cortex_a9: add source files for Cortex A9 support.
[openocd/ellerodev.git] / src / target / cortex_a9.c
blob0ede1d5feb6372c7451d2d3362162ba394415ff1
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 * *
32 * Cortex-A9(tm) TRM, ARM DDI 0407F *
33 * *
34 ***************************************************************************/
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
39 #include "breakpoints.h"
40 #include "cortex_a9.h"
41 #include "register.h"
42 #include "target_request.h"
43 #include "target_type.h"
44 #include "arm_opcodes.h"
45 #include <helper/time_support.h>
47 static int cortex_a9_poll(struct target *target);
48 static int cortex_a9_debug_entry(struct target *target);
49 static int cortex_a9_restore_context(struct target *target, bool bpwp);
50 static int cortex_a9_set_breakpoint(struct target *target,
51 struct breakpoint *breakpoint, uint8_t matchmode);
52 static int cortex_a9_unset_breakpoint(struct target *target,
53 struct breakpoint *breakpoint);
54 static int cortex_a9_dap_read_coreregister_u32(struct target *target,
55 uint32_t *value, int regnum);
56 static int cortex_a9_dap_write_coreregister_u32(struct target *target,
57 uint32_t value, int regnum);
58 static int cortex_a9_mmu(struct target *target, int *enabled);
59 static int cortex_a9_virt2phys(struct target *target,
60 uint32_t virt, uint32_t *phys);
61 static int cortex_a9_disable_mmu_caches(struct target *target, int mmu,
62 int d_u_cache, int i_cache);
63 static int cortex_a9_enable_mmu_caches(struct target *target, int mmu,
64 int d_u_cache, int i_cache);
65 static int cortex_a9_get_ttb(struct target *target, uint32_t *result);
69 * FIXME do topology discovery using the ROM; don't
70 * assume this is an OMAP3. Also, allow for multiple ARMv7-A
71 * cores, with different AP numbering ... don't use a #define
72 * for these numbers, use per-core armv7a state.
74 #define swjdp_memoryap 0
75 #define swjdp_debugap 1
78 * Cortex-A9 Basic debug access, very low level assumes state is saved
80 static int cortex_a9_init_debug_access(struct target *target)
82 struct armv7a_common *armv7a = target_to_armv7a(target);
83 struct adiv5_dap *swjdp = &armv7a->dap;
85 int retval;
86 uint32_t dummy;
88 LOG_DEBUG(" ");
90 /* Unlocking the debug registers for modification */
91 /* The debugport might be uninitialised so try twice */
92 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
93 if (retval != ERROR_OK)
95 /* try again */
96 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
97 if (retval == ERROR_OK)
99 LOG_USER("Locking debug access failed on first, but succeeded on second try.");
102 if (retval != ERROR_OK)
103 return retval;
104 /* Clear Sticky Power Down status Bit in PRSR to enable access to
105 the registers in the Core Power Domain */
106 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
107 if (retval != ERROR_OK)
108 return retval;
110 /* Enabling of instruction execution in debug mode is done in debug_entry code */
112 /* Resync breakpoint registers */
114 /* Since this is likely called from init or reset, update target state information*/
115 retval = cortex_a9_poll(target);
117 return retval;
120 /* To reduce needless round-trips, pass in a pointer to the current
121 * DSCR value. Initialize it to zero if you just need to know the
122 * value on return from this function; or DSCR_INSTR_COMP if you
123 * happen to know that no instruction is pending.
125 static int cortex_a9_exec_opcode(struct target *target,
126 uint32_t opcode, uint32_t *dscr_p)
128 uint32_t dscr;
129 int retval;
130 struct armv7a_common *armv7a = target_to_armv7a(target);
131 struct adiv5_dap *swjdp = &armv7a->dap;
133 dscr = dscr_p ? *dscr_p : 0;
135 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
137 /* Wait for InstrCompl bit to be set */
138 long long then = timeval_ms();
139 while ((dscr & DSCR_INSTR_COMP) == 0)
141 retval = mem_ap_read_atomic_u32(swjdp,
142 armv7a->debug_base + CPUDBG_DSCR, &dscr);
143 if (retval != ERROR_OK)
145 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
146 return retval;
148 if (timeval_ms() > then + 1000)
150 LOG_ERROR("Timeout waiting for cortex_a9_exec_opcode");
151 return ERROR_FAIL;
155 retval = mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
156 if (retval != ERROR_OK)
157 return retval;
159 then = timeval_ms();
162 retval = mem_ap_read_atomic_u32(swjdp,
163 armv7a->debug_base + CPUDBG_DSCR, &dscr);
164 if (retval != ERROR_OK)
166 LOG_ERROR("Could not read DSCR register");
167 return retval;
169 if (timeval_ms() > then + 1000)
171 LOG_ERROR("Timeout waiting for cortex_a9_exec_opcode");
172 return ERROR_FAIL;
175 while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
177 if (dscr_p)
178 *dscr_p = dscr;
180 return retval;
