1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2008 by Hongtao Zheng *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 ***************************************************************************/
33 #include "breakpoints.h"
34 #include "embeddedice.h"
35 #include "target_request.h"
37 #include <helper/time_support.h>
38 #include "arm_simulator.h"
39 #include "arm_semihosting.h"
40 #include "algorithm.h"
47 * Hold common code supporting the ARM7 and ARM9 core generations.
49 * While the ARM core implementations evolved substantially during these
50 * two generations, they look quite similar from the JTAG perspective.
51 * Both have similar debug facilities, based on the same two scan chains
52 * providing access to the core and to an EmbeddedICE module. Both can
53 * support similar ETM and ETB modules, for tracing. And both expose
54 * what could be viewed as "ARM Classic", with multiple processor modes,
55 * shadowed registers, and support for the Thumb instruction set.
57 * Processor differences include things like presence or absence of MMU
58 * and cache, pipeline sizes, use of a modified Harvard Architecure
59 * (with separate instruction and data busses from the CPU), support
60 * for cpu clock gating during idle, and more.
63 static int arm7_9_debug_entry(struct target
*target
);
66 * Clear watchpoints for an ARM7/9 target.
68 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
69 * @return JTAG error status after executing queue
71 static int arm7_9_clear_watchpoints(struct arm7_9_common
*arm7_9
)
74 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
75 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
76 arm7_9
->sw_breakpoint_count
= 0;
77 arm7_9
->sw_breakpoints_added
= 0;
79 arm7_9
->wp1_used
= arm7_9
->wp1_used_default
;
80 arm7_9
->wp_available
= arm7_9
->wp_available_max
;
82 return jtag_execute_queue();
86 * Assign a watchpoint to one of the two available hardware comparators in an
87 * ARM7 or ARM9 target.
89 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
90 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
92 static void arm7_9_assign_wp(struct arm7_9_common
*arm7_9
, struct breakpoint
*breakpoint
)
94 if (!arm7_9
->wp0_used
)
98 arm7_9
->wp_available
--;
100 else if (!arm7_9
->wp1_used
)
102 arm7_9
->wp1_used
= 1;
104 arm7_9
->wp_available
--;
108 LOG_ERROR("BUG: no hardware comparator available");
110 LOG_DEBUG("BPID: %d (0x%08" PRIx32
") using hw wp: %d",
111 breakpoint
->unique_id
,
117 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
119 * @param arm7_9 Pointer to common struct for ARM7/9 targets
120 * @return Error codes if there is a problem finding a watchpoint or the result
121 * of executing the JTAG queue
123 static int arm7_9_set_software_breakpoints(struct arm7_9_common
*arm7_9
)
125 if (arm7_9
->sw_breakpoints_added
)
129 if (arm7_9
->wp_available
< 1)
131 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
132 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
134 arm7_9
->wp_available
--;
136 /* pick a breakpoint unit */
137 if (!arm7_9
->wp0_used
)
139 arm7_9
->sw_breakpoints_added
= 1;
140 arm7_9
->wp0_used
= 3;
141 } else if (!arm7_9
->wp1_used
)
143 arm7_9
->sw_breakpoints_added
= 2;
144 arm7_9
->wp1_used
= 3;
148 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
152 if (arm7_9
->sw_breakpoints_added
== 1)
154 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], arm7_9
->arm_bkpt
);
155 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0x0);
156 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffffu
);
157 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
158 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
160 else if (arm7_9
->sw_breakpoints_added
== 2)
162 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], arm7_9
->arm_bkpt
);
163 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0x0);
164 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0xffffffffu
);
165 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
166 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
170 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
173 LOG_DEBUG("SW BP using hw wp: %d",
174 arm7_9
->sw_breakpoints_added
);
176 return jtag_execute_queue();
180 * Setup the common pieces for an ARM7/9 target after reset or on startup.
182 * @param target Pointer to an ARM7/9 target to setup
183 * @return Result of clearing the watchpoints on the target
185 int arm7_9_setup(struct target
*target
)
187 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
189 return arm7_9_clear_watchpoints(arm7_9
);
193 * Set either a hardware or software breakpoint on an ARM7/9 target. The
194 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
195 * might have erased the values in Embedded ICE.
197 * @param target Pointer to the target device to set the breakpoints on
198 * @param breakpoint Pointer to the breakpoint to be set
199 * @return For hardware breakpoints, this is the result of executing the JTAG
200 * queue. For software breakpoints, this will be the status of the
201 * required memory reads and writes
203 int arm7_9_set_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
205 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
206 int retval
= ERROR_OK
;
208 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
", Type: %d" ,
209 breakpoint
->unique_id
,
213 if (target
->state
!= TARGET_HALTED
)
215 LOG_WARNING("target not halted");
216 return ERROR_TARGET_NOT_HALTED
;
219 if (breakpoint
->type
== BKPT_HARD
)
221 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
222 uint32_t mask
= (breakpoint
->length
== 4) ? 0x3u
: 0x1u
;
224 /* reassign a hw breakpoint */
225 if (breakpoint
->set
== 0)
227 arm7_9_assign_wp(arm7_9
, breakpoint
);
230 if (breakpoint
->set
== 1)
232 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], breakpoint
->address
);
233 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
234 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffffu
);
235 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
236 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
238 else if (breakpoint
->set
== 2)
240 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], breakpoint
->address
);
241 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
242 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffffu
);
243 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
244 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
248 LOG_ERROR("BUG: no hardware comparator available");
252 retval
= jtag_execute_queue();
254 else if (breakpoint
->type
== BKPT_SOFT
)
256 /* did we already set this breakpoint? */
260 if (breakpoint
->length
== 4)
262 uint32_t verify
= 0xffffffff;
263 /* keep the original instruction in target endianness */
264 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
268 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
269 if ((retval
= target_write_u32(target
, breakpoint
->address
, arm7_9
->arm_bkpt
)) != ERROR_OK
)
274 if ((retval
= target_read_u32(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
278 if (verify
!= arm7_9
->arm_bkpt
)
280 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
286 uint16_t verify
= 0xffff;
287 /* keep the original instruction in target endianness */
288 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
292 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
293 if ((retval
= target_write_u16(target
, breakpoint
->address
, arm7_9
->thumb_bkpt
)) != ERROR_OK
)
298 if ((retval
= target_read_u16(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
302 if (verify
!= arm7_9
->thumb_bkpt
)
304 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
309 if ((retval
= arm7_9_set_software_breakpoints(arm7_9
)) != ERROR_OK
)
312 arm7_9
->sw_breakpoint_count
++;
321 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
322 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
323 * will be updated. Otherwise, the software breakpoint will be restored to its
324 * original instruction if it hasn't already been modified.
326 * @param target Pointer to ARM7/9 target to unset the breakpoint from
327 * @param breakpoint Pointer to breakpoint to be unset
328 * @return For hardware breakpoints, this is the result of executing the JTAG
329 * queue. For software breakpoints, this will be the status of the
330 * required memory reads and writes
332 int arm7_9_unset_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
334 int retval
= ERROR_OK
;
335 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
337 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
,
338 breakpoint
->unique_id
,
339 breakpoint
->address
);
341 if (!breakpoint
->set
)
343 LOG_WARNING("breakpoint not set");
347 if (breakpoint
->type
== BKPT_HARD
)
349 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
350 breakpoint
->unique_id
,
352 if (breakpoint
->set
== 1)
354 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
355 arm7_9
->wp0_used
= 0;
356 arm7_9
->wp_available
++;
358 else if (breakpoint
->set
== 2)
360 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
361 arm7_9
->wp1_used
= 0;
362 arm7_9
->wp_available
++;
364 retval
= jtag_execute_queue();
369 /* restore original instruction (kept in target endianness) */
370 if (breakpoint
->length
== 4)
372 uint32_t current_instr
;
373 /* check that user program as not modified breakpoint instruction */
374 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
378 if (current_instr
== arm7_9
->arm_bkpt
)
379 if ((retval
= target_write_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
386 uint16_t current_instr
;
387 /* check that user program as not modified breakpoint instruction */
388 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
392 if (current_instr
== arm7_9
->thumb_bkpt
)
393 if ((retval
= target_write_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
399 if (--arm7_9
->sw_breakpoint_count
==0)
401 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
402 if (arm7_9
->sw_breakpoints_added
== 1)
404 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0);
406 else if (arm7_9
->sw_breakpoints_added
== 2)
408 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0);
419 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
420 * dangling breakpoints and that the desired breakpoint can be added.
