build: cleanup src/target directory
[openocd/jflash.git] / src / target / target.c
blob5b2117df71b44b47b7d325eec0ac824972052d51
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * This program is free software; you can redistribute it and/or modify *
24 * it under the terms of the GNU General Public License as published by *
25 * the Free Software Foundation; either version 2 of the License, or *
26 * (at your option) any later version. *
27 * *
28 * This program is distributed in the hope that it will be useful, *
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
31 * GNU General Public License for more details. *
32 * *
33 * You should have received a copy of the GNU General Public License *
34 * along with this program; if not, write to the *
35 * Free Software Foundation, Inc., *
36 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
37 ***************************************************************************/
39 #ifdef HAVE_CONFIG_H
40 #include "config.h"
41 #endif
43 #include <helper/time_support.h>
44 #include <jtag/jtag.h>
45 #include <flash/nor/core.h>
47 #include "target.h"
48 #include "target_type.h"
49 #include "target_request.h"
50 #include "breakpoints.h"
51 #include "register.h"
52 #include "trace.h"
53 #include "image.h"
54 #include "rtos/rtos.h"
56 static int target_read_buffer_default(struct target *target, uint32_t address,
57 uint32_t size, uint8_t *buffer);
58 static int target_write_buffer_default(struct target *target, uint32_t address,
59 uint32_t size, const uint8_t *buffer);
60 static int target_array2mem(Jim_Interp *interp, struct target *target,
61 int argc, Jim_Obj * const *argv);
62 static int target_mem2array(Jim_Interp *interp, struct target *target,
63 int argc, Jim_Obj * const *argv);
64 static int target_register_user_commands(struct command_context *cmd_ctx);
66 /* targets */
67 extern struct target_type arm7tdmi_target;
68 extern struct target_type arm720t_target;
69 extern struct target_type arm9tdmi_target;
70 extern struct target_type arm920t_target;
71 extern struct target_type arm966e_target;
72 extern struct target_type arm946e_target;
73 extern struct target_type arm926ejs_target;
74 extern struct target_type fa526_target;
75 extern struct target_type feroceon_target;
76 extern struct target_type dragonite_target;
77 extern struct target_type xscale_target;
78 extern struct target_type cortexm3_target;
79 extern struct target_type cortexa8_target;
80 extern struct target_type arm11_target;
81 extern struct target_type mips_m4k_target;
82 extern struct target_type avr_target;
83 extern struct target_type dsp563xx_target;
84 extern struct target_type dsp5680xx_target;
85 extern struct target_type testee_target;
86 extern struct target_type avr32_ap7k_target;
87 extern struct target_type stm32_stlink_target;
89 static struct target_type *target_types[] = {
90 &arm7tdmi_target,
91 &arm9tdmi_target,
92 &arm920t_target,
93 &arm720t_target,
94 &arm966e_target,
95 &arm946e_target,
96 &arm926ejs_target,
97 &fa526_target,
98 &feroceon_target,
99 &dragonite_target,
100 &xscale_target,
101 &cortexm3_target,
102 &cortexa8_target,
103 &arm11_target,
104 &mips_m4k_target,
105 &avr_target,
106 &dsp563xx_target,
107 &dsp5680xx_target,
108 &testee_target,
109 &avr32_ap7k_target,
110 &stm32_stlink_target,
111 NULL,
114 struct target *all_targets;
115 static struct target_event_callback *target_event_callbacks;
116 static struct target_timer_callback *target_timer_callbacks;
117 static const int polling_interval = 100;
119 static const Jim_Nvp nvp_assert[] = {
120 { .name = "assert", NVP_ASSERT },
121 { .name = "deassert", NVP_DEASSERT },
122 { .name = "T", NVP_ASSERT },
123 { .name = "F", NVP_DEASSERT },
124 { .name = "t", NVP_ASSERT },
125 { .name = "f", NVP_DEASSERT },
126 { .name = NULL, .value = -1 }
129 static const Jim_Nvp nvp_error_target[] = {
130 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
131 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
132 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
133 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
134 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
135 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
136 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
137 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
138 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
139 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
140 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
141 { .value = -1, .name = NULL }
144 static const char *target_strerror_safe(int err)
146 const Jim_Nvp *n;
148 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
149 if (n->name == NULL)
150 return "unknown";
151 else
152 return n->name;
155 static const Jim_Nvp nvp_target_event[] = {
156 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
157 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
159 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
160 { .value = TARGET_EVENT_HALTED, .name = "halted" },
161 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
162 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
163 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
165 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
166 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
168 /* historical name */
170 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
172 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
173 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
174 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
175 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
176 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
177 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
178 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
179 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
180 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
181 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
182 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
184 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
185 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
187 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
188 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
190 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
191 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
193 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
194 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
196 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
197 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
199 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
200 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
201 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
203 { .name = NULL, .value = -1 }
206 static const Jim_Nvp nvp_target_state[] = {
207 { .name = "unknown", .value = TARGET_UNKNOWN },
208 { .name = "running", .value = TARGET_RUNNING },
209 { .name = "halted", .value = TARGET_HALTED },
210 { .name = "reset", .value = TARGET_RESET },
211 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
212 { .name = NULL, .value = -1 },
215 static const Jim_Nvp nvp_target_debug_reason[] = {
216 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
217 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
218 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
219 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
220 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
221 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
222 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
223 { .name = NULL, .value = -1 },
226 static const Jim_Nvp nvp_target_endian[] = {
227 { .name = "big", .value = TARGET_BIG_ENDIAN },
228 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
229 { .name = "be", .value = TARGET_BIG_ENDIAN },
230 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
231 { .name = NULL, .value = -1 },
234 static const Jim_Nvp nvp_reset_modes[] = {
235 { .name = "unknown", .value = RESET_UNKNOWN },
236 { .name = "run" , .value = RESET_RUN },
237 { .name = "halt" , .value = RESET_HALT },
238 { .name = "init" , .value = RESET_INIT },
239 { .name = NULL , .value = -1 },
242 const char *debug_reason_name(struct target *t)
244 const char *cp;
246 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
247 t->debug_reason)->name;
248 if (!cp) {
249 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
250 cp = "(*BUG*unknown*BUG*)";
252 return cp;
255 const char *target_state_name(struct target *t)
257 const char *cp;
258 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
259 if (!cp) {
260 LOG_ERROR("Invalid target state: %d", (int)(t->state));
261 cp = "(*BUG*unknown*BUG*)";
263 return cp;
266 /* determine the number of the new target */
267 static int new_target_number(void)
269 struct target *t;
270 int x;
272 /* number is 0 based */
273 x = -1;
274 t = all_targets;
275 while (t) {
276 if (x < t->target_number)
277 x = t->target_number;
278 t = t->next;
280 return x + 1;
283 /* read a uint32_t from a buffer in target memory endianness */
284 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
286 if (target->endianness == TARGET_LITTLE_ENDIAN)
287 return le_to_h_u32(buffer);
288 else
289 return be_to_h_u32(buffer);
292 /* read a uint24_t from a buffer in target memory endianness */
293 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
295 if (target->endianness == TARGET_LITTLE_ENDIAN)
296 return le_to_h_u24(buffer);
297 else
298 return be_to_h_u24(buffer);
301 /* read a uint16_t from a buffer in target memory endianness */
302 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
304 if (target->endianness == TARGET_LITTLE_ENDIAN)
305 return le_to_h_u16(buffer);
306 else
307 return be_to_h_u16(buffer);
310 /* read a uint8_t from a buffer in target memory endianness */
311 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
313 return *buffer & 0x0ff;
316 /* write a uint32_t to a buffer in target memory endianness */
317 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
319 if (target->endianness == TARGET_LITTLE_ENDIAN)
320 h_u32_to_le(buffer, value);
321 else
322 h_u32_to_be(buffer, value);
325 /* write a uint24_t to a buffer in target memory endianness */
326 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
328 if (target->endianness == TARGET_LITTLE_ENDIAN)
329 h_u24_to_le(buffer, value);
330 else
331 h_u24_to_be(buffer, value);
334 /* write a uint16_t to a buffer in target memory endianness */
335 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
337 if (target->endianness == TARGET_LITTLE_ENDIAN)
338 h_u16_to_le(buffer, value);
339 else
340 h_u16_to_be(buffer, value);
343 /* write a uint8_t to a buffer in target memory endianness */
344 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
346 *buffer = value;
349 /* write a uint32_t array to a buffer in target memory endianness */
350 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
352 uint32_t i;
353 for (i = 0; i < count; i++)
354 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
357 /* write a uint16_t array to a buffer in target memory endianness */
358 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
360 uint32_t i;
361 for (i = 0; i < count; i++)
362 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
365 /* write a uint32_t array to a buffer in target memory endianness */
366 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
368 uint32_t i;
369 for (i = 0; i < count; i++)
370 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
373 /* write a uint16_t array to a buffer in target memory endianness */
374 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
376 uint32_t i;
377 for (i = 0; i < count; i++)
378 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
381 /* return a pointer to a configured target; id is name or number */
382 struct target *get_target(const char *id)
384 struct target *target;
386 /* try as tcltarget name */
387 for (target = all_targets; target; target = target->next) {
388 if (target->cmd_name == NULL)
389 continue;
390 if (strcmp(id, target->cmd_name) == 0)
391 return target;
394 /* It's OK to remove this fallback sometime after August 2010 or so */
396 /* no match, try as number */
397 unsigned num;
398 if (parse_uint(id, &num) != ERROR_OK)
399 return NULL;
401 for (target = all_targets; target; target = target->next) {
402 if (target->target_number == (int)num) {
403 LOG_WARNING("use '%s' as target identifier, not '%u'",
404 target->cmd_name, num);
405 return target;
409 return NULL;
412 /* returns a pointer to the n-th configured target */
413 static struct target *get_target_by_num(int num)
415 struct target *target = all_targets;
417 while (target) {
418 if (target->target_number == num)
419 return target;
420 target = target->next;
423 return NULL;
426 struct target *get_current_target(struct command_context *cmd_ctx)
428 struct target *target = get_target_by_num(cmd_ctx->current_target);
430 if (target == NULL) {
431 LOG_ERROR("BUG: current_target out of bounds");
432 exit(-1);
435 return target;
438 int target_poll(struct target *target)
440 int retval;
442 /* We can't poll until after examine */
443 if (!target_was_examined(target)) {
444 /* Fail silently lest we pollute the log */
445 return ERROR_FAIL;
448 retval = target->type->poll(target);
449 if (retval != ERROR_OK)
450 return retval;
452 if (target->halt_issued) {
453 if (target->state == TARGET_HALTED)
454 target->halt_issued = false;
455 else {
456 long long t = timeval_ms() - target->halt_issued_time;
457 if (t > 1000) {
458 target->halt_issued = false;
459 LOG_INFO("Halt timed out, wake up GDB.");
460 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
465 return ERROR_OK;
468 int target_halt(struct target *target)
470 int retval;
471 /* We can't poll until after examine */
472 if (!target_was_examined(target)) {
473 LOG_ERROR("Target not examined yet");
474 return ERROR_FAIL;
477 retval = target->type->halt(target);
478 if (retval != ERROR_OK)
479 return retval;
481 target->halt_issued = true;
482 target->halt_issued_time = timeval_ms();
484 return ERROR_OK;
488 * Make the target (re)start executing using its saved execution
489 * context (possibly with some modifications).
491 * @param target Which target should start executing.
492 * @param current True to use the target's saved program counter instead
493 * of the address parameter
494 * @param address Optionally used as the program counter.
495 * @param handle_breakpoints True iff breakpoints at the resumption PC
496 * should be skipped. (For example, maybe execution was stopped by
497 * such a breakpoint, in which case it would be counterprodutive to
498 * let it re-trigger.
499 * @param debug_execution False if all working areas allocated by OpenOCD
500 * should be released and/or restored to their original contents.
501 * (This would for example be true to run some downloaded "helper"
502 * algorithm code, which resides in one such working buffer and uses
503 * another for data storage.)
505 * @todo Resolve the ambiguity about what the "debug_execution" flag
506 * signifies. For example, Target implementations don't agree on how
507 * it relates to invalidation of the register cache, or to whether
508 * breakpoints and watchpoints should be enabled. (It would seem wrong
509 * to enable breakpoints when running downloaded "helper" algorithms
510 * (debug_execution true), since the breakpoints would be set to match
511 * target firmware being debugged, not the helper algorithm.... and
512 * enabling them could cause such helpers to malfunction (for example,
513 * by overwriting data with a breakpoint instruction. On the other
514 * hand the infrastructure for running such helpers might use this
515 * procedure but rely on hardware breakpoint to detect termination.)
517 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
519 int retval;
521 /* We can't poll until after examine */
522 if (!target_was_examined(target)) {
523 LOG_ERROR("Target not examined yet");
524 return ERROR_FAIL;
527 /* note that resume *must* be asynchronous. The CPU can halt before
528 * we poll. The CPU can even halt at the current PC as a result of
529 * a software breakpoint being inserted by (a bug?) the application.
531 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
532 if (retval != ERROR_OK)
533 return retval;
535 return retval;
538 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
540 char buf[100];
541 int retval;
542 Jim_Nvp *n;
543 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
544 if (n->name == NULL) {
545 LOG_ERROR("invalid reset mode");
546 return ERROR_FAIL;
549 /* disable polling during reset to make reset event scripts
550 * more predictable, i.e. dr/irscan & pathmove in events will
551 * not have JTAG operations injected into the middle of a sequence.
553 bool save_poll = jtag_poll_get_enabled();
555 jtag_poll_set_enabled(false);
557 sprintf(buf, "ocd_process_reset %s", n->name);
558 retval = Jim_Eval(cmd_ctx->interp, buf);
560 jtag_poll_set_enabled(save_poll);
562 if (retval != JIM_OK) {
563 Jim_MakeErrorMessage(cmd_ctx->interp);
564 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
565 return ERROR_FAIL;
568 /* We want any events to be processed before the prompt */
569 retval = target_call_timer_callbacks_now();
571 struct target *target;
572 for (target = all_targets; target; target = target->next)
573 target->type->check_reset(target);
575 return retval;
578 static int identity_virt2phys(struct target *target,
579 uint32_t virtual, uint32_t *physical)
581 *physical = virtual;
582 return ERROR_OK;
585 static int no_mmu(struct target *target, int *enabled)
587 *enabled = 0;
588 return ERROR_OK;
591 static int default_examine(struct target *target)
593 target_set_examined(target);
594 return ERROR_OK;
597 /* no check by default */
598 static int default_check_reset(struct target *target)
600 return ERROR_OK;
603 int target_examine_one(struct target *target)
605 return target->type->examine(target);
608 static int jtag_enable_callback(enum jtag_event event, void *priv)
610 struct target *target = priv;
612 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
613 return ERROR_OK;
615 jtag_unregister_event_callback(jtag_enable_callback, target);
616 return target_examine_one(target);
620 /* Targets that correctly implement init + examine, i.e.
621 * no communication with target during init:
623 * XScale
625 int target_examine(void)
627 int retval = ERROR_OK;
628 struct target *target;
630 for (target = all_targets; target; target = target->next) {
631 /* defer examination, but don't skip it */
632 if (!target->tap->enabled) {
633 jtag_register_event_callback(jtag_enable_callback,
634 target);
635 continue;
637 retval = target_examine_one(target);
638 if (retval != ERROR_OK)
639 return retval;
641 return retval;
643 const char *target_type_name(struct target *target)
645 return target->type->name;
648 static int target_write_memory_imp(struct target *target, uint32_t address,
649 uint32_t size, uint32_t count, const uint8_t *buffer)
651 if (!target_was_examined(target)) {
652 LOG_ERROR("Target not examined yet");
653 return ERROR_FAIL;
655 return target->type->write_memory_imp(target, address, size, count, buffer);
658 static int target_read_memory_imp(struct target *target, uint32_t address,
659 uint32_t size, uint32_t count, uint8_t *buffer)
661 if (!target_was_examined(target)) {
662 LOG_ERROR("Target not examined yet");
663 return ERROR_FAIL;
665 return target->type->read_memory_imp(target, address, size, count, buffer);
668 static int target_soft_reset_halt_imp(struct target *target)
670 if (!target_was_examined(target)) {
671 LOG_ERROR("Target not examined yet");
672 return ERROR_FAIL;
674 if (!target->type->soft_reset_halt_imp) {
675 LOG_ERROR("Target %s does not support soft_reset_halt",
676 target_name(target));
677 return ERROR_FAIL;
679 return target->type->soft_reset_halt_imp(target);
683 * Downloads a target-specific native code algorithm to the target,
684 * and executes it. * Note that some targets may need to set up, enable,
685 * and tear down a breakpoint (hard or * soft) to detect algorithm
686 * termination, while others may support lower overhead schemes where
687 * soft breakpoints embedded in the algorithm automatically terminate the
688 * algorithm.
690 * @param target used to run the algorithm
691 * @param arch_info target-specific description of the algorithm.
693 int target_run_algorithm(struct target *target,
694 int num_mem_params, struct mem_param *mem_params,
695 int num_reg_params, struct reg_param *reg_param,
696 uint32_t entry_point, uint32_t exit_point,
697 int timeout_ms, void *arch_info)
699 int retval = ERROR_FAIL;
701 if (!target_was_examined(target)) {
702 LOG_ERROR("Target not examined yet");
703 goto done;
705 if (!target->type->run_algorithm) {
706 LOG_ERROR("Target type '%s' does not support %s",
707 target_type_name(target), __func__);
708 goto done;
711 target->running_alg = true;
712 retval = target->type->run_algorithm(target,
713 num_mem_params, mem_params,
714 num_reg_params, reg_param,
715 entry_point, exit_point, timeout_ms, arch_info);
716 target->running_alg = false;
718 done:
719 return retval;
723 * Downloads a target-specific native code algorithm to the target,
724 * executes and leaves it running.