183 /**************************************************************************
184 Read core register with very few exec_opcode, fast but needs work_area.
185 This can cause problems with MMU active.
186 **************************************************************************/
187 static int cortex_a9_read_regs_through_mem(struct target *target, uint32_t address,
188 uint32_t * regfile)
190 int retval = ERROR_OK;
191 struct armv7a_common *armv7a = target_to_armv7a(target);
192 struct adiv5_dap *swjdp = &armv7a->dap;
194 retval = cortex_a9_dap_read_coreregister_u32(target, regfile, 0);
195 if (retval != ERROR_OK)
196 return retval;
197 retval = cortex_a9_dap_write_coreregister_u32(target, address, 0);
198 if (retval != ERROR_OK)
199 return retval;
200 retval = cortex_a9_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
201 if (retval != ERROR_OK)
202 return retval;
204 dap_ap_select(swjdp, swjdp_memoryap);
205 retval = mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
206 if (retval != ERROR_OK)
207 return retval;
208 dap_ap_select(swjdp, swjdp_debugap);
210 return retval;
213 static int cortex_a9_dap_read_coreregister_u32(struct target *target,
214 uint32_t *value, int regnum)
216 int retval = ERROR_OK;
217 uint8_t reg = regnum&0xFF;
218 uint32_t dscr = 0;
219 struct armv7a_common *armv7a = target_to_armv7a(target);
220 struct adiv5_dap *swjdp = &armv7a->dap;
222 if (reg > 17)
223 return retval;
225 if (reg < 15)
227 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
228 retval = cortex_a9_exec_opcode(target,
229 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
230 &dscr);
231 if (retval != ERROR_OK)
232 return retval;
234 else if (reg == 15)
236 /* "MOV r0, r15"; then move r0 to DCCTX */
237 retval = cortex_a9_exec_opcode(target, 0xE1A0000F, &dscr);
238 if (retval != ERROR_OK)
239 return retval;
240 retval = cortex_a9_exec_opcode(target,
241 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
242 &dscr);
243 if (retval != ERROR_OK)
244 return retval;
246 else
248 /* "MRS r0, CPSR" or "MRS r0, SPSR"
249 * then move r0 to DCCTX
251 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
252 if (retval != ERROR_OK)
253 return retval;
254 retval = cortex_a9_exec_opcode(target,
255 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
256 &dscr);
257 if (retval != ERROR_OK)
258 return retval;
261 /* Wait for DTRRXfull then read DTRRTX */
262 long long then = timeval_ms();
263 while ((dscr & DSCR_DTR_TX_FULL) == 0)
265 retval = mem_ap_read_atomic_u32(swjdp,
266 armv7a->debug_base + CPUDBG_DSCR, &dscr);
267 if (retval != ERROR_OK)
268 return retval;
269 if (timeval_ms() > then + 1000)
271 LOG_ERROR("Timeout waiting for cortex_a9_exec_opcode");
272 return ERROR_FAIL;
276 retval = mem_ap_read_atomic_u32(swjdp,
277 armv7a->debug_base + CPUDBG_DTRTX, value);
278 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
280 return retval;
283 static int cortex_a9_dap_write_coreregister_u32(struct target *target,
284 uint32_t value, int regnum)
286 int retval = ERROR_OK;
287 uint8_t Rd = regnum&0xFF;
288 uint32_t dscr;
289 struct armv7a_common *armv7a = target_to_armv7a(target);
290 struct adiv5_dap *swjdp = &armv7a->dap;
292 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
294 /* Check that DCCRX is not full */
295 retval = mem_ap_read_atomic_u32(swjdp,
296 armv7a->debug_base + CPUDBG_DSCR, &dscr);
297 if (retval != ERROR_OK)
298 return retval;
299 if (dscr & DSCR_DTR_RX_FULL)
301 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
302 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
303 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
304 &dscr);
305 if (retval != ERROR_OK)
306 return retval;
309 if (Rd > 17)
310 return retval;
312 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
313 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
314 retval = mem_ap_write_u32(swjdp,
315 armv7a->debug_base + CPUDBG_DTRRX, value);
316 if (retval != ERROR_OK)
317 return retval;
319 if (Rd < 15)
321 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
322 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
323 &dscr);
324 if (retval != ERROR_OK)
325 return retval;
327 else if (Rd == 15)
329 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
330 * then "mov r15, r0"
332 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
333 &dscr);
334 if (retval != ERROR_OK)
335 return retval;
336 retval = cortex_a9_exec_opcode(target, 0xE1A0F000, &dscr);
337 if (retval != ERROR_OK)
338 return retval;
340 else
342 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
343 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
345 retval = cortex_a9_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
346 &dscr);
347 if (retval != ERROR_OK)
348 return retval;
349 retval = cortex_a9_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
350 &dscr);
351 if (retval != ERROR_OK)
352 return retval;
354 /* "Prefetch flush" after modifying execution status in CPSR */
355 if (Rd == 16)
357 retval = cortex_a9_exec_opcode(target,
358 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
359 &dscr);
360 if (retval != ERROR_OK)
361 return retval;
365 return retval;
368 /* Write to memory mapped registers directly with no cache or mmu handling */
369 static int cortex_a9_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
371 int retval;
372 struct armv7a_common *armv7a = target_to_armv7a(target);
373 struct adiv5_dap *swjdp = &armv7a->dap;
375 retval = mem_ap_write_atomic_u32(swjdp, address, value);
377 return retval;
381 * Cortex-A9 implementation of Debug Programmer's Model
383 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
384 * so there's no need to poll for it before executing an instruction.
386 * NOTE that in several of these cases the "stall" mode might be useful.
387 * It'd let us queue a few operations together... prepare/finish might
388 * be the places to enable/disable that mode.