422 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
423 * @param breakpoint Pointer to the breakpoint to be added
424 * @return An error status if there is a problem adding the breakpoint or the
425 * result of setting the breakpoint
427 int arm7_9_add_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
429 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
431 if (arm7_9
->breakpoint_count
== 0)
433 /* make sure we don't have any dangling breakpoints. This is vital upon
434 * GDB connect/disconnect
436 arm7_9_clear_watchpoints(arm7_9
);
439 if ((breakpoint
->type
== BKPT_HARD
) && (arm7_9
->wp_available
< 1))
441 LOG_INFO("no watchpoint unit available for hardware breakpoint");
442 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
445 if ((breakpoint
->length
!= 2) && (breakpoint
->length
!= 4))
447 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
448 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
451 if (breakpoint
->type
== BKPT_HARD
)
453 arm7_9_assign_wp(arm7_9
, breakpoint
);
456 arm7_9
->breakpoint_count
++;
458 return arm7_9_set_breakpoint(target
, breakpoint
);
462 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
463 * dangling breakpoints and updates available watchpoints if it is a hardware
466 * @param target Pointer to the target to have a breakpoint removed
467 * @param breakpoint Pointer to the breakpoint to be removed
468 * @return Error status if there was a problem unsetting the breakpoint or the
469 * watchpoints could not be cleared
471 int arm7_9_remove_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
473 int retval
= ERROR_OK
;
474 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
476 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
481 if (breakpoint
->type
== BKPT_HARD
)
482 arm7_9
->wp_available
++;
484 arm7_9
->breakpoint_count
--;
485 if (arm7_9
->breakpoint_count
== 0)
487 /* make sure we don't have any dangling breakpoints */
488 if ((retval
= arm7_9_clear_watchpoints(arm7_9
)) != ERROR_OK
)
498 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
499 * considered a bug to call this function when there are no available watchpoint
502 * @param target Pointer to an ARM7/9 target to set a watchpoint on
503 * @param watchpoint Pointer to the watchpoint to be set
504 * @return Error status if watchpoint set fails or the result of executing the
507 int arm7_9_set_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
509 int retval
= ERROR_OK
;
510 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
514 mask
= watchpoint
->length
- 1;
516 if (target
->state
!= TARGET_HALTED
)
518 LOG_WARNING("target not halted");
519 return ERROR_TARGET_NOT_HALTED
;
522 if (watchpoint
->rw
== WPT_ACCESS
)
527 if (!arm7_9
->wp0_used
)
529 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], watchpoint
->address
);
530 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
531 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], watchpoint
->mask
);
532 if (watchpoint
->mask
!= 0xffffffffu
)
533 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], watchpoint
->value
);
534 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
535 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
537 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
542 arm7_9
->wp0_used
= 2;
544 else if (!arm7_9
->wp1_used
)
546 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], watchpoint
->address
);
547 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
548 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], watchpoint
->mask
);
549 if (watchpoint
->mask
!= 0xffffffffu
)
550 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], watchpoint
->value
);
551 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
552 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
554 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
559 arm7_9
->wp1_used
= 2;
563 LOG_ERROR("BUG: no hardware comparator available");
571 * Unset an existing watchpoint and clear the used watchpoint unit.
573 * @param target Pointer to the target to have the watchpoint removed
574 * @param watchpoint Pointer to the watchpoint to be removed
575 * @return Error status while trying to unset the watchpoint or the result of
576 * executing the JTAG queue
578 int arm7_9_unset_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
580 int retval
= ERROR_OK
;
581 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
583 if (target
->state
!= TARGET_HALTED
)
585 LOG_WARNING("target not halted");
586 return ERROR_TARGET_NOT_HALTED
;
589 if (!watchpoint
->set
)
591 LOG_WARNING("breakpoint not set");
595 if (watchpoint
->set
== 1)
597 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
598 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
602 arm7_9
->wp0_used
= 0;
604 else if (watchpoint
->set
== 2)
606 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
607 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
611 arm7_9
->wp1_used
= 0;
619 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
620 * available, an error response is returned.
622 * @param target Pointer to the ARM7/9 target to add a watchpoint to
623 * @param watchpoint Pointer to the watchpoint to be added
624 * @return Error status while trying to add the watchpoint
626 int arm7_9_add_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
628 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
630 if (arm7_9
->wp_available
< 1)
632 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
635 if ((watchpoint
->length
!= 1) && (watchpoint
->length
!= 2) && (watchpoint
->length
!= 4))
637 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
640 arm7_9
->wp_available
--;
646 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
647 * the used watchpoint unit will be reopened.
649 * @param target Pointer to the target to remove a watchpoint from
650 * @param watchpoint Pointer to the watchpoint to be removed
651 * @return Result of trying to unset the watchpoint
653 int arm7_9_remove_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
655 int retval
= ERROR_OK
;
656 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
660 if ((retval
= arm7_9_unset_watchpoint(target
, watchpoint
)) != ERROR_OK
)
666 arm7_9
->wp_available
++;
672 * Restarts the target by sending a RESTART instruction and moving the JTAG
673 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
674 * asserted by the processor.
676 * @param target Pointer to target to issue commands to
677 * @return Error status if there is a timeout or a problem while executing the
680 int arm7_9_execute_sys_speed(struct target
*target
)
683 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
684 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
685 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
687 /* set RESTART instruction */
688 jtag_set_end_state(TAP_IDLE
);
689 if (arm7_9
->need_bypass_before_restart
) {
690 arm7_9
->need_bypass_before_restart
= 0;
691 arm_jtag_set_instr(jtag_info
, 0xf, NULL
);
693 arm_jtag_set_instr(jtag_info
, 0x4, NULL
);
695 long long then
= timeval_ms();
697 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
699 /* read debug status register */
700 embeddedice_read_reg(dbg_stat
);
701 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
703 if ((buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
704 && (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_SYSCOMP
, 1)))
706 if (debug_level
>= 3)
716 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32
"", buf_get_u32(dbg_stat
->value
, 0, dbg_stat
->size
));
717 return ERROR_TARGET_TIMEOUT
;
724 * Restarts the target by sending a RESTART instruction and moving the JTAG
725 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
726 * waiting until they are.
728 * @param target Pointer to the target to issue commands to
729 * @return Always ERROR_OK
731 int arm7_9_execute_fast_sys_speed(struct target
*target
)
734 static uint8_t check_value
[4], check_mask
[4];
736 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
737 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
738 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
740 /* set RESTART instruction */
741 jtag_set_end_state(TAP_IDLE
);
742 if (arm7_9
->need_bypass_before_restart
) {
743 arm7_9
->need_bypass_before_restart
= 0;
744 arm_jtag_set_instr(jtag_info
, 0xf, NULL
);
746 arm_jtag_set_instr(jtag_info
, 0x4, NULL
);
750 /* check for DBGACK and SYSCOMP set (others don't care) */
752 /* NB! These are constants that must be available until after next jtag_execute() and
753 * we evaluate the values upon first execution in lieu of setting up these constants
754 * during early setup.
756 buf_set_u32(check_value
, 0, 32, 0x9);
757 buf_set_u32(check_mask
, 0, 32, 0x9);
761 /* read debug status register */
762 embeddedice_read_reg_w_check(dbg_stat
, check_value
, check_mask
);
768 * Get some data from the ARM7/9 target.
770 * @param target Pointer to the ARM7/9 target to read data from
771 * @param size The number of 32bit words to be read
772 * @param buffer Pointer to the buffer that will hold the data
773 * @return The result of receiving data from the Embedded ICE unit
775 int arm7_9_target_request_data(struct target
*target
, uint32_t size
, uint8_t *buffer
)
777 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
778 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
780 int retval
= ERROR_OK
;
783 data
= malloc(size
* (sizeof(uint32_t)));
785 retval
= embeddedice_receive(jtag_info
, data
, size
);
787 /* return the 32-bit ints in the 8-bit array */
788 for (i
= 0; i
< size
; i
++)
790 h_u32_to_le(buffer
+ (i
* 4), data
[i
]);
799 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
800 * target is running and the DCC control register has the W bit high, this will
801 * execute the request on the target.