726 * @param target used to run the algorithm
727 * @param arch_info target-specific description of the algorithm.
729 int target_start_algorithm(struct target *target,
730 int num_mem_params, struct mem_param *mem_params,
731 int num_reg_params, struct reg_param *reg_params,
732 uint32_t entry_point, uint32_t exit_point,
733 void *arch_info)
735 int retval = ERROR_FAIL;
737 if (!target_was_examined(target)) {
738 LOG_ERROR("Target not examined yet");
739 goto done;
741 if (!target->type->start_algorithm) {
742 LOG_ERROR("Target type '%s' does not support %s",
743 target_type_name(target), __func__);
744 goto done;
746 if (target->running_alg) {
747 LOG_ERROR("Target is already running an algorithm");
748 goto done;
751 target->running_alg = true;
752 retval = target->type->start_algorithm(target,
753 num_mem_params, mem_params,
754 num_reg_params, reg_params,
755 entry_point, exit_point, arch_info);
757 done:
758 return retval;
762 * Waits for an algorithm started with target_start_algorithm() to complete.
764 * @param target used to run the algorithm
765 * @param arch_info target-specific description of the algorithm.
767 int target_wait_algorithm(struct target *target,
768 int num_mem_params, struct mem_param *mem_params,
769 int num_reg_params, struct reg_param *reg_params,
770 uint32_t exit_point, int timeout_ms,
771 void *arch_info)
773 int retval = ERROR_FAIL;
775 if (!target->type->wait_algorithm) {
776 LOG_ERROR("Target type '%s' does not support %s",
777 target_type_name(target), __func__);
778 goto done;
780 if (!target->running_alg) {
781 LOG_ERROR("Target is not running an algorithm");
782 goto done;
785 retval = target->type->wait_algorithm(target,
786 num_mem_params, mem_params,
787 num_reg_params, reg_params,
788 exit_point, timeout_ms, arch_info);
789 if (retval != ERROR_TARGET_TIMEOUT)
790 target->running_alg = false;
792 done:
793 return retval;
797 int target_read_memory(struct target *target,
798 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
800 return target->type->read_memory(target, address, size, count, buffer);
803 static int target_read_phys_memory(struct target *target,
804 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
806 return target->type->read_phys_memory(target, address, size, count, buffer);
809 int target_write_memory(struct target *target,
810 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
812 return target->type->write_memory(target, address, size, count, buffer);
815 static int target_write_phys_memory(struct target *target,
816 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
818 return target->type->write_phys_memory(target, address, size, count, buffer);
821 int target_bulk_write_memory(struct target *target,
822 uint32_t address, uint32_t count, const uint8_t *buffer)
824 return target->type->bulk_write_memory(target, address, count, buffer);
827 int target_add_breakpoint(struct target *target,
828 struct breakpoint *breakpoint)
830 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
831 LOG_WARNING("target %s is not halted", target->cmd_name);
832 return ERROR_TARGET_NOT_HALTED;
834 return target->type->add_breakpoint(target, breakpoint);
837 int target_add_context_breakpoint(struct target *target,
838 struct breakpoint *breakpoint)
840 if (target->state != TARGET_HALTED) {
841 LOG_WARNING("target %s is not halted", target->cmd_name);
842 return ERROR_TARGET_NOT_HALTED;
844 return target->type->add_context_breakpoint(target, breakpoint);
847 int target_add_hybrid_breakpoint(struct target *target,
848 struct breakpoint *breakpoint)
850 if (target->state != TARGET_HALTED) {
851 LOG_WARNING("target %s is not halted", target->cmd_name);
852 return ERROR_TARGET_NOT_HALTED;
854 return target->type->add_hybrid_breakpoint(target, breakpoint);
857 int target_remove_breakpoint(struct target *target,
858 struct breakpoint *breakpoint)
860 return target->type->remove_breakpoint(target, breakpoint);
863 int target_add_watchpoint(struct target *target,
864 struct watchpoint *watchpoint)
866 if (target->state != TARGET_HALTED) {
867 LOG_WARNING("target %s is not halted", target->cmd_name);
868 return ERROR_TARGET_NOT_HALTED;
870 return target->type->add_watchpoint(target, watchpoint);
872 int target_remove_watchpoint(struct target *target,
873 struct watchpoint *watchpoint)
875 return target->type->remove_watchpoint(target, watchpoint);
878 int target_get_gdb_reg_list(struct target *target,
879 struct reg **reg_list[], int *reg_list_size)
881 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
883 int target_step(struct target *target,
884 int current, uint32_t address, int handle_breakpoints)
886 return target->type->step(target, current, address, handle_breakpoints);
890 * Reset the @c examined flag for the given target.
891 * Pure paranoia -- targets are zeroed on allocation.
893 static void target_reset_examined(struct target *target)
895 target->examined = false;
898 static int err_read_phys_memory(struct target *target, uint32_t address,
899 uint32_t size, uint32_t count, uint8_t *buffer)
901 LOG_ERROR("Not implemented: %s", __func__);
902 return ERROR_FAIL;
905 static int err_write_phys_memory(struct target *target, uint32_t address,
906 uint32_t size, uint32_t count, const uint8_t *buffer)
908 LOG_ERROR("Not implemented: %s", __func__);
909 return ERROR_FAIL;
912 static int handle_target(void *priv);
914 static int target_init_one(struct command_context *cmd_ctx,
915 struct target *target)
917 target_reset_examined(target);
919 struct target_type *type = target->type;
920 if (type->examine == NULL)
921 type->examine = default_examine;
923 if (type->check_reset == NULL)
924 type->check_reset = default_check_reset;
926 assert(type->init_target != NULL);
928 int retval = type->init_target(cmd_ctx, target);
929 if (ERROR_OK != retval) {
930 LOG_ERROR("target '%s' init failed", target_name(target));
931 return retval;
935 * @todo get rid of those *memory_imp() methods, now that all
936 * callers are using target_*_memory() accessors ... and make
937 * sure the "physical" paths handle the same issues.
939 /* a non-invasive way(in terms of patches) to add some code that
940 * runs before the type->write/read_memory implementation
942 type->write_memory_imp = target->type->write_memory;
943 type->write_memory = target_write_memory_imp;
945 type->read_memory_imp = target->type->read_memory;
946 type->read_memory = target_read_memory_imp;
948 type->soft_reset_halt_imp = target->type->soft_reset_halt;
949 type->soft_reset_halt = target_soft_reset_halt_imp;
951 /* Sanity-check MMU support ... stub in what we must, to help
952 * implement it in stages, but warn if we need to do so.
954 if (type->mmu) {
955 if (type->write_phys_memory == NULL) {
956 LOG_ERROR("type '%s' is missing write_phys_memory",
957 type->name);
958 type->write_phys_memory = err_write_phys_memory;
960 if (type->read_phys_memory == NULL) {
961 LOG_ERROR("type '%s' is missing read_phys_memory",
962 type->name);
963 type->read_phys_memory = err_read_phys_memory;
965 if (type->virt2phys == NULL) {
966 LOG_ERROR("type '%s' is missing virt2phys", type->name);
967 type->virt2phys = identity_virt2phys;
969 } else {
970 /* Make sure no-MMU targets all behave the same: make no
971 * distinction between physical and virtual addresses, and
972 * ensure that virt2phys() is always an identity mapping.
974 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
975 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
977 type->mmu = no_mmu;
978 type->write_phys_memory = type->write_memory;
979 type->read_phys_memory = type->read_memory;
980 type->virt2phys = identity_virt2phys;
983 if (target->type->read_buffer == NULL)
984 target->type->read_buffer = target_read_buffer_default;
986 if (target->type->write_buffer == NULL)
987 target->type->write_buffer = target_write_buffer_default;
989 return ERROR_OK;
992 static int target_init(struct command_context *cmd_ctx)
994 struct target *target;
995 int retval;
997 for (target = all_targets; target; target = target->next) {
998 retval = target_init_one(cmd_ctx, target);
999 if (ERROR_OK != retval)
1000 return retval;
1003 if (!all_targets)
1004 return ERROR_OK;
1006 retval = target_register_user_commands(cmd_ctx);
1007 if (ERROR_OK != retval)
1008 return retval;
1010 retval = target_register_timer_callback(&handle_target,
1011 polling_interval, 1, cmd_ctx->interp);
1012 if (ERROR_OK != retval)
1013 return retval;
1015 return ERROR_OK;
1018 COMMAND_HANDLER(handle_target_init_command)
1020 int retval;
1022 if (CMD_ARGC != 0)
1023 return ERROR_COMMAND_SYNTAX_ERROR;
1025 static bool target_initialized;
1026 if (target_initialized) {
1027 LOG_INFO("'target init' has already been called");
1028 return ERROR_OK;
1030 target_initialized = true;
1032 retval = command_run_line(CMD_CTX, "init_targets");
1033 if (ERROR_OK != retval)
1034 return retval;
1036 LOG_DEBUG("Initializing targets...");
1037 return target_init(CMD_CTX);
1040 int target_register_event_callback(int (*callback)(struct target *target,
1041 enum target_event event, void *priv), void *priv)
1043 struct target_event_callback **callbacks_p = &target_event_callbacks;
1045 if (callback == NULL)
1046 return ERROR_COMMAND_SYNTAX_ERROR;
1048 if (*callbacks_p) {
1049 while ((*callbacks_p)->next)
1050 callbacks_p = &((*callbacks_p)->next);
1051 callbacks_p = &((*callbacks_p)->next);
1054 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1055 (*callbacks_p)->callback = callback;
1056 (*callbacks_p)->priv = priv;
1057 (*callbacks_p)->next = NULL;
1059 return ERROR_OK;
1062 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1064 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1065 struct timeval now;
1067 if (callback == NULL)
1068 return ERROR_COMMAND_SYNTAX_ERROR;
1070 if (*callbacks_p) {
1071 while ((*callbacks_p)->next)
1072 callbacks_p = &((*callbacks_p)->next);
1073 callbacks_p = &((*callbacks_p)->next);
1076 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1077 (*callbacks_p)->callback = callback;
1078 (*callbacks_p)->periodic = periodic;
1079 (*callbacks_p)->time_ms = time_ms;
1081 gettimeofday(&now, NULL);
1082 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1083 time_ms -= (time_ms % 1000);
1084 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1085 if ((*callbacks_p)->when.tv_usec > 1000000) {
1086 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1087 (*callbacks_p)->when.tv_sec += 1;
1090 (*callbacks_p)->priv = priv;
1091 (*callbacks_p)->next = NULL;
1093 return ERROR_OK;
1096 int target_unregister_event_callback(int (*callback)(struct target *target,
1097 enum target_event event, void *priv), void *priv)
1099 struct target_event_callback **p = &target_event_callbacks;
1100 struct target_event_callback *c = target_event_callbacks;
1102 if (callback == NULL)
1103 return ERROR_COMMAND_SYNTAX_ERROR;
1105 while (c) {
1106 struct target_event_callback *next = c->next;
1107 if ((c->callback == callback) && (c->priv == priv)) {
1108 *p = next;
1109 free(c);
1110 return ERROR_OK;
1111 } else
1112 p = &(c->next);
1113 c = next;
1116 return ERROR_OK;
1119 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1121 struct target_timer_callback **p = &target_timer_callbacks;
1122 struct target_timer_callback *c = target_timer_callbacks;
1124 if (callback == NULL)
1125 return ERROR_COMMAND_SYNTAX_ERROR;
1127 while (c) {
1128 struct target_timer_callback *next = c->next;
1129 if ((c->callback == callback) && (c->priv == priv)) {
1130 *p = next;
1131 free(c);
1132 return ERROR_OK;
1133 } else
1134 p = &(c->next);
1135 c = next;
1138 return ERROR_OK;
1141 int target_call_event_callbacks(struct target *target, enum target_event event)
1143 struct target_event_callback *callback = target_event_callbacks;
1144 struct target_event_callback *next_callback;
1146 if (event == TARGET_EVENT_HALTED) {
1147 /* execute early halted first */
1148 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1151 LOG_DEBUG("target event %i (%s)", event,
1152 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1154 target_handle_event(target, event);
1156 while (callback) {
1157 next_callback = callback->next;
1158 callback->callback(target, event, callback->priv);
1159 callback = next_callback;
1162 return ERROR_OK;
1165 static int target_timer_callback_periodic_restart(
1166 struct target_timer_callback *cb, struct timeval *now)
1168 int time_ms = cb->time_ms;
1169 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1170 time_ms -= (time_ms % 1000);
1171 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1172 if (cb->when.tv_usec > 1000000) {
1173 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1174 cb->when.tv_sec += 1;
1176 return ERROR_OK;
1179 static int target_call_timer_callback(struct target_timer_callback *cb,
1180 struct timeval *now)
1182 cb->callback(cb->priv);
1184 if (cb->periodic)
1185 return target_timer_callback_periodic_restart(cb, now);
1187 return target_unregister_timer_callback(cb->callback, cb->priv);
1190 static int target_call_timer_callbacks_check_time(int checktime)
1192 keep_alive();
1194 struct timeval now;
1195 gettimeofday(&now, NULL);
1197 struct target_timer_callback *callback = target_timer_callbacks;
1198 while (callback) {
1199 /* cleaning up may unregister and free this callback */
1200 struct target_timer_callback *next_callback = callback->next;
1202 bool call_it = callback->callback &&
1203 ((!checktime && callback->periodic) ||
1204 now.tv_sec > callback->when.tv_sec ||
1205 (now.tv_sec == callback->when.tv_sec &&
1206 now.tv_usec >= callback->when.tv_usec));
1208 if (call_it) {
1209 int retval = target_call_timer_callback(callback, &now);
1210 if (retval != ERROR_OK)
1211 return retval;
1214 callback = next_callback;
1217 return ERROR_OK;
1220 int target_call_timer_callbacks(void)
1222 return target_call_timer_callbacks_check_time(1);
1225 /* invoke periodic callbacks immediately */
1226 int target_call_timer_callbacks_now(void)
1228 return target_call_timer_callbacks_check_time(0);
1231 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1233 struct working_area *c = target->working_areas;
1234 struct working_area *new_wa = NULL;
1236 /* Reevaluate working area address based on MMU state*/
1237 if (target->working_areas == NULL) {
1238 int retval;
1239 int enabled;
1241 retval = target->type->mmu(target, &enabled);
1242 if (retval != ERROR_OK)
1243 return retval;
1245 if (!enabled) {
1246 if (target->working_area_phys_spec) {
1247 LOG_DEBUG("MMU disabled, using physical "
1248 "address for working memory 0x%08x",
1249 (unsigned)target->working_area_phys);
1250 target->working_area = target->working_area_phys;
1251 } else {
1252 LOG_ERROR("No working memory available. "
1253 "Specify -work-area-phys to target.");
1254 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1256 } else {
1257 if (target->working_area_virt_spec) {
1258 LOG_DEBUG("MMU enabled, using virtual "
1259 "address for working memory 0x%08x",
1260 (unsigned)target->working_area_virt);
1261 target->working_area = target->working_area_virt;
1262 } else {
1263 LOG_ERROR("No working memory available. "
1264 "Specify -work-area-virt to target.");
1265 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1270 /* only allocate multiples of 4 byte */
1271 if (size % 4) {
1272 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1273 size = (size + 3) & (~3);
1276 /* see if there's already a matching working area */
1277 while (c) {
1278 if ((c->free) && (c->size == size)) {
1279 new_wa = c;
1280 break;
1282 c = c->next;
1285 /* if not, allocate a new one */
1286 if (!new_wa) {
1287 struct working_area **p = &target->working_areas;
1288 uint32_t first_free = target->working_area;
1289 uint32_t free_size = target->working_area_size;
1291 c = target->working_areas;
1292 while (c) {
1293 first_free += c->size;
1294 free_size -= c->size;
1295 p = &c->next;
1296 c = c->next;
1299 if (free_size < size)
1300 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1302 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1304 new_wa = malloc(sizeof(struct working_area));
1305 new_wa->next = NULL;
1306 new_wa->size = size;
1307 new_wa->address = first_free;
1309 if (target->backup_working_area) {
1310 int retval;
1311 new_wa->backup = malloc(new_wa->size);
1312 retval = target_read_memory(target, new_wa->address, 4,
1313 new_wa->size / 4, new_wa->backup);
1314 if (retval != ERROR_OK) {
1315 free(new_wa->backup);
1316 free(new_wa);
1317 return retval;
1319 } else
1320 new_wa->backup = NULL;
1322 /* put new entry in list */
1323 *p = new_wa;
1326 /* mark as used, and return the new (reused) area */
1327 new_wa->free = false;
1328 *area = new_wa;
1330 /* user pointer */
1331 new_wa->user = area;
1333 return ERROR_OK;
1336 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1338 int retval;
1340 retval = target_alloc_working_area_try(target, size, area);
1341 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1342 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1343 return retval;
1347 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1349 if (area->free)
1350 return ERROR_OK;
1352 if (restore && target->backup_working_area) {
1353 int retval = target_write_memory(target,
1354 area->address, 4, area->size / 4, area->backup);
1355 if (retval != ERROR_OK)
1356 return retval;
1359 area->free = true;
1361 /* mark user pointer invalid */
1362 *area->user = NULL;
1363 area->user = NULL;
1365 return ERROR_OK;
1368 int target_free_working_area(struct target *target, struct working_area *area)
1370 return target_free_working_area_restore(target, area, 1);
1373 /* free resources and restore memory, if restoring memory fails,
1374 * free up resources anyway
1376 static void target_free_all_working_areas_restore(struct target *target, int restore)
1378 struct working_area *c = target->working_areas;
1380 while (c) {
1381 struct working_area *next = c->next;
1382 target_free_working_area_restore(target, c, restore);
1384 if (c->backup)
1385 free(c->backup);
1387 free(c);
1389 c = next;
1392 target->working_areas = NULL;
1395 void target_free_all_working_areas(struct target *target)
1397 target_free_all_working_areas_restore(target, 1);
1400 int target_arch_state(struct target *target)
1402 int retval;
1403 if (target == NULL) {
1404 LOG_USER("No target has been configured");
1405 return ERROR_OK;
1408 LOG_USER("target state: %s", target_state_name(target));
1410 if (target->state != TARGET_HALTED)
1411 return ERROR_OK;
1413 retval = target->type->arch_state(target);
1414 return retval;
1417 /* Single aligned words are guaranteed to use 16 or 32 bit access