391 static inline struct cortex_a9_common *dpm_to_a9(struct arm_dpm *dpm)
393 return container_of(dpm, struct cortex_a9_common, armv7a_common.dpm);
396 static int cortex_a9_write_dcc(struct cortex_a9_common *a9, uint32_t data)
398 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
399 return mem_ap_write_u32(&a9->armv7a_common.dap,
400 a9->armv7a_common.debug_base + CPUDBG_DTRRX, data);
403 static int cortex_a9_read_dcc(struct cortex_a9_common *a9, uint32_t *data,
404 uint32_t *dscr_p)
406 struct adiv5_dap *swjdp = &a9->armv7a_common.dap;
407 uint32_t dscr = DSCR_INSTR_COMP;
408 int retval;
410 if (dscr_p)
411 dscr = *dscr_p;
413 /* Wait for DTRRXfull */
414 long long then = timeval_ms();
415 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
416 retval = mem_ap_read_atomic_u32(swjdp,
417 a9->armv7a_common.debug_base + CPUDBG_DSCR,
418 &dscr);
419 if (retval != ERROR_OK)
420 return retval;
421 if (timeval_ms() > then + 1000)
423 LOG_ERROR("Timeout waiting for read dcc");
424 return ERROR_FAIL;
428 retval = mem_ap_read_atomic_u32(swjdp,
429 a9->armv7a_common.debug_base + CPUDBG_DTRTX, data);
430 if (retval != ERROR_OK)
431 return retval;
432 //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
434 if (dscr_p)
435 *dscr_p = dscr;
437 return retval;
440 static int cortex_a9_dpm_prepare(struct arm_dpm *dpm)
442 struct cortex_a9_common *a9 = dpm_to_a9(dpm);
443 struct adiv5_dap *swjdp = &a9->armv7a_common.dap;
444 uint32_t dscr;
445 int retval;
447 /* set up invariant: INSTR_COMP is set after ever DPM operation */
448 long long then = timeval_ms();
449 for (;;)
451 retval = mem_ap_read_atomic_u32(swjdp,
452 a9->armv7a_common.debug_base + CPUDBG_DSCR,
453 &dscr);
454 if (retval != ERROR_OK)
455 return retval;
456 if ((dscr & DSCR_INSTR_COMP) != 0)
457 break;
458 if (timeval_ms() > then + 1000)
460 LOG_ERROR("Timeout waiting for dpm prepare");
461 return ERROR_FAIL;
465 /* this "should never happen" ... */
466 if (dscr & DSCR_DTR_RX_FULL) {
467 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
468 /* Clear DCCRX */
469 retval = cortex_a9_exec_opcode(
470 a9->armv7a_common.armv4_5_common.target,
471 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
472 &dscr);
473 if (retval != ERROR_OK)
474 return retval;
477 return retval;
480 static int cortex_a9_dpm_finish(struct arm_dpm *dpm)
482 /* REVISIT what could be done here? */
483 return ERROR_OK;
486 static int cortex_a9_instr_write_data_dcc(struct arm_dpm *dpm,
487 uint32_t opcode, uint32_t data)
489 struct cortex_a9_common *a9 = dpm_to_a9(dpm);
490 int retval;
491 uint32_t dscr = DSCR_INSTR_COMP;
493 retval = cortex_a9_write_dcc(a9, data);
494 if (retval != ERROR_OK)
495 return retval;
497 return cortex_a9_exec_opcode(
498 a9->armv7a_common.armv4_5_common.target,
499 opcode,
500 &dscr);
503 static int cortex_a9_instr_write_data_r0(struct arm_dpm *dpm,
504 uint32_t opcode, uint32_t data)
506 struct cortex_a9_common *a9 = dpm_to_a9(dpm);
507 uint32_t dscr = DSCR_INSTR_COMP;
508 int retval;
510 retval = cortex_a9_write_dcc(a9, data);
511 if (retval != ERROR_OK)
512 return retval;
514 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
515 retval = cortex_a9_exec_opcode(
516 a9->armv7a_common.armv4_5_common.target,
517 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
518 &dscr);
519 if (retval != ERROR_OK)
520 return retval;
522 /* then the opcode, taking data from R0 */
523 retval = cortex_a9_exec_opcode(
524 a9->armv7a_common.armv4_5_common.target,
525 opcode,
526 &dscr);
528 return retval;
531 static int cortex_a9_instr_cpsr_sync(struct arm_dpm *dpm)
533 struct target *target = dpm->arm->target;
534 uint32_t dscr = DSCR_INSTR_COMP;
536 /* "Prefetch flush" after modifying execution status in CPSR */
537 return cortex_a9_exec_opcode(target,
538 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
539 &dscr);
542 static int cortex_a9_instr_read_data_dcc(struct arm_dpm *dpm,
543 uint32_t opcode, uint32_t *data)
545 struct cortex_a9_common *a9 = dpm_to_a9(dpm);
546 int retval;
547 uint32_t dscr = DSCR_INSTR_COMP;
549 /* the opcode, writing data to DCC */
550 retval = cortex_a9_exec_opcode(
551 a9->armv7a_common.armv4_5_common.target,
552 opcode,
553 &dscr);
554 if (retval != ERROR_OK)
555 return retval;
557 return cortex_a9_read_dcc(a9, data, &dscr);
561 static int cortex_a9_instr_read_data_r0(struct arm_dpm *dpm,
562 uint32_t opcode, uint32_t *data)
564 struct cortex_a9_common *a9 = dpm_to_a9(dpm);
565 uint32_t dscr = DSCR_INSTR_COMP;
566 int retval;
568 /* the opcode, writing data to R0 */
569 retval = cortex_a9_exec_opcode(
570 a9->armv7a_common.armv4_5_common.target,
571 opcode,
572 &dscr);
