jtag: cut down on usage of unintended modification of global end state
[openocd/genbsdl.git] / src / target / embeddedice.c
blobfe266d62814696324bc6c7e64402aab3dd7953c3
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008,2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
30 #include "embeddedice.h"
31 #include "register.h"
33 /**
34 * @file
36 * This provides lowlevel glue to the EmbeddedICE (or EmbeddedICE-RT)
37 * module found on scan chain 2 in ARM7, ARM9, and some other families
38 * of ARM cores. The module is called "EmbeddedICE-RT" if it has
39 * monitor mode support.
41 * EmbeddedICE provides basic watchpoint/breakpoint hardware and a Debug
42 * Communications Channel (DCC) used to read or write 32-bit words to
43 * OpenOCD-aware code running on the target CPU.
44 * Newer modules also include vector catch hardware. Some versions
45 * support hardware single-stepping, "monitor mode" debug (which is not
46 * currently supported by OpenOCD), or extended reporting on why the
47 * core entered debug mode.
51 * From: ARM9E-S TRM, DDI 0165, table C-4 (and similar, for other cores)
53 static const struct {
54 char *name;
55 unsigned short addr;
56 unsigned short width;
57 } eice_regs[] = {
58 [EICE_DBG_CTRL] = {
59 .name = "debug_ctrl",
60 .addr = 0,
61 /* width is assigned based on EICE version */
63 [EICE_DBG_STAT] = {
64 .name = "debug_status",
65 .addr = 1,
66 /* width is assigned based on EICE version */
68 [EICE_COMMS_CTRL] = {
69 .name = "comms_ctrl",
70 .addr = 4,
71 .width = 6,
73 [EICE_COMMS_DATA] = {
74 .name = "comms_data",
75 .addr = 5,
76 .width = 32,
78 [EICE_W0_ADDR_VALUE] = {
79 .name = "watch_0_addr_value",
80 .addr = 8,
81 .width = 32,
83 [EICE_W0_ADDR_MASK] = {
84 .name = "watch_0_addr_mask",
85 .addr = 9,
86 .width = 32,
88 [EICE_W0_DATA_VALUE ] = {
89 .name = "watch_0_data_value",
90 .addr = 10,
91 .width = 32,
93 [EICE_W0_DATA_MASK] = {
94 .name = "watch_0_data_mask",
95 .addr = 11,
96 .width = 32,
98 [EICE_W0_CONTROL_VALUE] = {
99 .name = "watch_0_control_value",
100 .addr = 12,
101 .width = 9,
103 [EICE_W0_CONTROL_MASK] = {
104 .name = "watch_0_control_mask",
105 .addr = 13,
106 .width = 8,
108 [EICE_W1_ADDR_VALUE] = {
109 .name = "watch_1_addr_value",
110 .addr = 16,
111 .width = 32,
113 [EICE_W1_ADDR_MASK] = {
114 .name = "watch_1_addr_mask",
115 .addr = 17,
116 .width = 32,
118 [EICE_W1_DATA_VALUE] = {
119 .name = "watch_1_data_value",
120 .addr = 18,
121 .width = 32,
123 [EICE_W1_DATA_MASK] = {
124 .name = "watch_1_data_mask",
125 .addr = 19,
126 .width = 32,
128 [EICE_W1_CONTROL_VALUE] = {
129 .name = "watch_1_control_value",
130 .addr = 20,
131 .width = 9,
133 [EICE_W1_CONTROL_MASK] = {
134 .name = "watch_1_control_mask",
135 .addr = 21,
136 .width = 8,
138 /* vector_catch isn't always present */
139 [EICE_VEC_CATCH] = {
140 .name = "vector_catch",
141 .addr = 2,
142 .width = 8,
147 static int embeddedice_get_reg(struct reg *reg)
149 int retval;
151 if ((retval = embeddedice_read_reg(reg)) != ERROR_OK)
152 LOG_ERROR("error queueing EmbeddedICE register read");
153 else if ((retval = jtag_execute_queue()) != ERROR_OK)
154 LOG_ERROR("EmbeddedICE register read failed");
156 return retval;
159 static const struct reg_arch_type eice_reg_type = {
160 .get = embeddedice_get_reg,
161 .set = embeddedice_set_reg_w_exec,
165 * Probe EmbeddedICE module and set up local records of its registers.