803 * @param priv Void pointer expected to be a struct target pointer
804 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
805 * from the Embedded ICE unit
807 int arm7_9_handle_target_request(void *priv
)
809 int retval
= ERROR_OK
;
810 struct target
*target
= priv
;
811 if (!target_was_examined(target
))
813 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
814 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
815 struct reg
*dcc_control
= &arm7_9
->eice_cache
->reg_list
[EICE_COMMS_CTRL
];
817 if (!target
->dbg_msg_enabled
)
820 if (target
->state
== TARGET_RUNNING
)
822 /* read DCC control register */
823 embeddedice_read_reg(dcc_control
);
824 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
830 if (buf_get_u32(dcc_control
->value
, 1, 1) == 1)
834 if ((retval
= embeddedice_receive(jtag_info
, &request
, 1)) != ERROR_OK
)
838 if ((retval
= target_request(target
, request
)) != ERROR_OK
)
849 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
850 * is manipulated to the right halted state based on its current state. This is
854 * <tr><th > State</th><th > Action</th></tr>
855 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
856 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
857 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
858 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
861 * If the target does not end up in the halted state, a warning is produced. If
862 * DBGACK is cleared, then the target is expected to either be running or
865 * @param target Pointer to the ARM7/9 target to poll
866 * @return ERROR_OK or an error status if a command fails
868 int arm7_9_poll(struct target
*target
)
871 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
872 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
874 /* read debug status register */
875 embeddedice_read_reg(dbg_stat
);
876 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
881 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
883 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
884 if (target
->state
== TARGET_UNKNOWN
)
886 /* Starting OpenOCD with target in debug-halt */
887 target
->state
= TARGET_RUNNING
;
888 LOG_DEBUG("DBGACK already set during server startup.");
890 if ((target
->state
== TARGET_RUNNING
) || (target
->state
== TARGET_RESET
))
892 target
->state
= TARGET_HALTED
;
894 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
897 if (arm_semihosting(target
, &retval
) != 0)
900 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
905 if (target
->state
== TARGET_DEBUG_RUNNING
)
907 target
->state
= TARGET_HALTED
;
908 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
911 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_HALTED
)) != ERROR_OK
)
916 if (target
->state
!= TARGET_HALTED
)
918 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target
->state
);
923 if (target
->state
!= TARGET_DEBUG_RUNNING
)
924 target
->state
= TARGET_RUNNING
;
931 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
932 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
933 * affected) completely stop the JTAG clock while the core is held in reset
934 * (SRST). It isn't possible to program the halt condition once reset is
935 * asserted, hence a hook that allows the target to set up its reset-halt
936 * condition is setup prior to asserting reset.
938 * @param target Pointer to an ARM7/9 target to assert reset on
939 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
941 int arm7_9_assert_reset(struct target
*target
)
943 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
945 LOG_DEBUG("target->state: %s",
946 target_state_name(target
));
948 enum reset_types jtag_reset_config
= jtag_get_reset_config();
949 if (!(jtag_reset_config
& RESET_HAS_SRST
))
951 LOG_ERROR("Can't assert SRST");
955 /* At this point trst has been asserted/deasserted once. We would
956 * like to program EmbeddedICE while SRST is asserted, instead of
957 * depending on SRST to leave that module alone. However, many CPUs
958 * gate the JTAG clock while SRST is asserted; or JTAG may need
959 * clock stability guarantees (adaptive clocking might help).
961 * So we assume JTAG access during SRST is off the menu unless it's
962 * been specifically enabled.
964 bool srst_asserted
= false;
966 if (((jtag_reset_config
& RESET_SRST_PULLS_TRST
) == 0)
967 && (jtag_reset_config
& RESET_SRST_NO_GATING
))
969 jtag_add_reset(0, 1);
970 srst_asserted
= true;
973 if (target
->reset_halt
)
976 * Some targets do not support communication while SRST is asserted. We need to
977 * set up the reset vector catch here.
979 * If TRST is asserted, then these settings will be reset anyway, so setting them
982 if (arm7_9
->has_vector_catch
)
984 /* program vector catch register to catch reset vector */
985 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
], 0x1);
987 /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
988 jtag_add_runtest(1, jtag_get_end_state());
992 /* program watchpoint unit to match on reset vector address */
993 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], 0x0);
994 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0x3);
995 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
996 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
997 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1001 /* here we should issue an SRST only, but we may have to assert TRST as well */
1002 if (jtag_reset_config
& RESET_SRST_PULLS_TRST
)
1004 jtag_add_reset(1, 1);
1005 } else if (!srst_asserted
)
1007 jtag_add_reset(0, 1);
1010 target
->state
= TARGET_RESET
;
1011 jtag_add_sleep(50000);
1013 register_cache_invalidate(arm7_9
->armv4_5_common
.core_cache
);
1015 if ((target
->reset_halt
) && ((jtag_reset_config
& RESET_SRST_PULLS_TRST
) == 0))
1017 /* debug entry was already prepared in arm7_9_assert_reset() */
1018 target
->debug_reason
= DBG_REASON_DBGRQ
;
1025 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1026 * and the target is being reset into a halt, a warning will be triggered
1027 * because it is not possible to reset into a halted mode in this case. The
1028 * target is halted using the target's functions.
1030 * @param target Pointer to the target to have the reset deasserted
1031 * @return ERROR_OK or an error from polling or halting the target
1033 int arm7_9_deassert_reset(struct target
*target
)
1035 int retval
= ERROR_OK
;
1036 LOG_DEBUG("target->state: %s",
1037 target_state_name(target
));
1039 /* deassert reset lines */
1040 jtag_add_reset(0, 0);
1042 enum reset_types jtag_reset_config
= jtag_get_reset_config();
1043 if (target
->reset_halt
&& (jtag_reset_config
& RESET_SRST_PULLS_TRST
) != 0)
1045 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1046 /* set up embedded ice registers again */
1047 if ((retval
= target_examine_one(target
)) != ERROR_OK
)
1050 if ((retval
= target_poll(target
)) != ERROR_OK
)
1055 if ((retval
= target_halt(target
)) != ERROR_OK
)
1065 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1066 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1067 * vector catch was used, it is restored. Otherwise, the control value is
1068 * restored and the watchpoint unit is restored if it was in use.
1070 * @param target Pointer to the ARM7/9 target to have halt cleared
1071 * @return Always ERROR_OK
1073 int arm7_9_clear_halt(struct target
*target
)
1075 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1076 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1078 /* we used DBGRQ only if we didn't come out of reset */
1079 if (!arm7_9
->debug_entry_from_reset
&& arm7_9
->use_dbgrq
)
1081 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1083 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1084 embeddedice_store_reg(dbg_ctrl
);
1088 if (arm7_9
->debug_entry_from_reset
&& arm7_9
->has_vector_catch
)
1090 /* if we came out of reset, and vector catch is supported, we used
1091 * vector catch to enter debug state
1092 * restore the register in that case
1094 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
]);
1098 /* restore registers if watchpoint unit 0 was in use
1100 if (arm7_9
->wp0_used
)
1102 if (arm7_9
->debug_entry_from_reset
)
1104 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
]);
1106 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1107 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1108 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
1110 /* control value always has to be restored, as it was either disabled,
1111 * or enabled with possibly different bits
1113 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1121 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1122 * and then there is a wait until the processor shows the halt. This wait can
1123 * timeout and results in an error being returned. The software reset involves
1124 * clearing the halt, updating the debug control register, changing to ARM mode,
1125 * reset of the program counter, and reset of all of the registers.