573 if (retval != ERROR_OK)
574 return retval;
576 /* write R0 to DCC */
577 retval = cortex_a9_exec_opcode(
578 a9->armv7a_common.armv4_5_common.target,
579 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
580 &dscr);
581 if (retval != ERROR_OK)
582 return retval;
584 return cortex_a9_read_dcc(a9, data, &dscr);
587 static int cortex_a9_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
588 uint32_t addr, uint32_t control)
590 struct cortex_a9_common *a9 = dpm_to_a9(dpm);
591 uint32_t vr = a9->armv7a_common.debug_base;
592 uint32_t cr = a9->armv7a_common.debug_base;
593 int retval;
595 switch (index_t) {
596 case 0 ... 15: /* breakpoints */
597 vr += CPUDBG_BVR_BASE;
598 cr += CPUDBG_BCR_BASE;
599 break;
600 case 16 ... 31: /* watchpoints */
601 vr += CPUDBG_WVR_BASE;
602 cr += CPUDBG_WCR_BASE;
603 index_t -= 16;
604 break;
605 default:
606 return ERROR_FAIL;
608 vr += 4 * index_t;
609 cr += 4 * index_t;
611 LOG_DEBUG("A9: bpwp enable, vr %08x cr %08x",
612 (unsigned) vr, (unsigned) cr);
614 retval = cortex_a9_dap_write_memap_register_u32(dpm->arm->target,
615 vr, addr);
616 if (retval != ERROR_OK)
617 return retval;
618 retval = cortex_a9_dap_write_memap_register_u32(dpm->arm->target,
619 cr, control);
620 return retval;
623 static int cortex_a9_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
625 struct cortex_a9_common *a9 = dpm_to_a9(dpm);
626 uint32_t cr;
628 switch (index_t) {
629 case 0 ... 15:
630 cr = a9->armv7a_common.debug_base + CPUDBG_BCR_BASE;
631 break;
632 case 16 ... 31:
633 cr = a9->armv7a_common.debug_base + CPUDBG_WCR_BASE;
634 index_t -= 16;
635 break;
636 default:
637 return ERROR_FAIL;
639 cr += 4 * index_t;
641 LOG_DEBUG("A9: bpwp disable, cr %08x", (unsigned) cr);
643 /* clear control register */
644 return cortex_a9_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
647 static int cortex_a9_dpm_setup(struct cortex_a9_common *a9, uint32_t didr)
649 struct arm_dpm *dpm = &a9->armv7a_common.dpm;
650 int retval;
652 dpm->arm = &a9->armv7a_common.armv4_5_common;
653 dpm->didr = didr;
655 dpm->prepare = cortex_a9_dpm_prepare;
656 dpm->finish = cortex_a9_dpm_finish;
658 dpm->instr_write_data_dcc = cortex_a9_instr_write_data_dcc;
659 dpm->instr_write_data_r0 = cortex_a9_instr_write_data_r0;
660 dpm->instr_cpsr_sync = cortex_a9_instr_cpsr_sync;
662 dpm->instr_read_data_dcc = cortex_a9_instr_read_data_dcc;
663 dpm->instr_read_data_r0 = cortex_a9_instr_read_data_r0;
665 dpm->bpwp_enable = cortex_a9_bpwp_enable;
666 dpm->bpwp_disable = cortex_a9_bpwp_disable;
668 retval = arm_dpm_setup(dpm);
669 if (retval == ERROR_OK)
670 retval = arm_dpm_initialize(dpm);
672 return retval;
677 * Cortex-A9 Run control
680 static int cortex_a9_poll(struct target *target)
682 int retval = ERROR_OK;
683 uint32_t dscr;
684 struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
685 struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
686 struct adiv5_dap *swjdp = &armv7a->dap;
687 enum target_state prev_target_state = target->state;
688 uint8_t saved_apsel = dap_ap_get_select(swjdp);
690 dap_ap_select(swjdp, swjdp_debugap);
691 retval = mem_ap_read_atomic_u32(swjdp,
692 armv7a->debug_base + CPUDBG_DSCR, &dscr);
693 if (retval != ERROR_OK)
695 dap_ap_select(swjdp, saved_apsel);
696 return retval;
698 cortex_a9->cpudbg_dscr = dscr;
700 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED))
702 if (prev_target_state != TARGET_HALTED)
704 /* We have a halting debug event */
705 LOG_DEBUG("Target halted");
706 target->state = TARGET_HALTED;
707 if ((prev_target_state == TARGET_RUNNING)
708 || (prev_target_state == TARGET_RESET))
710 retval = cortex_a9_debug_entry(target);
711 if (retval != ERROR_OK)
712 return retval;
714 target_call_event_callbacks(target,
715 TARGET_EVENT_HALTED);
717 if (prev_target_state == TARGET_DEBUG_RUNNING)
719 LOG_DEBUG(" ");
721 retval = cortex_a9_debug_entry(target);
722 if (retval != ERROR_OK)
723 return retval;
725 target_call_event_callbacks(target,
726 TARGET_EVENT_DEBUG_HALTED);
730 else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
732 target->state = TARGET_RUNNING;
734 else
736 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
737 target->state = TARGET_UNKNOWN;
740 dap_ap_select(swjdp, saved_apsel);
742 return retval;
745 static int cortex_a9_halt(struct target *target)
747 int retval = ERROR_OK;
748 uint32_t dscr;
749 struct armv7a_common *armv7a = target_to_armv7a(target);
750 struct adiv5_dap *swjdp = &armv7a->dap;
751 uint8_t saved_apsel = dap_ap_get_select(swjdp);
752 dap_ap_select(swjdp, swjdp_debugap);
755 * Tell the core to be halted by writing DRCR with 0x1
756 * and then wait for the core to be halted.
