target: fix poll off
[openocd/genbsdl.git] / src / target / target.c
blob868241ebdad4ea75d9f4c6efaad9aefe236a583a
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52 int argc, Jim_Obj *const *argv);
54 /* targets */
55 extern struct target_type arm7tdmi_target;
56 extern struct target_type arm720t_target;
57 extern struct target_type arm9tdmi_target;
58 extern struct target_type arm920t_target;
59 extern struct target_type arm966e_target;
60 extern struct target_type arm926ejs_target;
61 extern struct target_type fa526_target;
62 extern struct target_type feroceon_target;
63 extern struct target_type dragonite_target;
64 extern struct target_type xscale_target;
65 extern struct target_type cortexm3_target;
66 extern struct target_type cortexa8_target;
67 extern struct target_type arm11_target;
68 extern struct target_type mips_m4k_target;
69 extern struct target_type avr_target;
70 extern struct target_type dsp563xx_target;
71 extern struct target_type testee_target;
73 struct target_type *target_types[] =
75 &arm7tdmi_target,
76 &arm9tdmi_target,
77 &arm920t_target,
78 &arm720t_target,
79 &arm966e_target,
80 &arm926ejs_target,
81 &fa526_target,
82 &feroceon_target,
83 &dragonite_target,
84 &xscale_target,
85 &cortexm3_target,
86 &cortexa8_target,
87 &arm11_target,
88 &mips_m4k_target,
89 &avr_target,
90 &dsp563xx_target,
91 &testee_target,
92 NULL,
95 struct target *all_targets = NULL;
96 struct target_event_callback *target_event_callbacks = NULL;
97 struct target_timer_callback *target_timer_callbacks = NULL;
99 static const Jim_Nvp nvp_assert[] = {
100 { .name = "assert", NVP_ASSERT },
101 { .name = "deassert", NVP_DEASSERT },
102 { .name = "T", NVP_ASSERT },
103 { .name = "F", NVP_DEASSERT },
104 { .name = "t", NVP_ASSERT },
105 { .name = "f", NVP_DEASSERT },
106 { .name = NULL, .value = -1 }
109 static const Jim_Nvp nvp_error_target[] = {
110 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
111 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
112 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
113 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
114 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
115 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
116 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
117 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
118 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
119 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
120 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
121 { .value = -1, .name = NULL }
124 const char *target_strerror_safe(int err)
126 const Jim_Nvp *n;
128 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
129 if (n->name == NULL) {
130 return "unknown";
131 } else {
132 return n->name;
136 static const Jim_Nvp nvp_target_event[] = {
137 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
138 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
140 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
141 { .value = TARGET_EVENT_HALTED, .name = "halted" },
142 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
143 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
144 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
146 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
147 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
149 /* historical name */
151 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
153 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
154 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
155 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
156 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
157 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
158 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
159 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
160 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
161 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
162 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
163 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
165 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
166 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
168 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
169 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
171 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
172 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
174 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
175 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
177 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
178 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
180 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
181 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
182 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
184 { .name = NULL, .value = -1 }
187 static const Jim_Nvp nvp_target_state[] = {
188 { .name = "unknown", .value = TARGET_UNKNOWN },
189 { .name = "running", .value = TARGET_RUNNING },
190 { .name = "halted", .value = TARGET_HALTED },
191 { .name = "reset", .value = TARGET_RESET },
192 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
193 { .name = NULL, .value = -1 },
196 static const Jim_Nvp nvp_target_debug_reason [] = {
197 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
198 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
199 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
200 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
201 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
202 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
203 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
204 { .name = NULL, .value = -1 },
207 static const Jim_Nvp nvp_target_endian[] = {
208 { .name = "big", .value = TARGET_BIG_ENDIAN },
209 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
210 { .name = "be", .value = TARGET_BIG_ENDIAN },
211 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
212 { .name = NULL, .value = -1 },
215 static const Jim_Nvp nvp_reset_modes[] = {
216 { .name = "unknown", .value = RESET_UNKNOWN },
217 { .name = "run" , .value = RESET_RUN },
218 { .name = "halt" , .value = RESET_HALT },
219 { .name = "init" , .value = RESET_INIT },
220 { .name = NULL , .value = -1 },
223 const char *debug_reason_name(struct target *t)
225 const char *cp;
227 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
228 t->debug_reason)->name;
229 if (!cp) {
230 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
231 cp = "(*BUG*unknown*BUG*)";
233 return cp;
236 const char *
237 target_state_name( struct target *t )
239 const char *cp;
240 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
241 if( !cp ){
242 LOG_ERROR("Invalid target state: %d", (int)(t->state));
243 cp = "(*BUG*unknown*BUG*)";
245 return cp;
248 /* determine the number of the new target */
249 static int new_target_number(void)
251 struct target *t;
252 int x;
254 /* number is 0 based */
255 x = -1;
256 t = all_targets;
257 while (t) {
258 if (x < t->target_number) {
259 x = t->target_number;
261 t = t->next;
263 return x + 1;
266 /* read a uint32_t from a buffer in target memory endianness */
267 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
269 if (target->endianness == TARGET_LITTLE_ENDIAN)
270 return le_to_h_u32(buffer);
271 else
272 return be_to_h_u32(buffer);
275 /* read a uint16_t from a buffer in target memory endianness */
276 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
278 if (target->endianness == TARGET_LITTLE_ENDIAN)
279 return le_to_h_u16(buffer);
280 else
281 return be_to_h_u16(buffer);
284 /* read a uint8_t from a buffer in target memory endianness */
285 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
287 return *buffer & 0x0ff;
290 /* write a uint32_t to a buffer in target memory endianness */
291 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
293 if (target->endianness == TARGET_LITTLE_ENDIAN)
294 h_u32_to_le(buffer, value);
295 else
296 h_u32_to_be(buffer, value);
299 /* write a uint16_t to a buffer in target memory endianness */
300 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
302 if (target->endianness == TARGET_LITTLE_ENDIAN)
303 h_u16_to_le(buffer, value);
304 else
305 h_u16_to_be(buffer, value);
308 /* write a uint8_t to a buffer in target memory endianness */
309 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
311 *buffer = value;
314 /* return a pointer to a configured target; id is name or number */
315 struct target *get_target(const char *id)
317 struct target *target;
319 /* try as tcltarget name */
320 for (target = all_targets; target; target = target->next) {
321 if (target->cmd_name == NULL)
322 continue;
323 if (strcmp(id, target->cmd_name) == 0)
324 return target;
327 /* It's OK to remove this fallback sometime after August 2010 or so */
329 /* no match, try as number */
330 unsigned num;
331 if (parse_uint(id, &num) != ERROR_OK)
332 return NULL;
334 for (target = all_targets; target; target = target->next) {
335 if (target->target_number == (int)num) {
336 LOG_WARNING("use '%s' as target identifier, not '%u'",
337 target->cmd_name, num);
338 return target;
342 return NULL;
345 /* returns a pointer to the n-th configured target */
346 static struct target *get_target_by_num(int num)
348 struct target *target = all_targets;
350 while (target) {
351 if (target->target_number == num) {
352 return target;
354 target = target->next;
357 return NULL;
360 struct target* get_current_target(struct command_context *cmd_ctx)
362 struct target *target = get_target_by_num(cmd_ctx->current_target);
364 if (target == NULL)
366 LOG_ERROR("BUG: current_target out of bounds");
367 exit(-1);
370 return target;
373 int target_poll(struct target *target)
375 int retval;
377 /* We can't poll until after examine */
378 if (!target_was_examined(target))
380 /* Fail silently lest we pollute the log */
381 return ERROR_FAIL;
384 retval = target->type->poll(target);
385 if (retval != ERROR_OK)
386 return retval;
388 if (target->halt_issued)
390 if (target->state == TARGET_HALTED)
392 target->halt_issued = false;
393 } else
395 long long t = timeval_ms() - target->halt_issued_time;
396 if (t>1000)
398 target->halt_issued = false;
399 LOG_INFO("Halt timed out, wake up GDB.");
400 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
405 return ERROR_OK;
408 int target_halt(struct target *target)
410 int retval;
411 /* We can't poll until after examine */
412 if (!target_was_examined(target))
414 LOG_ERROR("Target not examined yet");
415 return ERROR_FAIL;
418 retval = target->type->halt(target);
419 if (retval != ERROR_OK)
420 return retval;
422 target->halt_issued = true;
423 target->halt_issued_time = timeval_ms();
425 return ERROR_OK;
429 * Make the target (re)start executing using its saved execution
430 * context (possibly with some modifications).
432 * @param target Which target should start executing.
433 * @param current True to use the target's saved program counter instead
434 * of the address parameter
435 * @param address Optionally used as the program counter.
436 * @param handle_breakpoints True iff breakpoints at the resumption PC
437 * should be skipped. (For example, maybe execution was stopped by
438 * such a breakpoint, in which case it would be counterprodutive to
439 * let it re-trigger.
440 * @param debug_execution False if all working areas allocated by OpenOCD
441 * should be released and/or restored to their original contents.
442 * (This would for example be true to run some downloaded "helper"
443 * algorithm code, which resides in one such working buffer and uses
444 * another for data storage.)
446 * @todo Resolve the ambiguity about what the "debug_execution" flag
447 * signifies. For example, Target implementations don't agree on how
448 * it relates to invalidation of the register cache, or to whether
449 * breakpoints and watchpoints should be enabled. (It would seem wrong
450 * to enable breakpoints when running downloaded "helper" algorithms
451 * (debug_execution true), since the breakpoints would be set to match
452 * target firmware being debugged, not the helper algorithm.... and
453 * enabling them could cause such helpers to malfunction (for example,
454 * by overwriting data with a breakpoint instruction. On the other
455 * hand the infrastructure for running such helpers might use this
456 * procedure but rely on hardware breakpoint to detect termination.)
458 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
460 int retval;
462 /* We can't poll until after examine */
463 if (!target_was_examined(target))
465 LOG_ERROR("Target not examined yet");
466 return ERROR_FAIL;
469 /* note that resume *must* be asynchronous. The CPU can halt before
470 * we poll. The CPU can even halt at the current PC as a result of
471 * a software breakpoint being inserted by (a bug?) the application.
473 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
474 return retval;
476 /* Invalidate any cached protect/erase/... flash status, since
477 * almost all targets will now be able modify the flash by
478 * themselves. We want flash drivers and infrastructure to
479 * be able to rely on (non-invalidated) cached state.
481 * REVISIT do the same for NAND ; maybe other flash flavors too...
483 nor_resume(target);
484 return retval;
487 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
489 char buf[100];
490 int retval;
491 Jim_Nvp *n;
492 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
493 if (n->name == NULL) {
494 LOG_ERROR("invalid reset mode");
495 return ERROR_FAIL;
498 /* disable polling during reset to make reset event scripts
499 * more predictable, i.e. dr/irscan & pathmove in events will
500 * not have JTAG operations injected into the middle of a sequence.
502 bool save_poll = jtag_poll_get_enabled();
504 jtag_poll_set_enabled(false);
506 sprintf(buf, "ocd_process_reset %s", n->name);
507 retval = Jim_Eval(cmd_ctx->interp, buf);
509 jtag_poll_set_enabled(save_poll);
511 if (retval != JIM_OK) {
512 Jim_PrintErrorMessage(cmd_ctx->interp);
513 return ERROR_FAIL;
516 /* We want any events to be processed before the prompt */
517 retval = target_call_timer_callbacks_now();
519 struct target *target;
520 for (target = all_targets; target; target = target->next) {
521 target->type->check_reset(target);
524 return retval;
527 static int identity_virt2phys(struct target *target,
528 uint32_t virtual, uint32_t *physical)
530 *physical = virtual;
531 return ERROR_OK;
534 static int no_mmu(struct target *target, int *enabled)
536 *enabled = 0;
537 return ERROR_OK;
540 static int default_examine(struct target *target)
542 target_set_examined(target);
543 return ERROR_OK;
546 /* no check by default */
547 static int default_check_reset(struct target *target)
549 return ERROR_OK;
552 int target_examine_one(struct target *target)
554 return target->type->examine(target);
557 static int jtag_enable_callback(enum jtag_event event, void *priv)
559 struct target *target = priv;
561 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
562 return ERROR_OK;
564 jtag_unregister_event_callback(jtag_enable_callback, target);
565 return target_examine_one(target);
569 /* Targets that correctly implement init + examine, i.e.
570 * no communication with target during init:
572 * XScale
574 int target_examine(void)
576 int retval = ERROR_OK;
577 struct target *target;
579 for (target = all_targets; target; target = target->next)
581 /* defer examination, but don't skip it */
582 if (!target->tap->enabled) {
583 jtag_register_event_callback(jtag_enable_callback,
584 target);
585 continue;
587 if ((retval = target_examine_one(target)) != ERROR_OK)
588 return retval;
590 return retval;
592 const char *target_type_name(struct target *target)
594 return target->type->name;
597 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
599 if (!target_was_examined(target))
601 LOG_ERROR("Target not examined yet");
602 return ERROR_FAIL;
604 return target->type->write_memory_imp(target, address, size, count, buffer);
607 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
609 if (!target_was_examined(target))
611 LOG_ERROR("Target not examined yet");
612 return ERROR_FAIL;
614 return target->type->read_memory_imp(target, address, size, count, buffer);
617 static int target_soft_reset_halt_imp(struct target *target)
619 if (!target_was_examined(target))
621 LOG_ERROR("Target not examined yet");
622 return ERROR_FAIL;
624 if (!target->type->soft_reset_halt_imp) {
625 LOG_ERROR("Target %s does not support soft_reset_halt",
626 target_name(target));
627 return ERROR_FAIL;
629 return target->type->soft_reset_halt_imp(target);
632 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
634 if (!target_was_examined(target))
636 LOG_ERROR("Target not examined yet");
637 return ERROR_FAIL;
639 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
642 int target_read_memory(struct target *target,
643 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
645 return target->type->read_memory(target, address, size, count, buffer);
648 int target_read_phys_memory(struct target *target,
649 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
651 return target->type->read_phys_memory(target, address, size, count, buffer);
654 int target_write_memory(struct target *target,
655 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
657 return target->type->write_memory(target, address, size, count, buffer);
660 int target_write_phys_memory(struct target *target,
661 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
663 return target->type->write_phys_memory(target, address, size, count, buffer);
666 int target_bulk_write_memory(struct target *target,
667 uint32_t address, uint32_t count, uint8_t *buffer)
669 return target->type->bulk_write_memory(target, address, count, buffer);
672 int target_add_breakpoint(struct target *target,
673 struct breakpoint *breakpoint)
675 if (target->state != TARGET_HALTED) {
676 LOG_WARNING("target %s is not halted", target->cmd_name);
677 return ERROR_TARGET_NOT_HALTED;
679 return target->type->add_breakpoint(target, breakpoint);
681 int target_remove_breakpoint(struct target *target,
682 struct breakpoint *breakpoint)
684 return target->type->remove_breakpoint(target, breakpoint);
687 int target_add_watchpoint(struct target *target,
688 struct watchpoint *watchpoint)
690 if (target->state != TARGET_HALTED) {
691 LOG_WARNING("target %s is not halted", target->cmd_name);
692 return ERROR_TARGET_NOT_HALTED;
694 return target->type->add_watchpoint(target, watchpoint);
696 int target_remove_watchpoint(struct target *target,
697 struct watchpoint *watchpoint)
699 return target->type->remove_watchpoint(target, watchpoint);
702 int target_get_gdb_reg_list(struct target *target,
703 struct reg **reg_list[], int *reg_list_size)
705 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
707 int target_step(struct target *target,
708 int current, uint32_t address, int handle_breakpoints)
710 return target->type->step(target, current, address, handle_breakpoints);
714 int target_run_algorithm(struct target *target,
715 int num_mem_params, struct mem_param *mem_params,
716 int num_reg_params, struct reg_param *reg_param,
717 uint32_t entry_point, uint32_t exit_point,
718 int timeout_ms, void *arch_info)
720 return target->type->run_algorithm(target,
721 num_mem_params, mem_params, num_reg_params, reg_param,
722 entry_point, exit_point, timeout_ms, arch_info);
726 * Reset the @c examined flag for the given target.