1418 * mode respectively, otherwise data is handled as quickly as
1419 * possible
1421 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1423 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1424 (int)size, (unsigned)address);
1426 if (!target_was_examined(target)) {
1427 LOG_ERROR("Target not examined yet");
1428 return ERROR_FAIL;
1431 if (size == 0)
1432 return ERROR_OK;
1434 if ((address + size - 1) < address) {
1435 /* GDB can request this when e.g. PC is 0xfffffffc*/
1436 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1437 (unsigned)address,
1438 (unsigned)size);
1439 return ERROR_FAIL;
1442 return target->type->write_buffer(target, address, size, buffer);
1445 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1447 int retval = ERROR_OK;
1449 if (((address % 2) == 0) && (size == 2))
1450 return target_write_memory(target, address, 2, 1, buffer);
1452 /* handle unaligned head bytes */
1453 if (address % 4) {
1454 uint32_t unaligned = 4 - (address % 4);
1456 if (unaligned > size)
1457 unaligned = size;
1459 retval = target_write_memory(target, address, 1, unaligned, buffer);
1460 if (retval != ERROR_OK)
1461 return retval;
1463 buffer += unaligned;
1464 address += unaligned;
1465 size -= unaligned;
1468 /* handle aligned words */
1469 if (size >= 4) {
1470 int aligned = size - (size % 4);
1472 /* use bulk writes above a certain limit. This may have to be changed */
1473 if (aligned > 128) {
1474 retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1475 if (retval != ERROR_OK)
1476 return retval;
1477 } else {
1478 retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1479 if (retval != ERROR_OK)
1480 return retval;
1483 buffer += aligned;
1484 address += aligned;
1485 size -= aligned;
1488 /* handle tail writes of less than 4 bytes */
1489 if (size > 0) {
1490 retval = target_write_memory(target, address, 1, size, buffer);
1491 if (retval != ERROR_OK)
1492 return retval;
1495 return retval;
1498 /* Single aligned words are guaranteed to use 16 or 32 bit access
1499 * mode respectively, otherwise data is handled as quickly as
1500 * possible
1502 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1504 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1505 (int)size, (unsigned)address);
1507 if (!target_was_examined(target)) {
1508 LOG_ERROR("Target not examined yet");
1509 return ERROR_FAIL;
1512 if (size == 0)
1513 return ERROR_OK;
1515 if ((address + size - 1) < address) {
1516 /* GDB can request this when e.g. PC is 0xfffffffc*/
1517 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1518 address,
1519 size);
1520 return ERROR_FAIL;
1523 return target->type->read_buffer(target, address, size, buffer);
1526 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1528 int retval = ERROR_OK;
1530 if (((address % 2) == 0) && (size == 2))
1531 return target_read_memory(target, address, 2, 1, buffer);
1533 /* handle unaligned head bytes */
1534 if (address % 4) {
1535 uint32_t unaligned = 4 - (address % 4);
1537 if (unaligned > size)
1538 unaligned = size;
1540 retval = target_read_memory(target, address, 1, unaligned, buffer);
1541 if (retval != ERROR_OK)
1542 return retval;
1544 buffer += unaligned;
1545 address += unaligned;
1546 size -= unaligned;
1549 /* handle aligned words */
1550 if (size >= 4) {
1551 int aligned = size - (size % 4);
1553 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1554 if (retval != ERROR_OK)
1555 return retval;
1557 buffer += aligned;
1558 address += aligned;
1559 size -= aligned;
1562 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1563 if (size >= 2) {
1564 int aligned = size - (size % 2);
1565 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1566 if (retval != ERROR_OK)
1567 return retval;
1569 buffer += aligned;
1570 address += aligned;
1571 size -= aligned;
1573 /* handle tail writes of less than 4 bytes */
1574 if (size > 0) {
1575 retval = target_read_memory(target, address, 1, size, buffer);
1576 if (retval != ERROR_OK)
1577 return retval;
1580 return ERROR_OK;
1583 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1585 uint8_t *buffer;
1586 int retval;
1587 uint32_t i;
1588 uint32_t checksum = 0;
1589 if (!target_was_examined(target)) {
1590 LOG_ERROR("Target not examined yet");
1591 return ERROR_FAIL;
1594 retval = target->type->checksum_memory(target, address, size, &checksum);
1595 if (retval != ERROR_OK) {
1596 buffer = malloc(size);
1597 if (buffer == NULL) {
1598 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1599 return ERROR_COMMAND_SYNTAX_ERROR;
1601 retval = target_read_buffer(target, address, size, buffer);
1602 if (retval != ERROR_OK) {
1603 free(buffer);
1604 return retval;
1607 /* convert to target endianness */
1608 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1609 uint32_t target_data;
1610 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1611 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1614 retval = image_calculate_checksum(buffer, size, &checksum);
1615 free(buffer);
1618 *crc = checksum;
1620 return retval;
1623 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1625 int retval;
1626 if (!target_was_examined(target)) {
1627 LOG_ERROR("Target not examined yet");
1628 return ERROR_FAIL;
1631 if (target->type->blank_check_memory == 0)
1632 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1634 retval = target->type->blank_check_memory(target, address, size, blank);
1636 return retval;
1639 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1641 uint8_t value_buf[4];
1642 if (!target_was_examined(target)) {
1643 LOG_ERROR("Target not examined yet");
1644 return ERROR_FAIL;
1647 int retval = target_read_memory(target, address, 4, 1, value_buf);
1649 if (retval == ERROR_OK) {
1650 *value = target_buffer_get_u32(target, value_buf);
1651 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1652 address,
1653 *value);
1654 } else {
1655 *value = 0x0;
1656 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1657 address);
1660 return retval;
1663 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1665 uint8_t value_buf[2];
1666 if (!target_was_examined(target)) {
1667 LOG_ERROR("Target not examined yet");
1668 return ERROR_FAIL;
1671 int retval = target_read_memory(target, address, 2, 1, value_buf);
1673 if (retval == ERROR_OK) {
1674 *value = target_buffer_get_u16(target, value_buf);
1675 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1676 address,
1677 *value);
1678 } else {
1679 *value = 0x0;
1680 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1681 address);
1684 return retval;
1687 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1689 int retval = target_read_memory(target, address, 1, 1, value);
1690 if (!target_was_examined(target)) {
1691 LOG_ERROR("Target not examined yet");
1692 return ERROR_FAIL;
1695 if (retval == ERROR_OK) {
1696 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1697 address,
1698 *value);
1699 } else {
1700 *value = 0x0;
1701 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1702 address);
1705 return retval;
1708 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1710 int retval;
1711 uint8_t value_buf[4];
1712 if (!target_was_examined(target)) {
1713 LOG_ERROR("Target not examined yet");
1714 return ERROR_FAIL;
1717 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1718 address,
1719 value);
1721 target_buffer_set_u32(target, value_buf, value);
1722 retval = target_write_memory(target, address, 4, 1, value_buf);
1723 if (retval != ERROR_OK)
1724 LOG_DEBUG("failed: %i", retval);
1726 return retval;
1729 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1731 int retval;
1732 uint8_t value_buf[2];
1733 if (!target_was_examined(target)) {
1734 LOG_ERROR("Target not examined yet");
1735 return ERROR_FAIL;
1738 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1739 address,
1740 value);
1742 target_buffer_set_u16(target, value_buf, value);
1743 retval = target_write_memory(target, address, 2, 1, value_buf);
1744 if (retval != ERROR_OK)
1745 LOG_DEBUG("failed: %i", retval);
1747 return retval;
1750 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1752 int retval;
1753 if (!target_was_examined(target)) {
1754 LOG_ERROR("Target not examined yet");
1755 return ERROR_FAIL;
1758 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1759 address, value);
1761 retval = target_write_memory(target, address, 1, 1, &value);
1762 if (retval != ERROR_OK)
1763 LOG_DEBUG("failed: %i", retval);
1765 return retval;
1768 static int find_target(struct command_context *cmd_ctx, const char *name)
1770 struct target *target = get_target(name);
1771 if (target == NULL) {
1772 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
1773 return ERROR_FAIL;
1775 if (!target->tap->enabled) {
1776 LOG_USER("Target: TAP %s is disabled, "
1777 "can't be the current target\n",
1778 target->tap->dotted_name);
1779 return ERROR_FAIL;
1782 cmd_ctx->current_target = target->target_number;
1783 return ERROR_OK;
1787 COMMAND_HANDLER(handle_targets_command)
1789 int retval = ERROR_OK;
1790 if (CMD_ARGC == 1) {
1791 retval = find_target(CMD_CTX, CMD_ARGV[0]);
1792 if (retval == ERROR_OK) {
1793 /* we're done! */
1794 return retval;
1798 struct target *target = all_targets;
1799 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1800 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1801 while (target) {
1802 const char *state;
1803 char marker = ' ';
1805 if (target->tap->enabled)
1806 state = target_state_name(target);
1807 else
1808 state = "tap-disabled";
1810 if (CMD_CTX->current_target == target->target_number)
1811 marker = '*';
1813 /* keep columns lined up to match the headers above */
1814 command_print(CMD_CTX,
1815 "%2d%c %-18s %-10s %-6s %-18s %s",
1816 target->target_number,
1817 marker,
1818 target_name(target),
1819 target_type_name(target),
1820 Jim_Nvp_value2name_simple(nvp_target_endian,
1821 target->endianness)->name,
1822 target->tap->dotted_name,
1823 state);
1824 target = target->next;
1827 return retval;
1830 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1832 static int powerDropout;
1833 static int srstAsserted;
1835 static int runPowerRestore;
1836 static int runPowerDropout;
1837 static int runSrstAsserted;
1838 static int runSrstDeasserted;
1840 static int sense_handler(void)
1842 static int prevSrstAsserted;
1843 static int prevPowerdropout;
1845 int retval = jtag_power_dropout(&powerDropout);
1846 if (retval != ERROR_OK)
1847 return retval;
1849 int powerRestored;
1850 powerRestored = prevPowerdropout && !powerDropout;
1851 if (powerRestored)
1852 runPowerRestore = 1;
1854 long long current = timeval_ms();
1855 static long long lastPower;
1856 int waitMore = lastPower + 2000 > current;
1857 if (powerDropout && !waitMore) {
1858 runPowerDropout = 1;
1859 lastPower = current;
1862 retval = jtag_srst_asserted(&srstAsserted);
1863 if (retval != ERROR_OK)
1864 return retval;
1866 int srstDeasserted;
1867 srstDeasserted = prevSrstAsserted && !srstAsserted;
1869 static long long lastSrst;
1870 waitMore = lastSrst + 2000 > current;
1871 if (srstDeasserted && !waitMore) {
1872 runSrstDeasserted = 1;
1873 lastSrst = current;
1876 if (!prevSrstAsserted && srstAsserted)
1877 runSrstAsserted = 1;
1879 prevSrstAsserted = srstAsserted;
1880 prevPowerdropout = powerDropout;
1882 if (srstDeasserted || powerRestored) {
1883 /* Other than logging the event we can't do anything here.
1884 * Issuing a reset is a particularly bad idea as we might
1885 * be inside a reset already.
1889 return ERROR_OK;
1892 static int backoff_times;
1893 static int backoff_count;
1895 /* process target state changes */
1896 static int handle_target(void *priv)
1898 Jim_Interp *interp = (Jim_Interp *)priv;
1899 int retval = ERROR_OK;
1901 if (!is_jtag_poll_safe()) {
1902 /* polling is disabled currently */
1903 return ERROR_OK;
1906 /* we do not want to recurse here... */
1907 static int recursive;
1908 if (!recursive) {
1909 recursive = 1;
1910 sense_handler();
1911 /* danger! running these procedures can trigger srst assertions and power dropouts.
1912 * We need to avoid an infinite loop/recursion here and we do that by
1913 * clearing the flags after running these events.
1915 int did_something = 0;
1916 if (runSrstAsserted) {
1917 LOG_INFO("srst asserted detected, running srst_asserted proc.");
1918 Jim_Eval(interp, "srst_asserted");
1919 did_something = 1;
1921 if (runSrstDeasserted) {
1922 Jim_Eval(interp, "srst_deasserted");
1923 did_something = 1;
1925 if (runPowerDropout) {
1926 LOG_INFO("Power dropout detected, running power_dropout proc.");
1927 Jim_Eval(interp, "power_dropout");
1928 did_something = 1;
1930 if (runPowerRestore) {
1931 Jim_Eval(interp, "power_restore");
1932 did_something = 1;
1935 if (did_something) {
1936 /* clear detect flags */
1937 sense_handler();
1940 /* clear action flags */
1942 runSrstAsserted = 0;
1943 runSrstDeasserted = 0;
1944 runPowerRestore = 0;
1945 runPowerDropout = 0;
1947 recursive = 0;
1950 if (backoff_times > backoff_count) {
1951 /* do not poll this time as we failed previously */
1952 backoff_count++;
1953 return ERROR_OK;
1955 backoff_count = 0;
1957 /* Poll targets for state changes unless that's globally disabled.
1958 * Skip targets that are currently disabled.
1960 for (struct target *target = all_targets;
1961 is_jtag_poll_safe() && target;
1962 target = target->next) {
1963 if (!target->tap->enabled)
1964 continue;
1966 /* only poll target if we've got power and srst isn't asserted */
1967 if (!powerDropout && !srstAsserted) {
1968 /* polling may fail silently until the target has been examined */
1969 retval = target_poll(target);
1970 if (retval != ERROR_OK) {
1971 /* 100ms polling interval. Increase interval between polling up to 5000ms */
1972 if (backoff_times * polling_interval < 5000) {
1973 backoff_times *= 2;
1974 backoff_times++;
1976 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms",
1977 backoff_times * polling_interval);
1979 /* Tell GDB to halt the debugger. This allows the user to
1980 * run monitor commands to handle the situation.
1982 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1983 return retval;
1985 /* Since we succeeded, we reset backoff count */
1986 if (backoff_times > 0)
1987 LOG_USER("Polling succeeded again");
1988 backoff_times = 0;
1992 return retval;
1995 COMMAND_HANDLER(handle_reg_command)
1997 struct target *target;
1998 struct reg *reg = NULL;
1999 unsigned count = 0;
2000 char *value;
2002 LOG_DEBUG("-");
2004 target = get_current_target(CMD_CTX);
2006 /* list all available registers for the current target */
2007 if (CMD_ARGC == 0) {
2008 struct reg_cache *cache = target->reg_cache;
2010 count = 0;
2011 while (cache) {
2012 unsigned i;
2014 command_print(CMD_CTX, "===== %s", cache->name);
2016 for (i = 0, reg = cache->reg_list;
2017 i < cache->num_regs;
2018 i++, reg++, count++) {
2019 /* only print cached values if they are valid */
2020 if (reg->valid) {
2021 value = buf_to_str(reg->value,
2022 reg->size, 16);
2023 command_print(CMD_CTX,
2024 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2025 count, reg->name,
2026 reg->size, value,
2027 reg->dirty
2028 ? " (dirty)"
2029 : "");
2030 free(value);
2031 } else {
2032 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2033 count, reg->name,
2034 reg->size) ;
2037 cache = cache->next;
2040 return ERROR_OK;
2043 /* access a single register by its ordinal number */
2044 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2045 unsigned num;
2046 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2048 struct reg_cache *cache = target->reg_cache;
2049 count = 0;
2050 while (cache) {
2051 unsigned i;
2052 for (i = 0; i < cache->num_regs; i++) {
2053 if (count++ == num) {
2054 reg = &cache->reg_list[i];
2055 break;
2058 if (reg)
2059 break;
2060 cache = cache->next;
2063 if (!reg) {
2064 command_print(CMD_CTX, "%i is out of bounds, the current target "
2065 "has only %i registers (0 - %i)", num, count, count - 1);
2066 return ERROR_OK;
2068 } else {
2069 /* access a single register by its name */
2070 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2072 if (!reg) {
2073 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2074 return ERROR_OK;
2078 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2080 /* display a register */
2081 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2082 && (CMD_ARGV[1][0] <= '9')))) {
2083 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2084 reg->valid = 0;
2086 if (reg->valid == 0)
2087 reg->type->get(reg);
2088 value = buf_to_str(reg->value, reg->size, 16);
2089 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2090 free(value);
2091 return ERROR_OK;
2094 /* set register value */
2095 if (CMD_ARGC == 2) {
2096 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2097 if (buf == NULL)
2098 return ERROR_FAIL;
2099 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2101 reg->type->set(reg, buf);
2103 value = buf_to_str(reg->value, reg->size, 16);
2104 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2105 free(value);
2107 free(buf);
2109 return ERROR_OK;
2112 return ERROR_COMMAND_SYNTAX_ERROR;
2115 COMMAND_HANDLER(handle_poll_command)
2117 int retval = ERROR_OK;
2118 struct target *target = get_current_target(CMD_CTX);
2120 if (CMD_ARGC == 0) {
2121 command_print(CMD_CTX, "background polling: %s",
2122 jtag_poll_get_enabled() ? "on" : "off");
2123 command_print(CMD_CTX, "TAP: %s (%s)",
2124 target->tap->dotted_name,
2125 target->tap->enabled ? "enabled" : "disabled");
2126 if (!target->tap->enabled)
2127 return ERROR_OK;
2128 retval = target_poll(target);
2129 if (retval != ERROR_OK)
2130 return retval;
2131 retval = target_arch_state(target);
2132 if (retval != ERROR_OK)
2133 return retval;
2134 } else if (CMD_ARGC == 1) {
2135 bool enable;
2136 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2137 jtag_poll_set_enabled(enable);
2138 } else
2139 return ERROR_COMMAND_SYNTAX_ERROR;
2141 return retval;
2144 COMMAND_HANDLER(handle_wait_halt_command)
2146 if (CMD_ARGC > 1)
2147 return ERROR_COMMAND_SYNTAX_ERROR;
2149 unsigned ms = 5000;
2150 if (1 == CMD_ARGC) {
2151 int retval = parse_uint(CMD_ARGV[0], &ms);
2152 if (ERROR_OK != retval)
2153 return ERROR_COMMAND_SYNTAX_ERROR;
2154 /* convert seconds (given) to milliseconds (needed) */
2155 ms *= 1000;
2158 struct target *target = get_current_target(CMD_CTX);
2159 return target_wait_state(target, TARGET_HALTED, ms);
2162 /* wait for target state to change. The trick here is to have a low
2163 * latency for short waits and not to suck up all the CPU time
2164 * on longer waits.
