cfg: update for target's that support cortex_m AIRCR SYSRESETREQ
[openocd/jflash.git] / src / target / target.h
bloba610cd034380d9e8bd9e4a07d99d4e0f18ceb5d1
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2011 by Broadcom Corporation *
12 * Evan Hunter - ehunter@broadcom.com *
13 * *
14 * Copyright (C) ST-Ericsson SA 2011 *
15 * michel.jaouen@stericsson.com : smp minimum support *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
33 #ifndef TARGET_H
34 #define TARGET_H
36 struct reg;
37 struct trace;
38 struct command_context;
39 struct breakpoint;
40 struct watchpoint;
41 struct mem_param;
42 struct reg_param;
43 struct target_list;
46 * TARGET_UNKNOWN = 0: we don't know anything about the target yet
47 * TARGET_RUNNING = 1: the target is executing user code
48 * TARGET_HALTED = 2: the target is not executing code, and ready to talk to the
49 * debugger. on an xscale it means that the debug handler is executing
50 * TARGET_RESET = 3: the target is being held in reset (only a temporary state,
51 * not sure how this is used with all the recent changes)
52 * TARGET_DEBUG_RUNNING = 4: the target is running, but it is executing code on
53 * behalf of the debugger (e.g. algorithm for flashing)
55 * also see: target_state_name();
58 enum target_state {
59 TARGET_UNKNOWN = 0,
60 TARGET_RUNNING = 1,
61 TARGET_HALTED = 2,
62 TARGET_RESET = 3,
63 TARGET_DEBUG_RUNNING = 4,
66 enum nvp_assert {
67 NVP_DEASSERT,
68 NVP_ASSERT,
71 enum target_reset_mode {
72 RESET_UNKNOWN = 0,
73 RESET_RUN = 1, /* reset and let target run */
74 RESET_HALT = 2, /* reset and halt target out of reset */
75 RESET_INIT = 3, /* reset and halt target out of reset, then run init script */
78 enum target_debug_reason {
79 DBG_REASON_DBGRQ = 0,
80 DBG_REASON_BREAKPOINT = 1,
81 DBG_REASON_WATCHPOINT = 2,
82 DBG_REASON_WPTANDBKPT = 3,
83 DBG_REASON_SINGLESTEP = 4,
84 DBG_REASON_NOTHALTED = 5,
85 DBG_REASON_UNDEFINED = 6
88 enum target_endianness {
89 TARGET_ENDIAN_UNKNOWN = 0,
90 TARGET_BIG_ENDIAN = 1, TARGET_LITTLE_ENDIAN = 2
93 struct working_area {
94 uint32_t address;
95 uint32_t size;
96 bool free;
97 uint8_t *backup;
98 struct working_area *next;
101 struct gdb_service {
102 struct target *target;
103 /* field for smp display */
104 /* element 0 coreid currently displayed ( 1 till n) */
105 /* element 1 coreid to be displayed at next resume 1 till n 0 means resume
106 * all cores core displayed */
107 int32_t core[2];
110 /* target_type.h contains the full definition of struct target_type */
111 struct target {
112 struct target_type *type; /* target type definition (name, access functions) */
113 const char *cmd_name; /* tcl Name of target */
114 int target_number; /* DO NOT USE! field to be removed in 2010 */
115 struct jtag_tap *tap; /* where on the jtag chain is this */
116 int32_t coreid; /* which device on the TAP? */
117 const char *variant; /* what variant of this chip is it? */
120 * Indicates whether this target has been examined.
122 * Do @b not access this field directly, use target_was_examined()
123 * or target_set_examined().
125 bool examined;
128 * true if the target is currently running a downloaded
129 * "algorithm" instead of arbitrary user code. OpenOCD code
130 * invoking algorithms is trusted to maintain correctness of
131 * any cached state (e.g. for flash status), which arbitrary
132 * code will have no reason to know about.