727 * Pure paranoia -- targets are zeroed on allocation.
729 static void target_reset_examined(struct target *target)
731 target->examined = false;
734 static int
735 err_read_phys_memory(struct target *target, uint32_t address,
736 uint32_t size, uint32_t count, uint8_t *buffer)
738 LOG_ERROR("Not implemented: %s", __func__);
739 return ERROR_FAIL;
742 static int
743 err_write_phys_memory(struct target *target, uint32_t address,
744 uint32_t size, uint32_t count, uint8_t *buffer)
746 LOG_ERROR("Not implemented: %s", __func__);
747 return ERROR_FAIL;
750 static int handle_target(void *priv);
752 static int target_init_one(struct command_context *cmd_ctx,
753 struct target *target)
755 target_reset_examined(target);
757 struct target_type *type = target->type;
758 if (type->examine == NULL)
759 type->examine = default_examine;
761 if (type->check_reset== NULL)
762 type->check_reset = default_check_reset;
764 int retval = type->init_target(cmd_ctx, target);
765 if (ERROR_OK != retval)
767 LOG_ERROR("target '%s' init failed", target_name(target));
768 return retval;
772 * @todo get rid of those *memory_imp() methods, now that all
773 * callers are using target_*_memory() accessors ... and make
774 * sure the "physical" paths handle the same issues.
776 /* a non-invasive way(in terms of patches) to add some code that
777 * runs before the type->write/read_memory implementation
779 type->write_memory_imp = target->type->write_memory;
780 type->write_memory = target_write_memory_imp;
782 type->read_memory_imp = target->type->read_memory;
783 type->read_memory = target_read_memory_imp;
785 type->soft_reset_halt_imp = target->type->soft_reset_halt;
786 type->soft_reset_halt = target_soft_reset_halt_imp;
788 type->run_algorithm_imp = target->type->run_algorithm;
789 type->run_algorithm = target_run_algorithm_imp;
791 /* Sanity-check MMU support ... stub in what we must, to help
792 * implement it in stages, but warn if we need to do so.
794 if (type->mmu)
796 if (type->write_phys_memory == NULL)
798 LOG_ERROR("type '%s' is missing write_phys_memory",
799 type->name);
800 type->write_phys_memory = err_write_phys_memory;
802 if (type->read_phys_memory == NULL)
804 LOG_ERROR("type '%s' is missing read_phys_memory",
805 type->name);
806 type->read_phys_memory = err_read_phys_memory;
808 if (type->virt2phys == NULL)
810 LOG_ERROR("type '%s' is missing virt2phys", type->name);
811 type->virt2phys = identity_virt2phys;
814 else
816 /* Make sure no-MMU targets all behave the same: make no
817 * distinction between physical and virtual addresses, and
818 * ensure that virt2phys() is always an identity mapping.
820 if (type->write_phys_memory || type->read_phys_memory
821 || type->virt2phys)
823 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
826 type->mmu = no_mmu;
827 type->write_phys_memory = type->write_memory;
828 type->read_phys_memory = type->read_memory;
829 type->virt2phys = identity_virt2phys;
831 return ERROR_OK;
834 int target_init(struct command_context *cmd_ctx)
836 struct target *target;
837 int retval;
839 for (target = all_targets; target; target = target->next)
841 retval = target_init_one(cmd_ctx, target);
842 if (ERROR_OK != retval)
843 return retval;
846 if (!all_targets)
847 return ERROR_OK;
849 retval = target_register_user_commands(cmd_ctx);
850 if (ERROR_OK != retval)
851 return retval;
853 retval = target_register_timer_callback(&handle_target,
854 100, 1, cmd_ctx->interp);
855 if (ERROR_OK != retval)
856 return retval;
858 return ERROR_OK;
861 COMMAND_HANDLER(handle_target_init_command)
863 if (CMD_ARGC != 0)
864 return ERROR_COMMAND_SYNTAX_ERROR;
866 static bool target_initialized = false;
867 if (target_initialized)
869 LOG_INFO("'target init' has already been called");
870 return ERROR_OK;
872 target_initialized = true;
874 LOG_DEBUG("Initializing targets...");
875 return target_init(CMD_CTX);
878 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
880 struct target_event_callback **callbacks_p = &target_event_callbacks;
882 if (callback == NULL)
884 return ERROR_INVALID_ARGUMENTS;
887 if (*callbacks_p)
889 while ((*callbacks_p)->next)
890 callbacks_p = &((*callbacks_p)->next);
891 callbacks_p = &((*callbacks_p)->next);
894 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
895 (*callbacks_p)->callback = callback;
896 (*callbacks_p)->priv = priv;
897 (*callbacks_p)->next = NULL;
899 return ERROR_OK;
902 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
904 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
905 struct timeval now;
907 if (callback == NULL)
909 return ERROR_INVALID_ARGUMENTS;
912 if (*callbacks_p)
914 while ((*callbacks_p)->next)
915 callbacks_p = &((*callbacks_p)->next);
916 callbacks_p = &((*callbacks_p)->next);
919 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
920 (*callbacks_p)->callback = callback;
921 (*callbacks_p)->periodic = periodic;
922 (*callbacks_p)->time_ms = time_ms;
924 gettimeofday(&now, NULL);
925 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
926 time_ms -= (time_ms % 1000);
927 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
928 if ((*callbacks_p)->when.tv_usec > 1000000)
930 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
931 (*callbacks_p)->when.tv_sec += 1;
934 (*callbacks_p)->priv = priv;
935 (*callbacks_p)->next = NULL;
937 return ERROR_OK;
940 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
942 struct target_event_callback **p = &target_event_callbacks;
943 struct target_event_callback *c = target_event_callbacks;
945 if (callback == NULL)
947 return ERROR_INVALID_ARGUMENTS;
950 while (c)
952 struct target_event_callback *next = c->next;
953 if ((c->callback == callback) && (c->priv == priv))
955 *p = next;
956 free(c);
957 return ERROR_OK;
959 else
960 p = &(c->next);
961 c = next;
964 return ERROR_OK;
967 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
969 struct target_timer_callback **p = &target_timer_callbacks;
970 struct target_timer_callback *c = target_timer_callbacks;
972 if (callback == NULL)
974 return ERROR_INVALID_ARGUMENTS;
977 while (c)
979 struct target_timer_callback *next = c->next;
980 if ((c->callback == callback) && (c->priv == priv))
982 *p = next;
983 free(c);
984 return ERROR_OK;
986 else
987 p = &(c->next);
988 c = next;
991 return ERROR_OK;
994 int target_call_event_callbacks(struct target *target, enum target_event event)
996 struct target_event_callback *callback = target_event_callbacks;
997 struct target_event_callback *next_callback;
999 if (event == TARGET_EVENT_HALTED)
1001 /* execute early halted first */
1002 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1005 LOG_DEBUG("target event %i (%s)",
1006 event,
1007 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1009 target_handle_event(target, event);
1011 while (callback)
1013 next_callback = callback->next;
1014 callback->callback(target, event, callback->priv);
1015 callback = next_callback;
1018 return ERROR_OK;
1021 static int target_timer_callback_periodic_restart(
1022 struct target_timer_callback *cb, struct timeval *now)
1024 int time_ms = cb->time_ms;
1025 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1026 time_ms -= (time_ms % 1000);
1027 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1028 if (cb->when.tv_usec > 1000000)
1030 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1031 cb->when.tv_sec += 1;
1033 return ERROR_OK;
1036 static int target_call_timer_callback(struct target_timer_callback *cb,
1037 struct timeval *now)
1039 cb->callback(cb->priv);
1041 if (cb->periodic)
1042 return target_timer_callback_periodic_restart(cb, now);
1044 return target_unregister_timer_callback(cb->callback, cb->priv);
1047 static int target_call_timer_callbacks_check_time(int checktime)
1049 keep_alive();
1051 struct timeval now;
1052 gettimeofday(&now, NULL);
1054 struct target_timer_callback *callback = target_timer_callbacks;
1055 while (callback)
1057 // cleaning up may unregister and free this callback
1058 struct target_timer_callback *next_callback = callback->next;
1060 bool call_it = callback->callback &&
1061 ((!checktime && callback->periodic) ||
1062 now.tv_sec > callback->when.tv_sec ||
1063 (now.tv_sec == callback->when.tv_sec &&
1064 now.tv_usec >= callback->when.tv_usec));
1066 if (call_it)
1068 int retval = target_call_timer_callback(callback, &now);
1069 if (retval != ERROR_OK)
1070 return retval;
1073 callback = next_callback;
1076 return ERROR_OK;
1079 int target_call_timer_callbacks(void)
1081 return target_call_timer_callbacks_check_time(1);
1084 /* invoke periodic callbacks immediately */
1085 int target_call_timer_callbacks_now(void)
1087 return target_call_timer_callbacks_check_time(0);
1090 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1092 struct working_area *c = target->working_areas;
1093 struct working_area *new_wa = NULL;
1095 /* Reevaluate working area address based on MMU state*/
1096 if (target->working_areas == NULL)
1098 int retval;
1099 int enabled;
1101 retval = target->type->mmu(target, &enabled);
1102 if (retval != ERROR_OK)
1104 return retval;
1107 if (!enabled) {
1108 if (target->working_area_phys_spec) {
1109 LOG_DEBUG("MMU disabled, using physical "
1110 "address for working memory 0x%08x",
1111 (unsigned)target->working_area_phys);
1112 target->working_area = target->working_area_phys;
1113 } else {
1114 LOG_ERROR("No working memory available. "
1115 "Specify -work-area-phys to target.");
1116 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1118 } else {
1119 if (target->working_area_virt_spec) {
1120 LOG_DEBUG("MMU enabled, using virtual "
1121 "address for working memory 0x%08x",
1122 (unsigned)target->working_area_virt);
1123 target->working_area = target->working_area_virt;
1124 } else {
1125 LOG_ERROR("No working memory available. "
1126 "Specify -work-area-virt to target.");
1127 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1132 /* only allocate multiples of 4 byte */
1133 if (size % 4)
1135 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1136 size = (size + 3) & (~3);
1139 /* see if there's already a matching working area */
1140 while (c)
1142 if ((c->free) && (c->size == size))
1144 new_wa = c;
1145 break;
1147 c = c->next;
1150 /* if not, allocate a new one */
1151 if (!new_wa)
1153 struct working_area **p = &target->working_areas;
1154 uint32_t first_free = target->working_area;
1155 uint32_t free_size = target->working_area_size;
1157 c = target->working_areas;
1158 while (c)
1160 first_free += c->size;
1161 free_size -= c->size;
1162 p = &c->next;
1163 c = c->next;
1166 if (free_size < size)
1168 LOG_WARNING("not enough working area available(requested %u, free %u)",
1169 (unsigned)(size), (unsigned)(free_size));
1170 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1173 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1175 new_wa = malloc(sizeof(struct working_area));
1176 new_wa->next = NULL;
1177 new_wa->size = size;
1178 new_wa->address = first_free;
1180 if (target->backup_working_area)
1182 int retval;
1183 new_wa->backup = malloc(new_wa->size);
1184 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1186 free(new_wa->backup);
1187 free(new_wa);
1188 return retval;
1191 else
1193 new_wa->backup = NULL;
1196 /* put new entry in list */
1197 *p = new_wa;
1200 /* mark as used, and return the new (reused) area */
1201 new_wa->free = 0;
1202 *area = new_wa;
1204 /* user pointer */
1205 new_wa->user = area;
1207 return ERROR_OK;
1210 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1212 if (area->free)
1213 return ERROR_OK;
1215 if (restore && target->backup_working_area)
1217 int retval;
1218 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1219 return retval;
1222 area->free = 1;
1224 /* mark user pointer invalid */
1225 *area->user = NULL;
1226 area->user = NULL;
1228 return ERROR_OK;
1231 int target_free_working_area(struct target *target, struct working_area *area)
1233 return target_free_working_area_restore(target, area, 1);
1236 /* free resources and restore memory, if restoring memory fails,
1237 * free up resources anyway
1239 void target_free_all_working_areas_restore(struct target *target, int restore)
1241 struct working_area *c = target->working_areas;
1243 while (c)
1245 struct working_area *next = c->next;
1246 target_free_working_area_restore(target, c, restore);
1248 if (c->backup)
1249 free(c->backup);
1251 free(c);
1253 c = next;
1256 target->working_areas = NULL;
1259 void target_free_all_working_areas(struct target *target)
1261 target_free_all_working_areas_restore(target, 1);
1264 int target_arch_state(struct target *target)
1266 int retval;
1267 if (target == NULL)
1269 LOG_USER("No target has been configured");
1270 return ERROR_OK;
1273 LOG_USER("target state: %s", target_state_name( target ));
1275 if (target->state != TARGET_HALTED)
1276 return ERROR_OK;
1278 retval = target->type->arch_state(target);
1279 return retval;
1282 /* Single aligned words are guaranteed to use 16 or 32 bit access
1283 * mode respectively, otherwise data is handled as quickly as
1284 * possible
1286 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1288 int retval;
1289 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1290 (int)size, (unsigned)address);
1292 if (!target_was_examined(target))
1294 LOG_ERROR("Target not examined yet");
1295 return ERROR_FAIL;
1298 if (size == 0) {
1299 return ERROR_OK;
1302 if ((address + size - 1) < address)
1304 /* GDB can request this when e.g. PC is 0xfffffffc*/
1305 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1306 (unsigned)address,
1307 (unsigned)size);
1308 return ERROR_FAIL;
1311 if (((address % 2) == 0) && (size == 2))
1313 return target_write_memory(target, address, 2, 1, buffer);
1316 /* handle unaligned head bytes */
1317 if (address % 4)
1319 uint32_t unaligned = 4 - (address % 4);
1321 if (unaligned > size)
1322 unaligned = size;
1324 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1325 return retval;
1327 buffer += unaligned;
1328 address += unaligned;
1329 size -= unaligned;
1332 /* handle aligned words */
1333 if (size >= 4)
1335 int aligned = size - (size % 4);
1337 /* use bulk writes above a certain limit. This may have to be changed */
1338 if (aligned > 128)
1340 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1341 return retval;
1343 else
1345 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1346 return retval;
1349 buffer += aligned;
1350 address += aligned;
1351 size -= aligned;
1354 /* handle tail writes of less than 4 bytes */
1355 if (size > 0)
1357 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1358 return retval;
1361 return ERROR_OK;
1364 /* Single aligned words are guaranteed to use 16 or 32 bit access
1365 * mode respectively, otherwise data is handled as quickly as
1366 * possible
1368 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1370 int retval;
1371 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1372 (int)size, (unsigned)address);
1374 if (!target_was_examined(target))
