xscale documentation: vector table handling
[openocd/genbsdl.git] / src / helper / binarybuffer.c
blob3a16cce69bb2b7f66bac21cbd5ce2ebd5fbbeca7
1 /***************************************************************************
2 * Copyright (C) 2004, 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
27 #include "log.h"
28 #include "binarybuffer.h"
30 static const unsigned char bit_reverse_table256[] =
32 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
33 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
34 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
35 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
36 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
37 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
38 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
39 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
40 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
41 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
42 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
43 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
44 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
45 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
46 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
47 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
51 void* buf_cpy(const void *from, void *_to, unsigned size)
53 if (NULL == from || NULL == _to)
54 return NULL;
56 // copy entire buffer
57 memcpy(_to, from, DIV_ROUND_UP(size, 8));
59 /* mask out bits that don't belong to the buffer */
60 unsigned trailing_bits = size % 8;
61 if (trailing_bits)
63 uint8_t *to = _to;
64 to[size / 8] &= (1 << trailing_bits) - 1;
66 return _to;
69 static bool buf_cmp_masked(uint8_t a, uint8_t b, uint8_t m)
71 return (a & m) != (b & m);
73 static bool buf_cmp_trailing(uint8_t a, uint8_t b, uint8_t m, unsigned trailing)
75 uint8_t mask = (1 << trailing) - 1;
76 return buf_cmp_masked(a, b, mask & m);
79 bool buf_cmp(const void *_buf1, const void *_buf2, unsigned size)
81 if (!_buf1 || !_buf2)
82 return _buf1 != _buf2;
84 unsigned last = size / 8;
85 if (memcmp(_buf1, _buf2, last) != 0)
86 return false;
88 unsigned trailing = size % 8;
89 if (!trailing)
90 return false;
92 const uint8_t *buf1 = _buf1, *buf2 = _buf2;
93 return buf_cmp_trailing(buf1[last], buf2[last], 0xff, trailing);
96 bool buf_cmp_mask(const void *_buf1, const void *_buf2,
97 const void *_mask, unsigned size)
99 if (!_buf1 || !_buf2)
100 return _buf1 != _buf2 || _buf1 != _mask;
102 const uint8_t *buf1 = _buf1, *buf2 = _buf2, *mask = _mask;
103 unsigned last = size / 8;
104 for (unsigned i = 0; i < last; i++)
106 if (buf_cmp_masked(buf1[i], buf2[i], mask[i]))
107 return true;
109 unsigned trailing = size % 8;
110 if (!trailing)
111 return false;
112 return buf_cmp_trailing(buf1[last], buf2[last], mask[last], trailing);
116 void* buf_set_ones(void *_buf, unsigned size)
118 uint8_t *buf = _buf;
119 if (!buf)
120 return NULL;
122 memset(buf, 0xff, size / 8);
124 unsigned trailing_bits = size % 8;
125 if (trailing_bits)
126 buf[size / 8] = (1 << trailing_bits) - 1;
128 return buf;
131 void* buf_set_buf(const void *_src, unsigned src_start,
132 void *_dst, unsigned dst_start, unsigned len)
134 const uint8_t *src = _src;
135 uint8_t *dst = _dst;
137 unsigned src_idx = src_start, dst_idx = dst_start;
138 for (unsigned i = 0; i < len; i++)
140 if (((src[src_idx / 8] >> (src_idx % 8)) & 1) == 1)
141 dst[dst_idx / 8] |= 1 << (dst_idx % 8);
142 else
143 dst[dst_idx / 8] &= ~(1 << (dst_idx % 8));
144 dst_idx++;
145 src_idx++;
148 return dst;
151 uint32_t flip_u32(uint32_t value, unsigned int num)
153 uint32_t c = (bit_reverse_table256[value & 0xff] << 24) |
154 (bit_reverse_table256[(value >> 8) & 0xff] << 16) |
