flash/nor: make all working area pointers local
[openocd/jflash.git] / src / flash / nor / kinetis.c
blob433d91e9e0c909475194a9a62906055007a45bbb
1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
3 * kesmtp@freenet.de *
4 * *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
7 * *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
31 #include "imp.h"
32 #include "helper/binarybuffer.h"
35 * Implementation Notes
37 * The persistent memories in the Kinetis chip families K10 through
38 * K70 are all manipulated with the Flash Memory Module. Some
39 * variants call this module the FTFE, others call it the FTFL. To
40 * indicate that both are considered here, we use FTFX.
42 * Within the module, according to the chip variant, the persistent
43 * memory is divided into what Freescale terms Program Flash, FlexNVM,
44 * and FlexRAM. All chip variants have Program Flash. Some chip
45 * variants also have FlexNVM and FlexRAM, which always appear
46 * together.
48 * A given Kinetis chip may have 2 or 4 blocks of flash. Here we map
49 * each block to a separate bank. Each block size varies by chip and
50 * may be determined by the read-only SIM_FCFG1 register. The sector
51 * size within each bank/block varies by the chip granularity as
52 * described below.
54 * Kinetis offers four different of flash granularities applicable
55 * across the chip families. The granularity is apparently reflected
56 * by at least the reference manual suffix. For example, for chip
57 * MK60FN1M0VLQ12, reference manual K60P144M150SF3RM ends in "SF3RM",
58 * where the "3" indicates there are four flash blocks with 4kiB
59 * sectors. All possible granularities are indicated below.
61 * The first half of the flash (1 or 2 blocks, depending on the
62 * granularity) is always Program Flash and always starts at address
63 * 0x00000000. The "PFLSH" flag, bit 23 of the read-only SIM_FCFG2
64 * register, determines whether the second half of the flash is also
65 * Program Flash or FlexNVM+FlexRAM. When PFLSH is set, the second
66 * half of flash is Program Flash and is contiguous in the memory map
67 * from the first half. When PFLSH is clear, the second half of flash
68 * is FlexNVM and always starts at address 0x10000000. FlexRAM, which
69 * is also present when PFLSH is clear, always starts at address
70 * 0x14000000.
72 * The Flash Memory Module provides a register set where flash
73 * commands are loaded to perform flash operations like erase and
74 * program. Different commands are available depending on whether
75 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
76 * the commands used are quite consistent between flash blocks, the
77 * parameters they accept differ according to the flash granularity.
78 * Some Kinetis chips have different granularity between Program Flash
79 * and FlexNVM/FlexRAM, so flash command arguments may differ between
80 * blocks in the same chip.
82 * Although not documented as such by Freescale, it appears that bits
83 * 8:7 of the read-only SIM_SDID register reflect the granularity
84 * settings 0..3, so sector sizes and block counts are applicable
85 * according to the following table.
87 const struct {
88 unsigned pflash_sector_size_bytes;
89 unsigned nvm_sector_size_bytes;
90 unsigned num_blocks;
91 } kinetis_flash_params[4] = {
92 { 1<<10, 1<<10, 2 },
93 { 2<<10, 1<<10, 2 },
94 { 2<<10, 2<<10, 2 },
95 { 4<<10, 4<<10, 4 }
98 struct kinetis_flash_bank {
99 unsigned granularity;
100 unsigned bank_ordinal;
101 uint32_t sector_size;
102 uint32_t protection_size;
104 uint32_t sim_sdid;
105 uint32_t sim_fcfg1;
106 uint32_t sim_fcfg2;
108 enum {
109 FC_AUTO = 0,
110 FC_PFLASH,
111 FC_FLEX_NVM,
112 FC_FLEX_RAM,
113 } flash_class;
116 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
118 struct kinetis_flash_bank *bank_info;
120 if (CMD_ARGC < 6)
121 return ERROR_COMMAND_SYNTAX_ERROR;
123 LOG_INFO("add flash_bank kinetis %s", bank->name);
125 bank_info = malloc(sizeof(struct kinetis_flash_bank));
127 memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
129 bank->driver_priv = bank_info;
131 return ERROR_OK;
134 static int kinetis_protect(struct flash_bank *bank, int set, int first,
135 int last)
137 LOG_WARNING("kinetis_protect not supported yet");
138 /* FIXME: TODO */
140 if (bank->target->state != TARGET_HALTED) {
141 LOG_ERROR("Target not halted");
142 return ERROR_TARGET_NOT_HALTED;
145 return ERROR_FLASH_BANK_INVALID;
148 static int kinetis_protect_check(struct flash_bank *bank)
150 struct kinetis_flash_bank *kinfo = bank->driver_priv;
152 if (bank->target->state != TARGET_HALTED) {
153 LOG_ERROR("Target not halted");
154 return ERROR_TARGET_NOT_HALTED;
157 if (kinfo->flash_class == FC_PFLASH) {
158 int result;
159 uint8_t buffer[4];
160 uint32_t fprot, psec;
161 int i, b;
163 /* read protection register FTFx_FPROT */
164 result = target_read_memory(bank->target, 0x40020010, 1, 4, buffer);
166 if (result != ERROR_OK)
167 return result;
169 fprot = target_buffer_get_u32(bank->target, buffer);
172 * Every bit protects 1/32 of the full flash (not necessarily
173 * just this bank), but we enforce the bank ordinals for
174 * PFlash to start at zero.