1376 LOG_ERROR("Target not examined yet");
1377 return ERROR_FAIL;
1380 if (size == 0) {
1381 return ERROR_OK;
1384 if ((address + size - 1) < address)
1386 /* GDB can request this when e.g. PC is 0xfffffffc*/
1387 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1388 address,
1389 size);
1390 return ERROR_FAIL;
1393 if (((address % 2) == 0) && (size == 2))
1395 return target_read_memory(target, address, 2, 1, buffer);
1398 /* handle unaligned head bytes */
1399 if (address % 4)
1401 uint32_t unaligned = 4 - (address % 4);
1403 if (unaligned > size)
1404 unaligned = size;
1406 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1407 return retval;
1409 buffer += unaligned;
1410 address += unaligned;
1411 size -= unaligned;
1414 /* handle aligned words */
1415 if (size >= 4)
1417 int aligned = size - (size % 4);
1419 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1420 return retval;
1422 buffer += aligned;
1423 address += aligned;
1424 size -= aligned;
1427 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1428 if(size >=2)
1430 int aligned = size - (size%2);
1431 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1432 if (retval != ERROR_OK)
1433 return retval;
1435 buffer += aligned;
1436 address += aligned;
1437 size -= aligned;
1439 /* handle tail writes of less than 4 bytes */
1440 if (size > 0)
1442 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1443 return retval;
1446 return ERROR_OK;
1449 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1451 uint8_t *buffer;
1452 int retval;
1453 uint32_t i;
1454 uint32_t checksum = 0;
1455 if (!target_was_examined(target))
1457 LOG_ERROR("Target not examined yet");
1458 return ERROR_FAIL;
1461 if ((retval = target->type->checksum_memory(target, address,
1462 size, &checksum)) != ERROR_OK)
1464 buffer = malloc(size);
1465 if (buffer == NULL)
1467 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1468 return ERROR_INVALID_ARGUMENTS;
1470 retval = target_read_buffer(target, address, size, buffer);
1471 if (retval != ERROR_OK)
1473 free(buffer);
1474 return retval;
1477 /* convert to target endianess */
1478 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1480 uint32_t target_data;
1481 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1482 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1485 retval = image_calculate_checksum(buffer, size, &checksum);
1486 free(buffer);
1489 *crc = checksum;
1491 return retval;
1494 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1496 int retval;
1497 if (!target_was_examined(target))
1499 LOG_ERROR("Target not examined yet");
1500 return ERROR_FAIL;
1503 if (target->type->blank_check_memory == 0)
1504 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1506 retval = target->type->blank_check_memory(target, address, size, blank);
1508 return retval;
1511 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1513 uint8_t value_buf[4];
1514 if (!target_was_examined(target))
1516 LOG_ERROR("Target not examined yet");
1517 return ERROR_FAIL;
1520 int retval = target_read_memory(target, address, 4, 1, value_buf);
1522 if (retval == ERROR_OK)
1524 *value = target_buffer_get_u32(target, value_buf);
1525 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1526 address,
1527 *value);
1529 else
1531 *value = 0x0;
1532 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1533 address);
1536 return retval;
1539 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1541 uint8_t value_buf[2];
1542 if (!target_was_examined(target))
1544 LOG_ERROR("Target not examined yet");
1545 return ERROR_FAIL;
1548 int retval = target_read_memory(target, address, 2, 1, value_buf);
1550 if (retval == ERROR_OK)
1552 *value = target_buffer_get_u16(target, value_buf);
1553 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1554 address,
1555 *value);
1557 else
1559 *value = 0x0;
1560 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1561 address);
1564 return retval;
1567 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1569 int retval = target_read_memory(target, address, 1, 1, value);
1570 if (!target_was_examined(target))
1572 LOG_ERROR("Target not examined yet");
1573 return ERROR_FAIL;
1576 if (retval == ERROR_OK)
1578 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1579 address,
1580 *value);
1582 else
1584 *value = 0x0;
1585 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1586 address);
1589 return retval;
1592 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1594 int retval;
1595 uint8_t value_buf[4];
1596 if (!target_was_examined(target))
1598 LOG_ERROR("Target not examined yet");
1599 return ERROR_FAIL;
1602 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1603 address,
1604 value);
1606 target_buffer_set_u32(target, value_buf, value);
1607 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1609 LOG_DEBUG("failed: %i", retval);
1612 return retval;
1615 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1617 int retval;
1618 uint8_t value_buf[2];
1619 if (!target_was_examined(target))
1621 LOG_ERROR("Target not examined yet");
1622 return ERROR_FAIL;
1625 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1626 address,
1627 value);
1629 target_buffer_set_u16(target, value_buf, value);
1630 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1632 LOG_DEBUG("failed: %i", retval);
1635 return retval;
1638 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1640 int retval;
1641 if (!target_was_examined(target))
1643 LOG_ERROR("Target not examined yet");
1644 return ERROR_FAIL;
1647 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1648 address, value);
1650 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1652 LOG_DEBUG("failed: %i", retval);
1655 return retval;
1658 COMMAND_HANDLER(handle_targets_command)
1660 struct target *target = all_targets;
1662 if (CMD_ARGC == 1)
1664 target = get_target(CMD_ARGV[0]);
1665 if (target == NULL) {
1666 command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1667 goto DumpTargets;
1669 if (!target->tap->enabled) {
1670 command_print(CMD_CTX,"Target: TAP %s is disabled, "
1671 "can't be the current target\n",
1672 target->tap->dotted_name);
1673 return ERROR_FAIL;
1676 CMD_CTX->current_target = target->target_number;
1677 return ERROR_OK;
1679 DumpTargets:
1681 target = all_targets;
1682 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1683 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1684 while (target)
1686 const char *state;
1687 char marker = ' ';
1689 if (target->tap->enabled)
1690 state = target_state_name( target );
1691 else
1692 state = "tap-disabled";
1694 if (CMD_CTX->current_target == target->target_number)
1695 marker = '*';
1697 /* keep columns lined up to match the headers above */
1698 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1699 target->target_number,
1700 marker,
1701 target_name(target),
1702 target_type_name(target),
1703 Jim_Nvp_value2name_simple(nvp_target_endian,
1704 target->endianness)->name,
1705 target->tap->dotted_name,
1706 state);
1707 target = target->next;
1710 return ERROR_OK;
1713 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1715 static int powerDropout;
1716 static int srstAsserted;
1718 static int runPowerRestore;
1719 static int runPowerDropout;
1720 static int runSrstAsserted;
1721 static int runSrstDeasserted;
1723 static int sense_handler(void)
1725 static int prevSrstAsserted = 0;
1726 static int prevPowerdropout = 0;
1728 int retval;
1729 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1730 return retval;
1732 int powerRestored;
1733 powerRestored = prevPowerdropout && !powerDropout;
1734 if (powerRestored)
1736 runPowerRestore = 1;
1739 long long current = timeval_ms();
1740 static long long lastPower = 0;
1741 int waitMore = lastPower + 2000 > current;
1742 if (powerDropout && !waitMore)
1744 runPowerDropout = 1;
1745 lastPower = current;
1748 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1749 return retval;
1751 int srstDeasserted;
1752 srstDeasserted = prevSrstAsserted && !srstAsserted;
1754 static long long lastSrst = 0;
1755 waitMore = lastSrst + 2000 > current;
1756 if (srstDeasserted && !waitMore)
1758 runSrstDeasserted = 1;
1759 lastSrst = current;
1762 if (!prevSrstAsserted && srstAsserted)
1764 runSrstAsserted = 1;
1767 prevSrstAsserted = srstAsserted;
1768 prevPowerdropout = powerDropout;
1770 if (srstDeasserted || powerRestored)
1772 /* Other than logging the event we can't do anything here.
1773 * Issuing a reset is a particularly bad idea as we might
1774 * be inside a reset already.
1778 return ERROR_OK;
1781 /* process target state changes */
1782 static int handle_target(void *priv)
1784 Jim_Interp *interp = (Jim_Interp *)priv;
1785 int retval = ERROR_OK;
1787 if (!is_jtag_poll_safe())
1789 /* polling is disabled currently */
1790 return ERROR_OK;
1793 /* we do not want to recurse here... */
1794 static int recursive = 0;
1795 if (! recursive)
1797 recursive = 1;
1798 sense_handler();
1799 /* danger! running these procedures can trigger srst assertions and power dropouts.
1800 * We need to avoid an infinite loop/recursion here and we do that by
1801 * clearing the flags after running these events.
1803 int did_something = 0;
1804 if (runSrstAsserted)
1806 LOG_INFO("srst asserted detected, running srst_asserted proc.");
1807 Jim_Eval(interp, "srst_asserted");
1808 did_something = 1;
1810 if (runSrstDeasserted)
1812 Jim_Eval(interp, "srst_deasserted");
1813 did_something = 1;
1815 if (runPowerDropout)
1817 LOG_INFO("Power dropout detected, running power_dropout proc.");
1818 Jim_Eval(interp, "power_dropout");
1819 did_something = 1;
1821 if (runPowerRestore)
1823 Jim_Eval(interp, "power_restore");
1824 did_something = 1;
1827 if (did_something)
1829 /* clear detect flags */
1830 sense_handler();
1833 /* clear action flags */
1835 runSrstAsserted = 0;
1836 runSrstDeasserted = 0;
1837 runPowerRestore = 0;
1838 runPowerDropout = 0;
1840 recursive = 0;
1843 /* Poll targets for state changes unless that's globally disabled.
1844 * Skip targets that are currently disabled.
1846 for (struct target *target = all_targets;
1847 is_jtag_poll_safe() && target;
1848 target = target->next)
1850 if (!target->tap->enabled)
1851 continue;
1853 /* only poll target if we've got power and srst isn't asserted */
1854 if (!powerDropout && !srstAsserted)
1856 /* polling may fail silently until the target has been examined */
1857 if ((retval = target_poll(target)) != ERROR_OK)
1859 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1860 * *why* we are aborting GDB, then we'll spam telnet when the
1861 * poll is failing persistently.
1863 * If we could implement an event that detected the
1864 * target going from non-pollable to pollable, we could issue
1865 * an error only upon the transition.
1867 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1868 return retval;
1873 return retval;
1876 COMMAND_HANDLER(handle_reg_command)
1878 struct target *target;
1879 struct reg *reg = NULL;
1880 unsigned count = 0;
1881 char *value;
1883 LOG_DEBUG("-");
1885 target = get_current_target(CMD_CTX);
1887 /* list all available registers for the current target */
1888 if (CMD_ARGC == 0)
1890 struct reg_cache *cache = target->reg_cache;
1892 count = 0;
1893 while (cache)
1895 unsigned i;
1897 command_print(CMD_CTX, "===== %s", cache->name);
1899 for (i = 0, reg = cache->reg_list;
1900 i < cache->num_regs;
1901 i++, reg++, count++)
1903 /* only print cached values if they are valid */
1904 if (reg->valid) {
1905 value = buf_to_str(reg->value,
1906 reg->size, 16);
1907 command_print(CMD_CTX,
1908 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1909 count, reg->name,
1910 reg->size, value,
1911 reg->dirty
1912 ? " (dirty)"
1913 : "");
1914 free(value);
1915 } else {
1916 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1917 count, reg->name,
1918 reg->size) ;
1921 cache = cache->next;
1924 return ERROR_OK;
1927 /* access a single register by its ordinal number */
1928 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1930 unsigned num;
1931 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1933 struct reg_cache *cache = target->reg_cache;
1934 count = 0;
1935 while (cache)
1937 unsigned i;
1938 for (i = 0; i < cache->num_regs; i++)
1940 if (count++ == num)
1942 reg = &cache->reg_list[i];
1943 break;
1946 if (reg)
1947 break;
1948 cache = cache->next;
1951 if (!reg)
1953 command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1954 return ERROR_OK;
1956 } else /* access a single register by its name */
1958 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1960 if (!reg)
1962 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1963 return ERROR_OK;
1967 /* display a register */
1968 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1970 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1971 reg->valid = 0;
1973 if (reg->valid == 0)
1975 reg->type->get(reg);
1977 value = buf_to_str(reg->value, reg->size, 16);
1978 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1979 free(value);
1980 return ERROR_OK;
1983 /* set register value */
1984 if (CMD_ARGC == 2)
1986 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1987 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
1989 reg->type->set(reg, buf);
1991 value = buf_to_str(reg->value, reg->size, 16);
1992 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1993 free(value);
1995 free(buf);
1997 return ERROR_OK;
2000 command_print(CMD_CTX, "usage: reg <#|name> [value]");
2002 return ERROR_OK;
2005 COMMAND_HANDLER(handle_poll_command)
2007 int retval = ERROR_OK;
2008 struct target *target = get_current_target(CMD_CTX);
2010 if (CMD_ARGC == 0)
2012 command_print(CMD_CTX, "background polling: %s",
2013 jtag_poll_get_enabled() ? "on" : "off");
2014 command_print(CMD_CTX, "TAP: %s (%s)",
2015 target->tap->dotted_name,
2016 target->tap->enabled ? "enabled" : "disabled");
2017 if (!target->tap->enabled)
2018 return ERROR_OK;
2019 if ((retval = target_poll(target)) != ERROR_OK)
2020 return retval;
2021 if ((retval = target_arch_state(target)) != ERROR_OK)
2022 return retval;
2024 else if (CMD_ARGC == 1)
2026 bool enable;
2027 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2028 jtag_poll_set_enabled(enable);
2030 else
2032 return ERROR_COMMAND_SYNTAX_ERROR;
2035 return retval;
2038 COMMAND_HANDLER(handle_wait_halt_command)
2040 if (CMD_ARGC > 1)
2041 return ERROR_COMMAND_SYNTAX_ERROR;
2043 unsigned ms = 5000;
2044 if (1 == CMD_ARGC)
2046 int retval = parse_uint(CMD_ARGV[0], &ms);
2047 if (ERROR_OK != retval)
2049 command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2050 return ERROR_COMMAND_SYNTAX_ERROR;
2052 // convert seconds (given) to milliseconds (needed)
2053 ms *= 1000;
2056 struct target *target = get_current_target(CMD_CTX);
2057 return target_wait_state(target, TARGET_HALTED, ms);
2060 /* wait for target state to change. The trick here is to have a low
2061 * latency for short waits and not to suck up all the CPU time
2062 * on longer waits.