1127 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1128 * @return Error status if any of the commands fail, otherwise ERROR_OK
1130 int arm7_9_soft_reset_halt(struct target
*target
)
1132 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1133 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1134 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1135 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1139 /* FIX!!! replace some of this code with tcl commands
1141 * halt # the halt command is synchronous
1142 * armv4_5 core_state arm
1146 if ((retval
= target_halt(target
)) != ERROR_OK
)
1149 long long then
= timeval_ms();
1151 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
1153 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1) != 0)
1155 embeddedice_read_reg(dbg_stat
);
1156 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1158 if (debug_level
>= 3)
1168 LOG_ERROR("Failed to halt CPU after 1 sec");
1169 return ERROR_TARGET_TIMEOUT
;
1171 target
->state
= TARGET_HALTED
;
1173 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1174 * ensure that DBGRQ is cleared
1176 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1177 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1178 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1179 embeddedice_store_reg(dbg_ctrl
);
1181 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1186 /* if the target is in Thumb state, change to ARM state */
1187 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1189 uint32_t r0_thumb
, pc_thumb
;
1190 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1191 /* Entered debug from Thumb mode */
1192 armv4_5
->core_state
= ARM_STATE_THUMB
;
1193 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1196 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1198 /* all register content is now invalid */
1199 register_cache_invalidate(armv4_5
->core_cache
);
1201 /* SVC, ARM state, IRQ and FIQ disabled */
1204 cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 32);
1207 arm_set_cpsr(armv4_5
, cpsr
);
1208 armv4_5
->cpsr
->dirty
= 1;
1210 /* start fetching from 0x0 */
1211 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32, 0x0);
1212 armv4_5
->core_cache
->reg_list
[15].dirty
= 1;
1213 armv4_5
->core_cache
->reg_list
[15].valid
= 1;
1215 /* reset registers */
1216 for (i
= 0; i
<= 14; i
++)
1218 struct reg
*r
= arm_reg_current(armv4_5
, i
);
1220 buf_set_u32(r
->value
, 0, 32, 0xffffffff);
1225 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
1234 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1235 * line or by programming a watchpoint to trigger on any address. It is
1236 * considered a bug to call this function while the target is in the
1237 * TARGET_RESET state.
1239 * @param target Pointer to the ARM7/9 target to be halted
1240 * @return Always ERROR_OK
1242 int arm7_9_halt(struct target
*target
)
1244 if (target
->state
== TARGET_RESET
)
1246 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1250 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1251 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1253 LOG_DEBUG("target->state: %s",
1254 target_state_name(target
));
1256 if (target
->state
== TARGET_HALTED
)
1258 LOG_DEBUG("target was already halted");
1262 if (target
->state
== TARGET_UNKNOWN
)
1264 LOG_WARNING("target was in unknown state when halt was requested");
1267 if (arm7_9
->use_dbgrq
)
1269 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1271 if (arm7_9
->set_special_dbgrq
) {
1272 arm7_9
->set_special_dbgrq(target
);
1274 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 1);
1275 embeddedice_store_reg(dbg_ctrl
);
1280 /* program watchpoint unit to match on any address
1282 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1283 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1284 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1285 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1288 target
->debug_reason
= DBG_REASON_DBGRQ
;
1294 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1295 * ARM. The JTAG queue is then executed and the reason for debug entry is
1296 * examined. Once done, the target is verified to be halted and the processor
1297 * is forced into ARM mode. The core registers are saved for the current core
1298 * mode and the program counter (register 15) is updated as needed. The core
1299 * registers and CPSR and SPSR are saved for restoration later.
1301 * @param target Pointer to target that is entering debug mode
1302 * @return Error code if anything fails, otherwise ERROR_OK
1304 static int arm7_9_debug_entry(struct target
*target
)
1307 uint32_t context
[16];
1308 uint32_t* context_p
[16];
1309 uint32_t r0_thumb
, pc_thumb
;
1310 uint32_t cpsr
, cpsr_mask
= 0;
1312 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1313 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1314 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1315 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1317 #ifdef _DEBUG_ARM7_9_
1321 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1322 * ensure that DBGRQ is cleared
1324 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1325 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1326 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1327 embeddedice_store_reg(dbg_ctrl
);
1329 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1334 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1339 if ((retval
= arm7_9
->examine_debug_reason(target
)) != ERROR_OK
)
1343 if (target
->state
!= TARGET_HALTED
)
1345 LOG_WARNING("target not halted");
1346 return ERROR_TARGET_NOT_HALTED
;
1349 /* if the target is in Thumb state, change to ARM state */
1350 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1352 LOG_DEBUG("target entered debug from Thumb state");
1353 /* Entered debug from Thumb mode */
1354 armv4_5
->core_state
= ARM_STATE_THUMB
;
1356 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1357 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1358 ", pc_thumb: 0x%8.8" PRIx32
, r0_thumb
, pc_thumb
);
1359 } else if (buf_get_u32(dbg_stat
->value
, 5, 1)) {
1360 /* \todo Get some vaguely correct handling of Jazelle, if
1361 * anyone ever uses it and full info becomes available.
1362 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1363 * B.7.3 for the reverse. That'd be the bare minimum...
1365 LOG_DEBUG("target entered debug from Jazelle state");
1366 armv4_5
->core_state
= ARM_STATE_JAZELLE
;
1367 cpsr_mask
= 1 << 24;
1368 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1370 LOG_DEBUG("target entered debug from ARM state");
1371 /* Entered debug from ARM mode */
1372 armv4_5
->core_state
= ARM_STATE_ARM
;
1375 for (i
= 0; i
< 16; i
++)
1376 context_p
[i
] = &context
[i
];
1377 /* save core registers (r0 - r15 of current core mode) */
1378 arm7_9
->read_core_regs(target
, 0xffff, context_p
);
1380 arm7_9
->read_xpsr(target
, &cpsr
, 0);
1382 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1385 /* Sync our CPSR copy with J or T bits EICE reported, but
1386 * which we then erased by putting the core into ARM mode.
1388 arm_set_cpsr(armv4_5
, cpsr
| cpsr_mask
);
1390 if (!is_arm_mode(armv4_5
->core_mode
))
1392 target
->state
= TARGET_UNKNOWN
;
1393 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1394 return ERROR_TARGET_FAILURE
;
1397 LOG_DEBUG("target entered debug state in %s mode",
1398 arm_mode_name(armv4_5
->core_mode
));
1400 if (armv4_5
->core_state
== ARM_STATE_THUMB
)
1402 LOG_DEBUG("thumb state, applying fixups");
1403 context
[0] = r0_thumb
;
1404 context
[15] = pc_thumb
;
1405 } else if (armv4_5
->core_state
== ARM_STATE_ARM
)
1407 /* adjust value stored by STM */
1408 context
[15] -= 3 * 4;
1411 if ((target
->debug_reason
!= DBG_REASON_DBGRQ
) || (!arm7_9
->use_dbgrq
))
1412 context
[15] -= 3 * ((armv4_5
->core_state
== ARM_STATE_ARM
) ? 4 : 2);
1414 context
[15] -= arm7_9
->dbgreq_adjust_pc
* ((armv4_5
->core_state
== ARM_STATE_ARM
) ? 4 : 2);
1416 for (i
= 0; i
<= 15; i
++)
1418 struct reg
*r
= arm_reg_current(armv4_5
, i
);
1420 LOG_DEBUG("r%i: 0x%8.8" PRIx32
"", i
, context
[i
]);
1422 buf_set_u32(r
->value
, 0, 32, context
[i
]);
1423 /* r0 and r15 (pc) have to be restored later */
1424 r
->dirty
= (i
== 0) || (i
== 15);
1428 LOG_DEBUG("entered debug state at PC 0x%" PRIx32
"", context
[15]);
1430 /* exceptions other than USR & SYS have a saved program status register */
1431 if (armv4_5
->spsr
) {
1433 arm7_9
->read_xpsr(target
, &spsr
, 1);
1434 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1438 buf_set_u32(armv4_5
->spsr
->value
, 0, 32, spsr
);
1439 armv4_5
->spsr
->dirty
= 0;
1440 armv4_5
->spsr
->valid
= 1;
1443 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1446 if (arm7_9
->post_debug_entry
)
1447 arm7_9
->post_debug_entry(target
);
1453 * Validate the full context for an ARM7/9 target in all processor modes. If
1454 * there are any invalid registers for the target, they will all be read. This
1457 * @param target Pointer to the ARM7/9 target to capture the full context from
1458 * @return Error if the target is not halted, has an invalid core mode, or if
1459 * the JTAG queue fails to execute
1461 int arm7_9_full_context(struct target
*target
)
1465 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1466 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1470 if (target
->state
!= TARGET_HALTED
)
1472 LOG_WARNING("target not halted");
1473 return ERROR_TARGET_NOT_HALTED
;
1476 if (!is_arm_mode(armv4_5
->core_mode
))
1479 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1480 * SYS shares registers with User, so we don't touch SYS
1482 for (i
= 0; i
< 6; i
++)
1485 uint32_t* reg_p
[16];
1489 /* check if there are invalid registers in the current mode
1491 for (j
= 0; j
<= 16; j
++)
1493 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1501 /* change processor mode (and mask T bit) */
1502 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
1504 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1506 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1508 for (j
= 0; j
< 15; j
++)
1510 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1512 reg_p
[j
] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).value
;
1514 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
= 1;
1515 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).dirty
= 0;
1519 /* if only the PSR is invalid, mask is all zeroes */
1521 arm7_9
->read_core_regs(target
, mask
, reg_p
);
1523 /* check if the PSR has to be read */
1524 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
== 0)
1526 arm7_9
->read_xpsr(target
, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).value
, 1);
1527 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
= 1;
1528 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).dirty
= 0;
1533 /* restore processor mode (mask T bit) */
1534 arm7_9
->write_xpsr_im8(target
,
1535 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & ~0x20,
1538 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1546 * Restore the processor context on an ARM7/9 target. The full processor
1547 * context is analyzed to see if any of the registers are dirty on this end, but
1548 * have a valid new value. If this is the case, the processor is changed to the
1549 * appropriate mode and the new register values are written out to the
1550 * processor. If there happens to be a dirty register with an invalid value, an
1551 * error will be logged.