2166 * After 500ms, keep_alive() is invoked
2168 int target_wait_state(struct target *target, enum target_state state, int ms)
2170 int retval;
2171 long long then = 0, cur;
2172 int once = 1;
2174 for (;;) {
2175 retval = target_poll(target);
2176 if (retval != ERROR_OK)
2177 return retval;
2178 if (target->state == state)
2179 break;
2180 cur = timeval_ms();
2181 if (once) {
2182 once = 0;
2183 then = timeval_ms();
2184 LOG_DEBUG("waiting for target %s...",
2185 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2188 if (cur-then > 500)
2189 keep_alive();
2191 if ((cur-then) > ms) {
2192 LOG_ERROR("timed out while waiting for target %s",
2193 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2194 return ERROR_FAIL;
2198 return ERROR_OK;
2201 COMMAND_HANDLER(handle_halt_command)
2203 LOG_DEBUG("-");
2205 struct target *target = get_current_target(CMD_CTX);
2206 int retval = target_halt(target);
2207 if (ERROR_OK != retval)
2208 return retval;
2210 if (CMD_ARGC == 1) {
2211 unsigned wait_local;
2212 retval = parse_uint(CMD_ARGV[0], &wait_local);
2213 if (ERROR_OK != retval)
2214 return ERROR_COMMAND_SYNTAX_ERROR;
2215 if (!wait_local)
2216 return ERROR_OK;
2219 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2222 COMMAND_HANDLER(handle_soft_reset_halt_command)
2224 struct target *target = get_current_target(CMD_CTX);
2226 LOG_USER("requesting target halt and executing a soft reset");
2228 target->type->soft_reset_halt(target);
2230 return ERROR_OK;
2233 COMMAND_HANDLER(handle_reset_command)
2235 if (CMD_ARGC > 1)
2236 return ERROR_COMMAND_SYNTAX_ERROR;
2238 enum target_reset_mode reset_mode = RESET_RUN;
2239 if (CMD_ARGC == 1) {
2240 const Jim_Nvp *n;
2241 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2242 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2243 return ERROR_COMMAND_SYNTAX_ERROR;
2244 reset_mode = n->value;
2247 /* reset *all* targets */
2248 return target_process_reset(CMD_CTX, reset_mode);
2252 COMMAND_HANDLER(handle_resume_command)
2254 int current = 1;
2255 if (CMD_ARGC > 1)
2256 return ERROR_COMMAND_SYNTAX_ERROR;
2258 struct target *target = get_current_target(CMD_CTX);
2259 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2261 /* with no CMD_ARGV, resume from current pc, addr = 0,
2262 * with one arguments, addr = CMD_ARGV[0],
2263 * handle breakpoints, not debugging */
2264 uint32_t addr = 0;
2265 if (CMD_ARGC == 1) {
2266 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2267 current = 0;
2270 return target_resume(target, current, addr, 1, 0);
2273 COMMAND_HANDLER(handle_step_command)
2275 if (CMD_ARGC > 1)
2276 return ERROR_COMMAND_SYNTAX_ERROR;
2278 LOG_DEBUG("-");
2280 /* with no CMD_ARGV, step from current pc, addr = 0,
2281 * with one argument addr = CMD_ARGV[0],
2282 * handle breakpoints, debugging */
2283 uint32_t addr = 0;
2284 int current_pc = 1;
2285 if (CMD_ARGC == 1) {
2286 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2287 current_pc = 0;
2290 struct target *target = get_current_target(CMD_CTX);
2292 return target->type->step(target, current_pc, addr, 1);
2295 static void handle_md_output(struct command_context *cmd_ctx,
2296 struct target *target, uint32_t address, unsigned size,
2297 unsigned count, const uint8_t *buffer)
2299 const unsigned line_bytecnt = 32;
2300 unsigned line_modulo = line_bytecnt / size;
2302 char output[line_bytecnt * 4 + 1];
2303 unsigned output_len = 0;
2305 const char *value_fmt;
2306 switch (size) {
2307 case 4:
2308 value_fmt = "%8.8x ";
2309 break;
2310 case 2:
2311 value_fmt = "%4.4x ";
2312 break;
2313 case 1:
2314 value_fmt = "%2.2x ";
2315 break;
2316 default:
2317 /* "can't happen", caller checked */
2318 LOG_ERROR("invalid memory read size: %u", size);
2319 return;
2322 for (unsigned i = 0; i < count; i++) {
2323 if (i % line_modulo == 0) {
2324 output_len += snprintf(output + output_len,
2325 sizeof(output) - output_len,
2326 "0x%8.8x: ",
2327 (unsigned)(address + (i*size)));
2330 uint32_t value = 0;
2331 const uint8_t *value_ptr = buffer + i * size;
2332 switch (size) {
2333 case 4:
2334 value = target_buffer_get_u32(target, value_ptr);
2335 break;
2336 case 2:
2337 value = target_buffer_get_u16(target, value_ptr);
2338 break;
2339 case 1:
2340 value = *value_ptr;
2342 output_len += snprintf(output + output_len,
2343 sizeof(output) - output_len,
2344 value_fmt, value);
2346 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2347 command_print(cmd_ctx, "%s", output);
2348 output_len = 0;
2353 COMMAND_HANDLER(handle_md_command)
2355 if (CMD_ARGC < 1)
2356 return ERROR_COMMAND_SYNTAX_ERROR;
2358 unsigned size = 0;
2359 switch (CMD_NAME[2]) {
2360 case 'w':
2361 size = 4;
2362 break;
2363 case 'h':
2364 size = 2;
2365 break;
2366 case 'b':
2367 size = 1;
2368 break;
2369 default:
2370 return ERROR_COMMAND_SYNTAX_ERROR;
2373 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2374 int (*fn)(struct target *target,
2375 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2376 if (physical) {
2377 CMD_ARGC--;
2378 CMD_ARGV++;
2379 fn = target_read_phys_memory;
2380 } else
2381 fn = target_read_memory;
2382 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2383 return ERROR_COMMAND_SYNTAX_ERROR;
2385 uint32_t address;
2386 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2388 unsigned count = 1;
2389 if (CMD_ARGC == 2)
2390 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2392 uint8_t *buffer = calloc(count, size);
2394 struct target *target = get_current_target(CMD_CTX);
2395 int retval = fn(target, address, size, count, buffer);
2396 if (ERROR_OK == retval)
2397 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2399 free(buffer);
2401 return retval;
2404 typedef int (*target_write_fn)(struct target *target,
2405 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2407 static int target_write_memory_fast(struct target *target,
2408 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2410 return target_write_buffer(target, address, size * count, buffer);
2413 static int target_fill_mem(struct target *target,
2414 uint32_t address,
2415 target_write_fn fn,
2416 unsigned data_size,
2417 /* value */
2418 uint32_t b,
2419 /* count */
2420 unsigned c)
2422 /* We have to write in reasonably large chunks to be able
2423 * to fill large memory areas with any sane speed */
2424 const unsigned chunk_size = 16384;
2425 uint8_t *target_buf = malloc(chunk_size * data_size);
2426 if (target_buf == NULL) {
2427 LOG_ERROR("Out of memory");
2428 return ERROR_FAIL;
2431 for (unsigned i = 0; i < chunk_size; i++) {
2432 switch (data_size) {
2433 case 4:
2434 target_buffer_set_u32(target, target_buf + i * data_size, b);
2435 break;
2436 case 2:
2437 target_buffer_set_u16(target, target_buf + i * data_size, b);
2438 break;
2439 case 1:
2440 target_buffer_set_u8(target, target_buf + i * data_size, b);
2441 break;
2442 default:
2443 exit(-1);
2447 int retval = ERROR_OK;
2449 for (unsigned x = 0; x < c; x += chunk_size) {
2450 unsigned current;
2451 current = c - x;
2452 if (current > chunk_size)
2453 current = chunk_size;
2454 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2455 if (retval != ERROR_OK)
2456 break;
2457 /* avoid GDB timeouts */
2458 keep_alive();
2460 free(target_buf);
2462 return retval;
2466 COMMAND_HANDLER(handle_mw_command)
2468 if (CMD_ARGC < 2)
2469 return ERROR_COMMAND_SYNTAX_ERROR;
2470 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2471 target_write_fn fn;
2472 if (physical) {
2473 CMD_ARGC--;
2474 CMD_ARGV++;
2475 fn = target_write_phys_memory;
2476 } else
2477 fn = target_write_memory_fast;
2478 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2479 return ERROR_COMMAND_SYNTAX_ERROR;
2481 uint32_t address;
2482 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2484 uint32_t value;
2485 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2487 unsigned count = 1;
2488 if (CMD_ARGC == 3)
2489 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2491 struct target *target = get_current_target(CMD_CTX);
2492 unsigned wordsize;
2493 switch (CMD_NAME[2]) {
2494 case 'w':
2495 wordsize = 4;
2496 break;
2497 case 'h':
2498 wordsize = 2;
2499 break;
2500 case 'b':
2501 wordsize = 1;
2502 break;
2503 default:
2504 return ERROR_COMMAND_SYNTAX_ERROR;
2507 return target_fill_mem(target, address, fn, wordsize, value, count);
2510 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2511 uint32_t *min_address, uint32_t *max_address)
2513 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2514 return ERROR_COMMAND_SYNTAX_ERROR;
2516 /* a base address isn't always necessary,
2517 * default to 0x0 (i.e. don't relocate) */
2518 if (CMD_ARGC >= 2) {
2519 uint32_t addr;
2520 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2521 image->base_address = addr;
2522 image->base_address_set = 1;
2523 } else
2524 image->base_address_set = 0;
2526 image->start_address_set = 0;
2528 if (CMD_ARGC >= 4)
2529 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2530 if (CMD_ARGC == 5) {
2531 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2532 /* use size (given) to find max (required) */
2533 *max_address += *min_address;
2536 if (*min_address > *max_address)
2537 return ERROR_COMMAND_SYNTAX_ERROR;
2539 return ERROR_OK;
2542 COMMAND_HANDLER(handle_load_image_command)
2544 uint8_t *buffer;
2545 size_t buf_cnt;
2546 uint32_t image_size;
2547 uint32_t min_address = 0;
2548 uint32_t max_address = 0xffffffff;
2549 int i;
2550 struct image image;
2552 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2553 &image, &min_address, &max_address);
2554 if (ERROR_OK != retval)
2555 return retval;
2557 struct target *target = get_current_target(CMD_CTX);
2559 struct duration bench;
2560 duration_start(&bench);
2562 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2563 return ERROR_OK;
2565 image_size = 0x0;
2566 retval = ERROR_OK;
2567 for (i = 0; i < image.num_sections; i++) {
2568 buffer = malloc(image.sections[i].size);
2569 if (buffer == NULL) {
2570 command_print(CMD_CTX,
2571 "error allocating buffer for section (%d bytes)",
2572 (int)(image.sections[i].size));
2573 break;
2576 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2577 if (retval != ERROR_OK) {
2578 free(buffer);
2579 break;
2582 uint32_t offset = 0;
2583 uint32_t length = buf_cnt;
2585 /* DANGER!!! beware of unsigned comparision here!!! */
2587 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2588 (image.sections[i].base_address < max_address)) {
2590 if (image.sections[i].base_address < min_address) {
2591 /* clip addresses below */
2592 offset += min_address-image.sections[i].base_address;
2593 length -= offset;
2596 if (image.sections[i].base_address + buf_cnt > max_address)
2597 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2599 retval = target_write_buffer(target,
2600 image.sections[i].base_address + offset, length, buffer + offset);
2601 if (retval != ERROR_OK) {
2602 free(buffer);
2603 break;
2605 image_size += length;
2606 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2607 (unsigned int)length,
2608 image.sections[i].base_address + offset);
2611 free(buffer);
2614 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2615 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2616 "in %fs (%0.3f KiB/s)", image_size,
2617 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2620 image_close(&image);
2622 return retval;
2626 COMMAND_HANDLER(handle_dump_image_command)
2628 struct fileio fileio;
2629 uint8_t *buffer;
2630 int retval, retvaltemp;
2631 uint32_t address, size;
2632 struct duration bench;
2633 struct target *target = get_current_target(CMD_CTX);
2635 if (CMD_ARGC != 3)
2636 return ERROR_COMMAND_SYNTAX_ERROR;
2638 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2639 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2641 uint32_t buf_size = (size > 4096) ? 4096 : size;
2642 buffer = malloc(buf_size);
2643 if (!buffer)
2644 return ERROR_FAIL;
2646 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2647 if (retval != ERROR_OK) {
2648 free(buffer);
2649 return retval;
2652 duration_start(&bench);
2654 while (size > 0) {
2655 size_t size_written;
2656 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2657 retval = target_read_buffer(target, address, this_run_size, buffer);
2658 if (retval != ERROR_OK)
2659 break;
2661 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2662 if (retval != ERROR_OK)
2663 break;
2665 size -= this_run_size;
2666 address += this_run_size;
2669 free(buffer);
2671 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2672 int filesize;
2673 retval = fileio_size(&fileio, &filesize);
2674 if (retval != ERROR_OK)
2675 return retval;
2676 command_print(CMD_CTX,
2677 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2678 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2681 retvaltemp = fileio_close(&fileio);
2682 if (retvaltemp != ERROR_OK)
2683 return retvaltemp;
2685 return retval;
2688 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2690 uint8_t *buffer;
2691 size_t buf_cnt;
2692 uint32_t image_size;
2693 int i;
2694 int retval;
2695 uint32_t checksum = 0;
2696 uint32_t mem_checksum = 0;
2698 struct image image;
2700 struct target *target = get_current_target(CMD_CTX);
2702 if (CMD_ARGC < 1)
2703 return ERROR_COMMAND_SYNTAX_ERROR;
2705 if (!target) {
2706 LOG_ERROR("no target selected");
2707 return ERROR_FAIL;
2710 struct duration bench;
2711 duration_start(&bench);
2713 if (CMD_ARGC >= 2) {
2714 uint32_t addr;
2715 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2716 image.base_address = addr;
2717 image.base_address_set = 1;
2718 } else {
2719 image.base_address_set = 0;
2720 image.base_address = 0x0;
2723 image.start_address_set = 0;
2725 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2726 if (retval != ERROR_OK)
2727 return retval;
2729 image_size = 0x0;
2730 int diffs = 0;
2731 retval = ERROR_OK;
2732 for (i = 0; i < image.num_sections; i++) {
2733 buffer = malloc(image.sections[i].size);
2734 if (buffer == NULL) {
2735 command_print(CMD_CTX,
2736 "error allocating buffer for section (%d bytes)",
2737 (int)(image.sections[i].size));
2738 break;
2740 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2741 if (retval != ERROR_OK) {
2742 free(buffer);
2743 break;
2746 if (verify) {
2747 /* calculate checksum of image */
2748 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2749 if (retval != ERROR_OK) {
2750 free(buffer);
2751 break;
2754 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2755 if (retval != ERROR_OK) {
2756 free(buffer);
2757 break;
2760 if (checksum != mem_checksum) {
2761 /* failed crc checksum, fall back to a binary compare */
2762 uint8_t *data;
2764 if (diffs == 0)
2765 LOG_ERROR("checksum mismatch - attempting binary compare");
2767 data = (uint8_t *)malloc(buf_cnt);
2769 /* Can we use 32bit word accesses? */
2770 int size = 1;
2771 int count = buf_cnt;
2772 if ((count % 4) == 0) {
2773 size *= 4;
2774 count /= 4;
2776 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2777 if (retval == ERROR_OK) {
2778 uint32_t t;
2779 for (t = 0; t < buf_cnt; t++) {
2780 if (data[t] != buffer[t]) {
2781 command_print(CMD_CTX,
2782 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2783 diffs,
2784 (unsigned)(t + image.sections[i].base_address),
2785 data[t],
2786 buffer[t]);
2787 if (diffs++ >= 127) {
2788 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2789 free(data);
2790 free(buffer);
2791 goto done;
2794 keep_alive();
2797 free(data);
2799 } else {
2800 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2801 image.sections[i].base_address,
2802 buf_cnt);
2805 free(buffer);
2806 image_size += buf_cnt;
2808 if (diffs > 0)
2809 command_print(CMD_CTX, "No more differences found.");
2810 done:
2811 if (diffs > 0)
2812 retval = ERROR_FAIL;
2813 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2814 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2815 "in %fs (%0.3f KiB/s)", image_size,
2816 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2819 image_close(&image);
2821 return retval;
2824 COMMAND_HANDLER(handle_verify_image_command)
2826 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2829 COMMAND_HANDLER(handle_test_image_command)
2831 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2834 static int handle_bp_command_list(struct command_context *cmd_ctx)
2836 struct target *target = get_current_target(cmd_ctx);
2837 struct breakpoint *breakpoint = target->breakpoints;
2838 while (breakpoint) {
2839 if (breakpoint->type == BKPT_SOFT) {
2840 char *buf = buf_to_str(breakpoint->orig_instr,
2841 breakpoint->length, 16);
2842 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2843 breakpoint->address,
2844 breakpoint->length,
2845 breakpoint->set, buf);
2846 free(buf);
2847 } else {
2848 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
2849 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
2850 breakpoint->asid,
2851 breakpoint->length, breakpoint->set);
2852 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
2853 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
2854 breakpoint->address,
2855 breakpoint->length, breakpoint->set);
2856 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
2857 breakpoint->asid);
2858 } else
2859 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
2860 breakpoint->address,
2861 breakpoint->length, breakpoint->set);
2864 breakpoint = breakpoint->next;
2866 return ERROR_OK;
2869 static int handle_bp_command_set(struct command_context *cmd_ctx,
2870 uint32_t addr, uint32_t asid, uint32_t length, int hw)
2872 struct target *target = get_current_target(cmd_ctx);
2874 if (asid == 0) {
2875 int retval = breakpoint_add(target, addr, length, hw);
2876 if (ERROR_OK == retval)
2877 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2878 else {
2879 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
2880 return retval;
2882 } else if (addr == 0) {
2883 int retval = context_breakpoint_add(target, asid, length, hw);
2884 if (ERROR_OK == retval)
2885 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
2886 else {
2887 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
2888 return retval;
2890 } else {
2891 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
2892 if (ERROR_OK == retval)
2893 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
2894 else {
2895 LOG_ERROR("Failure setting breakpoint, the same address is already used");
2896 return retval;
2899 return ERROR_OK;
2902 COMMAND_HANDLER(handle_bp_command)