134 bool running_alg;
136 struct target_event_action *event_action;
138 int reset_halt; /* attempt resetting the CPU into the halted mode? */
139 uint32_t working_area; /* working area (initialised RAM). Evaluated
140 * upon first allocation from virtual/physical address. */
141 bool working_area_virt_spec; /* virtual address specified? */
142 uint32_t working_area_virt; /* virtual address */
143 bool working_area_phys_spec; /* virtual address specified? */
144 uint32_t working_area_phys; /* physical address */
145 uint32_t working_area_size; /* size in bytes */
146 uint32_t backup_working_area; /* whether the content of the working area has to be preserved */
147 struct working_area *working_areas;/* list of allocated working areas */
148 enum target_debug_reason debug_reason;/* reason why the target entered debug state */
149 enum target_endianness endianness; /* target endianness */
150 /* also see: target_state_name() */
151 enum target_state state; /* the current backend-state (running, halted, ...) */
152 struct reg_cache *reg_cache; /* the first register cache of the target (core regs) */
153 struct breakpoint *breakpoints; /* list of breakpoints */
154 struct watchpoint *watchpoints; /* list of watchpoints */
155 struct trace *trace_info; /* generic trace information */
156 struct debug_msg_receiver *dbgmsg; /* list of debug message receivers */
157 uint32_t dbg_msg_enabled; /* debug message status */
158 void *arch_info; /* architecture specific information */
159 struct target *next; /* next target in list */
161 int display; /* display async info in telnet session. Do not display
162 * lots of halted/resumed info when stepping in debugger. */
163 bool halt_issued; /* did we transition to halted state? */
164 long long halt_issued_time; /* Note time when halt was issued */
166 bool dbgbase_set; /* By default the debug base is not set */
167 uint32_t dbgbase; /* Really a Cortex-A specific option, but there is no
168 * system in place to support target specific options
169 * currently. */
170 struct rtos *rtos; /* Instance of Real Time Operating System support */
171 bool rtos_auto_detect; /* A flag that indicates that the RTOS has been specified as "auto"
172 * and must be detected when symbols are offered */
174 int smp; /* add some target attributes for smp support */
175 struct target_list *head;
176 /* the gdb service is there in case of smp, we have only one gdb server
177 * for all smp target
178 * the target attached to the gdb is changing dynamically by changing
179 * gdb_service->target pointer */
180 struct gdb_service *gdb_service;
183 struct target_list {
184 struct target *target;
185 struct target_list *next;
188 /** Returns the instance-specific name of the specified target. */
189 static inline const char *target_name(struct target *target)
191 return target->cmd_name;
194 const char *debug_reason_name(struct target *t);
196 enum target_event {
198 /* allow GDB to do stuff before others handle the halted event,
199 * this is in lieu of defining ordering of invocation of events,
200 * which would be more complicated
202 * Telling GDB to halt does not mean that the target stopped running,
203 * simply that we're dropping out of GDB's waiting for step or continue.
205 * This can be useful when e.g. detecting power dropout.
207 TARGET_EVENT_GDB_HALT,
208 TARGET_EVENT_HALTED, /* target entered debug state from normal execution or reset */
209 TARGET_EVENT_RESUMED, /* target resumed to normal execution */
210 TARGET_EVENT_RESUME_START,
211 TARGET_EVENT_RESUME_END,
213 TARGET_EVENT_GDB_START, /* debugger started execution (step/run) */
214 TARGET_EVENT_GDB_END, /* debugger stopped execution (step/run) */
216 TARGET_EVENT_RESET_START,
217 TARGET_EVENT_RESET_ASSERT_PRE,
218 TARGET_EVENT_RESET_ASSERT, /* C code uses this instead of SRST */
219 TARGET_EVENT_RESET_ASSERT_POST,
220 TARGET_EVENT_RESET_DEASSERT_PRE,
221 TARGET_EVENT_RESET_DEASSERT_POST,
222 TARGET_EVENT_RESET_HALT_PRE,
223 TARGET_EVENT_RESET_HALT_POST,
224 TARGET_EVENT_RESET_WAIT_PRE,
225 TARGET_EVENT_RESET_WAIT_POST,
226 TARGET_EVENT_RESET_INIT,
227 TARGET_EVENT_RESET_END,
229 TARGET_EVENT_DEBUG_HALTED, /* target entered debug state, but was executing on behalf of the debugger */