176 b = kinfo->bank_ordinal * (bank->size / kinfo->protection_size);
177 for (psec = 0, i = 0; i < bank->num_sectors; i++) {
178 if ((fprot >> b) & 1)
179 bank->sectors[i].is_protected = 0;
180 else
181 bank->sectors[i].is_protected = 1;
183 psec += bank->sectors[i].size;
185 if (psec >= kinfo->protection_size) {
186 psec = 0;
187 b++;
190 } else {
191 LOG_ERROR("Protection checks for FlexNVM not yet supported");
192 return ERROR_FLASH_BANK_INVALID;
195 return ERROR_OK;
198 static int kinetis_ftfx_command(struct flash_bank *bank, uint32_t w0,
199 uint32_t w1, uint32_t w2, uint8_t *ftfx_fstat)
201 uint8_t buffer[12];
202 int result, i;
204 /* wait for done */
205 for (i = 0; i < 50; i++) {
206 result =
207 target_read_memory(bank->target, 0x40020000, 1, 1, buffer);
209 if (result != ERROR_OK)
210 return result;
212 if (buffer[0] & 0x80)
213 break;
215 buffer[0] = 0x00;
218 if (buffer[0] != 0x80) {
219 /* reset error flags */
220 buffer[0] = 0x30;
221 result =
222 target_write_memory(bank->target, 0x40020000, 1, 1, buffer);
223 if (result != ERROR_OK)
224 return result;
227 target_buffer_set_u32(bank->target, buffer, w0);
228 target_buffer_set_u32(bank->target, buffer + 4, w1);
229 target_buffer_set_u32(bank->target, buffer + 8, w2);
231 result = target_write_memory(bank->target, 0x40020004, 4, 3, buffer);
233 if (result != ERROR_OK)
234 return result;
236 /* start command */
237 buffer[0] = 0x80;
238 result = target_write_memory(bank->target, 0x40020000, 1, 1, buffer);
239 if (result != ERROR_OK)
240 return result;
242 /* wait for done */
243 for (i = 0; i < 50; i++) {
244 result =
245 target_read_memory(bank->target, 0x40020000, 1, 1, ftfx_fstat);
247 if (result != ERROR_OK)
248 return result;
250 if (*ftfx_fstat & 0x80)
251 break;
254 if ((*ftfx_fstat & 0xf0) != 0x80) {
255 LOG_ERROR
256 ("ftfx command failed FSTAT: %02X W0: %08X W1: %08X W2: %08X",
257 *ftfx_fstat, w0, w1, w2);
259 return ERROR_FLASH_OPERATION_FAILED;
262 return ERROR_OK;
265 static int kinetis_erase(struct flash_bank *bank, int first, int last)
267 int result, i;
268 uint32_t w0 = 0, w1 = 0, w2 = 0;
270 if (bank->target->state != TARGET_HALTED) {
271 LOG_ERROR("Target not halted");
272 return ERROR_TARGET_NOT_HALTED;
275 if ((first > bank->num_sectors) || (last > bank->num_sectors))
276 return ERROR_FLASH_OPERATION_FAILED;
279 * FIXME: TODO: use the 'Erase Flash Block' command if the
280 * requested erase is PFlash or NVM and encompasses the entire
281 * block. Should be quicker.