2904 uint32_t addr;
2905 uint32_t asid;
2906 uint32_t length;
2907 int hw = BKPT_SOFT;
2909 switch (CMD_ARGC) {
2910 case 0:
2911 return handle_bp_command_list(CMD_CTX);
2913 case 2:
2914 asid = 0;
2915 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2916 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2917 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
2919 case 3:
2920 if (strcmp(CMD_ARGV[2], "hw") == 0) {
2921 hw = BKPT_HARD;
2922 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2924 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2926 asid = 0;
2927 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
2928 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
2929 hw = BKPT_HARD;
2930 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
2931 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2932 addr = 0;
2933 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
2936 case 4:
2937 hw = BKPT_HARD;
2938 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2939 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
2940 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
2941 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
2943 default:
2944 return ERROR_COMMAND_SYNTAX_ERROR;
2948 COMMAND_HANDLER(handle_rbp_command)
2950 if (CMD_ARGC != 1)
2951 return ERROR_COMMAND_SYNTAX_ERROR;
2953 uint32_t addr;
2954 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2956 struct target *target = get_current_target(CMD_CTX);
2957 breakpoint_remove(target, addr);
2959 return ERROR_OK;
2962 COMMAND_HANDLER(handle_wp_command)
2964 struct target *target = get_current_target(CMD_CTX);
2966 if (CMD_ARGC == 0) {
2967 struct watchpoint *watchpoint = target->watchpoints;
2969 while (watchpoint) {
2970 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2971 ", len: 0x%8.8" PRIx32
2972 ", r/w/a: %i, value: 0x%8.8" PRIx32
2973 ", mask: 0x%8.8" PRIx32,
2974 watchpoint->address,
2975 watchpoint->length,
2976 (int)watchpoint->rw,
2977 watchpoint->value,
2978 watchpoint->mask);
2979 watchpoint = watchpoint->next;
2981 return ERROR_OK;
2984 enum watchpoint_rw type = WPT_ACCESS;
2985 uint32_t addr = 0;
2986 uint32_t length = 0;
2987 uint32_t data_value = 0x0;
2988 uint32_t data_mask = 0xffffffff;
2990 switch (CMD_ARGC) {
2991 case 5:
2992 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2993 /* fall through */
2994 case 4:
2995 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2996 /* fall through */
2997 case 3:
2998 switch (CMD_ARGV[2][0]) {
2999 case 'r':
3000 type = WPT_READ;
3001 break;
3002 case 'w':
3003 type = WPT_WRITE;
3004 break;
3005 case 'a':
3006 type = WPT_ACCESS;
3007 break;
3008 default:
3009 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3010 return ERROR_COMMAND_SYNTAX_ERROR;
3012 /* fall through */
3013 case 2:
3014 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3015 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3016 break;
3018 default:
3019 return ERROR_COMMAND_SYNTAX_ERROR;
3022 int retval = watchpoint_add(target, addr, length, type,
3023 data_value, data_mask);
3024 if (ERROR_OK != retval)
3025 LOG_ERROR("Failure setting watchpoints");
3027 return retval;
3030 COMMAND_HANDLER(handle_rwp_command)
3032 if (CMD_ARGC != 1)
3033 return ERROR_COMMAND_SYNTAX_ERROR;
3035 uint32_t addr;
3036 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3038 struct target *target = get_current_target(CMD_CTX);
3039 watchpoint_remove(target, addr);
3041 return ERROR_OK;
3045 * Translate a virtual address to a physical address.
3047 * The low-level target implementation must have logged a detailed error
3048 * which is forwarded to telnet/GDB session.
3050 COMMAND_HANDLER(handle_virt2phys_command)
3052 if (CMD_ARGC != 1)
3053 return ERROR_COMMAND_SYNTAX_ERROR;
3055 uint32_t va;
3056 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3057 uint32_t pa;
3059 struct target *target = get_current_target(CMD_CTX);
3060 int retval = target->type->virt2phys(target, va, &pa);
3061 if (retval == ERROR_OK)
3062 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3064 return retval;
3067 static void writeData(FILE *f, const void *data, size_t len)
3069 size_t written = fwrite(data, 1, len, f);
3070 if (written != len)
3071 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3074 static void writeLong(FILE *f, int l)
3076 int i;
3077 for (i = 0; i < 4; i++) {
3078 char c = (l >> (i*8))&0xff;
3079 writeData(f, &c, 1);
3084 static void writeString(FILE *f, char *s)
3086 writeData(f, s, strlen(s));
3089 /* Dump a gmon.out histogram file. */
3090 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3092 uint32_t i;
3093 FILE *f = fopen(filename, "w");
3094 if (f == NULL)
3095 return;
3096 writeString(f, "gmon");
3097 writeLong(f, 0x00000001); /* Version */
3098 writeLong(f, 0); /* padding */
3099 writeLong(f, 0); /* padding */
3100 writeLong(f, 0); /* padding */
3102 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3103 writeData(f, &zero, 1);
3105 /* figure out bucket size */
3106 uint32_t min = samples[0];
3107 uint32_t max = samples[0];
3108 for (i = 0; i < sampleNum; i++) {
3109 if (min > samples[i])
3110 min = samples[i];
3111 if (max < samples[i])
3112 max = samples[i];
3115 int addressSpace = (max - min + 1);
3116 assert(addressSpace >= 2);
3118 static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3119 uint32_t length = addressSpace;
3120 if (length > maxBuckets)
3121 length = maxBuckets;
3122 int *buckets = malloc(sizeof(int)*length);
3123 if (buckets == NULL) {
3124 fclose(f);
3125 return;
3127 memset(buckets, 0, sizeof(int) * length);
3128 for (i = 0; i < sampleNum; i++) {
3129 uint32_t address = samples[i];
3130 long long a = address - min;
3131 long long b = length - 1;
3132 long long c = addressSpace - 1;
3133 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3134 buckets[index_t]++;
3137 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3138 writeLong(f, min); /* low_pc */
3139 writeLong(f, max); /* high_pc */
3140 writeLong(f, length); /* # of samples */
3141 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3142 writeString(f, "seconds");
3143 for (i = 0; i < (15-strlen("seconds")); i++)
3144 writeData(f, &zero, 1);
3145 writeString(f, "s");
3147 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3149 char *data = malloc(2 * length);
3150 if (data != NULL) {
3151 for (i = 0; i < length; i++) {
3152 int val;
3153 val = buckets[i];
3154 if (val > 65535)
3155 val = 65535;
3156 data[i * 2] = val&0xff;
3157 data[i * 2 + 1] = (val >> 8) & 0xff;
3159 free(buckets);
3160 writeData(f, data, length * 2);
3161 free(data);
3162 } else
3163 free(buckets);
3165 fclose(f);
3168 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3169 * which will be used as a random sampling of PC */
3170 COMMAND_HANDLER(handle_profile_command)
3172 struct target *target = get_current_target(CMD_CTX);
3173 struct timeval timeout, now;
3175 gettimeofday(&timeout, NULL);
3176 if (CMD_ARGC != 2)
3177 return ERROR_COMMAND_SYNTAX_ERROR;
3178 unsigned offset;
3179 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3181 timeval_add_time(&timeout, offset, 0);
3184 * @todo: Some cores let us sample the PC without the
3185 * annoying halt/resume step; for example, ARMv7 PCSR.
3186 * Provide a way to use that more efficient mechanism.
3189 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3191 static const int maxSample = 10000;
3192 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3193 if (samples == NULL)
3194 return ERROR_OK;
3196 int numSamples = 0;
3197 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3198 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3200 int retval = ERROR_OK;
3201 for (;;) {
3202 target_poll(target);
3203 if (target->state == TARGET_HALTED) {
3204 uint32_t t = *((uint32_t *)reg->value);
3205 samples[numSamples++] = t;
3206 /* current pc, addr = 0, do not handle breakpoints, not debugging */
3207 retval = target_resume(target, 1, 0, 0, 0);
3208 target_poll(target);
3209 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3210 } else if (target->state == TARGET_RUNNING) {
3211 /* We want to quickly sample the PC. */
3212 retval = target_halt(target);
3213 if (retval != ERROR_OK) {
3214 free(samples);
3215 return retval;
3217 } else {
3218 command_print(CMD_CTX, "Target not halted or running");
3219 retval = ERROR_OK;
3220 break;
3222 if (retval != ERROR_OK)
3223 break;
3225 gettimeofday(&now, NULL);
3226 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3227 && (now.tv_usec >= timeout.tv_usec))) {
3228 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3229 retval = target_poll(target);
3230 if (retval != ERROR_OK) {
3231 free(samples);
3232 return retval;
3234 if (target->state == TARGET_HALTED) {
3235 /* current pc, addr = 0, do not handle
3236 * breakpoints, not debugging */
3237 target_resume(target, 1, 0, 0, 0);
3239 retval = target_poll(target);
3240 if (retval != ERROR_OK) {
3241 free(samples);
3242 return retval;
3244 writeGmon(samples, numSamples, CMD_ARGV[1]);
3245 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3246 break;
3249 free(samples);
3251 return retval;
3254 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3256 char *namebuf;
3257 Jim_Obj *nameObjPtr, *valObjPtr;
3258 int result;
3260 namebuf = alloc_printf("%s(%d)", varname, idx);
3261 if (!namebuf)
3262 return JIM_ERR;
3264 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3265 valObjPtr = Jim_NewIntObj(interp, val);
3266 if (!nameObjPtr || !valObjPtr) {
3267 free(namebuf);
3268 return JIM_ERR;
3271 Jim_IncrRefCount(nameObjPtr);
3272 Jim_IncrRefCount(valObjPtr);
3273 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3274 Jim_DecrRefCount(interp, nameObjPtr);
3275 Jim_DecrRefCount(interp, valObjPtr);
3276 free(namebuf);
3277 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3278 return result;
3281 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3283 struct command_context *context;
3284 struct target *target;
3286 context = current_command_context(interp);
3287 assert(context != NULL);
3289 target = get_current_target(context);
3290 if (target == NULL) {
3291 LOG_ERROR("mem2array: no current target");
3292 return JIM_ERR;
3295 return target_mem2array(interp, target, argc - 1, argv + 1);
3298 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3300 long l;
3301 uint32_t width;
3302 int len;
3303 uint32_t addr;
3304 uint32_t count;
3305 uint32_t v;
3306 const char *varname;
3307 int n, e, retval;
3308 uint32_t i;
3310 /* argv[1] = name of array to receive the data
3311 * argv[2] = desired width
3312 * argv[3] = memory address
3313 * argv[4] = count of times to read
3315 if (argc != 4) {
3316 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3317 return JIM_ERR;
3319 varname = Jim_GetString(argv[0], &len);
3320 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3322 e = Jim_GetLong(interp, argv[1], &l);
3323 width = l;
3324 if (e != JIM_OK)
3325 return e;
3327 e = Jim_GetLong(interp, argv[2], &l);
3328 addr = l;
3329 if (e != JIM_OK)
3330 return e;
3331 e = Jim_GetLong(interp, argv[3], &l);
3332 len = l;
3333 if (e != JIM_OK)
3334 return e;
3335 switch (width) {
3336 case 8:
3337 width = 1;
3338 break;
3339 case 16:
3340 width = 2;
3341 break;
3342 case 32:
3343 width = 4;
3344 break;
3345 default:
3346 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3347 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3348 return JIM_ERR;
3350 if (len == 0) {
3351 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3352 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3353 return JIM_ERR;
3355 if ((addr + (len * width)) < addr) {
3356 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3357 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3358 return JIM_ERR;
3360 /* absurd transfer size? */
3361 if (len > 65536) {
3362 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3363 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3364 return JIM_ERR;
3367 if ((width == 1) ||
3368 ((width == 2) && ((addr & 1) == 0)) ||
3369 ((width == 4) && ((addr & 3) == 0))) {
3370 /* all is well */
3371 } else {
3372 char buf[100];
3373 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3374 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3375 addr,
3376 width);
3377 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3378 return JIM_ERR;
3381 /* Transfer loop */
3383 /* index counter */
3384 n = 0;
3386 size_t buffersize = 4096;
3387 uint8_t *buffer = malloc(buffersize);
3388 if (buffer == NULL)
3389 return JIM_ERR;
3391 /* assume ok */
3392 e = JIM_OK;
3393 while (len) {
3394 /* Slurp... in buffer size chunks */
3396 count = len; /* in objects.. */
3397 if (count > (buffersize / width))
3398 count = (buffersize / width);
3400 retval = target_read_memory(target, addr, width, count, buffer);
3401 if (retval != ERROR_OK) {
3402 /* BOO !*/
3403 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3404 (unsigned int)addr,
3405 (int)width,
3406 (int)count);
3407 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3408 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3409 e = JIM_ERR;
3410 break;
3411 } else {
3412 v = 0; /* shut up gcc */
3413 for (i = 0; i < count ; i++, n++) {
3414 switch (width) {
3415 case 4:
3416 v = target_buffer_get_u32(target, &buffer[i*width]);
3417 break;
3418 case 2:
3419 v = target_buffer_get_u16(target, &buffer[i*width]);
3420 break;
3421 case 1:
3422 v = buffer[i] & 0x0ff;
3423 break;
3425 new_int_array_element(interp, varname, n, v);
3427 len -= count;
3431 free(buffer);
3433 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3435 return e;
3438 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3440 char *namebuf;
3441 Jim_Obj *nameObjPtr, *valObjPtr;
3442 int result;
3443 long l;
3445 namebuf = alloc_printf("%s(%d)", varname, idx);
3446 if (!namebuf)
3447 return JIM_ERR;
3449 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3450 if (!nameObjPtr) {
3451 free(namebuf);
3452 return JIM_ERR;
3455 Jim_IncrRefCount(nameObjPtr);
3456 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3457 Jim_DecrRefCount(interp, nameObjPtr);
3458 free(namebuf);
3459 if (valObjPtr == NULL)
3460 return JIM_ERR;
3462 result = Jim_GetLong(interp, valObjPtr, &l);
3463 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3464 *val = l;
3465 return result;
3468 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3470 struct command_context *context;
3471 struct target *target;
3473 context = current_command_context(interp);
3474 assert(context != NULL);
3476 target = get_current_target(context);
3477 if (target == NULL) {
3478 LOG_ERROR("array2mem: no current target");
3479 return JIM_ERR;
3482 return target_array2mem(interp, target, argc-1, argv + 1);
3485 static int target_array2mem(Jim_Interp *interp, struct target *target,
3486 int argc, Jim_Obj *const *argv)
3488 long l;
3489 uint32_t width;
3490 int len;
3491 uint32_t addr;
3492 uint32_t count;
3493 uint32_t v;
3494 const char *varname;
3495 int n, e, retval;
3496 uint32_t i;
3498 /* argv[1] = name of array to get the data
3499 * argv[2] = desired width
3500 * argv[3] = memory address
3501 * argv[4] = count to write
3503 if (argc != 4) {
3504 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3505 return JIM_ERR;
3507 varname = Jim_GetString(argv[0], &len);
3508 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3510 e = Jim_GetLong(interp, argv[1], &l);
3511 width = l;
3512 if (e != JIM_OK)
3513 return e;
3515 e = Jim_GetLong(interp, argv[2], &l);
3516 addr = l;
3517 if (e != JIM_OK)
3518 return e;
3519 e = Jim_GetLong(interp, argv[3], &l);
3520 len = l;
3521 if (e != JIM_OK)
3522 return e;
3523 switch (width) {
3524 case 8:
3525 width = 1;
3526 break;
3527 case 16:
3528 width = 2;
3529 break;
3530 case 32:
3531 width = 4;
3532 break;
3533 default:
3534 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3535 Jim_AppendStrings(interp, Jim_GetResult(interp),
3536 "Invalid width param, must be 8/16/32", NULL);
3537 return JIM_ERR;
3539 if (len == 0) {
3540 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3541 Jim_AppendStrings(interp, Jim_GetResult(interp),
3542 "array2mem: zero width read?", NULL);
3543 return JIM_ERR;
3545 if ((addr + (len * width)) < addr) {
3546 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3547 Jim_AppendStrings(interp, Jim_GetResult(interp),
3548 "array2mem: addr + len - wraps to zero?", NULL);
3549 return JIM_ERR;
3551 /* absurd transfer size? */
3552 if (len > 65536) {
3553 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3554 Jim_AppendStrings(interp, Jim_GetResult(interp),
3555 "array2mem: absurd > 64K item request", NULL);
3556 return JIM_ERR;
3559 if ((width == 1) ||
3560 ((width == 2) && ((addr & 1) == 0)) ||
3561 ((width == 4) && ((addr & 3) == 0))) {
3562 /* all is well */
3563 } else {
3564 char buf[100];
3565 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3566 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3567 (unsigned int)addr,
3568 (int)width);
3569 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3570 return JIM_ERR;
3573 /* Transfer loop */
3575 /* index counter */
3576 n = 0;
3577 /* assume ok */
3578 e = JIM_OK;
3580 size_t buffersize = 4096;
3581 uint8_t *buffer = malloc(buffersize);
3582 if (buffer == NULL)
3583 return JIM_ERR;
3585 while (len) {
3586 /* Slurp... in buffer size chunks */
3588 count = len; /* in objects.. */
3589 if (count > (buffersize / width))
3590 count = (buffersize / width);
3592 v = 0; /* shut up gcc */
3593 for (i = 0; i < count; i++, n++) {
3594 get_int_array_element(interp, varname, n, &v);
3595 switch (width) {
3596 case 4:
3597 target_buffer_set_u32(target, &buffer[i * width], v);
3598 break;
3599 case 2:
3600 target_buffer_set_u16(target, &buffer[i * width], v);
3601 break;
3602 case 1:
3603 buffer[i] = v & 0x0ff;
3604 break;
3607 len -= count;
3609 retval = target_write_memory(target, addr, width, count, buffer);
3610 if (retval != ERROR_OK) {
3611 /* BOO !*/
3612 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3613 (unsigned int)addr,
3614 (int)width,
3615 (int)count);
3616 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3617 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3618 e = JIM_ERR;
3619 break;
3623 free(buffer);
3625 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3627 return e;
3630 /* FIX? should we propagate errors here rather than printing them
3631 * and continuing?