230 TARGET_EVENT_DEBUG_RESUMED, /* target resumed to execute on behalf of the debugger */
232 TARGET_EVENT_EXAMINE_START,
233 TARGET_EVENT_EXAMINE_END,
235 TARGET_EVENT_GDB_ATTACH,
236 TARGET_EVENT_GDB_DETACH,
238 TARGET_EVENT_GDB_FLASH_ERASE_START,
239 TARGET_EVENT_GDB_FLASH_ERASE_END,
240 TARGET_EVENT_GDB_FLASH_WRITE_START,
241 TARGET_EVENT_GDB_FLASH_WRITE_END,
244 struct target_event_action {
245 enum target_event event;
246 struct Jim_Interp *interp;
247 struct Jim_Obj *body;
248 int has_percent;
249 struct target_event_action *next;
252 bool target_has_event_action(struct target *target, enum target_event event);
254 struct target_event_callback {
255 int (*callback)(struct target *target, enum target_event event, void *priv);
256 void *priv;
257 struct target_event_callback *next;
260 struct target_timer_callback {
261 int (*callback)(void *priv);
262 int time_ms;
263 int periodic;
264 struct timeval when;
265 void *priv;
266 struct target_timer_callback *next;
269 int target_register_commands(struct command_context *cmd_ctx);
270 int target_examine(void);
272 int target_register_event_callback(
273 int (*callback)(struct target *target,
274 enum target_event event, void *priv),
275 void *priv);
276 int target_unregister_event_callback(
277 int (*callback)(struct target *target,
278 enum target_event event, void *priv),
279 void *priv);
281 /* Poll the status of the target, detect any error conditions and report them.
283 * Also note that this fn will clear such error conditions, so a subsequent
284 * invocation will then succeed.
286 * These error conditions can be "sticky" error conditions. E.g. writing
287 * to memory could be implemented as an open loop and if memory writes
288 * fails, then a note is made of it, the error is sticky, but the memory
289 * write loop still runs to completion. This improves performance in the
290 * normal case as there is no need to verify that every single write succeed,
291 * yet it is possible to detect error conditions.
293 int target_poll(struct target *target);
294 int target_resume(struct target *target, int current, uint32_t address,
295 int handle_breakpoints, int debug_execution);
296 int target_halt(struct target *target);
297 int target_call_event_callbacks(struct target *target, enum target_event event);
300 * The period is very approximate, the callback can happen much more often
301 * or much more rarely than specified
303 int target_register_timer_callback(int (*callback)(void *priv),
304 int time_ms, int periodic, void *priv);
306 int target_call_timer_callbacks(void);
308 * Invoke this to ensure that e.g. polling timer callbacks happen before
309 * a synchronous command completes.
311 int target_call_timer_callbacks_now(void);
313 struct target *get_current_target(struct command_context *cmd_ctx);
314 struct target *get_target(const char *id);
317 * Get the target type name.
319 * This routine is a wrapper for the target->type->name field.
320 * Note that this is not an instance-specific name for his target.
322 const char *target_type_name(struct target *target);
325 * Examine the specified @a target, letting it perform any
326 * Initialisation that requires JTAG access.
328 * This routine is a wrapper for target->type->examine.
330 int target_examine_one(struct target *target);
332 /** @returns @c true if target_set_examined() has been called. */
333 static inline bool target_was_examined(struct target *target)
335 return target->examined;
338 /** Sets the @c examined flag for the given target. */
339 /** Use in target->type->examine() after one-time setup is done. */
340 static inline void target_set_examined(struct target *target)
342 target->examined = true;
346 * Add the @a breakpoint for @a target.
348 * This routine is a wrapper for target->type->add_breakpoint.
350 int target_add_breakpoint(struct target *target,
351 struct breakpoint *breakpoint);
353 * Add the @a ContextID breakpoint for @a target.
355 * This routine is a wrapper for target->type->add_context_breakpoint.
357 int target_add_context_breakpoint(struct target *target,
358 struct breakpoint *breakpoint);
360 * Add the @a ContextID & IVA breakpoint for @a target.