2064 * After 500ms, keep_alive() is invoked
2066 int target_wait_state(struct target *target, enum target_state state, int ms)
2068 int retval;
2069 long long then = 0, cur;
2070 int once = 1;
2072 for (;;)
2074 if ((retval = target_poll(target)) != ERROR_OK)
2075 return retval;
2076 if (target->state == state)
2078 break;
2080 cur = timeval_ms();
2081 if (once)
2083 once = 0;
2084 then = timeval_ms();
2085 LOG_DEBUG("waiting for target %s...",
2086 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2089 if (cur-then > 500)
2091 keep_alive();
2094 if ((cur-then) > ms)
2096 LOG_ERROR("timed out while waiting for target %s",
2097 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2098 return ERROR_FAIL;
2102 return ERROR_OK;
2105 COMMAND_HANDLER(handle_halt_command)
2107 LOG_DEBUG("-");
2109 struct target *target = get_current_target(CMD_CTX);
2110 int retval = target_halt(target);
2111 if (ERROR_OK != retval)
2112 return retval;
2114 if (CMD_ARGC == 1)
2116 unsigned wait;
2117 retval = parse_uint(CMD_ARGV[0], &wait);
2118 if (ERROR_OK != retval)
2119 return ERROR_COMMAND_SYNTAX_ERROR;
2120 if (!wait)
2121 return ERROR_OK;
2124 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2127 COMMAND_HANDLER(handle_soft_reset_halt_command)
2129 struct target *target = get_current_target(CMD_CTX);
2131 LOG_USER("requesting target halt and executing a soft reset");
2133 target->type->soft_reset_halt(target);
2135 return ERROR_OK;
2138 COMMAND_HANDLER(handle_reset_command)
2140 if (CMD_ARGC > 1)
2141 return ERROR_COMMAND_SYNTAX_ERROR;
2143 enum target_reset_mode reset_mode = RESET_RUN;
2144 if (CMD_ARGC == 1)
2146 const Jim_Nvp *n;
2147 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2148 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2149 return ERROR_COMMAND_SYNTAX_ERROR;
2151 reset_mode = n->value;
2154 /* reset *all* targets */
2155 return target_process_reset(CMD_CTX, reset_mode);
2159 COMMAND_HANDLER(handle_resume_command)
2161 int current = 1;
2162 if (CMD_ARGC > 1)
2163 return ERROR_COMMAND_SYNTAX_ERROR;
2165 struct target *target = get_current_target(CMD_CTX);
2166 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2168 /* with no CMD_ARGV, resume from current pc, addr = 0,
2169 * with one arguments, addr = CMD_ARGV[0],
2170 * handle breakpoints, not debugging */
2171 uint32_t addr = 0;
2172 if (CMD_ARGC == 1)
2174 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2175 current = 0;
2178 return target_resume(target, current, addr, 1, 0);
2181 COMMAND_HANDLER(handle_step_command)
2183 if (CMD_ARGC > 1)
2184 return ERROR_COMMAND_SYNTAX_ERROR;
2186 LOG_DEBUG("-");
2188 /* with no CMD_ARGV, step from current pc, addr = 0,
2189 * with one argument addr = CMD_ARGV[0],
2190 * handle breakpoints, debugging */
2191 uint32_t addr = 0;
2192 int current_pc = 1;
2193 if (CMD_ARGC == 1)
2195 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2196 current_pc = 0;
2199 struct target *target = get_current_target(CMD_CTX);
2201 return target->type->step(target, current_pc, addr, 1);
2204 static void handle_md_output(struct command_context *cmd_ctx,
2205 struct target *target, uint32_t address, unsigned size,
2206 unsigned count, const uint8_t *buffer)
2208 const unsigned line_bytecnt = 32;
2209 unsigned line_modulo = line_bytecnt / size;
2211 char output[line_bytecnt * 4 + 1];
2212 unsigned output_len = 0;
2214 const char *value_fmt;
2215 switch (size) {
2216 case 4: value_fmt = "%8.8x "; break;
2217 case 2: value_fmt = "%4.4x "; break;
2218 case 1: value_fmt = "%2.2x "; break;
2219 default:
2220 /* "can't happen", caller checked */
2221 LOG_ERROR("invalid memory read size: %u", size);
2222 return;
2225 for (unsigned i = 0; i < count; i++)
2227 if (i % line_modulo == 0)
2229 output_len += snprintf(output + output_len,
2230 sizeof(output) - output_len,
2231 "0x%8.8x: ",
2232 (unsigned)(address + (i*size)));
2235 uint32_t value = 0;
2236 const uint8_t *value_ptr = buffer + i * size;
2237 switch (size) {
2238 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2239 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2240 case 1: value = *value_ptr;
2242 output_len += snprintf(output + output_len,
2243 sizeof(output) - output_len,
2244 value_fmt, value);
2246 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2248 command_print(cmd_ctx, "%s", output);
2249 output_len = 0;
2254 COMMAND_HANDLER(handle_md_command)
2256 if (CMD_ARGC < 1)
2257 return ERROR_COMMAND_SYNTAX_ERROR;
2259 unsigned size = 0;
2260 switch (CMD_NAME[2]) {
2261 case 'w': size = 4; break;
2262 case 'h': size = 2; break;
2263 case 'b': size = 1; break;
2264 default: return ERROR_COMMAND_SYNTAX_ERROR;
2267 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2268 int (*fn)(struct target *target,
2269 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2270 if (physical)
2272 CMD_ARGC--;
2273 CMD_ARGV++;
2274 fn=target_read_phys_memory;
2275 } else
2277 fn=target_read_memory;
2279 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2281 return ERROR_COMMAND_SYNTAX_ERROR;
2284 uint32_t address;
2285 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2287 unsigned count = 1;
2288 if (CMD_ARGC == 2)
2289 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2291 uint8_t *buffer = calloc(count, size);
2293 struct target *target = get_current_target(CMD_CTX);
2294 int retval = fn(target, address, size, count, buffer);
2295 if (ERROR_OK == retval)
2296 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2298 free(buffer);
2300 return retval;
2303 typedef int (*target_write_fn)(struct target *target,
2304 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2306 static int target_write_memory_fast(struct target *target,
2307 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2309 return target_write_buffer(target, address, size * count, buffer);
2312 static int target_fill_mem(struct target *target,
2313 uint32_t address,
2314 target_write_fn fn,
2315 unsigned data_size,
2316 /* value */
2317 uint32_t b,
2318 /* count */
2319 unsigned c)
2321 /* We have to write in reasonably large chunks to be able
2322 * to fill large memory areas with any sane speed */
2323 const unsigned chunk_size = 16384;
2324 uint8_t *target_buf = malloc(chunk_size * data_size);
2325 if (target_buf == NULL)
2327 LOG_ERROR("Out of memory");
2328 return ERROR_FAIL;
2331 for (unsigned i = 0; i < chunk_size; i ++)
2333 switch (data_size)
2335 case 4:
2336 target_buffer_set_u32(target, target_buf + i*data_size, b);
2337 break;
2338 case 2:
2339 target_buffer_set_u16(target, target_buf + i*data_size, b);
2340 break;
2341 case 1:
2342 target_buffer_set_u8(target, target_buf + i*data_size, b);
2343 break;
2344 default:
2345 exit(-1);
2349 int retval = ERROR_OK;
2351 for (unsigned x = 0; x < c; x += chunk_size)
2353 unsigned current;
2354 current = c - x;
2355 if (current > chunk_size)
2357 current = chunk_size;
2359 int retval = fn(target, address + x * data_size, data_size, current, target_buf);
2360 if (retval != ERROR_OK)
2362 break;
2364 /* avoid GDB timeouts */
2365 keep_alive();
2367 free(target_buf);
2369 return retval;
2373 COMMAND_HANDLER(handle_mw_command)
2375 if (CMD_ARGC < 2)
2377 return ERROR_COMMAND_SYNTAX_ERROR;
2379 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2380 target_write_fn fn;
2381 if (physical)
2383 CMD_ARGC--;
2384 CMD_ARGV++;
2385 fn=target_write_phys_memory;
2386 } else
2388 fn = target_write_memory_fast;
2390 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2391 return ERROR_COMMAND_SYNTAX_ERROR;
2393 uint32_t address;
2394 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2396 uint32_t value;
2397 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2399 unsigned count = 1;
2400 if (CMD_ARGC == 3)
2401 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2403 struct target *target = get_current_target(CMD_CTX);
2404 unsigned wordsize;
2405 switch (CMD_NAME[2])
2407 case 'w':
2408 wordsize = 4;
2409 break;
2410 case 'h':
2411 wordsize = 2;
2412 break;
2413 case 'b':
2414 wordsize = 1;
2415 break;
2416 default:
2417 return ERROR_COMMAND_SYNTAX_ERROR;
2420 return target_fill_mem(target, address, fn, wordsize, value, count);
2423 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2424 uint32_t *min_address, uint32_t *max_address)
2426 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2427 return ERROR_COMMAND_SYNTAX_ERROR;
2429 /* a base address isn't always necessary,
2430 * default to 0x0 (i.e. don't relocate) */
2431 if (CMD_ARGC >= 2)
2433 uint32_t addr;
2434 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2435 image->base_address = addr;
2436 image->base_address_set = 1;
2438 else
2439 image->base_address_set = 0;
2441 image->start_address_set = 0;
2443 if (CMD_ARGC >= 4)
2445 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2447 if (CMD_ARGC == 5)
2449 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2450 // use size (given) to find max (required)
2451 *max_address += *min_address;
2454 if (*min_address > *max_address)
2455 return ERROR_COMMAND_SYNTAX_ERROR;
2457 return ERROR_OK;
2460 COMMAND_HANDLER(handle_load_image_command)
2462 uint8_t *buffer;
2463 size_t buf_cnt;
2464 uint32_t image_size;
2465 uint32_t min_address = 0;
2466 uint32_t max_address = 0xffffffff;
2467 int i;
2468 struct image image;
2470 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2471 &image, &min_address, &max_address);
2472 if (ERROR_OK != retval)
2473 return retval;
2475 struct target *target = get_current_target(CMD_CTX);
2477 struct duration bench;
2478 duration_start(&bench);
2480 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2482 return ERROR_OK;
2485 image_size = 0x0;
2486 retval = ERROR_OK;
2487 for (i = 0; i < image.num_sections; i++)
2489 buffer = malloc(image.sections[i].size);
2490 if (buffer == NULL)
2492 command_print(CMD_CTX,
2493 "error allocating buffer for section (%d bytes)",
2494 (int)(image.sections[i].size));
2495 break;
2498 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2500 free(buffer);
2501 break;
2504 uint32_t offset = 0;
2505 uint32_t length = buf_cnt;
2507 /* DANGER!!! beware of unsigned comparision here!!! */
2509 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2510 (image.sections[i].base_address < max_address))
2512 if (image.sections[i].base_address < min_address)
2514 /* clip addresses below */
2515 offset += min_address-image.sections[i].base_address;
2516 length -= offset;
2519 if (image.sections[i].base_address + buf_cnt > max_address)
2521 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2524 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2526 free(buffer);
2527 break;
2529 image_size += length;
2530 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2531 (unsigned int)length,
2532 image.sections[i].base_address + offset);
2535 free(buffer);
2538 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2540 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2541 "in %fs (%0.3f kb/s)", image_size,
2542 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2545 image_close(&image);
2547 return retval;
2551 COMMAND_HANDLER(handle_dump_image_command)
2553 struct fileio fileio;
2555 uint8_t buffer[560];
2556 int retvaltemp;
2559 struct target *target = get_current_target(CMD_CTX);
2561 if (CMD_ARGC != 3)
2563 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2564 return ERROR_OK;
2567 uint32_t address;
2568 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2569 uint32_t size;
2570 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2572 if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2574 return ERROR_OK;
2577 struct duration bench;
2578 duration_start(&bench);
2580 int retval = ERROR_OK;
2581 while (size > 0)
2583 size_t size_written;
2584 uint32_t this_run_size = (size > 560) ? 560 : size;
2585 retval = target_read_buffer(target, address, this_run_size, buffer);
2586 if (retval != ERROR_OK)
2588 break;
2591 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2592 if (retval != ERROR_OK)
2594 break;
2597 size -= this_run_size;
2598 address += this_run_size;
2601 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2602 return retvaltemp;
2604 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2606 command_print(CMD_CTX,
2607 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2608 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2611 return retval;
2614 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2616 uint8_t *buffer;
2617 size_t buf_cnt;
2618 uint32_t image_size;
2619 int i;
2620 int retval;
2621 uint32_t checksum = 0;
2622 uint32_t mem_checksum = 0;
2624 struct image image;
2626 struct target *target = get_current_target(CMD_CTX);
2628 if (CMD_ARGC < 1)
2630 return ERROR_COMMAND_SYNTAX_ERROR;
2633 if (!target)
2635 LOG_ERROR("no target selected");
2636 return ERROR_FAIL;
2639 struct duration bench;
2640 duration_start(&bench);
2642 if (CMD_ARGC >= 2)
2644 uint32_t addr;
2645 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2646 image.base_address = addr;
2647 image.base_address_set = 1;
2649 else
2651 image.base_address_set = 0;
2652 image.base_address = 0x0;
2655 image.start_address_set = 0;
2657 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2659 return retval;
2662 image_size = 0x0;
2663 retval = ERROR_OK;
2664 for (i = 0; i < image.num_sections; i++)
2666 buffer = malloc(image.sections[i].size);
2667 if (buffer == NULL)
2669 command_print(CMD_CTX,
2670 "error allocating buffer for section (%d bytes)",
2671 (int)(image.sections[i].size));
2672 break;
2674 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2676 free(buffer);
2677 break;
2680 if (verify)
2682 /* calculate checksum of image */
2683 image_calculate_checksum(buffer, buf_cnt, &checksum);
2685 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2686 if (retval != ERROR_OK)
2688 free(buffer);
2689 break;
2692 if (checksum != mem_checksum)
2694 /* failed crc checksum, fall back to a binary compare */
2695 uint8_t *data;
2697 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2699 data = (uint8_t*)malloc(buf_cnt);
2701 /* Can we use 32bit word accesses? */
2702 int size = 1;
2703 int count = buf_cnt;
2704 if ((count % 4) == 0)
2706 size *= 4;
2707 count /= 4;
2709 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2710 if (retval == ERROR_OK)
2712 uint32_t t;
2713 for (t = 0; t < buf_cnt; t++)
2715 if (data[t] != buffer[t])
2717 command_print(CMD_CTX,
2718 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2719 (unsigned)(t + image.sections[i].base_address),
2720 data[t],
2721 buffer[t]);
2722 free(data);
2723 free(buffer);
2724 retval = ERROR_FAIL;
2725 goto done;
2727 if ((t%16384) == 0)
2729 keep_alive();
2734 free(data);
2736 } else
2738 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2739 image.sections[i].base_address,
2740 buf_cnt);
2743 free(buffer);
2744 image_size += buf_cnt;
2746 done:
2747 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2749 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2750 "in %fs (%0.3f kb/s)", image_size,
2751 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2754 image_close(&image);
2756 return retval;
2759 COMMAND_HANDLER(handle_verify_image_command)
2761 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2764 COMMAND_HANDLER(handle_test_image_command)
2766 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2769 static int handle_bp_command_list(struct command_context *cmd_ctx)
2771 struct target *target = get_current_target(cmd_ctx);
2772 struct breakpoint *breakpoint = target->breakpoints;
2773 while (breakpoint)
2775 if (breakpoint->type == BKPT_SOFT)
2777 char* buf = buf_to_str(breakpoint->orig_instr,
2778 breakpoint->length, 16);
2779 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2780 breakpoint->address,
2781 breakpoint->length,
2782 breakpoint->set, buf);
2783 free(buf);
2785 else
2787 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2788 breakpoint->address,
2789 breakpoint->length, breakpoint->set);
2792 breakpoint = breakpoint->next;
2794 return ERROR_OK;
2797 static int handle_bp_command_set(struct command_context *cmd_ctx,
2798 uint32_t addr, uint32_t length, int hw)
2800 struct target *target = get_current_target(cmd_ctx);
2801 int retval = breakpoint_add(target, addr, length, hw);
2802 if (ERROR_OK == retval)
2803 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2804 else
2805 LOG_ERROR("Failure setting breakpoint");
2806 return retval;
2809 COMMAND_HANDLER(handle_bp_command)
2811 if (CMD_ARGC == 0)
2812 return handle_bp_command_list(CMD_CTX);
2814 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2816 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2817 return ERROR_COMMAND_SYNTAX_ERROR;
2820 uint32_t addr;
2821 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2822 uint32_t length;
2823 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2825 int hw = BKPT_SOFT;
2826 if (CMD_ARGC == 3)
2828 if (strcmp(CMD_ARGV[2], "hw") == 0)
2829 hw = BKPT_HARD;
2830 else
2831 return ERROR_COMMAND_SYNTAX_ERROR;
2834 return handle_bp_command_set(CMD_CTX, addr, length, hw);
2837 COMMAND_HANDLER(handle_rbp_command)
2839 if (CMD_ARGC != 1)
2840 return ERROR_COMMAND_SYNTAX_ERROR;
2842 uint32_t addr;
2843 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2845 struct target *target = get_current_target(CMD_CTX);
2846 breakpoint_remove(target, addr);
2848 return ERROR_OK;
2851 COMMAND_HANDLER(handle_wp_command)
2853 struct target *target = get_current_target(CMD_CTX);
2855 if (CMD_ARGC == 0)
2857 struct watchpoint *watchpoint = target->watchpoints;
2859 while (watchpoint)
2861 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2862 ", len: 0x%8.8" PRIx32
2863 ", r/w/a: %i, value: 0x%8.8" PRIx32
2864 ", mask: 0x%8.8" PRIx32,
2865 watchpoint->address,
2866 watchpoint->length,
2867 (int)watchpoint->rw,
2868 watchpoint->value,
2869 watchpoint->mask);
2870 watchpoint = watchpoint->next;
2872 return ERROR_OK;
2875 enum watchpoint_rw type = WPT_ACCESS;
2876 uint32_t addr = 0;
2877 uint32_t length = 0;
2878 uint32_t data_value = 0x0;
2879 uint32_t data_mask = 0xffffffff;
2881 switch (CMD_ARGC)
2883 case 5:
2884 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2885 // fall through
2886 case 4:
2887 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2888 // fall through
2889 case 3:
2890 switch (CMD_ARGV[2][0])
2892 case 'r':
2893 type = WPT_READ;
2894 break;
2895 case 'w':
2896 type = WPT_WRITE;
2897 break;
2898 case 'a':
2899 type = WPT_ACCESS;
2900 break;
2901 default:
2902 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2903 return ERROR_COMMAND_SYNTAX_ERROR;
2905 // fall through
2906 case 2:
2907 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2908 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2909 break;
2911 default:
2912 command_print(CMD_CTX, "usage: wp [address length "
2913 "[(r|w|a) [value [mask]]]]");
2914 return ERROR_COMMAND_SYNTAX_ERROR;
2917 int retval = watchpoint_add(target, addr, length, type,
2918 data_value, data_mask);
2919 if (ERROR_OK != retval)
2920 LOG_ERROR("Failure setting watchpoints");
2922 return retval;
2925 COMMAND_HANDLER(handle_rwp_command)
2927 if (CMD_ARGC != 1)
2928 return ERROR_COMMAND_SYNTAX_ERROR;
2930 uint32_t addr;
2931 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2933 struct target *target = get_current_target(CMD_CTX);
2934 watchpoint_remove(target, addr);
2936 return ERROR_OK;
2941 * Translate a virtual address to a physical address.