166 * Different versions of the modules have different capabilities, such as
167 * hardware support for vector_catch, single stepping, and monitor mode.
169 struct reg_cache *
170 embeddedice_build_reg_cache(struct target *target, struct arm7_9_common *arm7_9)
172 int retval;
173 struct reg_cache *reg_cache = malloc(sizeof(struct reg_cache));
174 struct reg *reg_list = NULL;
175 struct embeddedice_reg *arch_info = NULL;
176 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
177 int num_regs = ARRAY_SIZE(eice_regs);
178 int i;
179 int eice_version = 0;
181 /* vector_catch isn't always present */
182 if (!arm7_9->has_vector_catch)
183 num_regs--;
185 /* the actual registers are kept in two arrays */
186 reg_list = calloc(num_regs, sizeof(struct reg));
187 arch_info = calloc(num_regs, sizeof(struct embeddedice_reg));
189 /* fill in values for the reg cache */
190 reg_cache->name = "EmbeddedICE registers";
191 reg_cache->next = NULL;
192 reg_cache->reg_list = reg_list;
193 reg_cache->num_regs = num_regs;
195 /* FIXME the second watchpoint unit on Feroceon and Dragonite
196 * seems not to work ... we should have a way to not set up
197 * its four registers here!
200 /* set up registers */
201 for (i = 0; i < num_regs; i++)
203 reg_list[i].name = eice_regs[i].name;
204 reg_list[i].size = eice_regs[i].width;
205 reg_list[i].dirty = 0;
206 reg_list[i].valid = 0;
207 reg_list[i].value = calloc(1, 4);
208 reg_list[i].arch_info = &arch_info[i];
209 reg_list[i].type = &eice_reg_type;
210 arch_info[i].addr = eice_regs[i].addr;
211 arch_info[i].jtag_info = jtag_info;
214 /* identify EmbeddedICE version by reading DCC control register */
215 embeddedice_read_reg(&reg_list[EICE_COMMS_CTRL]);
216 if ((retval = jtag_execute_queue()) != ERROR_OK)
218 for (i = 0; i < num_regs; i++)
220 free(reg_list[i].value);
222 free(reg_list);
223 free(reg_cache);
224 free(arch_info);
225 return NULL;
228 eice_version = buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 28, 4);
229 LOG_INFO("Embedded ICE version %d", eice_version);
231 switch (eice_version)
233 case 1:
234 /* ARM7TDMI r3, ARM7TDMI-S r3
236 * REVISIT docs say ARM7TDMI-S r4 uses version 1 but
237 * that it has 6-bit CTRL and 5-bit STAT... doc bug?
238 * ARM7TDMI r4 docs say EICE v4.
240 reg_list[EICE_DBG_CTRL].size = 3;
241 reg_list[EICE_DBG_STAT].size = 5;
242 break;
243 case 2:
244 /* ARM9TDMI */
245 reg_list[EICE_DBG_CTRL].size = 4;
246 reg_list[EICE_DBG_STAT].size = 5;
247 arm7_9->has_single_step = 1;
248 break;
249 case 3:
250 LOG_ERROR("EmbeddedICE v%d handling might be broken",
251 eice_version);
252 reg_list[EICE_DBG_CTRL].size = 6;
253 reg_list[EICE_DBG_STAT].size = 5;
254 arm7_9->has_single_step = 1;
255 arm7_9->has_monitor_mode = 1;
256 break;
257 case 4:
258 /* ARM7TDMI r4 */
259 reg_list[EICE_DBG_CTRL].size = 6;
260 reg_list[EICE_DBG_STAT].size = 5;
261 arm7_9->has_monitor_mode = 1;
262 break;
263 case 5:
264 /* ARM9E-S rev 1 */
265 reg_list[EICE_DBG_CTRL].size = 6;
266 reg_list[EICE_DBG_STAT].size = 5;
267 arm7_9->has_single_step = 1;
268 arm7_9->has_monitor_mode = 1;
269 break;
270 case 6:
271 /* ARM7EJ-S, ARM9E-S rev 2, ARM9EJ-S */
272 reg_list[EICE_DBG_CTRL].size = 6;
273 reg_list[EICE_DBG_STAT].size = 10;
274 /* DBG_STAT has MOE bits */
275 arm7_9->has_monitor_mode = 1;
276 break;
277 case 7:
278 LOG_ERROR("EmbeddedICE v%d handling might be broken",
279 eice_version);
280 reg_list[EICE_DBG_CTRL].size = 6;
281 reg_list[EICE_DBG_STAT].size = 5;
282 arm7_9->has_monitor_mode = 1;
283 break;
284 default:
286 * The Feroceon implementation has the version number
287 * in some unusual bits. Let feroceon.c validate it
288 * and do the appropriate setup itself.