362 * This routine is a wrapper for target->type->add_hybrid_breakpoint.
364 int target_add_hybrid_breakpoint(struct target *target,
365 struct breakpoint *breakpoint);
367 * Remove the @a breakpoint for @a target.
369 * This routine is a wrapper for target->type->remove_breakpoint.
372 int target_remove_breakpoint(struct target *target,
373 struct breakpoint *breakpoint);
375 * Add the @a watchpoint for @a target.
377 * This routine is a wrapper for target->type->add_watchpoint.
379 int target_add_watchpoint(struct target *target,
380 struct watchpoint *watchpoint);
382 * Remove the @a watchpoint for @a target.
384 * This routine is a wrapper for target->type->remove_watchpoint.
386 int target_remove_watchpoint(struct target *target,
387 struct watchpoint *watchpoint);
390 * Obtain the registers for GDB.
392 * This routine is a wrapper for target->type->get_gdb_reg_list.
394 int target_get_gdb_reg_list(struct target *target,
395 struct reg **reg_list[], int *reg_list_size);
398 * Step the target.
400 * This routine is a wrapper for target->type->step.
402 int target_step(struct target *target,
403 int current, uint32_t address, int handle_breakpoints);
405 * Run an algorithm on the @a target given.
407 * This routine is a wrapper for target->type->run_algorithm.
409 int target_run_algorithm(struct target *target,
410 int num_mem_params, struct mem_param *mem_params,
411 int num_reg_params, struct reg_param *reg_param,
412 uint32_t entry_point, uint32_t exit_point,
413 int timeout_ms, void *arch_info);
416 * Starts an algorithm in the background on the @a target given.
418 * This routine is a wrapper for target->type->start_algorithm.
420 int target_start_algorithm(struct target *target,
421 int num_mem_params, struct mem_param *mem_params,
422 int num_reg_params, struct reg_param *reg_params,
423 uint32_t entry_point, uint32_t exit_point,
424 void *arch_info);
427 * Wait for an algorithm on the @a target given.
429 * This routine is a wrapper for target->type->wait_algorithm.
431 int target_wait_algorithm(struct target *target,
432 int num_mem_params, struct mem_param *mem_params,
433 int num_reg_params, struct reg_param *reg_params,
434 uint32_t exit_point, int timeout_ms,
435 void *arch_info);
438 * This routine is a wrapper for asynchronous algorithms.
441 int target_run_flash_async_algorithm(struct target *target,
442 uint8_t *buffer, uint32_t count, int block_size,
443 int num_mem_params, struct mem_param *mem_params,
444 int num_reg_params, struct reg_param *reg_params,
445 uint32_t buffer_start, uint32_t buffer_size,
446 uint32_t entry_point, uint32_t exit_point,
447 void *arch_info);
450 * Read @a count items of @a size bytes from the memory of @a target at
451 * the @a address given.
453 * This routine is a wrapper for target->type->read_memory.
455 int target_read_memory(struct target *target,
456 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
458 * Write @a count items of @a size bytes to the memory of @a target at
459 * the @a address given. @a address must be aligned to @a size
460 * in target memory.
462 * The endianness is the same in the host and target memory for this
463 * function.
465 * \todo TODO:
466 * Really @a buffer should have been defined as "const void *" and
467 * @a buffer should have been aligned to @a size in the host memory.
469 * This is not enforced via e.g. assert's today and e.g. the
470 * target_write_buffer fn breaks this assumption.
472 * This routine is wrapper for target->type->write_memory.
474 int target_write_memory(struct target *target,
475 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
478 * Write @a count items of 4 bytes to the memory of @a target at
479 * the @a address given. Because it operates only on whole words,
480 * this should be faster than target_write_memory().
482 * This routine is wrapper for target->type->bulk_write_memory.
484 int target_bulk_write_memory(struct target *target,
485 uint32_t address, uint32_t count, const uint8_t *buffer);
488 * Write to target memory using the virtual address.
490 * Note that this fn is used to implement software breakpoints. Targets
491 * can implement support for software breakpoints to memory marked as read
492 * only by making this fn write to ram even if it is read only(MMU or
493 * MPUs).