2943 * The low-level target implementation must have logged a detailed error
2944 * which is forwarded to telnet/GDB session.
2946 COMMAND_HANDLER(handle_virt2phys_command)
2948 if (CMD_ARGC != 1)
2949 return ERROR_COMMAND_SYNTAX_ERROR;
2951 uint32_t va;
2952 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2953 uint32_t pa;
2955 struct target *target = get_current_target(CMD_CTX);
2956 int retval = target->type->virt2phys(target, va, &pa);
2957 if (retval == ERROR_OK)
2958 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2960 return retval;
2963 static void writeData(FILE *f, const void *data, size_t len)
2965 size_t written = fwrite(data, 1, len, f);
2966 if (written != len)
2967 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2970 static void writeLong(FILE *f, int l)
2972 int i;
2973 for (i = 0; i < 4; i++)
2975 char c = (l >> (i*8))&0xff;
2976 writeData(f, &c, 1);
2981 static void writeString(FILE *f, char *s)
2983 writeData(f, s, strlen(s));
2986 /* Dump a gmon.out histogram file. */
2987 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2989 uint32_t i;
2990 FILE *f = fopen(filename, "w");
2991 if (f == NULL)
2992 return;
2993 writeString(f, "gmon");
2994 writeLong(f, 0x00000001); /* Version */
2995 writeLong(f, 0); /* padding */
2996 writeLong(f, 0); /* padding */
2997 writeLong(f, 0); /* padding */
2999 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3000 writeData(f, &zero, 1);
3002 /* figure out bucket size */
3003 uint32_t min = samples[0];
3004 uint32_t max = samples[0];
3005 for (i = 0; i < sampleNum; i++)
3007 if (min > samples[i])
3009 min = samples[i];
3011 if (max < samples[i])
3013 max = samples[i];
3017 int addressSpace = (max-min + 1);
3019 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3020 uint32_t length = addressSpace;
3021 if (length > maxBuckets)
3023 length = maxBuckets;
3025 int *buckets = malloc(sizeof(int)*length);
3026 if (buckets == NULL)
3028 fclose(f);
3029 return;
3031 memset(buckets, 0, sizeof(int)*length);
3032 for (i = 0; i < sampleNum;i++)
3034 uint32_t address = samples[i];
3035 long long a = address-min;
3036 long long b = length-1;
3037 long long c = addressSpace-1;
3038 int index = (a*b)/c; /* danger!!!! int32 overflows */
3039 buckets[index]++;
3042 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3043 writeLong(f, min); /* low_pc */
3044 writeLong(f, max); /* high_pc */
3045 writeLong(f, length); /* # of samples */
3046 writeLong(f, 64000000); /* 64MHz */
3047 writeString(f, "seconds");
3048 for (i = 0; i < (15-strlen("seconds")); i++)
3049 writeData(f, &zero, 1);
3050 writeString(f, "s");
3052 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3054 char *data = malloc(2*length);
3055 if (data != NULL)
3057 for (i = 0; i < length;i++)
3059 int val;
3060 val = buckets[i];
3061 if (val > 65535)
3063 val = 65535;
3065 data[i*2]=val&0xff;
3066 data[i*2 + 1]=(val >> 8)&0xff;
3068 free(buckets);
3069 writeData(f, data, length * 2);
3070 free(data);
3071 } else
3073 free(buckets);
3076 fclose(f);
3079 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3080 * which will be used as a random sampling of PC */
3081 COMMAND_HANDLER(handle_profile_command)
3083 struct target *target = get_current_target(CMD_CTX);
3084 struct timeval timeout, now;
3086 gettimeofday(&timeout, NULL);
3087 if (CMD_ARGC != 2)
3089 return ERROR_COMMAND_SYNTAX_ERROR;
3091 unsigned offset;
3092 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3094 timeval_add_time(&timeout, offset, 0);
3097 * @todo: Some cores let us sample the PC without the
3098 * annoying halt/resume step; for example, ARMv7 PCSR.
3099 * Provide a way to use that more efficient mechanism.
3102 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3104 static const int maxSample = 10000;
3105 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3106 if (samples == NULL)
3107 return ERROR_OK;
3109 int numSamples = 0;
3110 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3111 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3113 for (;;)
3115 int retval;
3116 target_poll(target);
3117 if (target->state == TARGET_HALTED)
3119 uint32_t t=*((uint32_t *)reg->value);
3120 samples[numSamples++]=t;
3121 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3122 target_poll(target);
3123 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3124 } else if (target->state == TARGET_RUNNING)
3126 /* We want to quickly sample the PC. */
3127 if ((retval = target_halt(target)) != ERROR_OK)
3129 free(samples);
3130 return retval;
3132 } else
3134 command_print(CMD_CTX, "Target not halted or running");
3135 retval = ERROR_OK;
3136 break;
3138 if (retval != ERROR_OK)
3140 break;
3143 gettimeofday(&now, NULL);
3144 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3146 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3147 if ((retval = target_poll(target)) != ERROR_OK)
3149 free(samples);
3150 return retval;
3152 if (target->state == TARGET_HALTED)
3154 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3156 if ((retval = target_poll(target)) != ERROR_OK)
3158 free(samples);
3159 return retval;
3161 writeGmon(samples, numSamples, CMD_ARGV[1]);
3162 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3163 break;
3166 free(samples);
3168 return ERROR_OK;
3171 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3173 char *namebuf;
3174 Jim_Obj *nameObjPtr, *valObjPtr;
3175 int result;
3177 namebuf = alloc_printf("%s(%d)", varname, idx);
3178 if (!namebuf)
3179 return JIM_ERR;
3181 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3182 valObjPtr = Jim_NewIntObj(interp, val);
3183 if (!nameObjPtr || !valObjPtr)
3185 free(namebuf);
3186 return JIM_ERR;
3189 Jim_IncrRefCount(nameObjPtr);
3190 Jim_IncrRefCount(valObjPtr);
3191 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3192 Jim_DecrRefCount(interp, nameObjPtr);
3193 Jim_DecrRefCount(interp, valObjPtr);
3194 free(namebuf);
3195 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3196 return result;
3199 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3201 struct command_context *context;
3202 struct target *target;
3204 context = Jim_GetAssocData(interp, "context");
3205 if (context == NULL)
3207 LOG_ERROR("mem2array: no command context");
3208 return JIM_ERR;
3210 target = get_current_target(context);
3211 if (target == NULL)
3213 LOG_ERROR("mem2array: no current target");
3214 return JIM_ERR;
3217 return target_mem2array(interp, target, argc-1, argv + 1);
3220 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3222 long l;
3223 uint32_t width;
3224 int len;
3225 uint32_t addr;
3226 uint32_t count;
3227 uint32_t v;
3228 const char *varname;
3229 int n, e, retval;
3230 uint32_t i;
3232 /* argv[1] = name of array to receive the data
3233 * argv[2] = desired width
3234 * argv[3] = memory address
3235 * argv[4] = count of times to read
3237 if (argc != 4) {
3238 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3239 return JIM_ERR;
3241 varname = Jim_GetString(argv[0], &len);
3242 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3244 e = Jim_GetLong(interp, argv[1], &l);
3245 width = l;
3246 if (e != JIM_OK) {
3247 return e;
3250 e = Jim_GetLong(interp, argv[2], &l);
3251 addr = l;
3252 if (e != JIM_OK) {
3253 return e;
3255 e = Jim_GetLong(interp, argv[3], &l);
3256 len = l;
3257 if (e != JIM_OK) {
3258 return e;
3260 switch (width) {
3261 case 8:
3262 width = 1;
3263 break;
3264 case 16:
3265 width = 2;
3266 break;
3267 case 32:
3268 width = 4;
3269 break;
3270 default:
3271 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3272 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3273 return JIM_ERR;
3275 if (len == 0) {
3276 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3277 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3278 return JIM_ERR;
3280 if ((addr + (len * width)) < addr) {
3281 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3282 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3283 return JIM_ERR;
3285 /* absurd transfer size? */
3286 if (len > 65536) {
3287 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3288 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3289 return JIM_ERR;
3292 if ((width == 1) ||
3293 ((width == 2) && ((addr & 1) == 0)) ||
3294 ((width == 4) && ((addr & 3) == 0))) {
3295 /* all is well */
3296 } else {
3297 char buf[100];
3298 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3299 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3300 addr,
3301 width);
3302 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3303 return JIM_ERR;
3306 /* Transfer loop */
3308 /* index counter */
3309 n = 0;
3311 size_t buffersize = 4096;
3312 uint8_t *buffer = malloc(buffersize);
3313 if (buffer == NULL)
3314 return JIM_ERR;
3316 /* assume ok */
3317 e = JIM_OK;
3318 while (len) {
3319 /* Slurp... in buffer size chunks */
3321 count = len; /* in objects.. */
3322 if (count > (buffersize/width)) {
3323 count = (buffersize/width);
3326 retval = target_read_memory(target, addr, width, count, buffer);
3327 if (retval != ERROR_OK) {
3328 /* BOO !*/
3329 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3330 (unsigned int)addr,
3331 (int)width,
3332 (int)count);
3333 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3334 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3335 e = JIM_ERR;
3336 len = 0;
3337 } else {
3338 v = 0; /* shut up gcc */
3339 for (i = 0 ;i < count ;i++, n++) {
3340 switch (width) {
3341 case 4:
3342 v = target_buffer_get_u32(target, &buffer[i*width]);
3343 break;
3344 case 2:
3345 v = target_buffer_get_u16(target, &buffer[i*width]);
3346 break;
3347 case 1:
3348 v = buffer[i] & 0x0ff;
3349 break;
3351 new_int_array_element(interp, varname, n, v);
3353 len -= count;
3357 free(buffer);
3359 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3361 return JIM_OK;
3364 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3366 char *namebuf;
3367 Jim_Obj *nameObjPtr, *valObjPtr;
3368 int result;
3369 long l;
3371 namebuf = alloc_printf("%s(%d)", varname, idx);
3372 if (!namebuf)
3373 return JIM_ERR;
3375 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3376 if (!nameObjPtr)
3378 free(namebuf);
3379 return JIM_ERR;
3382 Jim_IncrRefCount(nameObjPtr);
3383 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3384 Jim_DecrRefCount(interp, nameObjPtr);
3385 free(namebuf);
3386 if (valObjPtr == NULL)
3387 return JIM_ERR;
3389 result = Jim_GetLong(interp, valObjPtr, &l);
3390 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3391 *val = l;
3392 return result;
3395 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3397 struct command_context *context;
3398 struct target *target;
3400 context = Jim_GetAssocData(interp, "context");
3401 if (context == NULL) {
3402 LOG_ERROR("array2mem: no command context");
3403 return JIM_ERR;
3405 target = get_current_target(context);
3406 if (target == NULL) {
3407 LOG_ERROR("array2mem: no current target");
3408 return JIM_ERR;
3411 return target_array2mem(interp,target, argc-1, argv + 1);
3414 static int target_array2mem(Jim_Interp *interp, struct target *target,
3415 int argc, Jim_Obj *const *argv)
3417 long l;
3418 uint32_t width;
3419 int len;
3420 uint32_t addr;
3421 uint32_t count;
3422 uint32_t v;
3423 const char *varname;
3424 int n, e, retval;
3425 uint32_t i;
3427 /* argv[1] = name of array to get the data
3428 * argv[2] = desired width
3429 * argv[3] = memory address
3430 * argv[4] = count to write
3432 if (argc != 4) {
3433 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3434 return JIM_ERR;
3436 varname = Jim_GetString(argv[0], &len);
3437 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3439 e = Jim_GetLong(interp, argv[1], &l);
3440 width = l;
3441 if (e != JIM_OK) {
3442 return e;
3445 e = Jim_GetLong(interp, argv[2], &l);
3446 addr = l;
3447 if (e != JIM_OK) {
3448 return e;
3450 e = Jim_GetLong(interp, argv[3], &l);
3451 len = l;
3452 if (e != JIM_OK) {
3453 return e;
3455 switch (width) {
3456 case 8:
3457 width = 1;
3458 break;
3459 case 16:
3460 width = 2;
3461 break;
3462 case 32:
3463 width = 4;
3464 break;
3465 default:
3466 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3467 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3468 return JIM_ERR;
3470 if (len == 0) {
3471 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3472 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3473 return JIM_ERR;
3475 if ((addr + (len * width)) < addr) {
3476 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3477 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3478 return JIM_ERR;
3480 /* absurd transfer size? */
3481 if (len > 65536) {
3482 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3483 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3484 return JIM_ERR;
3487 if ((width == 1) ||
3488 ((width == 2) && ((addr & 1) == 0)) ||
3489 ((width == 4) && ((addr & 3) == 0))) {
3490 /* all is well */
3491 } else {
3492 char buf[100];
3493 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3494 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3495 (unsigned int)addr,
3496 (int)width);
3497 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3498 return JIM_ERR;
3501 /* Transfer loop */
3503 /* index counter */
3504 n = 0;
3505 /* assume ok */
3506 e = JIM_OK;
3508 size_t buffersize = 4096;
3509 uint8_t *buffer = malloc(buffersize);
3510 if (buffer == NULL)
3511 return JIM_ERR;
3513 while (len) {
3514 /* Slurp... in buffer size chunks */
3516 count = len; /* in objects.. */
3517 if (count > (buffersize/width)) {
3518 count = (buffersize/width);
3521 v = 0; /* shut up gcc */
3522 for (i = 0 ;i < count ;i++, n++) {
3523 get_int_array_element(interp, varname, n, &v);
3524 switch (width) {
3525 case 4:
3526 target_buffer_set_u32(target, &buffer[i*width], v);
3527 break;
3528 case 2:
3529 target_buffer_set_u16(target, &buffer[i*width], v);
3530 break;
3531 case 1:
3532 buffer[i] = v & 0x0ff;
3533 break;
3536 len -= count;
3538 retval = target_write_memory(target, addr, width, count, buffer);
3539 if (retval != ERROR_OK) {
3540 /* BOO !*/
3541 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3542 (unsigned int)addr,
3543 (int)width,
3544 (int)count);
3545 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3546 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3547 e = JIM_ERR;
3548 len = 0;
3552 free(buffer);
3554 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3556 return JIM_OK;
3559 void target_all_handle_event(enum target_event e)
3561 struct target *target;
3563 LOG_DEBUG("**all*targets: event: %d, %s",
3564 (int)e,
3565 Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3567 target = all_targets;
3568 while (target) {
3569 target_handle_event(target, e);
3570 target = target->next;
3575 /* FIX? should we propagate errors here rather than printing them
3576 * and continuing?