283 for (i = first; i <= last; i++) {
284 uint8_t ftfx_fstat;
285 /* set command and sector address */
286 w0 = (0x09 << 24) | (bank->base + bank->sectors[i].offset);
288 result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
290 if (result != ERROR_OK) {
291 LOG_WARNING("erase sector %d failed", i);
292 return ERROR_FLASH_OPERATION_FAILED;
295 bank->sectors[i].is_erased = 1;
298 if (first == 0) {
299 LOG_WARNING
300 ("flash configuration field erased, please reset the device");
303 return ERROR_OK;
306 static int kinetis_write(struct flash_bank *bank, uint8_t *buffer,
307 uint32_t offset, uint32_t count)
309 unsigned int i, result, fallback = 0;
310 uint8_t buf[8];
311 uint32_t wc, w0 = 0, w1 = 0, w2 = 0;
312 struct kinetis_flash_bank *kinfo = bank->driver_priv;
314 if (bank->target->state != TARGET_HALTED) {
315 LOG_ERROR("Target not halted");
316 return ERROR_TARGET_NOT_HALTED;
319 if (kinfo->flash_class == FC_FLEX_NVM) {
320 uint8_t ftfx_fstat;
322 LOG_DEBUG("flash write into FlexNVM @%08X", offset);
324 /* make flex ram available */
325 w0 = (0x81 << 24) | 0x00ff0000;
327 result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
329 if (result != ERROR_OK)
330 return ERROR_FLASH_OPERATION_FAILED;
332 /* check if ram ready */
333 result = target_read_memory(bank->target, 0x40020001, 1, 1, buf);
335 if (result != ERROR_OK)
336 return result;
338 if (!(buf[0] & (1 << 1))) {
339 /* fallback to longword write */
340 fallback = 1;
342 LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)",
343 buf[0]);
345 } else {
346 LOG_DEBUG("flash write into PFLASH @08%X", offset);
350 /* program section command */
351 if (fallback == 0) {
352 unsigned prog_section_bytes = kinfo->sector_size >> 8;
353 for (i = 0; i < count; i += kinfo->sector_size) {
355 * The largest possible Kinetis "section" is
356 * 16 bytes. A full Kinetis sector is always
357 * 256 "section"s.
359 uint8_t residual_buffer[16];
360 uint8_t ftfx_fstat;
361 uint32_t section_count = 256;
362 uint32_t residual_wc = 0;
365 * Assume the word count covers an entire
366 * sector.
368 wc = kinfo->sector_size / 4;
371 * If bytes to be programmed are less than the
372 * full sector, then determine the number of
373 * full-words to program, and put together the
374 * residual buffer so that a full "section"
375 * may always be programmed.
377 if ((count - i) < kinfo->sector_size) {
378 /* number of bytes to program beyond full section */
379 unsigned residual_bc = (count-i) % prog_section_bytes;
381 /* number of complete words to copy directly from buffer */
382 wc = (count - i) / 4;
384 /* number of total sections to write, including residual */
385 section_count = DIV_ROUND_UP((count-i), prog_section_bytes);
387 /* any residual bytes delivers a whole residual section */
388 residual_wc = (residual_bc ? prog_section_bytes : 0)/4;
390 /* clear residual buffer then populate residual bytes */
391 (void) memset(residual_buffer, 0xff, prog_section_bytes);
392 (void) memcpy(residual_buffer, &buffer[i+4*wc], residual_bc);
395 LOG_DEBUG("write section @ %08X with length %d bytes",
396 offset + i, (count - i));
398 /* write data to flexram as whole-words */
399 result = target_write_memory(bank->target, 0x14000000, 4, wc,
400 buffer + i);
402 if (result != ERROR_OK) {
403 LOG_ERROR("target_write_memory failed");
404 return result;
407 /* write the residual words to the flexram */
408 if (residual_wc) {
409 result = target_write_memory(bank->target,
410 0x14000000+4*wc,
411 4, residual_wc,
412 residual_buffer);
414 if (result != ERROR_OK) {
415 LOG_ERROR("target_write_memory failed");
416 return result;
420 /* execute section-write command */
421 w0 = (0x0b << 24) | (bank->base + offset + i);
422 w1 = section_count << 16;