495 * It is sufficient to implement for writing a single word(16 or 32 in
496 * ARM32/16 bit case) to write the breakpoint to ram.
498 * The target should also take care of "other things" to make sure that
499 * software breakpoints can be written using this function. E.g.
500 * when there is a separate instruction and data cache, this fn must
501 * make sure that the instruction cache is synced up to the potential
502 * code change that can happen as a result of the memory write(typically
503 * by invalidating the cache).
505 * The high level wrapper fn in target.c will break down this memory write
506 * request to multiple write requests to the target driver to e.g. guarantee
507 * that writing 4 bytes to an aligned address happens with a single 32 bit
508 * write operation, thus making this fn suitable to e.g. write to special
509 * peripheral registers which do not support byte operations.
511 int target_write_buffer(struct target *target,
512 uint32_t address, uint32_t size, const uint8_t *buffer);
513 int target_read_buffer(struct target *target,
514 uint32_t address, uint32_t size, uint8_t *buffer);
515 int target_checksum_memory(struct target *target,
516 uint32_t address, uint32_t size, uint32_t *crc);
517 int target_blank_check_memory(struct target *target,
518 uint32_t address, uint32_t size, uint32_t *blank);
519 int target_wait_state(struct target *target, enum target_state state, int ms);
521 /** Return the *name* of this targets current state */
522 const char *target_state_name(struct target *target);
524 /* DANGER!!!!!
526 * if "area" passed in to target_alloc_working_area() points to a memory
527 * location that goes out of scope (e.g. a pointer on the stack), then
528 * the caller of target_alloc_working_area() is responsible for invoking
529 * target_free_working_area() before "area" goes out of scope.
531 * target_free_all_working_areas() will NULL out the "area" pointer
532 * upon resuming or resetting the CPU.
535 int target_alloc_working_area(struct target *target,
536 uint32_t size, struct working_area **area);
537 /* Same as target_alloc_working_area, except that no error is logged
538 * when ERROR_TARGET_RESOURCE_NOT_AVAILABLE is returned.
540 * This allows the calling code to *try* to allocate target memory
541 * and have a fallback to another behaviour(slower?).
543 int target_alloc_working_area_try(struct target *target,
544 uint32_t size, struct working_area **area);
545 int target_free_working_area(struct target *target, struct working_area *area);
546 void target_free_all_working_areas(struct target *target);
547 uint32_t target_get_working_area_avail(struct target *target);
549 extern struct target *all_targets;
551 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer);
552 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer);
553 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer);
554 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value);
555 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value);
556 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value);
558 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf);
559 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf);
560 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf);
561 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf);
563 int target_read_u32(struct target *target, uint32_t address, uint32_t *value);
564 int target_read_u16(struct target *target, uint32_t address, uint16_t *value);
565 int target_read_u8(struct target *target, uint32_t address, uint8_t *value);
566 int target_write_u32(struct target *target, uint32_t address, uint32_t value);
567 int target_write_u16(struct target *target, uint32_t address, uint16_t value);
568 int target_write_u8(struct target *target, uint32_t address, uint8_t value);
570 /* Issues USER() statements with target state information */
571 int target_arch_state(struct target *target);
573 void target_handle_event(struct target *t, enum target_event e);
575 #define ERROR_TARGET_INVALID (-300)
576 #define ERROR_TARGET_INIT_FAILED (-301)
577 #define ERROR_TARGET_TIMEOUT (-302)
578 #define ERROR_TARGET_NOT_HALTED (-304)
579 #define ERROR_TARGET_FAILURE (-305)
580 #define ERROR_TARGET_UNALIGNED_ACCESS (-306)
581 #define ERROR_TARGET_DATA_ABORT (-307)
582 #define ERROR_TARGET_RESOURCE_NOT_AVAILABLE (-308)
583 #define ERROR_TARGET_TRANSLATION_FAULT (-309)
584 #define ERROR_TARGET_NOT_RUNNING (-310)
585 #define ERROR_TARGET_NOT_EXAMINED (-311)
587 extern bool get_target_reset_nag(void);
589 #endif /* TARGET_H */