3633 void target_handle_event(struct target *target, enum target_event e)
3635 struct target_event_action *teap;
3637 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3638 if (teap->event == e) {
3639 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3640 target->target_number,
3641 target_name(target),
3642 target_type_name(target),
3644 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3645 Jim_GetString(teap->body, NULL));
3646 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3647 Jim_MakeErrorMessage(teap->interp);
3648 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3655 * Returns true only if the target has a handler for the specified event.
3657 bool target_has_event_action(struct target *target, enum target_event event)
3659 struct target_event_action *teap;
3661 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3662 if (teap->event == event)
3663 return true;
3665 return false;
3668 enum target_cfg_param {
3669 TCFG_TYPE,
3670 TCFG_EVENT,
3671 TCFG_WORK_AREA_VIRT,
3672 TCFG_WORK_AREA_PHYS,
3673 TCFG_WORK_AREA_SIZE,
3674 TCFG_WORK_AREA_BACKUP,
3675 TCFG_ENDIAN,
3676 TCFG_VARIANT,
3677 TCFG_COREID,
3678 TCFG_CHAIN_POSITION,
3679 TCFG_DBGBASE,
3680 TCFG_RTOS,
3683 static Jim_Nvp nvp_config_opts[] = {
3684 { .name = "-type", .value = TCFG_TYPE },
3685 { .name = "-event", .value = TCFG_EVENT },
3686 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3687 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3688 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3689 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3690 { .name = "-endian" , .value = TCFG_ENDIAN },
3691 { .name = "-variant", .value = TCFG_VARIANT },
3692 { .name = "-coreid", .value = TCFG_COREID },
3693 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3694 { .name = "-dbgbase", .value = TCFG_DBGBASE },
3695 { .name = "-rtos", .value = TCFG_RTOS },
3696 { .name = NULL, .value = -1 }
3699 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3701 Jim_Nvp *n;
3702 Jim_Obj *o;
3703 jim_wide w;
3704 char *cp;
3705 int e;
3707 /* parse config or cget options ... */
3708 while (goi->argc > 0) {
3709 Jim_SetEmptyResult(goi->interp);
3710 /* Jim_GetOpt_Debug(goi); */
3712 if (target->type->target_jim_configure) {
3713 /* target defines a configure function */
3714 /* target gets first dibs on parameters */
3715 e = (*(target->type->target_jim_configure))(target, goi);
3716 if (e == JIM_OK) {
3717 /* more? */
3718 continue;
3720 if (e == JIM_ERR) {
3721 /* An error */
3722 return e;
3724 /* otherwise we 'continue' below */
3726 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3727 if (e != JIM_OK) {
3728 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3729 return e;
3731 switch (n->value) {
3732 case TCFG_TYPE:
3733 /* not setable */
3734 if (goi->isconfigure) {
3735 Jim_SetResultFormatted(goi->interp,
3736 "not settable: %s", n->name);
3737 return JIM_ERR;
3738 } else {
3739 no_params:
3740 if (goi->argc != 0) {
3741 Jim_WrongNumArgs(goi->interp,
3742 goi->argc, goi->argv,
3743 "NO PARAMS");
3744 return JIM_ERR;
3747 Jim_SetResultString(goi->interp,
3748 target_type_name(target), -1);
3749 /* loop for more */
3750 break;
3751 case TCFG_EVENT:
3752 if (goi->argc == 0) {
3753 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3754 return JIM_ERR;
3757 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3758 if (e != JIM_OK) {
3759 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3760 return e;
3763 if (goi->isconfigure) {
3764 if (goi->argc != 1) {
3765 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3766 return JIM_ERR;
3768 } else {
3769 if (goi->argc != 0) {
3770 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3771 return JIM_ERR;
3776 struct target_event_action *teap;
3778 teap = target->event_action;
3779 /* replace existing? */
3780 while (teap) {
3781 if (teap->event == (enum target_event)n->value)
3782 break;
3783 teap = teap->next;
3786 if (goi->isconfigure) {
3787 bool replace = true;
3788 if (teap == NULL) {
3789 /* create new */
3790 teap = calloc(1, sizeof(*teap));
3791 replace = false;
3793 teap->event = n->value;
3794 teap->interp = goi->interp;
3795 Jim_GetOpt_Obj(goi, &o);
3796 if (teap->body)
3797 Jim_DecrRefCount(teap->interp, teap->body);
3798 teap->body = Jim_DuplicateObj(goi->interp, o);
3800 * FIXME:
3801 * Tcl/TK - "tk events" have a nice feature.
3802 * See the "BIND" command.
3803 * We should support that here.
3804 * You can specify %X and %Y in the event code.
3805 * The idea is: %T - target name.
3806 * The idea is: %N - target number
3807 * The idea is: %E - event name.
3809 Jim_IncrRefCount(teap->body);
3811 if (!replace) {
3812 /* add to head of event list */
3813 teap->next = target->event_action;
3814 target->event_action = teap;
3816 Jim_SetEmptyResult(goi->interp);
3817 } else {
3818 /* get */
3819 if (teap == NULL)
3820 Jim_SetEmptyResult(goi->interp);
3821 else
3822 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3825 /* loop for more */
3826 break;
3828 case TCFG_WORK_AREA_VIRT:
3829 if (goi->isconfigure) {
3830 target_free_all_working_areas(target);
3831 e = Jim_GetOpt_Wide(goi, &w);
3832 if (e != JIM_OK)
3833 return e;
3834 target->working_area_virt = w;
3835 target->working_area_virt_spec = true;
3836 } else {
3837 if (goi->argc != 0)
3838 goto no_params;
3840 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3841 /* loop for more */
3842 break;
3844 case TCFG_WORK_AREA_PHYS:
3845 if (goi->isconfigure) {
3846 target_free_all_working_areas(target);
3847 e = Jim_GetOpt_Wide(goi, &w);
3848 if (e != JIM_OK)
3849 return e;
3850 target->working_area_phys = w;
3851 target->working_area_phys_spec = true;
3852 } else {
3853 if (goi->argc != 0)
3854 goto no_params;
3856 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3857 /* loop for more */
3858 break;
3860 case TCFG_WORK_AREA_SIZE:
3861 if (goi->isconfigure) {
3862 target_free_all_working_areas(target);
3863 e = Jim_GetOpt_Wide(goi, &w);
3864 if (e != JIM_OK)
3865 return e;
3866 target->working_area_size = w;
3867 } else {
3868 if (goi->argc != 0)
3869 goto no_params;
3871 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3872 /* loop for more */
3873 break;
3875 case TCFG_WORK_AREA_BACKUP:
3876 if (goi->isconfigure) {
3877 target_free_all_working_areas(target);
3878 e = Jim_GetOpt_Wide(goi, &w);
3879 if (e != JIM_OK)
3880 return e;
3881 /* make this exactly 1 or 0 */
3882 target->backup_working_area = (!!w);
3883 } else {
3884 if (goi->argc != 0)
3885 goto no_params;
3887 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3888 /* loop for more e*/
3889 break;
3892 case TCFG_ENDIAN:
3893 if (goi->isconfigure) {
3894 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3895 if (e != JIM_OK) {
3896 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3897 return e;
3899 target->endianness = n->value;
3900 } else {
3901 if (goi->argc != 0)
3902 goto no_params;
3904 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3905 if (n->name == NULL) {
3906 target->endianness = TARGET_LITTLE_ENDIAN;
3907 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3909 Jim_SetResultString(goi->interp, n->name, -1);
3910 /* loop for more */
3911 break;
3913 case TCFG_VARIANT:
3914 if (goi->isconfigure) {
3915 if (goi->argc < 1) {
3916 Jim_SetResultFormatted(goi->interp,
3917 "%s ?STRING?",
3918 n->name);
3919 return JIM_ERR;
3921 if (target->variant)
3922 free((void *)(target->variant));
3923 e = Jim_GetOpt_String(goi, &cp, NULL);
3924 if (e != JIM_OK)
3925 return e;
3926 target->variant = strdup(cp);
3927 } else {
3928 if (goi->argc != 0)
3929 goto no_params;
3931 Jim_SetResultString(goi->interp, target->variant, -1);
3932 /* loop for more */
3933 break;
3935 case TCFG_COREID:
3936 if (goi->isconfigure) {
3937 e = Jim_GetOpt_Wide(goi, &w);
3938 if (e != JIM_OK)
3939 return e;
3940 target->coreid = (int32_t)w;
3941 } else {
3942 if (goi->argc != 0)
3943 goto no_params;
3945 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3946 /* loop for more */
3947 break;
3949 case TCFG_CHAIN_POSITION:
3950 if (goi->isconfigure) {
3951 Jim_Obj *o_t;
3952 struct jtag_tap *tap;
3953 target_free_all_working_areas(target);
3954 e = Jim_GetOpt_Obj(goi, &o_t);
3955 if (e != JIM_OK)
3956 return e;
3957 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
3958 if (tap == NULL)
3959 return JIM_ERR;
3960 /* make this exactly 1 or 0 */
3961 target->tap = tap;
3962 } else {
3963 if (goi->argc != 0)
3964 goto no_params;
3966 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3967 /* loop for more e*/
3968 break;
3969 case TCFG_DBGBASE:
3970 if (goi->isconfigure) {
3971 e = Jim_GetOpt_Wide(goi, &w);
3972 if (e != JIM_OK)
3973 return e;
3974 target->dbgbase = (uint32_t)w;
3975 target->dbgbase_set = true;
3976 } else {
3977 if (goi->argc != 0)
3978 goto no_params;
3980 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
3981 /* loop for more */
3982 break;
3984 case TCFG_RTOS:
3985 /* RTOS */
3987 int result = rtos_create(goi, target);
3988 if (result != JIM_OK)
3989 return result;
3991 /* loop for more */
3992 break;
3994 } /* while (goi->argc) */
3997 /* done - we return */
3998 return JIM_OK;
4001 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4003 Jim_GetOptInfo goi;
4005 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4006 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4007 int need_args = 1 + goi.isconfigure;
4008 if (goi.argc < need_args) {
4009 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4010 goi.isconfigure
4011 ? "missing: -option VALUE ..."