290 if (strcmp(target_type_name(target), "feroceon") == 0 ||
291 strcmp(target_type_name(target), "dragonite") == 0)
292 break;
293 LOG_ERROR("unknown EmbeddedICE version "
294 "(comms ctrl: 0x%8.8" PRIx32 ")",
295 buf_get_u32(reg_list[EICE_COMMS_CTRL].value, 0, 32));
298 /* On Feroceon and Dragonite the second unit is seemingly missing. */
299 LOG_INFO("%s: hardware has %d breakpoint/watchpoint unit%s",
300 target_name(target), arm7_9->wp_available_max,
301 (arm7_9->wp_available_max != 1) ? "s" : "");
303 return reg_cache;
307 * Initialize EmbeddedICE module, if needed.
309 int embeddedice_setup(struct target *target)
311 int retval;
312 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
314 /* Explicitly disable monitor mode. For now we only support halting
315 * debug ... we don't know how to talk with a resident debug monitor
316 * that manages break requests. ARM's "Angel Debug Monitor" is one
317 * common example of such code.
319 if (arm7_9->has_monitor_mode)
321 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
323 embeddedice_read_reg(dbg_ctrl);
324 if ((retval = jtag_execute_queue()) != ERROR_OK)
325 return retval;
326 buf_set_u32(dbg_ctrl->value, 4, 1, 0);
327 embeddedice_set_reg_w_exec(dbg_ctrl, dbg_ctrl->value);
329 return jtag_execute_queue();
333 * Queue a read for an EmbeddedICE register into the register cache,
334 * optionally checking the value read.
335 * Note that at this level, all registers are 32 bits wide.
337 int embeddedice_read_reg_w_check(struct reg *reg,
338 uint8_t *check_value, uint8_t *check_mask)
340 struct embeddedice_reg *ice_reg = reg->arch_info;
341 uint8_t reg_addr = ice_reg->addr & 0x1f;
342 struct scan_field fields[3];
343 uint8_t field1_out[1];
344 uint8_t field2_out[1];
346 jtag_set_end_state(TAP_IDLE);
347 arm_jtag_scann(ice_reg->jtag_info, 0x2);
349 arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL);
351 /* bits 31:0 -- data (ignored here) */
352 fields[0].num_bits = 32;
353 fields[0].out_value = reg->value;
354 fields[0].in_value = NULL;
355 fields[0].check_value = NULL;
356 fields[0].check_mask = NULL;
358 /* bits 36:32 -- register */
359 fields[1].num_bits = 5;
360 fields[1].out_value = field1_out;
361 fields[1].out_value[0] = reg_addr;
362 fields[1].in_value = NULL;
363 fields[1].check_value = NULL;
364 fields[1].check_mask = NULL;
366 /* bit 37 -- 0/read */
367 fields[2].num_bits = 1;
368 fields[2].out_value = field2_out;
369 fields[2].out_value[0] = 0;
370 fields[2].in_value = NULL;
371 fields[2].check_value = NULL;
372 fields[2].check_mask = NULL;
374 /* traverse Update-DR, setting address for the next read */
375 jtag_add_dr_scan(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
377 /* bits 31:0 -- the data we're reading (and maybe checking) */
378 fields[0].in_value = reg->value;
379 fields[0].check_value = check_value;
380 fields[0].check_mask = check_mask;
382 /* when reading the DCC data register, leaving the address field set to
383 * EICE_COMMS_DATA would read the register twice
384 * reading the control register is safe
386 fields[1].out_value[0] = eice_regs[EICE_COMMS_CTRL].addr;
388 /* traverse Update-DR, reading but with no other side effects */
389 jtag_add_dr_scan_check(ice_reg->jtag_info->tap, 3, fields, TAP_IDLE);
391 return ERROR_OK;
395 * Receive a block of size 32-bit words from the DCC.