424 result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
426 if (result != ERROR_OK)
427 return ERROR_FLASH_OPERATION_FAILED;
430 /* program longword command, not supported in "SF3" devices */
431 else if (kinfo->granularity != 3) {
432 for (i = 0; i < count; i += 4) {
433 uint8_t ftfx_fstat;
435 LOG_DEBUG("write longword @ %08X", offset + i);
437 w0 = (0x06 << 24) | (bank->base + offset + i);
438 if (count - i < 4) {
439 uint32_t padding = 0xffffffff;
440 memcpy(&padding, buffer + i, count - i);
441 w1 = buf_get_u32(&padding, 0, 32);
442 } else {
443 w1 = buf_get_u32(buffer + i, 0, 32);
446 result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
448 if (result != ERROR_OK)
449 return ERROR_FLASH_OPERATION_FAILED;
451 } else {
452 LOG_ERROR("Flash write strategy not implemented");
453 return ERROR_FLASH_OPERATION_FAILED;
456 return ERROR_OK;
459 static int kinetis_read_part_info(struct flash_bank *bank)
461 int result, i;
462 uint8_t buf[4];
463 uint32_t offset = 0;
464 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg2_pflsh;
465 uint32_t nvm_size = 0, pf_size = 0, ee_size = 0;
466 unsigned granularity, num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0,
467 first_nvm_bank = 0, reassign = 0;
468 struct kinetis_flash_bank *kinfo = bank->driver_priv;
470 result = target_read_memory(bank->target, 0x40048024, 1, 4, buf);
471 if (result != ERROR_OK)
472 return result;
473 kinfo->sim_sdid = target_buffer_get_u32(bank->target, buf);
474 granularity = (kinfo->sim_sdid >> 7) & 0x03;
475 result = target_read_memory(bank->target, 0x4004804c, 1, 4, buf);
476 if (result != ERROR_OK)
477 return result;
478 kinfo->sim_fcfg1 = target_buffer_get_u32(bank->target, buf);
479 result = target_read_memory(bank->target, 0x40048050, 1, 4, buf);
480 if (result != ERROR_OK)
481 return result;
482 kinfo->sim_fcfg2 = target_buffer_get_u32(bank->target, buf);
483 fcfg2_pflsh = (kinfo->sim_fcfg2 >> 23) & 0x01;
485 LOG_DEBUG("SDID: %08X FCFG1: %08X FCFG2: %08X", kinfo->sim_sdid,
486 kinfo->sim_fcfg1, kinfo->sim_fcfg2);
488 fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
489 fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
490 fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
492 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
493 if (!fcfg2_pflsh) {
494 switch (fcfg1_nvmsize) {
495 case 0x03:
496 case 0x07:
497 case 0x09:
498 case 0x0b:
499 nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
500 break;
501 case 0x0f:
502 if (granularity == 3)
503 nvm_size = 512<<10;
504 else
505 nvm_size = 256<<10;
506 break;
507 default:
508 nvm_size = 0;
509 break;
512 switch (fcfg1_eesize) {
513 case 0x00:
514 case 0x01:
515 case 0x02:
516 case 0x03:
517 case 0x04:
518 case 0x05:
519 case 0x06:
520 case 0x07:
521 case 0x08:
522 case 0x09:
523 ee_size = (16 << (10 - fcfg1_eesize));
524 break;
525 default:
526 ee_size = 0;
527 break;
531 switch (fcfg1_pfsize) {
532 case 0x03:
533 case 0x05:
534 case 0x07:
535 case 0x09:
536 case 0x0b:
537 case 0x0d:
538 pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
539 break;
540 case 0x0f:
541 if (granularity == 3)
542 pf_size = 1024<<10;
543 else if (fcfg2_pflsh)
544 pf_size = 512<<10;
545 else
546 pf_size = 256<<10;
547 break;
548 default:
549 pf_size = 0;
550 break;
553 LOG_DEBUG("FlexNVM: %d PFlash: %d FlexRAM: %d PFLSH: %d",
554 nvm_size, pf_size, ee_size, fcfg2_pflsh);
556 num_blocks = kinetis_flash_params[granularity].num_blocks;
557 num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
558 first_nvm_bank = num_pflash_blocks;
559 num_nvm_blocks = num_blocks - num_pflash_blocks;
561 LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
562 num_blocks, num_pflash_blocks, num_nvm_blocks);
565 * If the flash class is already assigned, verify the
566 * parameters.
