reg_param(&reg_params[2]);
707 target_free_working_area(target, erase_check_algorithm);
709 return ERROR_OK;
712 static int mips32_verify_pointer(struct command_context *cmd_ctx,
713 struct mips32_common *mips32)
715 if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
716 command_print(cmd_ctx, "target is not an MIPS32");
717 return ERROR_TARGET_INVALID;
719 return ERROR_OK;
723 * MIPS32 targets expose command interface
724 * to manipulate CP0 registers
726 COMMAND_HANDLER(mips32_handle_cp0_command)
728 int retval;
729 struct target *target = get_current_target(CMD_CTX);
730 struct mips32_common *mips32 = target_to_mips32(target);
731 struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
734 retval = mips32_verify_pointer(CMD_CTX, mips32);
735 if (retval != ERROR_OK)
736 return retval;
738 if (target->state != TARGET_HALTED) {
739 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
740 return ERROR_OK;
743 /* two or more argument, access a single register/select (write if third argument is given) */
744 if (CMD_ARGC < 2)
745 return ERROR_COMMAND_SYNTAX_ERROR;
746 else {
747 uint32_t cp0_reg, cp0_sel;
748 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
749 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
751 if (CMD_ARGC == 2) {
752 uint32_t value;
754 retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
755 if (retval != ERROR_OK) {
756 command_print(CMD_CTX,
757 "couldn't access reg %" PRIi32,
758 cp0_reg);
759 return ERROR_OK;
761 retval = jtag_execute_queue();
762 if (retval != ERROR_OK)
763 return retval;
765 command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
766 cp0_reg, cp0_sel, value);
767 } else if (CMD_ARGC == 3) {
768 uint32_t value;
769 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
770 retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
771 if (retval != ERROR_OK) {
772 command_print(CMD_CTX,
773 "couldn't access cp0 reg %" PRIi32 ", select %" PRIi32,
774 cp0_reg, cp0_sel);
775 return ERROR_OK;
777 command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
778 cp0_reg, cp0_sel, value);
782 return ERROR_OK;
785 static const struct command_registration mips32_exec_command_handlers[] = {
787 .name = "cp0",
788 .handler = mips32_handle_cp0_command,
789 .mode = COMMAND_EXEC,
790 .usage = "regnum select [value]",
791 .help = "display/modify cp0 register",
793 COMMAND_REGISTRATION_DONE
796 const struct command_registration mips32_command_handlers[] = {
798 .name = "mips32",
799 .mode = COMMAND_ANY,
800 .help = "mips32 command group",
801 .usage = "",
802 .chain = mips32_exec_command_handlers,
804 COMMAND_REGISTRATION_DONE