758 retval = mem_ap_write_atomic_u32(swjdp,
759 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
760 if (retval != ERROR_OK)
761 goto out;
764 * enter halting debug mode
766 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
767 if (retval != ERROR_OK)
768 goto out;
770 retval = mem_ap_write_atomic_u32(swjdp,
771 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
772 if (retval != ERROR_OK)
773 goto out;
775 long long then = timeval_ms();
776 for (;;)
778 retval = mem_ap_read_atomic_u32(swjdp,
779 armv7a->debug_base + CPUDBG_DSCR, &dscr);
780 if (retval != ERROR_OK)
781 goto out;
782 if ((dscr & DSCR_CORE_HALTED) != 0)
784 break;
786 if (timeval_ms() > then + 1000)
788 LOG_ERROR("Timeout waiting for halt");
789 return ERROR_FAIL;
793 target->debug_reason = DBG_REASON_DBGRQ;
795 out:
796 dap_ap_select(swjdp, saved_apsel);
797 return retval;
800 static int cortex_a9_resume(struct target *target, int current,
801 uint32_t address, int handle_breakpoints, int debug_execution)
803 struct armv7a_common *armv7a = target_to_armv7a(target);
804 struct arm *armv4_5 = &armv7a->armv4_5_common;
805 struct adiv5_dap *swjdp = &armv7a->dap;
806 int retval;
808 // struct breakpoint *breakpoint = NULL;
809 uint32_t resume_pc, dscr;
811 uint8_t saved_apsel = dap_ap_get_select(swjdp);
812 dap_ap_select(swjdp, swjdp_debugap);
814 if (!debug_execution)
815 target_free_all_working_areas(target);
817 #if 0
818 if (debug_execution)
820 /* Disable interrupts */
821 /* We disable interrupts in the PRIMASK register instead of
822 * masking with C_MASKINTS,
823 * This is probably the same issue as Cortex-M3 Errata 377493:
824 * C_MASKINTS in parallel with disabled interrupts can cause
825 * local faults to not be taken. */
826 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
827 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
828 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
830 /* Make sure we are in Thumb mode */
831 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
832 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
833 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
834 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
836 #endif
838 /* current = 1: continue on current pc, otherwise continue at <address> */
839 resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
840 if (!current)
841 resume_pc = address;
843 /* Make sure that the Armv7 gdb thumb fixups does not
844 * kill the return address
846 switch (armv4_5->core_state)
848 case ARM_STATE_ARM:
849 resume_pc &= 0xFFFFFFFC;
850 break;
851 case ARM_STATE_THUMB:
852 case ARM_STATE_THUMB_EE:
853 /* When the return address is loaded into PC
854 * bit 0 must be 1 to stay in Thumb state
856 resume_pc |= 0x1;
857 break;
858 case ARM_STATE_JAZELLE:
859 LOG_ERROR("How do I resume into Jazelle state??");
860 return ERROR_FAIL;
862 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
863 buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
864 armv4_5->pc->dirty = 1;
865 armv4_5->pc->valid = 1;
867 retval = cortex_a9_restore_context(target, handle_breakpoints);
868 if (retval != ERROR_OK)
869 return retval;
871 #if 0
872 /* the front-end may request us not to handle breakpoints */
873 if (handle_breakpoints)
875 /* Single step past breakpoint at current address */
876 if ((breakpoint = breakpoint_find(target, resume_pc)))
878 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
879 cortex_m3_unset_breakpoint(target, breakpoint);
880 cortex_m3_single_step_core(target);
881 cortex_m3_set_breakpoint(target, breakpoint);
885 #endif
888 * Restart core and wait for it to be started. Clear ITRen and sticky
889 * exception flags: see ARMv7 ARM, C5.9.
891 * REVISIT: for single stepping, we probably want to
892 * disable IRQs by default, with optional override...
895 retval = mem_ap_read_atomic_u32(swjdp,
896 armv7a->debug_base + CPUDBG_DSCR, &dscr);
897 if (retval != ERROR_OK)
898 return retval;
900 if ((dscr & DSCR_INSTR_COMP) == 0)
901 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
903 retval = mem_ap_write_atomic_u32(swjdp,
904 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
905 if (retval != ERROR_OK)
906 return retval;
908 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR,
909 DRCR_RESTART | DRCR_CLEAR_EXCEPTIONS);
910 if (retval != ERROR_OK)
911 return retval;
913 long long then = timeval_ms();
914 for (;;)
916 retval = mem_ap_read_atomic_u32(swjdp,
917 armv7a->debug_base + CPUDBG_DSCR, &dscr);
918 if (retval != ERROR_OK)
919 return retval;
920 if ((dscr & DSCR_CORE_RESTARTED) != 0)
921 break;
922 if (timeval_ms() > then + 1000)
924 LOG_ERROR("Timeout waiting for resume");
925 return ERROR_FAIL;
929 target->debug_reason = DBG_REASON_NOTHALTED;
930 target->state = TARGET_RUNNING;
932 /* registers are now invalid */
933 register_cache_invalidate(armv4_5->core_cache);
935 if (!debug_execution)
937 target->state = TARGET_RUNNING;
938 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
939 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
941 else
943 target->state = TARGET_DEBUG_RUNNING;
944 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
945 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
948 dap_ap_select(swjdp, saved_apsel);
950 return ERROR_OK;
953 static int cortex_a9_debug_entry(struct target *target)
955 int i;
956 uint32_t regfile[16], cpsr, dscr;
957 int retval = ERROR_OK;
958 struct working_area *regfile_working_area = NULL;
959 struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
960 struct armv7a_common *armv7a = target_to_armv7a(target);
961 struct arm *armv4_5 = &armv7a->armv4_5_common;