3578 void target_handle_event(struct target *target, enum target_event e)
3580 struct target_event_action *teap;
3582 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3583 if (teap->event == e) {
3584 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3585 target->target_number,
3586 target_name(target),
3587 target_type_name(target),
3589 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3590 Jim_GetString(teap->body, NULL));
3591 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3593 Jim_PrintErrorMessage(teap->interp);
3600 * Returns true only if the target has a handler for the specified event.
3602 bool target_has_event_action(struct target *target, enum target_event event)
3604 struct target_event_action *teap;
3606 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3607 if (teap->event == event)
3608 return true;
3610 return false;
3613 enum target_cfg_param {
3614 TCFG_TYPE,
3615 TCFG_EVENT,
3616 TCFG_WORK_AREA_VIRT,
3617 TCFG_WORK_AREA_PHYS,
3618 TCFG_WORK_AREA_SIZE,
3619 TCFG_WORK_AREA_BACKUP,
3620 TCFG_ENDIAN,
3621 TCFG_VARIANT,
3622 TCFG_CHAIN_POSITION,
3625 static Jim_Nvp nvp_config_opts[] = {
3626 { .name = "-type", .value = TCFG_TYPE },
3627 { .name = "-event", .value = TCFG_EVENT },
3628 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3629 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3630 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3631 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3632 { .name = "-endian" , .value = TCFG_ENDIAN },
3633 { .name = "-variant", .value = TCFG_VARIANT },
3634 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3636 { .name = NULL, .value = -1 }
3639 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3641 Jim_Nvp *n;
3642 Jim_Obj *o;
3643 jim_wide w;
3644 char *cp;
3645 int e;
3647 /* parse config or cget options ... */
3648 while (goi->argc > 0) {
3649 Jim_SetEmptyResult(goi->interp);
3650 /* Jim_GetOpt_Debug(goi); */
3652 if (target->type->target_jim_configure) {
3653 /* target defines a configure function */
3654 /* target gets first dibs on parameters */
3655 e = (*(target->type->target_jim_configure))(target, goi);
3656 if (e == JIM_OK) {
3657 /* more? */
3658 continue;
3660 if (e == JIM_ERR) {
3661 /* An error */
3662 return e;
3664 /* otherwise we 'continue' below */
3666 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3667 if (e != JIM_OK) {
3668 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3669 return e;
3671 switch (n->value) {
3672 case TCFG_TYPE:
3673 /* not setable */
3674 if (goi->isconfigure) {
3675 Jim_SetResult_sprintf(goi->interp,
3676 "not settable: %s", n->name);
3677 return JIM_ERR;
3678 } else {
3679 no_params:
3680 if (goi->argc != 0) {
3681 Jim_WrongNumArgs(goi->interp,
3682 goi->argc, goi->argv,
3683 "NO PARAMS");
3684 return JIM_ERR;
3687 Jim_SetResultString(goi->interp,
3688 target_type_name(target), -1);
3689 /* loop for more */
3690 break;
3691 case TCFG_EVENT:
3692 if (goi->argc == 0) {
3693 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3694 return JIM_ERR;
3697 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3698 if (e != JIM_OK) {
3699 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3700 return e;
3703 if (goi->isconfigure) {
3704 if (goi->argc != 1) {
3705 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3706 return JIM_ERR;
3708 } else {
3709 if (goi->argc != 0) {
3710 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3711 return JIM_ERR;
3716 struct target_event_action *teap;
3718 teap = target->event_action;
3719 /* replace existing? */
3720 while (teap) {
3721 if (teap->event == (enum target_event)n->value) {
3722 break;
3724 teap = teap->next;
3727 if (goi->isconfigure) {
3728 bool replace = true;
3729 if (teap == NULL) {
3730 /* create new */
3731 teap = calloc(1, sizeof(*teap));
3732 replace = false;
3734 teap->event = n->value;
3735 teap->interp = goi->interp;
3736 Jim_GetOpt_Obj(goi, &o);
3737 if (teap->body) {
3738 Jim_DecrRefCount(teap->interp, teap->body);
3740 teap->body = Jim_DuplicateObj(goi->interp, o);
3742 * FIXME:
3743 * Tcl/TK - "tk events" have a nice feature.
3744 * See the "BIND" command.
3745 * We should support that here.
3746 * You can specify %X and %Y in the event code.
3747 * The idea is: %T - target name.
3748 * The idea is: %N - target number
3749 * The idea is: %E - event name.
3751 Jim_IncrRefCount(teap->body);
3753 if (!replace)
3755 /* add to head of event list */
3756 teap->next = target->event_action;
3757 target->event_action = teap;
3759 Jim_SetEmptyResult(goi->interp);
3760 } else {
3761 /* get */
3762 if (teap == NULL) {
3763 Jim_SetEmptyResult(goi->interp);
3764 } else {
3765 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3769 /* loop for more */
3770 break;
3772 case TCFG_WORK_AREA_VIRT:
3773 if (goi->isconfigure) {
3774 target_free_all_working_areas(target);
3775 e = Jim_GetOpt_Wide(goi, &w);
3776 if (e != JIM_OK) {
3777 return e;
3779 target->working_area_virt = w;
3780 target->working_area_virt_spec = true;
3781 } else {
3782 if (goi->argc != 0) {
3783 goto no_params;
3786 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3787 /* loop for more */
3788 break;
3790 case TCFG_WORK_AREA_PHYS:
3791 if (goi->isconfigure) {
3792 target_free_all_working_areas(target);
3793 e = Jim_GetOpt_Wide(goi, &w);
3794 if (e != JIM_OK) {
3795 return e;
3797 target->working_area_phys = w;
3798 target->working_area_phys_spec = true;
3799 } else {
3800 if (goi->argc != 0) {
3801 goto no_params;
3804 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3805 /* loop for more */
3806 break;
3808 case TCFG_WORK_AREA_SIZE:
3809 if (goi->isconfigure) {
3810 target_free_all_working_areas(target);
3811 e = Jim_GetOpt_Wide(goi, &w);
3812 if (e != JIM_OK) {
3813 return e;
3815 target->working_area_size = w;
3816 } else {
3817 if (goi->argc != 0) {
3818 goto no_params;
3821 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3822 /* loop for more */
3823 break;
3825 case TCFG_WORK_AREA_BACKUP:
3826 if (goi->isconfigure) {
3827 target_free_all_working_areas(target);
3828 e = Jim_GetOpt_Wide(goi, &w);
3829 if (e != JIM_OK) {
3830 return e;
3832 /* make this exactly 1 or 0 */
3833 target->backup_working_area = (!!w);
3834 } else {
3835 if (goi->argc != 0) {
3836 goto no_params;
3839 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3840 /* loop for more e*/
3841 break;
3843 case TCFG_ENDIAN:
3844 if (goi->isconfigure) {
3845 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3846 if (e != JIM_OK) {
3847 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3848 return e;
3850 target->endianness = n->value;
3851 } else {
3852 if (goi->argc != 0) {
3853 goto no_params;
3856 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3857 if (n->name == NULL) {
3858 target->endianness = TARGET_LITTLE_ENDIAN;
3859 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3861 Jim_SetResultString(goi->interp, n->name, -1);
3862 /* loop for more */
3863 break;
3865 case TCFG_VARIANT:
3866 if (goi->isconfigure) {
3867 if (goi->argc < 1) {
3868 Jim_SetResult_sprintf(goi->interp,
3869 "%s ?STRING?",
3870 n->name);
3871 return JIM_ERR;
3873 if (target->variant) {
3874 free((void *)(target->variant));
3876 e = Jim_GetOpt_String(goi, &cp, NULL);
3877 target->variant = strdup(cp);
3878 } else {
3879 if (goi->argc != 0) {
3880 goto no_params;
3883 Jim_SetResultString(goi->interp, target->variant,-1);
3884 /* loop for more */
3885 break;
3886 case TCFG_CHAIN_POSITION:
3887 if (goi->isconfigure) {
3888 Jim_Obj *o;
3889 struct jtag_tap *tap;
3890 target_free_all_working_areas(target);
3891 e = Jim_GetOpt_Obj(goi, &o);
3892 if (e != JIM_OK) {
3893 return e;
3895 tap = jtag_tap_by_jim_obj(goi->interp, o);
3896 if (tap == NULL) {
3897 return JIM_ERR;
3899 /* make this exactly 1 or 0 */
3900 target->tap = tap;
3901 } else {
3902 if (goi->argc != 0) {
3903 goto no_params;
3906 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3907 /* loop for more e*/
3908 break;
3910 } /* while (goi->argc) */
3913 /* done - we return */
3914 return JIM_OK;
3917 static int
3918 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3920 Jim_GetOptInfo goi;
3922 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3923 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3924 int need_args = 1 + goi.isconfigure;
3925 if (goi.argc < need_args)
3927 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3928 goi.isconfigure
3929 ? "missing: -option VALUE ..."