396 * We assume the target is always going to be fast enough (relative to
397 * the JTAG clock) that the debugger won't need to poll the handshake
398 * bit. The JTAG clock is usually at least six times slower than the
399 * functional clock, so the 50+ JTAG clocks needed to receive the word
400 * allow hundreds of instruction cycles (per word) in the target.
402 int embeddedice_receive(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
404 struct scan_field fields[3];
405 uint8_t field1_out[1];
406 uint8_t field2_out[1];
408 jtag_set_end_state(TAP_IDLE);
409 arm_jtag_scann(jtag_info, 0x2);
410 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
412 fields[0].num_bits = 32;
413 fields[0].out_value = NULL;
414 fields[0].in_value = NULL;
416 fields[1].num_bits = 5;
417 fields[1].out_value = field1_out;
418 fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
419 fields[1].in_value = NULL;
421 fields[2].num_bits = 1;
422 fields[2].out_value = field2_out;
423 fields[2].out_value[0] = 0;
424 fields[2].in_value = NULL;
426 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
428 while (size > 0)
430 /* when reading the last item, set the register address to the DCC control reg,
431 * to avoid reading additional data from the DCC data reg
433 if (size == 1)
434 fields[1].out_value[0] = eice_regs[EICE_COMMS_CTRL].addr;
436 fields[0].in_value = (uint8_t *)data;
437 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
438 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)data);
440 data++;
441 size--;
444 return jtag_execute_queue();
448 * Queue a read for an EmbeddedICE register into the register cache,
449 * not checking the value read.
451 int embeddedice_read_reg(struct reg *reg)
453 return embeddedice_read_reg_w_check(reg, NULL, NULL);
457 * Queue a write for an EmbeddedICE register, updating the register cache.
458 * Uses embeddedice_write_reg().
460 void embeddedice_set_reg(struct reg *reg, uint32_t value)
462 embeddedice_write_reg(reg, value);
464 buf_set_u32(reg->value, 0, reg->size, value);
465 reg->valid = 1;
466 reg->dirty = 0;
471 * Write an EmbeddedICE register, updating the register cache.
472 * Uses embeddedice_set_reg(); not queued.
474 int embeddedice_set_reg_w_exec(struct reg *reg, uint8_t *buf)
476 int retval;
478 embeddedice_set_reg(reg, buf_get_u32(buf, 0, reg->size));
479 if ((retval = jtag_execute_queue()) != ERROR_OK)
480 LOG_ERROR("register write failed");
481 return retval;
485 * Queue a write for an EmbeddedICE register, bypassing the register cache.
487 void embeddedice_write_reg(struct reg *reg, uint32_t value)
489 struct embeddedice_reg *ice_reg = reg->arch_info;
491 LOG_DEBUG("%i: 0x%8.8" PRIx32 "", ice_reg->addr, value);
493 jtag_set_end_state(TAP_IDLE);
494 arm_jtag_scann(ice_reg->jtag_info, 0x2);
496 arm_jtag_set_instr(ice_reg->jtag_info, ice_reg->jtag_info->intest_instr, NULL);
498 uint8_t reg_addr = ice_reg->addr & 0x1f;
499 embeddedice_write_reg_inner(ice_reg->jtag_info->tap, reg_addr, value);
503 * Queue a write for an EmbeddedICE register, using cached value.
504 * Uses embeddedice_write_reg().