962 struct adiv5_dap *swjdp = &armv7a->dap;
963 struct reg *reg;
965 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a9->cpudbg_dscr);
967 /* REVISIT surely we should not re-read DSCR !! */
968 retval = mem_ap_read_atomic_u32(swjdp,
969 armv7a->debug_base + CPUDBG_DSCR, &dscr);
970 if (retval != ERROR_OK)
971 return retval;
973 /* REVISIT see A9 TRM 12.11.4 steps 2..3 -- make sure that any
974 * imprecise data aborts get discarded by issuing a Data
975 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
978 /* Enable the ITR execution once we are in debug mode */
979 dscr |= DSCR_ITR_EN;
980 retval = mem_ap_write_atomic_u32(swjdp,
981 armv7a->debug_base + CPUDBG_DSCR, dscr);
982 if (retval != ERROR_OK)
983 return retval;
985 /* Examine debug reason */
986 arm_dpm_report_dscr(&armv7a->dpm, cortex_a9->cpudbg_dscr);
988 /* save address of instruction that triggered the watchpoint? */
989 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
990 uint32_t wfar;
992 retval = mem_ap_read_atomic_u32(swjdp,
993 armv7a->debug_base + CPUDBG_WFAR,
994 &wfar);
995 if (retval != ERROR_OK)
996 return retval;
997 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1000 /* REVISIT fast_reg_read is never set ... */
1002 /* Examine target state and mode */
1003 if (cortex_a9->fast_reg_read)
1004 target_alloc_working_area(target, 64, &regfile_working_area);
1006 /* First load register acessible through core debug port*/
1007 if (!regfile_working_area)
1009 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1011 else
1013 dap_ap_select(swjdp, swjdp_memoryap);
1014 retval = cortex_a9_read_regs_through_mem(target,
1015 regfile_working_area->address, regfile);
1016 dap_ap_select(swjdp, swjdp_memoryap);
1017 target_free_working_area(target, regfile_working_area);
1018 if (retval != ERROR_OK)
1020 return retval;
1023 /* read Current PSR */
1024 retval = cortex_a9_dap_read_coreregister_u32(target, &cpsr, 16);
1025 if (retval != ERROR_OK)
1026 return retval;
1027 dap_ap_select(swjdp, swjdp_debugap);
1028 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1030 arm_set_cpsr(armv4_5, cpsr);
1032 /* update cache */
1033 for (i = 0; i <= ARM_PC; i++)
1035 reg = arm_reg_current(armv4_5, i);
1037 buf_set_u32(reg->value, 0, 32, regfile[i]);
1038 reg->valid = 1;
1039 reg->dirty = 0;
1042 /* Fixup PC Resume Address */
1043 if (cpsr & (1 << 5))
1045 // T bit set for Thumb or ThumbEE state
1046 regfile[ARM_PC] -= 4;
1048 else
1050 // ARM state
1051 regfile[ARM_PC] -= 8;
1054 reg = armv4_5->pc;
1055 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1056 reg->dirty = reg->valid;
1059 #if 0
1060 /* TODO, Move this */
1061 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1062 cortex_a9_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1063 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1065 cortex_a9_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1066 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1068 cortex_a9_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1069 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1070 #endif
1072 /* Are we in an exception handler */
1073 // armv4_5->exception_number = 0;
1074 if (armv7a->post_debug_entry)
1076 retval = armv7a->post_debug_entry(target);
1077 if (retval != ERROR_OK)
1078 return retval;
1081 return retval;
1084 static int cortex_a9_post_debug_entry(struct target *target)
1086 struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1087 struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1088 int retval;
1090 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1091 retval = armv7a->armv4_5_common.mrc(target, 15,
1092 0, 0, /* op1, op2 */
1093 1, 0, /* CRn, CRm */
1094 &cortex_a9->cp15_control_reg);
1095 if (retval != ERROR_OK)
1096 return retval;
1097 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a9->cp15_control_reg);
1099 if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
1101 uint32_t cache_type_reg;
1103 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
1104 retval = armv7a->armv4_5_common.mrc(target, 15,
1105 0, 1, /* op1, op2 */
1106 0, 0, /* CRn, CRm */
1107 &cache_type_reg);
1108 if (retval != ERROR_OK)
1109 return retval;
1110 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
1112 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A9 */
1113 armv4_5_identify_cache(cache_type_reg,
1114 &armv7a->armv4_5_mmu.armv4_5_cache);
1117 armv7a->armv4_5_mmu.mmu_enabled =
1118 (cortex_a9->cp15_control_reg & 0x1U) ? 1 : 0;
1119 armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
1120 (cortex_a9->cp15_control_reg & 0x4U) ? 1 : 0;
1121 armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
1122 (cortex_a9->cp15_control_reg & 0x1000U) ? 1 : 0;
1124 return ERROR_OK;
1127 static int cortex_a9_step(struct target *target, int current, uint32_t address,
1128 int handle_breakpoints)
1130 struct armv7a_common *armv7a = target_to_armv7a(target);
1131 struct arm *armv4_5 = &armv7a->armv4_5_common;
1132 struct breakpoint *breakpoint = NULL;
1133 struct breakpoint stepbreakpoint;
1134 struct reg *r;
1135 int retval;
1137 if (target->state != TARGET_HALTED)
1139 LOG_WARNING("target not halted");
1140 return ERROR_TARGET_NOT_HALTED;
1143 /* current = 1: continue on current pc, otherwise continue at <address> */
1144 r = armv4_5->pc;
1145 if (!current)
1147 buf_set_u32(r->value, 0, 32, address);
1149 else
1151 address = buf_get_u32(r->value, 0, 32);
1154 /* The front-end may request us not to handle breakpoints.
1155 * But since Cortex-A9 uses breakpoint for single step,
1156 * we MUST handle breakpoints.