3930 : "missing: -option ...");
3931 return JIM_ERR;
3933 struct target *target = Jim_CmdPrivData(goi.interp);
3934 return target_configure(&goi, target);
3937 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3939 const char *cmd_name = Jim_GetString(argv[0], NULL);
3941 Jim_GetOptInfo goi;
3942 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3944 /* danger! goi.argc will be modified below! */
3945 argc = goi.argc;
3947 if (argc != 2 && argc != 3)
3949 Jim_SetResult_sprintf(goi.interp,
3950 "usage: %s <address> <data> [<count>]", cmd_name);
3951 return JIM_ERR;
3955 jim_wide a;
3956 int e = Jim_GetOpt_Wide(&goi, &a);
3957 if (e != JIM_OK)
3958 return e;
3960 jim_wide b;
3961 e = Jim_GetOpt_Wide(&goi, &b);
3962 if (e != JIM_OK)
3963 return e;
3965 jim_wide c = 1;
3966 if (argc == 3)
3968 e = Jim_GetOpt_Wide(&goi, &c);
3969 if (e != JIM_OK)
3970 return e;
3973 struct target *target = Jim_CmdPrivData(goi.interp);
3974 unsigned data_size;
3975 if (strcasecmp(cmd_name, "mww") == 0) {
3976 data_size = 4;
3978 else if (strcasecmp(cmd_name, "mwh") == 0) {
3979 data_size = 2;
3981 else if (strcasecmp(cmd_name, "mwb") == 0) {
3982 data_size = 1;
3983 } else {
3984 LOG_ERROR("command '%s' unknown: ", cmd_name);
3985 return JIM_ERR;
3988 return (target_fill_mem(target, a, target_write_memory_fast, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
3991 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3993 const char *cmd_name = Jim_GetString(argv[0], NULL);
3995 Jim_GetOptInfo goi;
3996 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3998 /* danger! goi.argc will be modified below! */
3999 argc = goi.argc;
4001 if ((argc != 1) && (argc != 2))
4003 Jim_SetResult_sprintf(goi.interp,
4004 "usage: %s <address> [<count>]", cmd_name);
4005 return JIM_ERR;
4008 jim_wide a;
4009 int e = Jim_GetOpt_Wide(&goi, &a);
4010 if (e != JIM_OK) {
4011 return JIM_ERR;
4013 jim_wide c;
4014 if (argc == 2) {
4015 e = Jim_GetOpt_Wide(&goi, &c);
4016 if (e != JIM_OK) {
4017 return JIM_ERR;
4019 } else {
4020 c = 1;
4022 jim_wide b = 1; /* shut up gcc */
4023 if (strcasecmp(cmd_name, "mdw") == 0)
4024 b = 4;
4025 else if (strcasecmp(cmd_name, "mdh") == 0)
4026 b = 2;
4027 else if (strcasecmp(cmd_name, "mdb") == 0)
4028 b = 1;
4029 else {
4030 LOG_ERROR("command '%s' unknown: ", cmd_name);
4031 return JIM_ERR;
4034 /* convert count to "bytes" */
4035 c = c * b;
4037 struct target *target = Jim_CmdPrivData(goi.interp);
4038 uint8_t target_buf[32];
4039 jim_wide x, y, z;
4040 while (c > 0) {
4041 y = c;
4042 if (y > 16) {
4043 y = 16;
4045 e = target_read_memory(target, a, b, y / b, target_buf);
4046 if (e != ERROR_OK) {
4047 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4048 return JIM_ERR;
4051 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4052 switch (b) {
4053 case 4:
4054 for (x = 0; x < 16 && x < y; x += 4)
4056 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4057 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4059 for (; (x < 16) ; x += 4) {
4060 Jim_fprintf(interp, interp->cookie_stdout, " ");
4062 break;
4063 case 2:
4064 for (x = 0; x < 16 && x < y; x += 2)
4066 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4067 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4069 for (; (x < 16) ; x += 2) {
4070 Jim_fprintf(interp, interp->cookie_stdout, " ");
4072 break;
4073 case 1:
4074 default:
4075 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4076 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4077 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4079 for (; (x < 16) ; x += 1) {
4080 Jim_fprintf(interp, interp->cookie_stdout, " ");
4082 break;
4084 /* ascii-ify the bytes */
4085 for (x = 0 ; x < y ; x++) {
4086 if ((target_buf[x] >= 0x20) &&
4087 (target_buf[x] <= 0x7e)) {
4088 /* good */
4089 } else {
4090 /* smack it */
4091 target_buf[x] = '.';
4094 /* space pad */
4095 while (x < 16) {
4096 target_buf[x] = ' ';
4097 x++;
4099 /* terminate */
4100 target_buf[16] = 0;
4101 /* print - with a newline */
4102 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4103 /* NEXT... */
4104 c -= 16;
4105 a += 16;
4107 return JIM_OK;
4110 static int jim_target_mem2array(Jim_Interp *interp,
4111 int argc, Jim_Obj *const *argv)
4113 struct target *target = Jim_CmdPrivData(interp);
4114 return target_mem2array(interp, target, argc - 1, argv + 1);
4117 static int jim_target_array2mem(Jim_Interp *interp,
4118 int argc, Jim_Obj *const *argv)
4120 struct target *target = Jim_CmdPrivData(interp);
4121 return target_array2mem(interp, target, argc - 1, argv + 1);
4124 static int jim_target_tap_disabled(Jim_Interp *interp)
4126 Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4127 return JIM_ERR;
4130 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4132 if (argc != 1)
4134 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4135 return JIM_ERR;
4137 struct target *target = Jim_CmdPrivData(interp);
4138 if (!target->tap->enabled)
4139 return jim_target_tap_disabled(interp);
4141 int e = target->type->examine(target);
4142 if (e != ERROR_OK)
4144 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4145 return JIM_ERR;
4147 return JIM_OK;
4150 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4152 if (argc != 1)
4154 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4155 return JIM_ERR;
4157 struct target *target = Jim_CmdPrivData(interp);
4159 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4160 return JIM_ERR;
4162 return JIM_OK;
4165 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4167 if (argc != 1)
4169 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4170 return JIM_ERR;
4172 struct target *target = Jim_CmdPrivData(interp);
4173 if (!target->tap->enabled)
4174 return jim_target_tap_disabled(interp);
4176 int e;
4177 if (!(target_was_examined(target))) {
4178 e = ERROR_TARGET_NOT_EXAMINED;
4179 } else {
4180 e = target->type->poll(target);
4182 if (e != ERROR_OK)
4184 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4185 return JIM_ERR;
4187 return JIM_OK;
4190 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4192 Jim_GetOptInfo goi;
4193 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4195 if (goi.argc != 2)
4197 Jim_WrongNumArgs(interp, 0, argv,
4198 "([tT]|[fF]|assert|deassert) BOOL");
4199 return JIM_ERR;
4202 Jim_Nvp *n;
4203 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4204 if (e != JIM_OK)
4206 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4207 return e;
4209 /* the halt or not param */
4210 jim_wide a;
4211 e = Jim_GetOpt_Wide(&goi, &a);
4212 if (e != JIM_OK)
4213 return e;
4215 struct target *target = Jim_CmdPrivData(goi.interp);
4216 if (!target->tap->enabled)
4217 return jim_target_tap_disabled(interp);
4218 if (!(target_was_examined(target)))
4220 LOG_ERROR("Target not examined yet");
4221 return ERROR_TARGET_NOT_EXAMINED;
4223 if (!target->type->assert_reset || !target->type->deassert_reset)
4225 Jim_SetResult_sprintf(interp,
4226 "No target-specific reset for %s",
4227 target_name(target));
4228 return JIM_ERR;
4230 /* determine if we should halt or not. */
4231 target->reset_halt = !!a;
4232 /* When this happens - all workareas are invalid. */
4233 target_free_all_working_areas_restore(target, 0);
4235 /* do the assert */
4236 if (n->value == NVP_ASSERT) {
4237 e = target->type->assert_reset(target);
4238 } else {
4239 e = target->type->deassert_reset(target);
4241 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4244 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4246 if (argc != 1) {
4247 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4248 return JIM_ERR;
4250 struct target *target = Jim_CmdPrivData(interp);
4251 if (!target->tap->enabled)
4252 return jim_target_tap_disabled(interp);
4253 int e = target->type->halt(target);
4254 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4257 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4259 Jim_GetOptInfo goi;
4260 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4262 /* params: <name> statename timeoutmsecs */
4263 if (goi.argc != 2)
4265 const char *cmd_name = Jim_GetString(argv[0], NULL);
4266 Jim_SetResult_sprintf(goi.interp,
4267 "%s <state_name> <timeout_in_msec>", cmd_name);
4268 return JIM_ERR;
4271 Jim_Nvp *n;
4272 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4273 if (e != JIM_OK) {
4274 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4275 return e;
4277 jim_wide a;
4278 e = Jim_GetOpt_Wide(&goi, &a);
4279 if (e != JIM_OK) {
4280 return e;
4282 struct target *target = Jim_CmdPrivData(interp);
4283 if (!target->tap->enabled)
4284 return jim_target_tap_disabled(interp);
4286 e = target_wait_state(target, n->value, a);
4287 if (e != ERROR_OK)
4289 Jim_SetResult_sprintf(goi.interp,
4290 "target: %s wait %s fails (%d) %s",
4291 target_name(target), n->name,
4292 e, target_strerror_safe(e));
4293 return JIM_ERR;
4295 return JIM_OK;
4297 /* List for human, Events defined for this target.
4298 * scripts/programs should use 'name cget -event NAME'
4300 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4302 struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4303 struct target *target = Jim_CmdPrivData(interp);
4304 struct target_event_action *teap = target->event_action;
4305 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4306 target->target_number,
4307 target_name(target));
4308 command_print(cmd_ctx, "%-25s | Body", "Event");
4309 command_print(cmd_ctx, "------------------------- | "
4310 "----------------------------------------");
4311 while (teap)
4313 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4314 command_print(cmd_ctx, "%-25s | %s",
4315 opt->name, Jim_GetString(teap->body, NULL));
4316 teap = teap->next;
4318 command_print(cmd_ctx, "***END***");
4319 return JIM_OK;
4321 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4323 if (argc != 1)
4325 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4326 return JIM_ERR;
4328 struct target *target = Jim_CmdPrivData(interp);
4329 Jim_SetResultString(interp, target_state_name(target), -1);
4330 return JIM_OK;
4332 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4334 Jim_GetOptInfo goi;
4335 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4336 if (goi.argc != 1)
4338 const char *cmd_name = Jim_GetString(argv[0], NULL);
4339 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4340 return JIM_ERR;
4342 Jim_Nvp *n;
4343 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4344 if (e != JIM_OK)
4346 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4347 return e;
4349 struct target *target = Jim_CmdPrivData(interp);
4350 target_handle_event(target, n->value);
4351 return JIM_OK;
4354 static const struct command_registration target_instance_command_handlers[] = {
4356 .name = "configure",
4357 .mode = COMMAND_CONFIG,
4358 .jim_handler = jim_target_configure,
4359 .help = "configure a new target for use",
4360 .usage = "[target_attribute ...]",
4363 .name = "cget",
4364 .mode = COMMAND_ANY,
4365 .jim_handler = jim_target_configure,
4366 .help = "returns the specified target attribute",
4367 .usage = "target_attribute",
4370 .name = "mww",
4371 .mode = COMMAND_EXEC,
4372 .jim_handler = jim_target_mw,
4373 .help = "Write 32-bit word(s) to target memory",
4374 .usage = "address data [count]",
4377 .name = "mwh",
4378 .mode = COMMAND_EXEC,
4379 .jim_handler = jim_target_mw,
4380 .help = "Write 16-bit half-word(s) to target memory",
4381 .usage = "address data [count]",
4384 .name = "mwb",
4385 .mode = COMMAND_EXEC,
4386 .jim_handler = jim_target_mw,
4387 .help = "Write byte(s) to target memory",
4388 .usage = "address data [count]",
4391 .name = "mdw",
4392 .mode = COMMAND_EXEC,
4393 .jim_handler = jim_target_md,
4394 .help = "Display target memory as 32-bit words",
4395 .usage = "address [count]",
4398 .name = "mdh",
4399 .mode = COMMAND_EXEC,
4400 .jim_handler = jim_target_md,
4401 .help = "Display target memory as 16-bit half-words",
4402 .usage = "address [count]",
4405 .name = "mdb",
4406 .mode = COMMAND_EXEC,
4407 .jim_handler = jim_target_md,
4408 .help = "Display target memory as 8-bit bytes",
4409 .usage = "address [count]",
4412 .name = "array2mem",
4413 .mode = COMMAND_EXEC,
4414 .jim_handler = jim_target_array2mem,
4415 .help = "Writes Tcl array of 8/16/32 bit numbers "
4416 "to target memory",
4417 .usage = "arrayname bitwidth address count",
4420 .name = "mem2array",
4421 .mode = COMMAND_EXEC,
4422 .jim_handler = jim_target_mem2array,
4423 .help = "Loads Tcl array of 8/16/32 bit numbers "
4424 "from target memory",
4425 .usage = "arrayname bitwidth address count",
4428 .name = "eventlist",
4429 .mode = COMMAND_EXEC,
4430 .jim_handler = jim_target_event_list,
4431 .help = "displays a table of events defined for this target",
4434 .name = "curstate",
4435 .mode = COMMAND_EXEC,
4436 .jim_handler = jim_target_current_state,
4437 .help = "displays the current state of this target",
4440 .name = "arp_examine",
4441 .mode = COMMAND_EXEC,
4442 .jim_handler = jim_target_examine,
4443 .help = "used internally for reset processing",
4446 .name = "arp_halt_gdb",
4447 .mode = COMMAND_EXEC,
4448 .jim_handler = jim_target_halt_gdb,
4449 .help = "used internally for reset processing to halt GDB",
4452 .name = "arp_poll",
4453 .mode = COMMAND_EXEC,
4454 .jim_handler = jim_target_poll,
4455 .help = "used internally for reset processing",
4458 .name = "arp_reset",
4459 .mode = COMMAND_EXEC,
4460 .jim_handler = jim_target_reset,
4461 .help = "used internally for reset processing",
4464 .name = "arp_halt",
4465 .mode = COMMAND_EXEC,
4466 .jim_handler = jim_target_halt,
4467 .help = "used internally for reset processing",
4470 .name = "arp_waitstate",
4471 .mode = COMMAND_EXEC,
4472 .jim_handler = jim_target_wait_state,
4473 .help = "used internally for reset processing",
4476 .name = "invoke-event",
4477 .mode = COMMAND_EXEC,
4478 .jim_handler = jim_target_invoke_event,
4479 .help = "invoke handler for specified event",
4480 .usage = "event_name",
4482 COMMAND_REGISTRATION_DONE
4485 static int target_create(Jim_GetOptInfo *goi)
4487 Jim_Obj *new_cmd;
4488 Jim_Cmd *cmd;
4489 const char *cp;
4490 char *cp2;
4491 int e;
4492 int x;
4493 struct target *target;
4494 struct command_context *cmd_ctx;
4496 cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4497 if (goi->argc < 3) {
4498 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4499 return JIM_ERR;
4502 /* COMMAND */
4503 Jim_GetOpt_Obj(goi, &new_cmd);
4504 /* does this command exist? */
4505 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4506 if (cmd) {
4507 cp = Jim_GetString(new_cmd, NULL);
4508 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4509 return JIM_ERR;
4512 /* TYPE */
4513 e = Jim_GetOpt_String(goi, &cp2, NULL);
4514 cp = cp2;
4515 /* now does target type exist */
4516 for (x = 0 ; target_types[x] ; x++) {
4517 if (0 == strcmp(cp, target_types[x]->name)) {
4518 /* found */
4519 break;
4522 if (target_types[x] == NULL) {
4523 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4524 for (x = 0 ; target_types[x] ; x++) {
4525 if (target_types[x + 1]) {
4526 Jim_AppendStrings(goi->interp,
4527 Jim_GetResult(goi->interp),
4528 target_types[x]->name,
4529 ", ", NULL);
4530 } else {
4531 Jim_AppendStrings(goi->interp,
4532 Jim_GetResult(goi->interp),
4533 " or ",
4534 target_types[x]->name,NULL);
4537 return JIM_ERR;
4540 /* Create it */
4541 target = calloc(1,sizeof(struct target));
4542 /* set target number */
4543 target->target_number = new_target_number();
4545 /* allocate memory for each unique target type */
4546 target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4548 memcpy(target->type, target_types[x], sizeof(struct target_type));
4550 /* will be set by "-endian" */
4551 target->endianness = TARGET_ENDIAN_UNKNOWN;
4553 target->working_area = 0x0;
4554 target->working_area_size = 0x0;
4555 target->working_areas = NULL;
4556 target->backup_working_area = 0;
4558 target->state = TARGET_UNKNOWN;
4559 target->debug_reason = DBG_REASON_UNDEFINED;
4560 target->reg_cache = NULL;
4561 target->breakpoints = NULL;
4562 target->watchpoints = NULL;
4563 target->next = NULL;
4564 target->arch_info = NULL;
4566 target->display = 1;
4568 target->halt_issued = false;
4570 /* initialize trace information */
4571 target->trace_info = malloc(sizeof(struct trace));
4572 target->trace_info->num_trace_points = 0;
4573 target->trace_info->trace_points_size = 0;
4574 target->trace_info->trace_points = NULL;
4575 target->trace_info->trace_history_size = 0;
4576 target->trace_info->trace_history = NULL;
4577 target->trace_info->trace_history_pos = 0;