4012 : "missing: -option ...");
4013 return JIM_ERR;
4015 struct target *target = Jim_CmdPrivData(goi.interp);
4016 return target_configure(&goi, target);
4019 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4021 const char *cmd_name = Jim_GetString(argv[0], NULL);
4023 Jim_GetOptInfo goi;
4024 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4026 if (goi.argc < 2 || goi.argc > 4) {
4027 Jim_SetResultFormatted(goi.interp,
4028 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4029 return JIM_ERR;
4032 target_write_fn fn;
4033 fn = target_write_memory_fast;
4035 int e;
4036 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4037 /* consume it */
4038 struct Jim_Obj *obj;
4039 e = Jim_GetOpt_Obj(&goi, &obj);
4040 if (e != JIM_OK)
4041 return e;
4043 fn = target_write_phys_memory;
4046 jim_wide a;
4047 e = Jim_GetOpt_Wide(&goi, &a);
4048 if (e != JIM_OK)
4049 return e;
4051 jim_wide b;
4052 e = Jim_GetOpt_Wide(&goi, &b);
4053 if (e != JIM_OK)
4054 return e;
4056 jim_wide c = 1;
4057 if (goi.argc == 1) {
4058 e = Jim_GetOpt_Wide(&goi, &c);
4059 if (e != JIM_OK)
4060 return e;
4063 /* all args must be consumed */
4064 if (goi.argc != 0)
4065 return JIM_ERR;
4067 struct target *target = Jim_CmdPrivData(goi.interp);
4068 unsigned data_size;
4069 if (strcasecmp(cmd_name, "mww") == 0)
4070 data_size = 4;
4071 else if (strcasecmp(cmd_name, "mwh") == 0)
4072 data_size = 2;
4073 else if (strcasecmp(cmd_name, "mwb") == 0)
4074 data_size = 1;
4075 else {
4076 LOG_ERROR("command '%s' unknown: ", cmd_name);
4077 return JIM_ERR;
4080 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4083 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4085 const char *cmd_name = Jim_GetString(argv[0], NULL);
4087 Jim_GetOptInfo goi;
4088 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4090 if ((goi.argc < 1) || (goi.argc > 3)) {
4091 Jim_SetResultFormatted(goi.interp,
4092 "usage: %s [phys] <address> [<count>]", cmd_name);
4093 return JIM_ERR;
4096 int (*fn)(struct target *target,
4097 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4098 fn = target_read_memory;
4100 int e;
4101 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4102 /* consume it */
4103 struct Jim_Obj *obj;
4104 e = Jim_GetOpt_Obj(&goi, &obj);
4105 if (e != JIM_OK)
4106 return e;
4108 fn = target_read_phys_memory;
4111 jim_wide a;
4112 e = Jim_GetOpt_Wide(&goi, &a);
4113 if (e != JIM_OK)
4114 return JIM_ERR;
4115 jim_wide c;
4116 if (goi.argc == 1) {
4117 e = Jim_GetOpt_Wide(&goi, &c);
4118 if (e != JIM_OK)
4119 return JIM_ERR;
4120 } else
4121 c = 1;
4123 /* all args must be consumed */
4124 if (goi.argc != 0)
4125 return JIM_ERR;
4127 jim_wide b = 1; /* shut up gcc */
4128 if (strcasecmp(cmd_name, "mdw") == 0)
4129 b = 4;
4130 else if (strcasecmp(cmd_name, "mdh") == 0)
4131 b = 2;
4132 else if (strcasecmp(cmd_name, "mdb") == 0)
4133 b = 1;
4134 else {
4135 LOG_ERROR("command '%s' unknown: ", cmd_name);
4136 return JIM_ERR;
4139 /* convert count to "bytes" */
4140 c = c * b;
4142 struct target *target = Jim_CmdPrivData(goi.interp);
4143 uint8_t target_buf[32];
4144 jim_wide x, y, z;
4145 while (c > 0) {
4146 y = c;
4147 if (y > 16)
4148 y = 16;
4149 e = fn(target, a, b, y / b, target_buf);
4150 if (e != ERROR_OK) {
4151 char tmp[10];
4152 snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4153 Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4154 return JIM_ERR;
4157 command_print(NULL, "0x%08x ", (int)(a));
4158 switch (b) {
4159 case 4:
4160 for (x = 0; x < 16 && x < y; x += 4) {
4161 z = target_buffer_get_u32(target, &(target_buf[x]));
4162 command_print(NULL, "%08x ", (int)(z));
4164 for (; (x < 16) ; x += 4)
4165 command_print(NULL, " ");
4166 break;
4167 case 2:
4168 for (x = 0; x < 16 && x < y; x += 2) {
4169 z = target_buffer_get_u16(target, &(target_buf[x]));
4170 command_print(NULL, "%04x ", (int)(z));
4172 for (; (x < 16) ; x += 2)
4173 command_print(NULL, " ");
4174 break;
4175 case 1:
4176 default:
4177 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4178 z = target_buffer_get_u8(target, &(target_buf[x]));
4179 command_print(NULL, "%02x ", (int)(z));
4181 for (; (x < 16) ; x += 1)
4182 command_print(NULL, " ");
4183 break;
4185 /* ascii-ify the bytes */
4186 for (x = 0 ; x < y ; x++) {
4187 if ((target_buf[x] >= 0x20) &&
4188 (target_buf[x] <= 0x7e)) {
4189 /* good */
4190 } else {
4191 /* smack it */
4192 target_buf[x] = '.';
4195 /* space pad */
4196 while (x < 16) {
4197 target_buf[x] = ' ';
4198 x++;
4200 /* terminate */
4201 target_buf[16] = 0;
4202 /* print - with a newline */
4203 command_print(NULL, "%s\n", target_buf);
4204 /* NEXT... */
4205 c -= 16;
4206 a += 16;
4208 return JIM_OK;
4211 static int jim_target_mem2array(Jim_Interp *interp,
4212 int argc, Jim_Obj *const *argv)
4214 struct target *target = Jim_CmdPrivData(interp);
4215 return target_mem2array(interp, target, argc - 1, argv + 1);
4218 static int jim_target_array2mem(Jim_Interp *interp,
4219 int argc, Jim_Obj *const *argv)
4221 struct target *target = Jim_CmdPrivData(interp);
4222 return target_array2mem(interp, target, argc - 1, argv + 1);
4225 static int jim_target_tap_disabled(Jim_Interp *interp)
4227 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4228 return JIM_ERR;
4231 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4233 if (argc != 1) {
4234 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4235 return JIM_ERR;
4237 struct target *target = Jim_CmdPrivData(interp);
4238 if (!target->tap->enabled)
4239 return jim_target_tap_disabled(interp);
4241 int e = target->type->examine(target);
4242 if (e != ERROR_OK)
4243 return JIM_ERR;
4244 return JIM_OK;
4247 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4249 if (argc != 1) {
4250 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4251 return JIM_ERR;
4253 struct target *target = Jim_CmdPrivData(interp);
4255 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4256 return JIM_ERR;
4258 return JIM_OK;
4261 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4263 if (argc != 1) {
4264 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4265 return JIM_ERR;
4267 struct target *target = Jim_CmdPrivData(interp);
4268 if (!target->tap->enabled)
4269 return jim_target_tap_disabled(interp);
4271 int e;
4272 if (!(target_was_examined(target)))
4273 e = ERROR_TARGET_NOT_EXAMINED;
4274 else
4275 e = target->type->poll(target);
4276 if (e != ERROR_OK)
4277 return JIM_ERR;
4278 return JIM_OK;
4281 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4283 Jim_GetOptInfo goi;
4284 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4286 if (goi.argc != 2) {
4287 Jim_WrongNumArgs(interp, 0, argv,
4288 "([tT]|[fF]|assert|deassert) BOOL");
4289 return JIM_ERR;
4292 Jim_Nvp *n;
4293 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4294 if (e != JIM_OK) {
4295 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4296 return e;
4298 /* the halt or not param */
4299 jim_wide a;
4300 e = Jim_GetOpt_Wide(&goi, &a);
4301 if (e != JIM_OK)
4302 return e;
4304 struct target *target = Jim_CmdPrivData(goi.interp);
4305 if (!target->tap->enabled)
4306 return jim_target_tap_disabled(interp);
4307 if (!(target_was_examined(target))) {
4308 LOG_ERROR("Target not examined yet");
4309 return ERROR_TARGET_NOT_EXAMINED;
4311 if (!target->type->assert_reset || !target->type->deassert_reset) {
4312 Jim_SetResultFormatted(interp,
4313 "No target-specific reset for %s",
4314 target_name(target));
4315 return JIM_ERR;
4317 /* determine if we should halt or not. */
4318 target->reset_halt = !!a;
4319 /* When this happens - all workareas are invalid. */
4320 target_free_all_working_areas_restore(target, 0);
4322 /* do the assert */
4323 if (n->value == NVP_ASSERT)
4324 e = target->type->assert_reset(target);
4325 else
4326 e = target->type->deassert_reset(target);
4327 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4330 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4332 if (argc != 1) {
4333 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4334 return JIM_ERR;
4336 struct target *target = Jim_CmdPrivData(interp);
4337 if (!target->tap->enabled)
4338 return jim_target_tap_disabled(interp);
4339 int e = target->type->halt(target);
4340 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4343 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4345 Jim_GetOptInfo goi;
4346 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4348 /* params: <name> statename timeoutmsecs */
4349 if (goi.argc != 2) {
4350 const char *cmd_name = Jim_GetString(argv[0], NULL);
4351 Jim_SetResultFormatted(goi.interp,
4352 "%s <state_name> <timeout_in_msec>", cmd_name);
4353 return JIM_ERR;
4356 Jim_Nvp *n;
4357 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4358 if (e != JIM_OK) {
4359 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4360 return e;
4362 jim_wide a;
4363 e = Jim_GetOpt_Wide(&goi, &a);
4364 if (e != JIM_OK)
4365 return e;
4366 struct target *target = Jim_CmdPrivData(interp);
4367 if (!target->tap->enabled)
4368 return jim_target_tap_disabled(interp);
4370 e = target_wait_state(target, n->value, a);
4371 if (e != ERROR_OK) {
4372 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4373 Jim_SetResultFormatted(goi.interp,
4374 "target: %s wait %s fails (%#s) %s",
4375 target_name(target), n->name,
4376 eObj, target_strerror_safe(e));
4377 Jim_FreeNewObj(interp, eObj);
4378 return JIM_ERR;
4380 return JIM_OK;
4382 /* List for human, Events defined for this target.
4383 * scripts/programs should use 'name cget -event NAME'
4385 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4387 struct command_context *cmd_ctx = current_command_context(interp);
4388 assert(cmd_ctx != NULL);
4390 struct target *target = Jim_CmdPrivData(interp);
4391 struct target_event_action *teap = target->event_action;
4392 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4393 target->target_number,
4394 target_name(target));
4395 command_print(cmd_ctx, "%-25s | Body", "Event");
4396 command_print(cmd_ctx, "------------------------- | "
4397 "----------------------------------------");
4398 while (teap) {
4399 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4400 command_print(cmd_ctx, "%-25s | %s",
4401 opt->name, Jim_GetString(teap->body, NULL));
4402 teap = teap->next;
4404 command_print(cmd_ctx, "***END***");
4405 return JIM_OK;
4407 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4409 if (argc != 1) {
4410 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4411 return JIM_ERR;
4413 struct target *target = Jim_CmdPrivData(interp);
4414 Jim_SetResultString(interp, target_state_name(target), -1);
4415 return JIM_OK;
4417 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4419 Jim_GetOptInfo goi;
4420 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4421 if (goi.argc != 1) {
4422 const char *cmd_name = Jim_GetString(argv[0], NULL);
4423 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4424 return JIM_ERR;
4426 Jim_Nvp *n;
4427 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4428 if (e != JIM_OK) {
4429 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4430 return e;
4432 struct target *target = Jim_CmdPrivData(interp);
4433 target_handle_event(target, n->value);
4434 return JIM_OK;
4437 static const struct command_registration target_instance_command_handlers[] = {
4439 .name = "configure",
4440 .mode = COMMAND_CONFIG,
4441 .jim_handler = jim_target_configure,
4442 .help = "configure a new target for use",
4443 .usage = "[target_attribute ...]",
4446 .name = "cget",
4447 .mode = COMMAND_ANY,
4448 .jim_handler = jim_target_configure,
4449 .help = "returns the specified target attribute",
4450 .usage = "target_attribute",
4453 .name = "mww",
4454 .mode = COMMAND_EXEC,
4455 .jim_handler = jim_target_mw,
4456 .help = "Write 32-bit word(s) to target memory",
4457 .usage = "address data [count]",
4460 .name = "mwh",
4461 .mode = COMMAND_EXEC,
4462 .jim_handler = jim_target_mw,
4463 .help = "Write 16-bit half-word(s) to target memory",
4464 .usage = "address data [count]",
4467 .name = "mwb",
4468 .mode = COMMAND_EXEC,
4469 .jim_handler = jim_target_mw,
4470 .help = "Write byte(s) to target memory",
4471 .usage = "address data [count]",
4474 .name = "mdw",
4475 .mode = COMMAND_EXEC,
4476 .jim_handler = jim_target_md,
4477 .help = "Display target memory as 32-bit words",
4478 .usage = "address [count]",
4481 .name = "mdh",
4482 .mode = COMMAND_EXEC,
4483 .jim_handler = jim_target_md,
4484 .help = "Display target memory as 16-bit half-words",
4485 .usage = "address [count]",
4488 .name = "mdb",
4489 .mode = COMMAND_EXEC,
4490 .jim_handler = jim_target_md,
4491 .help = "Display target memory as 8-bit bytes",
4492 .usage = "address [count]",
4495 .name = "array2mem",
4496 .mode = COMMAND_EXEC,
4497 .jim_handler = jim_target_array2mem,
4498 .help = "Writes Tcl array of 8/16/32 bit numbers "
4499 "to target memory",
4500 .usage = "arrayname bitwidth address count",
4503 .name = "mem2array",
4504 .mode = COMMAND_EXEC,
4505 .jim_handler = jim_target_mem2array,
4506 .help = "Loads Tcl array of 8/16/32 bit numbers "
4507 "from target memory",
4508 .usage = "arrayname bitwidth address count",
4511 .name = "eventlist",
4512 .mode = COMMAND_EXEC,
4513 .jim_handler = jim_target_event_list,
4514 .help = "displays a table of events defined for this target",
4517 .name = "curstate",
4518 .mode = COMMAND_EXEC,
4519 .jim_handler = jim_target_current_state,
4520 .help = "displays the current state of this target",
4523 .name = "arp_examine",
4524 .mode = COMMAND_EXEC,
4525 .jim_handler = jim_target_examine,
4526 .help = "used internally for reset processing",
4529 .name = "arp_halt_gdb",
4530 .mode = COMMAND_EXEC,
4531 .jim_handler = jim_target_halt_gdb,
4532 .help = "used internally for reset processing to halt GDB",
4535 .name = "arp_poll",
4536 .mode = COMMAND_EXEC,
4537 .jim_handler = jim_target_poll,
4538 .help = "used internally for reset processing",
4541 .name = "arp_reset",
4542 .mode = COMMAND_EXEC,
4543 .jim_handler = jim_target_reset,
4544 .help = "used internally for reset processing",
4547 .name = "arp_halt",
4548 .mode = COMMAND_EXEC,
4549 .jim_handler = jim_target_halt,
4550 .help = "used internally for reset processing",
4553 .name = "arp_waitstate",
4554 .mode = COMMAND_EXEC,
4555 .jim_handler = jim_target_wait_state,
4556 .help = "used internally for reset processing",
4559 .name = "invoke-event",
4560 .mode = COMMAND_EXEC,
4561 .jim_handler = jim_target_invoke_event,
4562 .help = "invoke handler for specified event",
4563 .usage = "event_name",
4565 COMMAND_REGISTRATION_DONE
4568 static int target_create(Jim_GetOptInfo *goi)
4570 Jim_Obj *new_cmd;
4571 Jim_Cmd *cmd;
4572 const char *cp;
4573 char *cp2;
4574 int e;
4575 int x;
4576 struct target *target;
4577 struct command_context *cmd_ctx;
4579 cmd_ctx = current_command_context(goi->interp);
4580 assert(cmd_ctx != NULL);
4582 if (goi->argc < 3) {
4583 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4584 return JIM_ERR;
4587 /* COMMAND */
4588 Jim_GetOpt_Obj(goi, &new_cmd);
4589 /* does this command exist? */
4590 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4591 if (cmd) {
4592 cp = Jim_GetString(new_cmd, NULL);
4593 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4594 return JIM_ERR;
4597 /* TYPE */
4598 e = Jim_GetOpt_String(goi, &cp2, NULL);
4599 if (e != JIM_OK)
4600 return e;
4601 cp = cp2;
4602 /* now does target type exist */
4603 for (x = 0 ; target_types[x] ; x++) {
4604 if (0 == strcmp(cp, target_types[x]->name)) {
4605 /* found */
4606 break;
4609 if (target_types[x] == NULL) {
4610 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4611 for (x = 0 ; target_types[x] ; x++) {
4612 if (target_types[x + 1]) {
4613 Jim_AppendStrings(goi->interp,
4614 Jim_GetResult(goi->interp),
4615 target_types[x]->name,
4616 ", ", NULL);
4617 } else {
4618 Jim_AppendStrings(goi->interp,
4619 Jim_GetResult(goi->interp),
4620 " or ",
4621 target_types[x]->name, NULL);
4624 return JIM_ERR;
4627 /* Create it */
4628 target = calloc(1, sizeof(struct target));
4629 /* set target number */
4630 target->target_number = new_target_number();
4632 /* allocate memory for each unique target type */
4633 target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4635 memcpy(target->type, target_types[x], sizeof(struct target_type));
4637 /* will be set by "-endian" */
4638 target->endianness = TARGET_ENDIAN_UNKNOWN;
4640 /* default to first core, override with -coreid */
4641 target->coreid = 0;
4643 target->working_area = 0x0;
4644 target->working_area_size = 0x0;
4645 target->working_areas = NULL;
4646 target->backup_working_area = 0;
4648 target->state = TARGET_UNKNOWN;
4649 target->debug_reason = DBG_REASON_UNDEFINED;
4650 target->reg_cache = NULL;
4651 target->breakpoints = NULL;
4652 target->watchpoints = NULL;
4653 target->next = NULL;
4654 target->arch_info = NULL;
4656 target->display = 1;
4658 target->halt_issued = false;
4660 /* initialize trace information */
4661 target->trace_info = malloc(sizeof(struct trace));
4662 target->trace_info->num_trace_points = 0;
4663 target->trace_info->trace_points_size = 0;
4664 target->trace_info->trace_points = NULL;
4665 target->trace_info->trace_history_size = 0;
4666 target->trace_info->trace_history = NULL;
4667 target->trace_info->trace_history_pos = 0;
4668 target->trace_info->trace_history_overflowed = 0;
4670 target->dbgmsg = NULL;
4671 target->dbg_msg_enabled = 0;
4673 target->endianness = TARGET_ENDIAN_UNKNOWN;
4675 target->rtos = NULL;
4676 target->rtos_auto_detect = false;
4678 /* Do the rest as "configure" options */
4679 goi->isconfigure = 1;
4680 e = target_configure(goi, target);
4682 if (target->tap == NULL) {
4683 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4684 e = JIM_ERR;
4687 if (e != JIM_OK) {
4688 free(target->type);
4689 free(target);
4690 return e;
4693 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4694 /* default endian to little if not specified */
4695 target->endianness = TARGET_LITTLE_ENDIAN;
4698 /* incase variant is not set */
4699 if (!target->variant)
4700 target->variant = strdup("");
4702 cp = Jim_GetString(new_cmd, NULL);
4703 target->cmd_name = strdup(cp);
4705 /* create the target specific commands */
4706 if (target->type->commands) {
4707 e = register_commands(cmd_ctx, NULL, target->type->commands);
4708 if (ERROR_OK != e)
4709 LOG_ERROR("unable to register '%s' commands", cp);
4711 if (target->type->target_create)
4712 (*(target->type->target_create))(target, goi->interp);
4714 /* append to end of list */
4716 struct target **tpp;
4717 tpp = &(all_targets);
4718 while (*tpp)
4719 tpp = &((*tpp)->next);
4720 *tpp = target;
4723 /* now - create the new target name command */
4724 const const struct command_registration target_subcommands[] = {
4726 .chain = target_instance_command_handlers,
4729 .chain = target->type->commands,
4731 COMMAND_REGISTRATION_DONE
4733 const const struct command_registration target_commands[] = {
4735 .name = cp,
4736 .mode = COMMAND_ANY,
4737 .help = "target command group",
4738 .usage = "",
4739 .chain = target_subcommands,
4741 COMMAND_REGISTRATION_DONE
4743 e = register_commands(cmd_ctx, NULL, target_commands);
4744 if (ERROR_OK != e)
4745 return JIM_ERR;
4747 struct command *c = command_find_in_context(cmd_ctx, cp);
4748 assert(c);
4749 command_set_handler_data(c, target);
4751 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4754 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4756 if (argc != 1) {
4757 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4758 return JIM_ERR;
4760 struct command_context *cmd_ctx = current_command_context(interp);
4761 assert(cmd_ctx != NULL);
4763 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4764 return JIM_OK;
4767 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4769 if (argc != 1) {
4770 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4771 return JIM_ERR;
4773 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4774 for (unsigned x = 0; NULL != target_types[x]; x++) {
4775 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4776 Jim_NewStringObj(interp, target_types[x]->name, -1));
4778 return JIM_OK;
4781 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4783 if (argc != 1) {
4784 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4785 return JIM_ERR;
4787 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4788 struct target *target = all_targets;
4789 while (target) {
4790 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4791 Jim_NewStringObj(interp, target_name(target), -1));
4792 target = target->next;
4794 return JIM_OK;
4797 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4799 int i;
4800 const char *targetname;
4801 int retval, len;
4802 struct target *target = (struct target *) NULL;
4803 struct target_list *head, *curr, *new;
4804 curr = (struct target_list *) NULL;
4805 head = (struct target_list *) NULL;
4806 new = (struct target_list *) NULL;
4808 retval = 0;
4809 LOG_DEBUG("%d", argc);
4810 /* argv[1] = target to associate in smp
4811 * argv[2] = target to assoicate in smp
4812 * argv[3] ...