1158 handle_breakpoints = 1;
1159 if (handle_breakpoints) {
1160 breakpoint = breakpoint_find(target, address);
1161 if (breakpoint)
1162 cortex_a9_unset_breakpoint(target, breakpoint);
1165 /* Setup single step breakpoint */
1166 stepbreakpoint.address = address;
1167 stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
1168 ? 2 : 4;
1169 stepbreakpoint.type = BKPT_HARD;
1170 stepbreakpoint.set = 0;
1172 /* Break on IVA mismatch */
1173 cortex_a9_set_breakpoint(target, &stepbreakpoint, 0x04);
1175 target->debug_reason = DBG_REASON_SINGLESTEP;
1177 retval = cortex_a9_resume(target, 1, address, 0, 0);
1178 if (retval != ERROR_OK)
1179 return retval;
1181 long long then = timeval_ms();
1182 while (target->state != TARGET_HALTED)
1184 retval = cortex_a9_poll(target);
1185 if (retval != ERROR_OK)
1186 return retval;
1187 if (timeval_ms() > then + 1000)
1189 LOG_ERROR("timeout waiting for target halt");
1190 return ERROR_FAIL;
1194 cortex_a9_unset_breakpoint(target, &stepbreakpoint);
1196 target->debug_reason = DBG_REASON_BREAKPOINT;
1198 if (breakpoint)
1199 cortex_a9_set_breakpoint(target, breakpoint, 0);
1201 if (target->state != TARGET_HALTED)
1202 LOG_DEBUG("target stepped");
1204 return ERROR_OK;
1207 static int cortex_a9_restore_context(struct target *target, bool bpwp)
1209 struct armv7a_common *armv7a = target_to_armv7a(target);
1211 LOG_DEBUG(" ");
1213 if (armv7a->pre_restore_context)
1214 armv7a->pre_restore_context(target);
1216 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1221 * Cortex-A9 Breakpoint and watchpoint functions
1224 /* Setup hardware Breakpoint Register Pair */
1225 static int cortex_a9_set_breakpoint(struct target *target,
1226 struct breakpoint *breakpoint, uint8_t matchmode)
1228 int retval;
1229 int brp_i=0;
1230 uint32_t control;
1231 uint8_t byte_addr_select = 0x0F;
1232 struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1233 struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1234 struct cortex_a9_brp * brp_list = cortex_a9->brp_list;
1236 if (breakpoint->set)
1238 LOG_WARNING("breakpoint already set");
1239 return ERROR_OK;
1242 if (breakpoint->type == BKPT_HARD)
1244 while (brp_list[brp_i].used && (brp_i < cortex_a9->brp_num))
1245 brp_i++ ;
1246 if (brp_i >= cortex_a9->brp_num)
1248 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1249 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1251 breakpoint->set = brp_i + 1;
1252 if (breakpoint->length == 2)
1254 byte_addr_select = (3 << (breakpoint->address & 0x02));
1256 control = ((matchmode & 0x7) << 20)
1257 | (byte_addr_select << 5)
1258 | (3 << 1) | 1;
1259 brp_list[brp_i].used = 1;
1260 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1261 brp_list[brp_i].control = control;
1262 retval = cortex_a9_dap_write_memap_register_u32(target, armv7a->debug_base
1263 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1264 brp_list[brp_i].value);
1265 if (retval != ERROR_OK)
1266 return retval;
1267 retval = cortex_a9_dap_write_memap_register_u32(target, armv7a->debug_base
1268 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1269 brp_list[brp_i].control);
1270 if (retval != ERROR_OK)
1271 return retval;
1272 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1273 brp_list[brp_i].control,
1274 brp_list[brp_i].value);
1276 else if (breakpoint->type == BKPT_SOFT)
1278 uint8_t code[4];
1279 if (breakpoint->length == 2)
1281 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1283 else
1285 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1287 retval = target->type->read_memory(target,
1288 breakpoint->address & 0xFFFFFFFE,
1289 breakpoint->length, 1,
1290 breakpoint->orig_instr);
1291 if (retval != ERROR_OK)
1292 return retval;
1293 retval = target->type->write_memory(target,
1294 breakpoint->address & 0xFFFFFFFE,
1295 breakpoint->length, 1, code);
1296 if (retval != ERROR_OK)
1297 return retval;
1298 breakpoint->set = 0x11; /* Any nice value but 0 */
1301 return ERROR_OK;
1304 static int cortex_a9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1306 int retval;
1307 struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1308 struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1309 struct cortex_a9_brp * brp_list = cortex_a9->brp_list;
1311 if (!breakpoint->set)
1313 LOG_WARNING("breakpoint not set");
1314 return ERROR_OK;
1317 if (breakpoint->type == BKPT_HARD)
1319 int brp_i = breakpoint->set - 1;
1320 if ((brp_i < 0) || (brp_i >= cortex_a9->brp_num))
1322 LOG_DEBUG("Invalid BRP number in breakpoint");
1323 return ERROR_OK;
1325 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1326 brp_list[brp_i].control, brp_list[brp_i].value);
1327 brp_list[brp_i].used = 0;
1328 brp_list[brp_i].value = 0;
1329 brp_list[brp_i].control = 0;
1330 retval = cortex_a9_dap_write_memap_register_u32(target, armv7a->debug_base
1331 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1332 brp_list[brp_i].control);
1333 if (retval != ERROR_OK)
1334 return retval;
1335 retval = cortex_a9_dap_write_memap_register_u32(target, armv7a->debug_base
1336 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1337 brp_list[brp_i].value);
1338 if (retval != ERROR_OK)
1339 return retval;
1341 else
1343 /* restore original instruction (kept in target endianness) */
1344 if (breakpoint->length == 4)
1346 retval = target->type->write_memory(target,
1347 breakpoint->address & 0xFFFFFFFE,
1348 4, 1, breakpoint->orig_instr);
1349 if (retval != ERROR_OK)
1350 return retval;
1352 else
1354 retval = target->type->write_memory(target,
1355 breakpoint->address & 0xFFFFFFFE,
1356 2, 1, breakpoint->orig_instr);
1357 if (retval != ERROR_OK)
1358 return retval;
1361 breakpoint->set = 0;
1363 return ERROR_OK;
1366 static int cortex_a9_add_breakpoint(struct target *target,
1367 struct breakpoint *breakpoint)
1369 struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1371 if ((breakpoint->type == BKPT_HARD) && (cortex_a9->brp_num_available < 1))
1373 LOG_INFO("no hardware breakpoint available");
1374 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1377 if (breakpoint->type == BKPT_HARD)
1378 cortex_a9->brp_num_available--;
1380 return cortex_a9_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1383 static int cortex_a9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1385 struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1387 #if 0
1388 /* It is perfectly possible to remove breakpoints while the target is running */
1389 if (target->state != TARGET_HALTED)
1391 LOG_WARNING("target not halted");
1392 return ERROR_TARGET_NOT_HALTED;
1394 #endif
1396 if (breakpoint->set)
1398 cortex_a9_unset_breakpoint(target, breakpoint);
1399 if (breakpoint->type == BKPT_HARD)
1400 cortex_a9->brp_num_available++ ;
1404 return ERROR_OK;
1410 * Cortex-A9 Reset functions
1413 static int cortex_a9_assert_reset(struct target *target)
1415 struct armv7a_common *armv7a = target_to_armv7a(target);
1417 LOG_DEBUG(" ");
1419 /* FIXME when halt is requested, make it work somehow... */
1421 /* Issue some kind of warm reset. */
1422 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1423 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1424 } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1425 /* REVISIT handle "pulls" cases, if there's
1426 * hardware that needs them to work.