4578 target->trace_info->trace_history_overflowed = 0;
4580 target->dbgmsg = NULL;
4581 target->dbg_msg_enabled = 0;
4583 target->endianness = TARGET_ENDIAN_UNKNOWN;
4585 /* Do the rest as "configure" options */
4586 goi->isconfigure = 1;
4587 e = target_configure(goi, target);
4589 if (target->tap == NULL)
4591 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4592 e = JIM_ERR;
4595 if (e != JIM_OK) {
4596 free(target->type);
4597 free(target);
4598 return e;
4601 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4602 /* default endian to little if not specified */
4603 target->endianness = TARGET_LITTLE_ENDIAN;
4606 /* incase variant is not set */
4607 if (!target->variant)
4608 target->variant = strdup("");
4610 cp = Jim_GetString(new_cmd, NULL);
4611 target->cmd_name = strdup(cp);
4613 /* create the target specific commands */
4614 if (target->type->commands) {
4615 e = register_commands(cmd_ctx, NULL, target->type->commands);
4616 if (ERROR_OK != e)
4617 LOG_ERROR("unable to register '%s' commands", cp);
4619 if (target->type->target_create) {
4620 (*(target->type->target_create))(target, goi->interp);
4623 /* append to end of list */
4625 struct target **tpp;
4626 tpp = &(all_targets);
4627 while (*tpp) {
4628 tpp = &((*tpp)->next);
4630 *tpp = target;
4633 /* now - create the new target name command */
4634 const const struct command_registration target_subcommands[] = {
4636 .chain = target_instance_command_handlers,
4639 .chain = target->type->commands,
4641 COMMAND_REGISTRATION_DONE
4643 const const struct command_registration target_commands[] = {
4645 .name = cp,
4646 .mode = COMMAND_ANY,
4647 .help = "target command group",
4648 .chain = target_subcommands,
4650 COMMAND_REGISTRATION_DONE
4652 e = register_commands(cmd_ctx, NULL, target_commands);
4653 if (ERROR_OK != e)
4654 return JIM_ERR;
4656 struct command *c = command_find_in_context(cmd_ctx, cp);
4657 assert(c);
4658 command_set_handler_data(c, target);
4660 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4663 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4665 if (argc != 1)
4667 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4668 return JIM_ERR;
4670 struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4671 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4672 return JIM_OK;
4675 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4677 if (argc != 1)
4679 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4680 return JIM_ERR;
4682 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4683 for (unsigned x = 0; NULL != target_types[x]; x++)
4685 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4686 Jim_NewStringObj(interp, target_types[x]->name, -1));
4688 return JIM_OK;
4691 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4693 if (argc != 1)
4695 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4696 return JIM_ERR;
4698 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4699 struct target *target = all_targets;
4700 while (target)
4702 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4703 Jim_NewStringObj(interp, target_name(target), -1));
4704 target = target->next;
4706 return JIM_OK;
4709 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4711 Jim_GetOptInfo goi;
4712 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4713 if (goi.argc < 3)
4715 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4716 "<name> <target_type> [<target_options> ...]");
4717 return JIM_ERR;
4719 return target_create(&goi);
4722 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4724 Jim_GetOptInfo goi;
4725 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4727 /* It's OK to remove this mechanism sometime after August 2010 or so */
4728 LOG_WARNING("don't use numbers as target identifiers; use names");
4729 if (goi.argc != 1)
4731 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4732 return JIM_ERR;
4734 jim_wide w;
4735 int e = Jim_GetOpt_Wide(&goi, &w);
4736 if (e != JIM_OK)
4737 return JIM_ERR;
4739 struct target *target;
4740 for (target = all_targets; NULL != target; target = target->next)
4742 if (target->target_number != w)
4743 continue;
4745 Jim_SetResultString(goi.interp, target_name(target), -1);
4746 return JIM_OK;
4748 Jim_SetResult_sprintf(goi.interp,
4749 "Target: number %d does not exist", (int)(w));
4750 return JIM_ERR;
4753 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4755 if (argc != 1)
4757 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4758 return JIM_ERR;
4760 unsigned count = 0;
4761 struct target *target = all_targets;
4762 while (NULL != target)
4764 target = target->next;
4765 count++;
4767 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4768 return JIM_OK;
4771 static const struct command_registration target_subcommand_handlers[] = {
4773 .name = "init",
4774 .mode = COMMAND_CONFIG,
4775 .handler = handle_target_init_command,
4776 .help = "initialize targets",
4779 .name = "create",
4780 /* REVISIT this should be COMMAND_CONFIG ... */
4781 .mode = COMMAND_ANY,
4782 .jim_handler = jim_target_create,
4783 .usage = "name type '-chain-position' name [options ...]",
4784 .help = "Creates and selects a new target",
4787 .name = "current",
4788 .mode = COMMAND_ANY,
4789 .jim_handler = jim_target_current,
4790 .help = "Returns the currently selected target",
4793 .name = "types",
4794 .mode = COMMAND_ANY,
4795 .jim_handler = jim_target_types,
4796 .help = "Returns the available target types as "
4797 "a list of strings",
4800 .name = "names",
4801 .mode = COMMAND_ANY,
4802 .jim_handler = jim_target_names,
4803 .help = "Returns the names of all targets as a list of strings",
4806 .name = "number",
4807 .mode = COMMAND_ANY,
4808 .jim_handler = jim_target_number,
4809 .usage = "number",
4810 .help = "Returns the name of the numbered target "
4811 "(DEPRECATED)",
4814 .name = "count",
4815 .mode = COMMAND_ANY,
4816 .jim_handler = jim_target_count,
4817 .help = "Returns the number of targets as an integer "
4818 "(DEPRECATED)",
4820 COMMAND_REGISTRATION_DONE
4823 struct FastLoad
4825 uint32_t address;
4826 uint8_t *data;
4827 int length;
4831 static int fastload_num;
4832 static struct FastLoad *fastload;
4834 static void free_fastload(void)
4836 if (fastload != NULL)
4838 int i;
4839 for (i = 0; i < fastload_num; i++)
4841 if (fastload[i].data)
4842 free(fastload[i].data);
4844 free(fastload);
4845 fastload = NULL;
4852 COMMAND_HANDLER(handle_fast_load_image_command)
4854 uint8_t *buffer;
4855 size_t buf_cnt;
4856 uint32_t image_size;
4857 uint32_t min_address = 0;
4858 uint32_t max_address = 0xffffffff;
4859 int i;
4861 struct image image;
4863 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4864 &image, &min_address, &max_address);
4865 if (ERROR_OK != retval)
4866 return retval;
4868 struct duration bench;
4869 duration_start(&bench);
4871 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4873 return ERROR_OK;
4876 image_size = 0x0;
4877 retval = ERROR_OK;
4878 fastload_num = image.num_sections;
4879 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4880 if (fastload == NULL)
4882 image_close(&image);
4883 return ERROR_FAIL;
4885 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4886 for (i = 0; i < image.num_sections; i++)
4888 buffer = malloc(image.sections[i].size);
4889 if (buffer == NULL)
4891 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4892 (int)(image.sections[i].size));
4893 break;
4896 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4898 free(buffer);
4899 break;
4902 uint32_t offset = 0;
4903 uint32_t length = buf_cnt;
4906 /* DANGER!!! beware of unsigned comparision here!!! */
4908 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4909 (image.sections[i].base_address < max_address))
4911 if (image.sections[i].base_address < min_address)
4913 /* clip addresses below */
4914 offset += min_address-image.sections[i].base_address;
4915 length -= offset;
4918 if (image.sections[i].base_address + buf_cnt > max_address)
4920 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4923 fastload[i].address = image.sections[i].base_address + offset;
4924 fastload[i].data = malloc(length);
4925 if (fastload[i].data == NULL)
4927 free(buffer);
4928 break;
4930 memcpy(fastload[i].data, buffer + offset, length);
4931 fastload[i].length = length;
4933 image_size += length;
4934 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4935 (unsigned int)length,
4936 ((unsigned int)(image.sections[i].base_address + offset)));
4939 free(buffer);
4942 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4944 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4945 "in %fs (%0.3f kb/s)", image_size,
4946 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4948 command_print(CMD_CTX,
4949 "WARNING: image has not been loaded to target!"
4950 "You can issue a 'fast_load' to finish loading.");
4953 image_close(&image);
4955 if (retval != ERROR_OK)
4957 free_fastload();
4960 return retval;
4963 COMMAND_HANDLER(handle_fast_load_command)
4965 if (CMD_ARGC > 0)
4966 return ERROR_COMMAND_SYNTAX_ERROR;
4967 if (fastload == NULL)
4969 LOG_ERROR("No image in memory");
4970 return ERROR_FAIL;
4972 int i;
4973 int ms = timeval_ms();
4974 int size = 0;
4975 int retval = ERROR_OK;
4976 for (i = 0; i < fastload_num;i++)
4978 struct target *target = get_current_target(CMD_CTX);
4979 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4980 (unsigned int)(fastload[i].address),
4981 (unsigned int)(fastload[i].length));
4982 if (retval == ERROR_OK)
4984 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4986 size += fastload[i].length;
4988 int after = timeval_ms();
4989 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4990 return retval;
4993 static const struct command_registration target_command_handlers[] = {
4995 .name = "targets",
4996 .handler = handle_targets_command,
4997 .mode = COMMAND_ANY,
4998 .help = "change current default target (one parameter) "
4999 "or prints table of all targets (no parameters)",
5000 .usage = "[target]",
5003 .name = "target",
5004 .mode = COMMAND_CONFIG,
5005 .help = "configure target",
5007 .chain = target_subcommand_handlers,
5009 COMMAND_REGISTRATION_DONE
5012 int target_register_commands(struct command_context *cmd_ctx)
5014 return register_commands(cmd_ctx, NULL, target_command_handlers);
5017 static bool target_reset_nag = true;
5019 bool get_target_reset_nag(void)
5021 return target_reset_nag;
5024 COMMAND_HANDLER(handle_target_reset_nag)
5026 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5027 &target_reset_nag, "Nag after each reset about options to improve "
5028 "performance");
5031 static const struct command_registration target_exec_command_handlers[] = {
5033 .name = "fast_load_image",
5034 .handler = handle_fast_load_image_command,
5035 .mode = COMMAND_ANY,
5036 .help = "Load image into server memory for later use by "
5037 "fast_load; primarily for profiling",
5038 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5039 "[min_address [max_length]]",
5042 .name = "fast_load",
5043 .handler = handle_fast_load_command,
5044 .mode = COMMAND_EXEC,
5045 .help = "loads active fast load image to current target "
5046 "- mainly for profiling purposes",
5049 .name = "profile",
5050 .handler = handle_profile_command,
5051 .mode = COMMAND_EXEC,
5052 .help = "profiling samples the CPU PC",
5054 /** @todo don't register virt2phys() unless target supports it */
5056 .name = "virt2phys",
5057 .handler = handle_virt2phys_command,
5058 .mode = COMMAND_ANY,
5059 .help = "translate a virtual address into a physical address",
5060 .usage = "virtual_address",
5063 .name = "reg",
5064 .handler = handle_reg_command,
5065 .mode = COMMAND_EXEC,
5066 .help = "display or set a register; with no arguments, "
5067 "displays all registers and their values",
5068 .usage = "[(register_name|register_number) [value]]",
5071 .name = "poll",
5072 .handler = handle_poll_command,
5073 .mode = COMMAND_EXEC,
5074 .help = "poll target state; or reconfigure background polling",
5075 .usage = "['on'|'off']",
5078 .name = "wait_halt",
5079 .handler = handle_wait_halt_command,
5080 .mode = COMMAND_EXEC,
5081 .help = "wait up to the specified number of milliseconds "
5082 "(default 5) for a previously requested halt",
5083 .usage = "[milliseconds]",
5086 .name = "halt",
5087 .handler = handle_halt_command,
5088 .mode = COMMAND_EXEC,
5089 .help = "request target to halt, then wait up to the specified"
5090 "number of milliseconds (default 5) for it to complete",
5091 .usage = "[milliseconds]",
5094 .name = "resume",
5095 .handler = handle_resume_command,
5096 .mode = COMMAND_EXEC,
5097 .help = "resume target execution from current PC or address",
5098 .usage = "[address]",
5101 .name = "reset",
5102 .handler = handle_reset_command,
5103 .mode = COMMAND_EXEC,
5104 .usage = "[run|halt|init]",
5105 .help = "Reset all targets into the specified mode."
5106 "Default reset mode is run, if not given.",
5109 .name = "soft_reset_halt",
5110 .handler = handle_soft_reset_halt_command,
5111 .mode = COMMAND_EXEC,
5112 .help = "halt the target and do a soft reset",
5115 .name = "step",
5116 .handler = handle_step_command,
5117 .mode = COMMAND_EXEC,
5118 .help = "step one instruction from current PC or address",
5119 .usage = "[address]",
5122 .name = "mdw",
5123 .handler = handle_md_command,
5124 .mode = COMMAND_EXEC,
5125 .help = "display memory words",
5126 .usage = "['phys'] address [count]",
5129 .name = "mdh",
5130 .handler = handle_md_command,
5131 .mode = COMMAND_EXEC,
5132 .help = "display memory half-words",
5133 .usage = "['phys'] address [count]",
5136 .name = "mdb",
5137 .handler = handle_md_command,
5138 .mode = COMMAND_EXEC,
5139 .help = "display memory bytes",
5140 .usage = "['phys'] address [count]",
5143 .name = "mww",
5144 .handler = handle_mw_command,
5145 .mode = COMMAND_EXEC,
5146 .help = "write memory word",
5147 .usage = "['phys'] address value [count]",
5150 .name = "mwh",
5151 .handler = handle_mw_command,
5152 .mode = COMMAND_EXEC,
5153 .help = "write memory half-word",
5154 .usage = "['phys'] address value [count]",
5157 .name = "mwb",
5158 .handler = handle_mw_command,
5159 .mode = COMMAND_EXEC,
5160 .help = "write memory byte",
5161 .usage = "['phys'] address value [count]",
5164 .name = "bp",
5165 .handler = handle_bp_command,
5166 .mode = COMMAND_EXEC,
5167 .help = "list or set hardware or software breakpoint",
5168 .usage = "[address length ['hw']]",
5171 .name = "rbp",
5172 .handler = handle_rbp_command,
5173 .mode = COMMAND_EXEC,
5174 .help = "remove breakpoint",
5175 .usage = "address",
5178 .name = "wp",
5179 .handler = handle_wp_command,
5180 .mode = COMMAND_EXEC,
5181 .help = "list (no params) or create watchpoints",
5182 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5185 .name = "rwp",
5186 .handler = handle_rwp_command,
5187 .mode = COMMAND_EXEC,
5188 .help = "remove watchpoint",
5189 .usage = "address",
5192 .name = "load_image",
5193 .handler = handle_load_image_command,
5194 .mode = COMMAND_EXEC,
5195 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5196 "[min_address] [max_length]",
5199 .name = "dump_image",
5200 .handler = handle_dump_image_command,
5201 .mode = COMMAND_EXEC,
5202 .usage = "filename address size",
5205 .name = "verify_image",
5206 .handler = handle_verify_image_command,
5207 .mode = COMMAND_EXEC,
5208 .usage = "filename [offset [type]]",
5211 .name = "test_image",
5212 .handler = handle_test_image_command,
5213 .mode = COMMAND_EXEC,
5214 .usage = "filename [offset [type]]",
5217 .name = "ocd_mem2array",
5218 .mode = COMMAND_EXEC,
5219 .jim_handler = jim_mem2array,
5220 .help = "read 8/16/32 bit memory and return as a TCL array "
5221 "for script processing",
5222 .usage = "arrayname bitwidth address count",
5225 .name = "ocd_array2mem",
5226 .mode = COMMAND_EXEC,
5227 .jim_handler = jim_array2mem,
5228 .help = "convert a TCL array to memory locations "
5229 "and write the 8/16/32 bit values",
5230 .usage = "arrayname bitwidth address count",
5233 .name = "reset_nag",
5234 .handler = handle_target_reset_nag,
5235 .mode = COMMAND_ANY,
5236 .help = "Nag after each reset about options that could have been "
5237 "enabled to improve performance. ",
5238 .usage = "['enable'|'disable']",
5240 COMMAND_REGISTRATION_DONE
5242 int target_register_user_commands(struct command_context *cmd_ctx)
5244 int retval = ERROR_OK;
5245 if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5246 return retval;
5248 if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5249 return retval;
5252 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);