1553 * @param target Pointer to the ARM7/9 target to have its context restored
1554 * @return Error status if the target is not halted or the core mode in the
1555 * armv4_5 struct is invalid.
1557 int arm7_9_restore_context(struct target
*target
)
1559 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1560 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1562 struct arm_reg
*reg_arch_info
;
1563 enum arm_mode current_mode
= armv4_5
->core_mode
;
1570 if (target
->state
!= TARGET_HALTED
)
1572 LOG_WARNING("target not halted");
1573 return ERROR_TARGET_NOT_HALTED
;
1576 if (arm7_9
->pre_restore_context
)
1577 arm7_9
->pre_restore_context(target
);
1579 if (!is_arm_mode(armv4_5
->core_mode
))
1582 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1583 * SYS shares registers with User, so we don't touch SYS
1585 for (i
= 0; i
< 6; i
++)
1587 LOG_DEBUG("examining %s mode",
1588 arm_mode_name(armv4_5
->core_mode
));
1591 /* check if there are dirty registers in the current mode
1593 for (j
= 0; j
<= 16; j
++)
1595 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
);
1596 reg_arch_info
= reg
->arch_info
;
1597 if (reg
->dirty
== 1)
1599 if (reg
->valid
== 1)
1602 LOG_DEBUG("examining dirty reg: %s", reg
->name
);
1603 if ((reg_arch_info
->mode
!= ARM_MODE_ANY
)
1604 && (reg_arch_info
->mode
!= current_mode
)
1605 && !((reg_arch_info
->mode
== ARM_MODE_USR
) && (armv4_5
->core_mode
== ARM_MODE_SYS
))
1606 && !((reg_arch_info
->mode
== ARM_MODE_SYS
) && (armv4_5
->core_mode
== ARM_MODE_USR
)))
1609 LOG_DEBUG("require mode change");
1614 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg
->name
);
1621 uint32_t mask
= 0x0;
1629 /* change processor mode (mask T bit) */
1630 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
,
1632 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1634 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1635 current_mode
= armv4_5_number_to_mode(i
);
1638 for (j
= 0; j
<= 14; j
++)
1640 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
);
1641 reg_arch_info
= reg
->arch_info
;
1644 if (reg
->dirty
== 1)
1646 regs
[j
] = buf_get_u32(reg
->value
, 0, 32);
1651 LOG_DEBUG("writing register %i mode %s "
1652 "with value 0x%8.8" PRIx32
, j
,
1653 arm_mode_name(armv4_5
->core_mode
),
1660 arm7_9
->write_core_regs(target
, mask
, regs
);
1663 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16);
1664 reg_arch_info
= reg
->arch_info
;
1665 if ((reg
->dirty
) && (reg_arch_info
->mode
!= ARM_MODE_ANY
))
1667 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32
"", i
, buf_get_u32(reg
->value
, 0, 32));
1668 arm7_9
->write_xpsr(target
, buf_get_u32(reg
->value
, 0, 32), 1);
1673 if (!armv4_5
->cpsr
->dirty
&& (armv4_5
->core_mode
!= current_mode
))
1675 /* restore processor mode (mask T bit) */
1678 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & 0xE0;
1679 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1681 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr
));
1682 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1684 else if (armv4_5
->cpsr
->dirty
)
1686 /* CPSR has been changed, full restore necessary (mask T bit) */
1687 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32
,
1688 buf_get_u32(armv4_5
->cpsr
->value
, 0, 32));
1689 arm7_9
->write_xpsr(target
,
1690 buf_get_u32(armv4_5
->cpsr
->value
, 0, 32)
1692 armv4_5
->cpsr
->dirty
= 0;
1693 armv4_5
->cpsr
->valid
= 1;
1697 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32
"", buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32));
1698 arm7_9
->write_pc(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32));
1699 armv4_5
->core_cache
->reg_list
[15].dirty
= 0;
1701 if (arm7_9
->post_restore_context
)
1702 arm7_9
->post_restore_context(target
);
1708 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1709 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1712 * @param target Pointer to the ARM7/9 target to be restarted
1713 * @return Result of executing the JTAG queue
1715 int arm7_9_restart_core(struct target
*target
)
1717 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1718 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
1720 /* set RESTART instruction */
1721 jtag_set_end_state(TAP_IDLE
);
1722 if (arm7_9
->need_bypass_before_restart
) {
1723 arm7_9
->need_bypass_before_restart
= 0;
1724 arm_jtag_set_instr(jtag_info
, 0xf, NULL
);
1726 arm_jtag_set_instr(jtag_info
, 0x4, NULL
);
1728 jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE
));
1729 return jtag_execute_queue();
1733 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1734 * iterated through and are set on the target if they aren't already set.
1736 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1738 void arm7_9_enable_watchpoints(struct target
*target
)
1740 struct watchpoint
*watchpoint
= target
->watchpoints
;
1744 if (watchpoint
->set
== 0)
1745 arm7_9_set_watchpoint(target
, watchpoint
);
1746 watchpoint
= watchpoint
->next
;
1751 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1752 * iterated through and are set on the target.