155 (bit_reverse_table256[(value >> 16) & 0xff] << 8) |
156 (bit_reverse_table256[(value >> 24) & 0xff]);
158 if (num < 32)
159 c = c >> (32 - num);
161 return c;
164 static int ceil_f_to_u32(float x)
166 if (x < 0) /* return zero for negative numbers */
167 return 0;
169 uint32_t y = x; /* cut off fraction */
171 if ((x - y) > 0.0) /* if there was a fractional part, increase by one */
172 y++;
174 return y;
177 char* buf_to_str(const void *_buf, unsigned buf_len, unsigned radix)
179 float factor;
180 switch (radix) {
181 case 16:
182 factor = 2.0; /* log(256) / log(16) = 2.0 */
183 break;
184 case 10:
185 factor = 2.40824; /* log(256) / log(10) = 2.40824 */
186 break;
187 case 8:
188 factor = 2.66667; /* log(256) / log(8) = 2.66667 */
189 break;
190 default:
191 return NULL;
194 unsigned str_len = ceil_f_to_u32(DIV_ROUND_UP(buf_len, 8) * factor);
195 char *str = calloc(str_len + 1, 1);
197 const uint8_t *buf = _buf;
198 int b256_len = DIV_ROUND_UP(buf_len, 8);
199 for (int i = b256_len - 1; i >= 0; i--)
201 uint32_t tmp = buf[i];
202 if (((unsigned)i == (buf_len / 8)) && (buf_len % 8))
203 tmp &= (0xff >> (8 - (buf_len % 8)));
205 /* base-256 digits */
206 for (unsigned j = str_len; j > 0; j--)
208 tmp += (uint32_t)str[j-1] * 256;
209 str[j-1] = (uint8_t)(tmp % radix);
210 tmp /= radix;
214 const char *DIGITS = "0123456789ABCDEF";
215 for (unsigned j = 0; j < str_len; j++)
216 str[j] = DIGITS[(int)str[j]];
218 return str;
221 /// identify radix, and skip radix-prefix (0, 0x or 0X)
222 static void str_radix_guess(const char **_str, unsigned *_str_len,
223 unsigned *_radix)
225 unsigned radix = *_radix;
226 if (0 != radix)
227 return;
228 const char *str = *_str;
229 unsigned str_len = *_str_len;
230 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
232 radix = 16;
233 str += 2;
234 str_len -= 2;
236 else if ((str[0] == '0') && (str_len != 1))
238 radix = 8;
239 str += 1;
240 str_len -= 1;
242 else
244 radix = 10;
246 *_str = str;
247 *_str_len = str_len;
248 *_radix = radix;
251 int str_to_buf(const char *str, unsigned str_len,
252 void *_buf, unsigned buf_len, unsigned radix)
254 str_radix_guess(&str, &str_len, &radix);
256 float factor;
257 if (radix == 16)
258 factor = 0.5; /* log(16) / log(256) = 0.5 */
259 else if (radix == 10)
260 factor = 0.41524; /* log(10) / log(256) = 0.41524 */
261 else if (radix == 8)
262 factor = 0.375; /* log(8) / log(256) = 0.375 */
263 else
264 return 0;
266 /* copy to zero-terminated buffer */
267 char *charbuf = malloc(str_len + 1);
268 memcpy(charbuf, str, str_len);
269 charbuf[str_len] = '\0';
271 /* number of digits in base-256 notation */
272 unsigned b256_len = ceil_f_to_u32(str_len * factor);
273 uint8_t *b256_buf = calloc(b256_len, 1);
275 /* go through zero terminated buffer */
276 /* input digits (ASCII) */
277 unsigned i;
278 for (i = 0; charbuf[i]; i++)
280 uint32_t tmp = charbuf[i];
281 if ((tmp >= '0') && (tmp <= '9'))
282 tmp = (tmp - '0');
283 else if ((tmp >= 'a') && (tmp <= 'f'))
284 tmp = (tmp - 'a' + 10);
285 else if ((tmp >= 'A') && (tmp <= 'F'))
286 tmp = (tmp - 'A' + 10);
287 else continue; /* skip characters other than [0-9,a-f,A-F] */
289 if (tmp >= radix)
290 continue; /* skip digits invalid for the current radix */
292 /* base-256 digits */
293 for (unsigned j = 0; j < b256_len; j++)
295 tmp += (uint32_t)b256_buf[j] * radix;
296 b256_buf[j] = (uint8_t)(tmp & 0xFF);
297 tmp >>= 8;
302 uint8_t *buf = _buf;
303 for (unsigned j = 0; j < DIV_ROUND_UP(buf_len, 8); j++)
305 if (j < b256_len)
306 buf[j] = b256_buf[j];
307 else
308 buf[j] = 0;
311 /* mask out bits that don't belong to the buffer */
312 if (buf_len % 8)
313 buf[(buf_len / 8)] &= 0xff >> (8 - (buf_len % 8));
315 free(b256_buf);
316 free(charbuf);
318 return i;