568 if (kinfo->flash_class != FC_AUTO) {
569 if (kinfo->bank_ordinal != (unsigned) bank->bank_number) {
570 LOG_WARNING("Flash ordinal/bank number mismatch");
571 reassign = 1;
572 } else if (kinfo->granularity != granularity) {
573 LOG_WARNING("Flash granularity mismatch");
574 reassign = 1;
575 } else {
576 switch (kinfo->flash_class) {
577 case FC_PFLASH:
578 if (kinfo->bank_ordinal >= first_nvm_bank) {
579 LOG_WARNING("Class mismatch, bank %d is not PFlash",
580 bank->bank_number);
581 reassign = 1;
582 } else if (bank->size != (pf_size / num_pflash_blocks)) {
583 LOG_WARNING("PFlash size mismatch");
584 reassign = 1;
585 } else if (bank->base !=
586 (0x00000000 + bank->size * kinfo->bank_ordinal)) {
587 LOG_WARNING("PFlash address range mismatch");
588 reassign = 1;
589 } else if (kinfo->sector_size !=
590 kinetis_flash_params[granularity].pflash_sector_size_bytes) {
591 LOG_WARNING("PFlash sector size mismatch");
592 reassign = 1;
593 } else {
594 LOG_DEBUG("PFlash bank %d already configured okay",
595 kinfo->bank_ordinal);
597 break;
598 case FC_FLEX_NVM:
599 if ((kinfo->bank_ordinal >= num_blocks) ||
600 (kinfo->bank_ordinal < first_nvm_bank)) {
601 LOG_WARNING("Class mismatch, bank %d is not FlexNVM",
602 bank->bank_number);
603 reassign = 1;
604 } else if (bank->size != (nvm_size / num_nvm_blocks)) {
605 LOG_WARNING("FlexNVM size mismatch");
606 reassign = 1;
607 } else if (bank->base !=
608 (0x10000000 + bank->size * kinfo->bank_ordinal)) {
609 LOG_WARNING("FlexNVM address range mismatch");
610 reassign = 1;
611 } else if (kinfo->sector_size !=
612 kinetis_flash_params[granularity].nvm_sector_size_bytes) {
613 LOG_WARNING("FlexNVM sector size mismatch");
614 reassign = 1;
615 } else {
616 LOG_DEBUG("FlexNVM bank %d already configured okay",
617 kinfo->bank_ordinal);
619 break;
620 case FC_FLEX_RAM:
621 if (kinfo->bank_ordinal != num_blocks) {
622 LOG_WARNING("Class mismatch, bank %d is not FlexRAM",
623 bank->bank_number);
624 reassign = 1;
625 } else if (bank->size != ee_size) {
626 LOG_WARNING("FlexRAM size mismatch");
627 reassign = 1;
628 } else if (bank->base != 0x14000000) {
629 LOG_WARNING("FlexRAM address mismatch");
630 reassign = 1;
631 } else if (kinfo->sector_size !=
632 kinetis_flash_params[granularity].nvm_sector_size_bytes) {
633 LOG_WARNING("FlexRAM sector size mismatch");
634 reassign = 1;
635 } else {
636 LOG_DEBUG("FlexRAM bank %d already configured okay",
637 kinfo->bank_ordinal);
639 break;
641 default:
642 LOG_WARNING("Unknown or inconsistent flash class");
643 reassign = 1;
644 break;
647 } else {
648 LOG_INFO("Probing flash info for bank %d", bank->bank_number);
649 reassign = 1;
652 if (!reassign)
653 return ERROR_OK;
655 kinfo->granularity = granularity;
657 if ((unsigned)bank->bank_number < num_pflash_blocks) {
658 /* pflash, banks start at address zero */
659 kinfo->flash_class = FC_PFLASH;
660 bank->size = (pf_size / num_pflash_blocks);
661 bank->base = 0x00000000 + bank->size * bank->bank_number;
662 kinfo->sector_size = kinetis_flash_params[granularity].pflash_sector_size_bytes;
663 kinfo->protection_size = pf_size / 32;
664 } else if ((unsigned)bank->bank_number < num_blocks) {
665 /* nvm, banks start at address 0x10000000 */
666 kinfo->flash_class = FC_FLEX_NVM;
667 bank->size = (nvm_size / num_nvm_blocks);
668 bank->base = 0x10000000 + bank->size * (bank->bank_number - first_nvm_bank);
669 kinfo->sector_size = kinetis_flash_params[granularity].nvm_sector_size_bytes;
670 kinfo->protection_size = 0; /* FIXME: TODO: depends on DEPART bits, chip */
671 } else if ((unsigned)bank->bank_number == num_blocks) {
672 LOG_ERROR("FlexRAM support not yet implemented");