1754 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1756 void arm7_9_enable_breakpoints(struct target
*target
)
1758 struct breakpoint
*breakpoint
= target
->breakpoints
;
1760 /* set any pending breakpoints */
1763 arm7_9_set_breakpoint(target
, breakpoint
);
1764 breakpoint
= breakpoint
->next
;
1768 int arm7_9_resume(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
1770 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1771 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1772 struct breakpoint
*breakpoint
= target
->breakpoints
;
1773 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1774 int err
, retval
= ERROR_OK
;
1778 if (target
->state
!= TARGET_HALTED
)
1780 LOG_WARNING("target not halted");
1781 return ERROR_TARGET_NOT_HALTED
;
1784 if (!debug_execution
)
1786 target_free_all_working_areas(target
);
1789 /* current = 1: continue on current pc, otherwise continue at <address> */
1791 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32, address
);
1793 uint32_t current_pc
;
1794 current_pc
= buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32);
1796 /* the front-end may request us not to handle breakpoints */
1797 if (handle_breakpoints
)
1799 if ((breakpoint
= breakpoint_find(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32))))
1801 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32
" (id: %d)", breakpoint
->address
, breakpoint
->unique_id
);
1802 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1807 /* calculate PC of next instruction */
1809 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
1811 uint32_t current_opcode
;
1812 target_read_u32(target
, current_pc
, ¤t_opcode
);
1813 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
1817 LOG_DEBUG("enable single-step");
1818 arm7_9
->enable_single_step(target
, next_pc
);
1820 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1822 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1827 if (armv4_5
->core_state
== ARM_STATE_ARM
)
1828 arm7_9
->branch_resume(target
);
1829 else if (armv4_5
->core_state
== ARM_STATE_THUMB
)
1831 arm7_9
->branch_resume_thumb(target
);
1835 LOG_ERROR("unhandled core state");
1839 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1840 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1841 err
= arm7_9_execute_sys_speed(target
);
1843 LOG_DEBUG("disable single-step");
1844 arm7_9
->disable_single_step(target
);
1846 if (err
!= ERROR_OK
)
1848 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1852 target
->state
= TARGET_UNKNOWN
;
1856 arm7_9_debug_entry(target
);
1857 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32
"", buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32));
1859 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32
"", breakpoint
->address
);
1860 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1867 /* enable any pending breakpoints and watchpoints */
1868 arm7_9_enable_breakpoints(target
);
1869 arm7_9_enable_watchpoints(target
);
1871 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1876 if (armv4_5
->core_state
== ARM_STATE_ARM
)
1878 arm7_9
->branch_resume(target
);
1880 else if (armv4_5
->core_state
== ARM_STATE_THUMB
)
1882 arm7_9
->branch_resume_thumb(target
);
1886 LOG_ERROR("unhandled core state");
1890 /* deassert DBGACK and INTDIS */
1891 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1892 /* INTDIS only when we really resume, not during debug execution */
1893 if (!debug_execution
)
1894 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 0);
1895 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1897 if ((retval
= arm7_9_restart_core(target
)) != ERROR_OK
)
1902 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1904 if (!debug_execution
)
1906 /* registers are now invalid */
1907 register_cache_invalidate(armv4_5
->core_cache
);
1908 target
->state
= TARGET_RUNNING
;
1909 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
1916 target
->state
= TARGET_DEBUG_RUNNING
;
1917 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
)) != ERROR_OK
)
1923 LOG_DEBUG("target resumed");
1928 void arm7_9_enable_eice_step(struct target
*target
, uint32_t next_pc
)
1930 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1931 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1932 uint32_t current_pc
;
1933 current_pc
= buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32);
1935 if (next_pc
!= current_pc
)
1937 /* setup an inverse breakpoint on the current PC
1938 * - comparator 1 matches the current address
1939 * - rangeout from comparator 1 is connected to comparator 0 rangein
1940 * - comparator 0 matches any address, as long as rangein is low */
1941 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1942 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1943 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1944 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~(EICE_W_CTRL_RANGE
| EICE_W_CTRL_nOPC
) & 0xff);
1945 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], current_pc
);
1946 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1947 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1948 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
1949 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1953 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1954 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1955 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
1956 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff);
1957 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], next_pc
);
1958 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1959 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1960 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1961 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1965 void arm7_9_disable_eice_step(struct target
*target
)
1967 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1969 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1970 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1971 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1972 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
1973 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
]);
1974 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
]);
1975 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
]);
1976 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
]);
1977 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
]);
1980 int arm7_9_step(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
)
1982 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1983 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1984 struct breakpoint
*breakpoint
= NULL
;
1987 if (target
->state
!= TARGET_HALTED
)
1989 LOG_WARNING("target not halted");
1990 return ERROR_TARGET_NOT_HALTED
;
1993 /* current = 1: continue on current pc, otherwise continue at <address> */
1995 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32, address
);
1997 uint32_t current_pc
;
1998 current_pc
= buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32);
2000 /* the front-end may request us not to handle breakpoints */
2001 if (handle_breakpoints
)
2002 if ((breakpoint
= breakpoint_find(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32))))
2003 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
2008 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
2010 /* calculate PC of next instruction */
2012 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
2014 uint32_t current_opcode
;
2015 target_read_u32(target
, current_pc
, ¤t_opcode
);
2016 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
2020 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
2025 arm7_9
->enable_single_step(target
, next_pc
);
2027 if (armv4_5
->core_state
== ARM_STATE_ARM
)
2029 arm7_9
->branch_resume(target
);
2031 else if (armv4_5
->core_state
== ARM_STATE_THUMB
)
2033 arm7_9
->branch_resume_thumb(target
);
2037 LOG_ERROR("unhandled core state");
2041 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
2046 err
= arm7_9_execute_sys_speed(target
);
2047 arm7_9
->disable_single_step(target
);
2049 /* registers are now invalid */
2050 register_cache_invalidate(armv4_5
->core_cache
);
2052 if (err
!= ERROR_OK
)
2054 target
->state
= TARGET_UNKNOWN
;
2056 arm7_9_debug_entry(target
);
2057 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
2061 LOG_DEBUG("target stepped");
2065 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
2073 static int arm7_9_read_core_reg(struct target
*target
, struct reg
*r
,
2074 int num
, enum arm_mode mode
)
2076 uint32_t* reg_p
[16];
2079 struct arm_reg
*areg
= r
->arch_info
;
2080 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2081 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2083 if (!is_arm_mode(armv4_5
->core_mode
))
2085 if ((num
< 0) || (num
> 16))
2086 return ERROR_INVALID_ARGUMENTS
;
2088 if ((mode
!= ARM_MODE_ANY
)
2089 && (mode
!= armv4_5
->core_mode
)
2090 && (areg
->mode
!= ARM_MODE_ANY
))
2094 /* change processor mode (mask T bit) */
2095 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & 0xE0;
2098 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2101 if ((num
>= 0) && (num
<= 15))
2103 /* read a normal core register */
2104 reg_p
[num
] = &value
;
2106 arm7_9
->read_core_regs(target
, 1 << num
, reg_p
);
2110 /* read a program status register
2111 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2113 arm7_9
->read_xpsr(target
, &value
, areg
->mode
!= ARM_MODE_ANY
);
2116 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2123 buf_set_u32(r
->value
, 0, 32, value
);
2125 if ((mode
!= ARM_MODE_ANY
)
2126 && (mode
!= armv4_5
->core_mode
)
2127 && (areg
->mode
!= ARM_MODE_ANY
)) {
2128 /* restore processor mode (mask T bit) */
2129 arm7_9
->write_xpsr_im8(target
,
2130 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2137 static int arm7_9_write_core_reg(struct target
*target
, struct reg
*r
,
2138 int num
, enum arm_mode mode
, uint32_t value
)
2141 struct arm_reg
*areg
= r
->arch_info
;
2142 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2143 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2145 if (!is_arm_mode(armv4_5
->core_mode
))
2147 if ((num
< 0) || (num
> 16))
2148 return ERROR_INVALID_ARGUMENTS
;
2150 if ((mode
!= ARM_MODE_ANY
)
2151 && (mode
!= armv4_5
->core_mode
)
2152 && (areg
->mode
!= ARM_MODE_ANY
)) {
2155 /* change processor mode (mask T bit) */
2156 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & 0xE0;
2159 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2162 if ((num
>= 0) && (num
<= 15))
2164 /* write a normal core register */
2167 arm7_9
->write_core_regs(target
, 1 << num
, reg
);
2171 /* write a program status register
2172 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2174 int spsr
= (areg
->mode
!= ARM_MODE_ANY
);
2176 /* if we're writing the CPSR, mask the T bit */
2180 arm7_9
->write_xpsr(target
, value
, spsr
);
2186 if ((mode
!= ARM_MODE_ANY
)
2187 && (mode
!= armv4_5
->core_mode
)
2188 && (areg
->mode
!= ARM_MODE_ANY
)) {
2189 /* restore processor mode (mask T bit) */
2190 arm7_9
->write_xpsr_im8(target
,
2191 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2195 return jtag_execute_queue();
2198 int arm7_9_read_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
2200 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2201 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2203 uint32_t num_accesses