4815 for (i = 1; i < argc; i++) {
4817 targetname = Jim_GetString(argv[i], &len);
4818 target = get_target(targetname);
4819 LOG_DEBUG("%s ", targetname);
4820 if (target) {
4821 new = malloc(sizeof(struct target_list));
4822 new->target = target;
4823 new->next = (struct target_list *)NULL;
4824 if (head == (struct target_list *)NULL) {
4825 head = new;
4826 curr = head;
4827 } else {
4828 curr->next = new;
4829 curr = new;
4833 /* now parse the list of cpu and put the target in smp mode*/
4834 curr = head;
4836 while (curr != (struct target_list *)NULL) {
4837 target = curr->target;
4838 target->smp = 1;
4839 target->head = head;
4840 curr = curr->next;
4842 if (target->rtos)
4843 retval = rtos_smp_init(head->target);
4844 return retval;
4848 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4850 Jim_GetOptInfo goi;
4851 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4852 if (goi.argc < 3) {
4853 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4854 "<name> <target_type> [<target_options> ...]");
4855 return JIM_ERR;
4857 return target_create(&goi);
4860 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4862 Jim_GetOptInfo goi;
4863 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4865 /* It's OK to remove this mechanism sometime after August 2010 or so */
4866 LOG_WARNING("don't use numbers as target identifiers; use names");
4867 if (goi.argc != 1) {
4868 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
4869 return JIM_ERR;
4871 jim_wide w;
4872 int e = Jim_GetOpt_Wide(&goi, &w);
4873 if (e != JIM_OK)
4874 return JIM_ERR;
4876 struct target *target;
4877 for (target = all_targets; NULL != target; target = target->next) {
4878 if (target->target_number != w)
4879 continue;
4881 Jim_SetResultString(goi.interp, target_name(target), -1);
4882 return JIM_OK;
4885 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
4886 Jim_SetResultFormatted(goi.interp,
4887 "Target: number %#s does not exist", wObj);
4888 Jim_FreeNewObj(interp, wObj);
4890 return JIM_ERR;
4893 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4895 if (argc != 1) {
4896 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4897 return JIM_ERR;
4899 unsigned count = 0;
4900 struct target *target = all_targets;
4901 while (NULL != target) {
4902 target = target->next;
4903 count++;
4905 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4906 return JIM_OK;
4909 static const struct command_registration target_subcommand_handlers[] = {
4911 .name = "init",
4912 .mode = COMMAND_CONFIG,
4913 .handler = handle_target_init_command,
4914 .help = "initialize targets",
4917 .name = "create",
4918 /* REVISIT this should be COMMAND_CONFIG ... */
4919 .mode = COMMAND_ANY,
4920 .jim_handler = jim_target_create,
4921 .usage = "name type '-chain-position' name [options ...]",
4922 .help = "Creates and selects a new target",
4925 .name = "current",
4926 .mode = COMMAND_ANY,
4927 .jim_handler = jim_target_current,
4928 .help = "Returns the currently selected target",
4931 .name = "types",
4932 .mode = COMMAND_ANY,
4933 .jim_handler = jim_target_types,
4934 .help = "Returns the available target types as "
4935 "a list of strings",
4938 .name = "names",
4939 .mode = COMMAND_ANY,
4940 .jim_handler = jim_target_names,
4941 .help = "Returns the names of all targets as a list of strings",
4944 .name = "number",
4945 .mode = COMMAND_ANY,
4946 .jim_handler = jim_target_number,
4947 .usage = "number",
4948 .help = "Returns the name of the numbered target "
4949 "(DEPRECATED)",
4952 .name = "count",
4953 .mode = COMMAND_ANY,
4954 .jim_handler = jim_target_count,
4955 .help = "Returns the number of targets as an integer "
4956 "(DEPRECATED)",
4959 .name = "smp",
4960 .mode = COMMAND_ANY,
4961 .jim_handler = jim_target_smp,
4962 .usage = "targetname1 targetname2 ...",
4963 .help = "gather several target in a smp list"
4966 COMMAND_REGISTRATION_DONE
4969 struct FastLoad {
4970 uint32_t address;
4971 uint8_t *data;
4972 int length;
4976 static int fastload_num;
4977 static struct FastLoad *fastload;
4979 static void free_fastload(void)
4981 if (fastload != NULL) {
4982 int i;
4983 for (i = 0; i < fastload_num; i++) {
4984 if (fastload[i].data)
4985 free(fastload[i].data);
4987 free(fastload);
4988 fastload = NULL;
4992 COMMAND_HANDLER(handle_fast_load_image_command)
4994 uint8_t *buffer;
4995 size_t buf_cnt;
4996 uint32_t image_size;
4997 uint32_t min_address = 0;
4998 uint32_t max_address = 0xffffffff;
4999 int i;
5001 struct image image;
5003 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5004 &image, &min_address, &max_address);
5005 if (ERROR_OK != retval)
5006 return retval;
5008 struct duration bench;
5009 duration_start(&bench);
5011 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5012 if (retval != ERROR_OK)
5013 return retval;
5015 image_size = 0x0;
5016 retval = ERROR_OK;
5017 fastload_num = image.num_sections;
5018 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5019 if (fastload == NULL) {
5020 command_print(CMD_CTX, "out of memory");
5021 image_close(&image);
5022 return ERROR_FAIL;
5024 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5025 for (i = 0; i < image.num_sections; i++) {
5026 buffer = malloc(image.sections[i].size);
5027 if (buffer == NULL) {
5028 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5029 (int)(image.sections[i].size));
5030 retval = ERROR_FAIL;
5031 break;
5034 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5035 if (retval != ERROR_OK) {
5036 free(buffer);
5037 break;
5040 uint32_t offset = 0;
5041 uint32_t length = buf_cnt;
5043 /* DANGER!!! beware of unsigned comparision here!!! */
5045 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5046 (image.sections[i].base_address < max_address)) {
5047 if (image.sections[i].base_address < min_address) {
5048 /* clip addresses below */
5049 offset += min_address-image.sections[i].base_address;
5050 length -= offset;
5053 if (image.sections[i].base_address + buf_cnt > max_address)
5054 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5056 fastload[i].address = image.sections[i].base_address + offset;
5057 fastload[i].data = malloc(length);
5058 if (fastload[i].data == NULL) {
5059 free(buffer);
5060 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5061 length);
5062 retval = ERROR_FAIL;
5063 break;
5065 memcpy(fastload[i].data, buffer + offset, length);
5066 fastload[i].length = length;
5068 image_size += length;
5069 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5070 (unsigned int)length,
5071 ((unsigned int)(image.sections[i].base_address + offset)));
5074 free(buffer);
5077 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5078 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5079 "in %fs (%0.3f KiB/s)", image_size,
5080 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5082 command_print(CMD_CTX,
5083 "WARNING: image has not been loaded to target!"
5084 "You can issue a 'fast_load' to finish loading.");
5087 image_close(&image);
5089 if (retval != ERROR_OK)
5090 free_fastload();
5092 return retval;
5095 COMMAND_HANDLER(handle_fast_load_command)
5097 if (CMD_ARGC > 0)
5098 return ERROR_COMMAND_SYNTAX_ERROR;
5099 if (fastload == NULL) {
5100 LOG_ERROR("No image in memory");
5101 return ERROR_FAIL;
5103 int i;
5104 int ms = timeval_ms();
5105 int size = 0;
5106 int retval = ERROR_OK;
5107 for (i = 0; i < fastload_num; i++) {
5108 struct target *target = get_current_target(CMD_CTX);
5109 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5110 (unsigned int)(fastload[i].address),
5111 (unsigned int)(fastload[i].length));
5112 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5113 if (retval != ERROR_OK)
5114 break;
5115 size += fastload[i].length;
5117 if (retval == ERROR_OK) {
5118 int after = timeval_ms();
5119 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5121 return retval;
5124 static const struct command_registration target_command_handlers[] = {
5126 .name = "targets",
5127 .handler = handle_targets_command,
5128 .mode = COMMAND_ANY,
5129 .help = "change current default target (one parameter) "
5130 "or prints table of all targets (no parameters)",
5131 .usage = "[target]",
5134 .name = "target",
5135 .mode = COMMAND_CONFIG,
5136 .help = "configure target",
5138 .chain = target_subcommand_handlers,
5140 COMMAND_REGISTRATION_DONE
5143 int target_register_commands(struct command_context *cmd_ctx)
5145 return register_commands(cmd_ctx, NULL, target_command_handlers);
5148 static bool target_reset_nag = true;
5150 bool get_target_reset_nag(void)
5152 return target_reset_nag;
5155 COMMAND_HANDLER(handle_target_reset_nag)
5157 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5158 &target_reset_nag, "Nag after each reset about options to improve "
5159 "performance");
5162 COMMAND_HANDLER(handle_ps_command)
5164 struct target *target = get_current_target(CMD_CTX);
5165 char *display;
5166 if (target->state != TARGET_HALTED) {
5167 LOG_INFO("target not halted !!");
5168 return ERROR_OK;
5171 if ((target->rtos) && (target->rtos->type)
5172 && (target->rtos->type->ps_command)) {
5173 display = target->rtos->type->ps_command(target);
5174 command_print(CMD_CTX, "%s", display);
5175 free(display);
5176 return ERROR_OK;
5177 } else {
5178 LOG_INFO("failed");
5179 return ERROR_TARGET_FAILURE;
5183 static const struct command_registration target_exec_command_handlers[] = {
5185 .name = "fast_load_image",
5186 .handler = handle_fast_load_image_command,
5187 .mode = COMMAND_ANY,
5188 .help = "Load image into server memory for later use by "
5189 "fast_load; primarily for profiling",
5190 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5191 "[min_address [max_length]]",
5194 .name = "fast_load",
5195 .handler = handle_fast_load_command,
5196 .mode = COMMAND_EXEC,
5197 .help = "loads active fast load image to current target "
5198 "- mainly for profiling purposes",
5199 .usage = "",
5202 .name = "profile",
5203 .handler = handle_profile_command,
5204 .mode = COMMAND_EXEC,
5205 .usage = "seconds filename",
5206 .help = "profiling samples the CPU PC",
5208 /** @todo don't register virt2phys() unless target supports it */
5210 .name = "virt2phys",
5211 .handler = handle_virt2phys_command,
5212 .mode = COMMAND_ANY,
5213 .help = "translate a virtual address into a physical address",
5214 .usage = "virtual_address",
5217 .name = "reg",
5218 .handler = handle_reg_command,
5219 .mode = COMMAND_EXEC,
5220 .help = "display or set a register; with no arguments, "
5221 "displays all registers and their values",
5222 .usage = "[(register_name|register_number) [value]]",
5225 .name = "poll",
5226 .handler = handle_poll_command,
5227 .mode = COMMAND_EXEC,
5228 .help = "poll target state; or reconfigure background polling",
5229 .usage = "['on'|'off']",
5232 .name = "wait_halt",
5233 .handler = handle_wait_halt_command,
5234 .mode = COMMAND_EXEC,
5235 .help = "wait up to the specified number of milliseconds "
5236 "(default 5) for a previously requested halt",
5237 .usage = "[milliseconds]",
5240 .name = "halt",
5241 .handler = handle_halt_command,
5242 .mode = COMMAND_EXEC,
5243 .help = "request target to halt, then wait up to the specified"
5244 "number of milliseconds (default 5) for it to complete",
5245 .usage = "[milliseconds]",
5248 .name = "resume",
5249 .handler = handle_resume_command,
5250 .mode = COMMAND_EXEC,
5251 .help = "resume target execution from current PC or address",
5252 .usage = "[address]",
5255 .name = "reset",
5256 .handler = handle_reset_command,
5257 .mode = COMMAND_EXEC,
5258 .usage = "[run|halt|init]",
5259 .help = "Reset all targets into the specified mode."
5260 "Default reset mode is run, if not given.",
5263 .name = "soft_reset_halt",
5264 .handler = handle_soft_reset_halt_command,
5265 .mode = COMMAND_EXEC,
5266 .usage = "",
5267 .help = "halt the target and do a soft reset",
5270 .name = "step",
5271 .handler = handle_step_command,
5272 .mode = COMMAND_EXEC,
5273 .help = "step one instruction from current PC or address",
5274 .usage = "[address]",
5277 .name = "mdw",
5278 .handler = handle_md_command,
5279 .mode = COMMAND_EXEC,
5280 .help = "display memory words",
5281 .usage = "['phys'] address [count]",
5284 .name = "mdh",
5285 .handler = handle_md_command,
5286 .mode = COMMAND_EXEC,
5287 .help = "display memory half-words",
5288 .usage = "['phys'] address [count]",
5291 .name = "mdb",
5292 .handler = handle_md_command,
5293 .mode = COMMAND_EXEC,
5294 .help = "display memory bytes",
5295 .usage = "['phys'] address [count]",
5298 .name = "mww",
5299 .handler = handle_mw_command,
5300 .mode = COMMAND_EXEC,
5301 .help = "write memory word",
5302 .usage = "['phys'] address value [count]",
5305 .name = "mwh",
5306 .handler = handle_mw_command,
5307 .mode = COMMAND_EXEC,
5308 .help = "write memory half-word",
5309 .usage = "['phys'] address value [count]",
5312 .name = "mwb",
5313 .handler = handle_mw_command,
5314 .mode = COMMAND_EXEC,
5315 .help = "write memory byte",
5316 .usage = "['phys'] address value [count]",
5319 .name = "bp",
5320 .handler = handle_bp_command,
5321 .mode = COMMAND_EXEC,
5322 .help = "list or set hardware or software breakpoint",
5323 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5326 .name = "rbp",
5327 .handler = handle_rbp_command,
5328 .mode = COMMAND_EXEC,
5329 .help = "remove breakpoint",
5330 .usage = "address",
5333 .name = "wp",
5334 .handler = handle_wp_command,
5335 .mode = COMMAND_EXEC,
5336 .help = "list (no params) or create watchpoints",
5337 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5340 .name = "rwp",
5341 .handler = handle_rwp_command,
5342 .mode = COMMAND_EXEC,
5343 .help = "remove watchpoint",
5344 .usage = "address",
5347 .name = "load_image",
5348 .handler = handle_load_image_command,
5349 .mode = COMMAND_EXEC,
5350 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5351 "[min_address] [max_length]",
5354 .name = "dump_image",
5355 .handler = handle_dump_image_command,
5356 .mode = COMMAND_EXEC,
5357 .usage = "filename address size",
5360 .name = "verify_image",
5361 .handler = handle_verify_image_command,
5362 .mode = COMMAND_EXEC,
5363 .usage = "filename [offset [type]]",
5366 .name = "test_image",
5367 .handler = handle_test_image_command,
5368 .mode = COMMAND_EXEC,
5369 .usage = "filename [offset [type]]",
5372 .name = "mem2array",
5373 .mode = COMMAND_EXEC,
5374 .jim_handler = jim_mem2array,
5375 .help = "read 8/16/32 bit memory and return as a TCL array "
5376 "for script processing",
5377 .usage = "arrayname bitwidth address count",
5380 .name = "array2mem",
5381 .mode = COMMAND_EXEC,
5382 .jim_handler = jim_array2mem,
5383 .help = "convert a TCL array to memory locations "
5384 "and write the 8/16/32 bit values",
5385 .usage = "arrayname bitwidth address count",
5388 .name = "reset_nag",
5389 .handler = handle_target_reset_nag,
5390 .mode = COMMAND_ANY,
5391 .help = "Nag after each reset about options that could have been "
5392 "enabled to improve performance. ",
5393 .usage = "['enable'|'disable']",
5396 .name = "ps",
5397 .handler = handle_ps_command,
5398 .mode = COMMAND_EXEC,
5399 .help = "list all tasks ",
5400 .usage = " ",
5403 COMMAND_REGISTRATION_DONE
5405 static int target_register_user_commands(struct command_context *cmd_ctx)
5407 int retval = ERROR_OK;
5408 retval = target_request_register_commands(cmd_ctx);
5409 if (retval != ERROR_OK)
5410 return retval;
5412 retval = trace_register_commands(cmd_ctx);
5413 if (retval != ERROR_OK)
5414 return retval;
5417 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);