673 return ERROR_FLASH_OPER_UNSUPPORTED;
674 } else {
675 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
676 bank->bank_number, num_blocks);
677 return ERROR_FLASH_BANK_INVALID;
680 if (bank->sectors) {
681 free(bank->sectors);
682 bank->sectors = NULL;
685 bank->num_sectors = bank->size / kinfo->sector_size;
686 assert(bank->num_sectors > 0);
687 bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
689 for (i = 0; i < bank->num_sectors; i++) {
690 bank->sectors[i].offset = offset;
691 bank->sectors[i].size = kinfo->sector_size;
692 offset += kinfo->sector_size;
693 bank->sectors[i].is_erased = -1;
694 bank->sectors[i].is_protected = 1;
697 return ERROR_OK;
700 static int kinetis_probe(struct flash_bank *bank)
702 if (bank->target->state != TARGET_HALTED) {
703 LOG_WARNING("Cannot communicate... target not halted.");
704 return ERROR_TARGET_NOT_HALTED;
707 return kinetis_read_part_info(bank);
710 static int kinetis_auto_probe(struct flash_bank *bank)
712 struct kinetis_flash_bank *kinfo = bank->driver_priv;
714 if (kinfo->sim_sdid)
715 return ERROR_OK;
717 return kinetis_probe(bank);
720 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
722 const char *bank_class_names[] = {
723 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
726 struct kinetis_flash_bank *kinfo = bank->driver_priv;
728 (void) snprintf(buf, buf_size,
729 "%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
730 bank->driver->name, bank_class_names[kinfo->flash_class],
731 bank->name, bank->base);
733 return ERROR_OK;
736 static int kinetis_blank_check(struct flash_bank *bank)
738 struct kinetis_flash_bank *kinfo = bank->driver_priv;
740 if (bank->target->state != TARGET_HALTED) {
741 LOG_ERROR("Target not halted");
742 return ERROR_TARGET_NOT_HALTED;
745 if (kinfo->flash_class == FC_PFLASH) {
746 int result;
747 uint32_t w0 = 0, w1 = 0, w2 = 0;
748 uint8_t ftfx_fstat;
750 /* check if whole bank is blank */
751 w0 = (0x00 << 24) | bank->base;
752 w1 = 0; /* "normal margin" */
754 result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
756 if (result != ERROR_OK)
757 return result;
759 if (ftfx_fstat & 0x01) {
760 /* the whole bank is not erased, check sector-by-sector */
761 int i;
762 for (i = 0; i < bank->num_sectors; i++) {
763 w0 = (0x01 << 24) | (bank->base + bank->sectors[i].offset);
764 w1 = (0x100 << 16) | 0; /* normal margin */
766 result = kinetis_ftfx_command(bank, w0, w1, w2, &ftfx_fstat);
768 if (result == ERROR_OK) {
769 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
770 } else {
771 LOG_DEBUG("Ignoring errored PFlash sector blank-check");
772 bank->sectors[i].is_erased = -1;
775 } else {
776 /* the whole bank is erased, update all sectors */
777 int i;
778 for (i = 0; i < bank->num_sectors; i++)
779 bank->sectors[i].is_erased = 1;
781 } else {
782 LOG_WARNING("kinetis_blank_check not supported yet for FlexNVM");
783 return ERROR_FLASH_OPERATION_FAILED;
786 return ERROR_OK;
789 static int kinetis_flash_read(struct flash_bank *bank,
790 uint8_t *buffer, uint32_t offset, uint32_t count)
792 LOG_WARNING("kinetis_flash_read not supported yet");
794 if (bank->target->state != TARGET_HALTED) {
795 LOG_ERROR("Target not halted");
796 return ERROR_TARGET_NOT_HALTED;
799 return ERROR_FLASH_OPERATION_FAILED;
802 struct flash_driver kinetis_flash = {
803 .name = "kinetis",
804 .flash_bank_command = kinetis_flash_bank_command,
805 .erase = kinetis_erase,
806 .protect = kinetis_protect,
807 .write = kinetis_write,
808 .read = kinetis_flash_read,
809 .probe = kinetis_probe,
810 .auto_probe = kinetis_auto_probe,
811 .erase_check = kinetis_blank_check,
812 .protect_check = kinetis_protect_check,
813 .info = kinetis_info,