= 0;
2204 int thisrun_accesses
;
2210 LOG_DEBUG("address: 0x%8.8" PRIx32
", size: 0x%8.8" PRIx32
", count: 0x%8.8" PRIx32
"", address
, size
, count
);
2212 if (target
->state
!= TARGET_HALTED
)
2214 LOG_WARNING("target not halted");
2215 return ERROR_TARGET_NOT_HALTED
;
2218 /* sanitize arguments */
2219 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2220 return ERROR_INVALID_ARGUMENTS
;
2222 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2223 return ERROR_TARGET_UNALIGNED_ACCESS
;
2225 /* load the base register with the address of the first word */
2227 arm7_9
->write_core_regs(target
, 0x1, reg
);
2234 while (num_accesses
< count
)
2237 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2238 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2240 if (last_reg
<= thisrun_accesses
)
2241 last_reg
= thisrun_accesses
;
2243 arm7_9
->load_word_regs(target
, reg_list
);
2245 /* fast memory reads are only safe when the target is running
2246 * from a sufficiently high clock (32 kHz is usually too slow)
2248 if (arm7_9
->fast_memory_access
)
2249 retval
= arm7_9_execute_fast_sys_speed(target
);
2251 retval
= arm7_9_execute_sys_speed(target
);
2252 if (retval
!= ERROR_OK
)
2255 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 4);
2257 /* advance buffer, count number of accesses */
2258 buffer
+= thisrun_accesses
* 4;
2259 num_accesses
+= thisrun_accesses
;
2261 if ((j
++%1024) == 0)
2268 while (num_accesses
< count
)
2271 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2272 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2274 for (i
= 1; i
<= thisrun_accesses
; i
++)
2278 arm7_9
->load_hword_reg(target
, i
);
2279 /* fast memory reads are only safe when the target is running
2280 * from a sufficiently high clock (32 kHz is usually too slow)
2282 if (arm7_9
->fast_memory_access
)
2283 retval
= arm7_9_execute_fast_sys_speed(target
);
2285 retval
= arm7_9_execute_sys_speed(target
);
2286 if (retval
!= ERROR_OK
)
2293 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 2);
2295 /* advance buffer, count number of accesses */
2296 buffer
+= thisrun_accesses
* 2;
2297 num_accesses
+= thisrun_accesses
;
2299 if ((j
++%1024) == 0)
2306 while (num_accesses
< count
)
2309 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2310 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2312 for (i
= 1; i
<= thisrun_accesses
; i
++)
2316 arm7_9
->load_byte_reg(target
, i
);
2317 /* fast memory reads are only safe when the target is running
2318 * from a sufficiently high clock (32 kHz is usually too slow)
2320 if (arm7_9
->fast_memory_access
)
2321 retval
= arm7_9_execute_fast_sys_speed(target
);
2323 retval
= arm7_9_execute_sys_speed(target
);
2324 if (retval
!= ERROR_OK
)
2330 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 1);
2332 /* advance buffer, count number of accesses */
2333 buffer
+= thisrun_accesses
* 1;
2334 num_accesses
+= thisrun_accesses
;
2336 if ((j
++%1024) == 0)
2344 if (!is_arm_mode(armv4_5
->core_mode
))
2347 for (i
= 0; i
<= last_reg
; i
++) {
2348 struct reg
*r
= arm_reg_current(armv4_5
, i
);
2350 r
->dirty
= r
->valid
;
2353 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2354 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2356 LOG_ERROR("JTAG error while reading cpsr");
2357 return ERROR_TARGET_DATA_ABORT
;
2360 if (((cpsr
& 0x1f) == ARM_MODE_ABT
) && (armv4_5
->core_mode
!= ARM_MODE_ABT
))
2362 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2364 arm7_9
->write_xpsr_im8(target
,
2365 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2368 return ERROR_TARGET_DATA_ABORT
;
2374 int arm7_9_write_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
2376 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2377 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2378 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
2381 uint32_t num_accesses
= 0;
2382 int thisrun_accesses
;
2388 #ifdef _DEBUG_ARM7_9_
2389 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address
, size
, count
);
2392 if (target
->state
!= TARGET_HALTED
)
2394 LOG_WARNING("target not halted");
2395 return ERROR_TARGET_NOT_HALTED
;
2398 /* sanitize arguments */
2399 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2400 return ERROR_INVALID_ARGUMENTS
;
2402 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2403 return ERROR_TARGET_UNALIGNED_ACCESS
;
2405 /* load the base register with the address of the first word */
2407 arm7_9
->write_core_regs(target
, 0x1, reg
);
2409 /* Clear DBGACK, to make sure memory fetches work as expected */
2410 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
2411 embeddedice_store_reg(dbg_ctrl
);
2416 while (num_accesses
< count
)
2419 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2420 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2422 for (i
= 1; i
<= thisrun_accesses
; i
++)
2426 reg
[i
] = target_buffer_get_u32(target
, buffer
);
2430 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2432 arm7_9
->store_word_regs(target
, reg_list
);
2434 /* fast memory writes are only safe when the target is running
2435 * from a sufficiently high clock (32 kHz is usually too slow)
2437 if (arm7_9
->fast_memory_access
)
2438 retval
= arm7_9_execute_fast_sys_speed(target
);
2440 retval
= arm7_9_execute_sys_speed(target
);
2441 if (retval
!= ERROR_OK
)
2446 num_accesses
+= thisrun_accesses
;
2450 while (num_accesses
< count
)
2453 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2454 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2456 for (i
= 1; i
<= thisrun_accesses
; i
++)
2460 reg
[i
] = target_buffer_get_u16(target
, buffer
) & 0xffff;
2464 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2466 for (i
= 1; i
<= thisrun_accesses
; i
++)
2468 arm7_9
->store_hword_reg(target
, i
);
2470 /* fast memory writes are only safe when the target is running
2471 * from a sufficiently high clock (32 kHz is usually too slow)
2473 if (arm7_9
->fast_memory_access
)
2474 retval
= arm7_9_execute_fast_sys_speed(target
);
2476 retval
= arm7_9_execute_sys_speed(target
);
2477 if (retval
!= ERROR_OK
)
2483 num_accesses
+= thisrun_accesses
;
2487 while (num_accesses
< count
)
2490 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2491 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2493 for (i
= 1; i
<= thisrun_accesses
; i
++)
2497 reg
[i
] = *buffer
++ & 0xff;
2500 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2502 for (i
= 1; i
<= thisrun_accesses
; i
++)
2504 arm7_9
->store_byte_reg(target
, i
);
2505 /* fast memory writes are only safe when the target is running
2506 * from a sufficiently high clock (32 kHz is usually too slow)
2508 if (arm7_9
->fast_memory_access
)
2509 retval
= arm7_9_execute_fast_sys_speed(target
);
2511 retval
= arm7_9_execute_sys_speed(target
);
2512 if (retval
!= ERROR_OK
)
2519 num_accesses
+= thisrun_accesses
;
2525 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
2526 embeddedice_store_reg(dbg_ctrl
);
2528 if (!is_arm_mode(armv4_5
->core_mode
))
2531 for (i
= 0; i
<= last_reg
; i
++) {
2532 struct reg
*r
= arm_reg_current(armv4_5
, i
);
2534 r
->dirty
= r
->valid
;
2537 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2538 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2540 LOG_ERROR("JTAG error while reading cpsr");
2541 return ERROR_TARGET_DATA_ABORT
;
2544 if (((cpsr
& 0x1f) == ARM_MODE_ABT
) && (armv4_5
->core_mode
!= ARM_MODE_ABT
))
2546 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2548 arm7_9
->write_xpsr_im8(target
,
2549 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2552 return ERROR_TARGET_DATA_ABORT
;
2558 static int dcc_count
;
2559 static uint8_t *dcc_buffer
;
2561 static int arm7_9_dcc_completion(struct target
*target
, uint32_t exit_point
, int timeout_ms
, void *arch_info
)
2563 int retval
= ERROR_OK
;
2564 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2566 if ((retval
= target_wait_state(target
, TARGET_DEBUG_RUNNING
, 500)) != ERROR_OK
)
2569 int little
= target
->endianness
== TARGET_LITTLE_ENDIAN
;
2570 int count
= dcc_count
;
2571 uint8_t *buffer
= dcc_buffer
;
2574 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2575 * core function repeated. */
2576 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2579 struct embeddedice_reg
*ice_reg
= arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
].arch_info
;
2580 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
2581 struct jtag_tap
*tap
;
2582 tap
= ice_reg
->jtag_info
->tap
;
2584 embeddedice_write_dcc(tap
, reg_addr
, buffer
, little
, count
-2);
2585 buffer
+= (count
-2)*4;
2587 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2591 for (i
= 0; i
< count
; i
++)
2593 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2598 if ((retval
= target_halt(target
))!= ERROR_OK
)
2602 return target_wait_state(target
, TARGET_HALTED
, 500);
2605 static const uint32_t dcc_code
[] =
2607 /* r0 == input, points to memory buffer
2611 /* spin until DCC control (c0) reports data arrived */
2612 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2613 0xe3110001, /* tst r1, #1 */
2614 0x0afffffc, /* bne w */
2616 /* read word from DCC (c1), write to memory */
2617 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2618 0xe4801004, /* str r1, [r0], #4 */
2621 0xeafffff9 /* b w */
2624 int arm7_9_bulk_write_memory(struct target
*target
, uint32_t address
, uint32_t count
, uint8_t *buffer
)
2627 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2630 if (!arm7_9
->dcc_downloads
)
2631 return target_write_memory(target
, address
, 4, count
, buffer
);
2633 /* regrab previously allocated working_area, or allocate a new one */
2634 if (!arm7_9
->dcc_working_area
)
2636 uint8_t dcc_code_buf
[6 * 4];
2638 /* make sure we have a working area */
2639 if (target_alloc_working_area(target
, 24, &arm7_9
->dcc_working_area
) != ERROR_OK
)
2641 LOG_INFO("no working area available, falling back to memory writes");
2642 return target_write_memory(target
, address
, 4, count
, buffer
);
2645 /* copy target instructions to target endianness */
2646 for (i
= 0; i
< 6; i
++)
2648 target_buffer_set_u32(target
, dcc_code_buf
+ i
*4, dcc_code
[i
]);
2651 /* write DCC code to working area */
2652 if ((retval
= target_write_memory(target
, arm7_9
->dcc_working_area
->address
, 4, 6, dcc_code_buf
)) != ERROR_OK
)
2658 struct arm_algorithm armv4_5_info
;
2659 struct reg_param reg_params
[1];
2661 armv4_5_info
.common_magic
= ARM_COMMON_MAGIC
;
2662 armv4_5_info
.core_mode
= ARM_MODE_SVC
;
2663 armv4_5_info
.core_state
= ARM_STATE_ARM
;
2665 init_reg_param(®_params
[0], "r0", 32, PARAM_IN_OUT
);
2667 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2670 dcc_buffer
= buffer
;
2671 retval
= armv4_5_run_algorithm_inner(target
, 0, NULL
, 1, reg_params
,
2672 arm7_9
->dcc_working_area
->address
,
2673 arm7_9
->dcc_working_area
->address
+ 6*4,
2674 20*1000, &armv4_5_info
, arm7_9_dcc_completion
);
2676 if (retval
== ERROR_OK
)
2678 uint32_t endaddress
= buf_get_u32(reg_params
[0].value
, 0, 32);
2679 if (endaddress
!= (address
+ count
*4))
2681 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32
" got 0x%0" PRIx32
"", (address
+ count
*4), endaddress
);
2682 retval
= ERROR_FAIL
;
2686 destroy_reg_param(®_params
[0]);
2692 * Perform per-target setup that requires JTAG access.