506 void embeddedice_store_reg(struct reg *reg)
508 embeddedice_write_reg(reg, buf_get_u32(reg->value, 0, reg->size));
512 * Send a block of size 32-bit words to the DCC.
513 * We assume the target is always going to be fast enough (relative to
514 * the JTAG clock) that the debugger won't need to poll the handshake
515 * bit. The JTAG clock is usually at least six times slower than the
516 * functional clock, so the 50+ JTAG clocks needed to receive the word
517 * allow hundreds of instruction cycles (per word) in the target.
519 int embeddedice_send(struct arm_jtag *jtag_info, uint32_t *data, uint32_t size)
521 struct scan_field fields[3];
522 uint8_t field0_out[4];
523 uint8_t field1_out[1];
524 uint8_t field2_out[1];
526 jtag_set_end_state(TAP_IDLE);
527 arm_jtag_scann(jtag_info, 0x2);
528 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
530 fields[0].num_bits = 32;
531 fields[0].out_value = field0_out;
532 fields[0].in_value = NULL;
534 fields[1].num_bits = 5;
535 fields[1].out_value = field1_out;
536 fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
537 fields[1].in_value = NULL;
539 fields[2].num_bits = 1;
540 fields[2].out_value = field2_out;
541 fields[2].out_value[0] = 1;
543 fields[2].in_value = NULL;
545 while (size > 0)
547 buf_set_u32(fields[0].out_value, 0, 32, *data);
548 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
550 data++;
551 size--;
554 /* call to jtag_execute_queue() intentionally omitted */
555 return ERROR_OK;
559 * Poll DCC control register until read or write handshake completes.
561 int embeddedice_handshake(struct arm_jtag *jtag_info, int hsbit, uint32_t timeout)
563 struct scan_field fields[3];
564 uint8_t field0_in[4];
565 uint8_t field1_out[1];
566 uint8_t field2_out[1];
567 int retval;
568 uint32_t hsact;
569 struct timeval lap;
570 struct timeval now;
572 if (hsbit == EICE_COMM_CTRL_WBIT)
573 hsact = 1;
574 else if (hsbit == EICE_COMM_CTRL_RBIT)
575 hsact = 0;
576 else
577 return ERROR_INVALID_ARGUMENTS;
579 jtag_set_end_state(TAP_IDLE);
580 arm_jtag_scann(jtag_info, 0x2);
581 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
583 fields[0].num_bits = 32;
584 fields[0].out_value = NULL;
585 fields[0].in_value = field0_in;
587 fields[1].num_bits = 5;
588 fields[1].out_value = field1_out;
589 fields[1].out_value[0] = eice_regs[EICE_COMMS_DATA].addr;
590 fields[1].in_value = NULL;
592 fields[2].num_bits = 1;
593 fields[2].out_value = field2_out;
594 fields[2].out_value[0] = 0;
595 fields[2].in_value = NULL;
597 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
598 gettimeofday(&lap, NULL);
599 do {
600 jtag_add_dr_scan(jtag_info->tap, 3, fields, TAP_IDLE);
601 if ((retval = jtag_execute_queue()) != ERROR_OK)
602 return retval;
604 if (buf_get_u32(field0_in, hsbit, 1) == hsact)
605 return ERROR_OK;
607 gettimeofday(&now, NULL);
608 } while ((uint32_t)((now.tv_sec - lap.tv_sec) * 1000
609 + (now.tv_usec - lap.tv_usec) / 1000) <= timeout);
611 return ERROR_TARGET_TIMEOUT;
614 #ifndef HAVE_JTAG_MINIDRIVER_H
616 * This is an inner loop of the open loop DCC write of data to target
618 void embeddedice_write_dcc(struct jtag_tap *tap,
619 int reg_addr, uint8_t *buffer, int little, int count)
621 int i;
623 for (i = 0; i < count; i++)
625 embeddedice_write_reg_inner(tap, reg_addr,
626 fast_target_buffer_get_u32(buffer, little));
627 buffer += 4;
630 #else
631 /* provided by minidriver */
632 #endif