2694 int arm7_9_examine(struct target
*target
)
2696 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2699 if (!target_was_examined(target
)) {
2700 struct reg_cache
*t
, **cache_p
;
2702 t
= embeddedice_build_reg_cache(target
, arm7_9
);
2706 cache_p
= register_get_last_cache_p(&target
->reg_cache
);
2708 arm7_9
->eice_cache
= (*cache_p
);
2710 if (arm7_9
->armv4_5_common
.etm
)
2711 (*cache_p
)->next
= etm_build_reg_cache(target
,
2713 arm7_9
->armv4_5_common
.etm
);
2715 target_set_examined(target
);
2718 retval
= embeddedice_setup(target
);
2719 if (retval
== ERROR_OK
)
2720 retval
= arm7_9_setup(target
);
2721 if (retval
== ERROR_OK
&& arm7_9
->armv4_5_common
.etm
)
2722 retval
= etm_setup(target
);
2726 COMMAND_HANDLER(handle_arm7_9_dbgrq_command
)
2728 struct target
*target
= get_current_target(CMD_CTX
);
2729 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2731 if (!is_arm7_9(arm7_9
))
2733 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2734 return ERROR_TARGET_INVALID
;
2738 COMMAND_PARSE_ENABLE(CMD_ARGV
[0],arm7_9
->use_dbgrq
);
2740 command_print(CMD_CTX
, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9
->use_dbgrq
) ? "enabled" : "disabled");
2745 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command
)
2747 struct target
*target
= get_current_target(CMD_CTX
);
2748 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2750 if (!is_arm7_9(arm7_9
))
2752 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2753 return ERROR_TARGET_INVALID
;
2757 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->fast_memory_access
);
2759 command_print(CMD_CTX
, "fast memory access is %s", (arm7_9
->fast_memory_access
) ? "enabled" : "disabled");
2764 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command
)
2766 struct target
*target
= get_current_target(CMD_CTX
);
2767 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2769 if (!is_arm7_9(arm7_9
))
2771 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2772 return ERROR_TARGET_INVALID
;
2776 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->dcc_downloads
);
2778 command_print(CMD_CTX
, "dcc downloads are %s", (arm7_9
->dcc_downloads
) ? "enabled" : "disabled");
2783 COMMAND_HANDLER(handle_arm7_9_semihosting_command
)
2785 struct target
*target
= get_current_target(CMD_CTX
);
2786 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2788 if (!is_arm7_9(arm7_9
))
2790 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2791 return ERROR_TARGET_INVALID
;
2798 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], semihosting
);
2800 if (!target_was_examined(target
))
2802 LOG_ERROR("Target not examined yet");
2806 if (arm7_9
->has_vector_catch
) {
2807 struct reg
*vector_catch
= &arm7_9
->eice_cache
2808 ->reg_list
[EICE_VEC_CATCH
];
2810 if (!vector_catch
->valid
)
2811 embeddedice_read_reg(vector_catch
);
2812 buf_set_u32(vector_catch
->value
, 2, 1, semihosting
);
2813 embeddedice_store_reg(vector_catch
);
2815 /* TODO: allow optional high vectors and/or BKPT_HARD */
2817 breakpoint_add(target
, 8, 4, BKPT_SOFT
);
2819 breakpoint_remove(target
, 8);
2822 /* FIXME never let that "catch" be dropped! */
2823 arm7_9
->armv4_5_common
.is_semihosting
= semihosting
;
2827 command_print(CMD_CTX
, "semihosting is %s",
2828 arm7_9
->armv4_5_common
.is_semihosting
2829 ? "enabled" : "disabled");
2834 int arm7_9_init_arch_info(struct target
*target
, struct arm7_9_common
*arm7_9
)
2836 int retval
= ERROR_OK
;
2837 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2839 arm7_9
->common_magic
= ARM7_9_COMMON_MAGIC
;
2841 if ((retval
= arm_jtag_setup_connection(&arm7_9
->jtag_info
)) != ERROR_OK
)
2844 /* caller must have allocated via calloc(), so everything's zeroed */
2846 arm7_9
->wp_available_max
= 2;
2848 arm7_9
->fast_memory_access
= false;
2849 arm7_9
->dcc_downloads
= false;
2851 armv4_5
->arch_info
= arm7_9
;
2852 armv4_5
->read_core_reg
= arm7_9_read_core_reg
;
2853 armv4_5
->write_core_reg
= arm7_9_write_core_reg
;
2854 armv4_5
->full_context
= arm7_9_full_context
;
2856 retval
= arm_init_arch_info(target
, armv4_5
);
2857 if (retval
!= ERROR_OK
)
2860 return target_register_timer_callback(arm7_9_handle_target_request
,
2864 static const struct command_registration arm7_9_any_command_handlers
[] = {
2867 .handler
= handle_arm7_9_dbgrq_command
,
2868 .mode
= COMMAND_ANY
,
2869 .usage
= "['enable'|'disable']",
2870 .help
= "use EmbeddedICE dbgrq instead of breakpoint "
2871 "for target halt requests",
2874 "fast_memory_access",
2875 .handler
= handle_arm7_9_fast_memory_access_command
,
2876 .mode
= COMMAND_ANY
,
2877 .usage
= "['enable'|'disable']",
2878 .help
= "use fast memory accesses instead of slower "
2879 "but potentially safer accesses",
2883 .handler
= handle_arm7_9_dcc_downloads_command
,
2884 .mode
= COMMAND_ANY
,
2885 .usage
= "['enable'|'disable']",
2886 .help
= "use DCC downloads for larger memory writes",
2890 .handler
= handle_arm7_9_semihosting_command
,
2891 .mode
= COMMAND_EXEC
,
2892 .usage
= "['enable'|'disable']",
2893 .help
= "activate support for semihosting operations",
2895 COMMAND_REGISTRATION_DONE
2897 const struct command_registration arm7_9_command_handlers
[] = {
2899 .chain
= arm_command_handlers
,
2902 .chain
= etm_command_handlers
,
2906 .mode
= COMMAND_ANY
,
2907 .help
= "arm7/9 specific commands",
2908 .chain
= arm7_9_any_command_handlers
,
2910 COMMAND_REGISTRATION_DONE