1428 jtag_add_reset(0, 1);
1429 } else {
1430 LOG_ERROR("%s: how to reset?", target_name(target));
1431 return ERROR_FAIL;
1434 /* registers are now invalid */
1435 register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1437 target->state = TARGET_RESET;
1439 return ERROR_OK;
1442 static int cortex_a9_deassert_reset(struct target *target)
1444 int retval;
1446 LOG_DEBUG(" ");
1448 /* be certain SRST is off */
1449 jtag_add_reset(0, 0);
1451 retval = cortex_a9_poll(target);
1452 if (retval != ERROR_OK)
1453 return retval;
1455 if (target->reset_halt) {
1456 if (target->state != TARGET_HALTED) {
1457 LOG_WARNING("%s: ran after reset and before halt ...",
1458 target_name(target));
1459 if ((retval = target_halt(target)) != ERROR_OK)
1460 return retval;
1464 return ERROR_OK;
1468 * Cortex-A9 Memory access
1470 * This is same Cortex M3 but we must also use the correct
1471 * ap number for every access.
1474 static int cortex_a9_read_phys_memory(struct target *target,
1475 uint32_t address, uint32_t size,
1476 uint32_t count, uint8_t *buffer)
1478 struct armv7a_common *armv7a = target_to_armv7a(target);
1479 struct adiv5_dap *swjdp = &armv7a->dap;
1480 int retval = ERROR_INVALID_ARGUMENTS;
1481 uint8_t saved_apsel = dap_ap_get_select(swjdp);
1483 /* cortex_a9 handles unaligned memory access */
1485 dap_ap_select(swjdp, swjdp_memoryap);
1487 LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address, size, count);
1488 if (count && buffer) {
1489 switch (size) {
1490 case 4:
1491 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1492 break;
1493 case 2:
1494 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1495 break;
1496 case 1:
1497 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1498 break;
1502 dap_ap_select(swjdp, saved_apsel);
1504 return retval;
1507 static int cortex_a9_read_memory(struct target *target, uint32_t address,
1508 uint32_t size, uint32_t count, uint8_t *buffer)
1510 int enabled = 0;
1511 uint32_t virt, phys;
1512 int retval;
1514 /* cortex_a9 handles unaligned memory access */
1516 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address, size, count);
1517 retval = cortex_a9_mmu(target, &enabled);
1518 if (retval != ERROR_OK)
1519 return retval;
1521 if (enabled)
1523 virt = address;
1524 retval = cortex_a9_virt2phys(target, virt, &phys);
1525 if (retval != ERROR_OK)
1526 return retval;
1528 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1529 address = phys;
1532 return cortex_a9_read_phys_memory(target, address, size, count, buffer);
1535 static int cortex_a9_write_phys_memory(struct target *target,
1536 uint32_t address, uint32_t size,
1537 uint32_t count, uint8_t *buffer)
1539 struct armv7a_common *armv7a = target_to_armv7a(target);
1540 struct adiv5_dap *swjdp = &armv7a->dap;
1541 int retval = ERROR_INVALID_ARGUMENTS;
1543 LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address, size, count);
1545 if (count && buffer) {
1546 uint8_t saved_apsel = dap_ap_get_select(swjdp);
1547 dap_ap_select(swjdp, swjdp_memoryap);
1549 switch (size) {
1550 case 4:
1551 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1552 break;
1553 case 2:
1554 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1555 break;
1556 case 1:
1557 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1558 break;
1561 dap_ap_select(swjdp, saved_apsel);
1565 /* REVISIT this op is generic ARMv7-A/R stuff */
1566 if (retval == ERROR_OK && target->state == TARGET_HALTED)
1568 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1570 retval = dpm->prepare(dpm);
1571 if (retval != ERROR_OK)
1572 return retval;
1574 /* The Cache handling will NOT work with MMU active, the
1575 * wrong addresses will be invalidated!
1577 * For both ICache and DCache, walk all cache lines in the
1578 * address range. Cortex-A9 has fixed 64 byte line length.
1580 * REVISIT per ARMv7, these may trigger watchpoints ...
1583 /* invalidate I-Cache */
1584 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1586 /* ICIMVAU - Invalidate Cache single entry
1587 * with MVA to PoU
1588 * MCR p15, 0, r0, c7, c5, 1
1590 for (uint32_t cacheline = address;
1591 cacheline < address + size * count;
1592 cacheline += 64) {
1593 retval = dpm->instr_write_data_r0(dpm,
1594 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1595 cacheline);
1596 if (retval != ERROR_OK)
1597 return retval;
1601 /* invalidate D-Cache */
1602 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1604 /* DCIMVAC - Invalidate data Cache line
1605 * with MVA to PoC
1606 * MCR p15, 0, r0, c7, c6, 1
1608 for (uint32_t cacheline = address;
1609 cacheline < address + size * count;
1610 cacheline += 64) {
1611 retval = dpm->instr_write_data_r0(dpm,
1612 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1613 cacheline);
1614 if (retval != ERROR_OK)
1615 return retval;
1619 /* (void) */ dpm->finish(dpm);
1622 return retval;
1625 static int cortex_a9_write_memory(struct target *target, uint32_t address,
1626 uint32_t size, uint32_t count, uint8_t *buffer)
1628 int enabled = 0;
1629 uint32_t virt, phys;
1630 int retval;
1632 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
1633 retval = cortex_a9_mmu(target, &enabled);
1634 if (retval != ERROR_OK)
1635 return retval;
1637 if (enabled)
1639 virt = address;
1640 retval = cortex_a9_virt2phys(target, virt, &phys);
1641 if (retval != ERROR_OK)
1642 return retval;
1643 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1644 address = phys;
1647 return cortex_a9_write_phys_memory(target, address, size,
1648 count, buffer);
1651 static int cortex_a9_bulk_write_memory(struct target *target, uint32_t address,
1652 uint32_t count, uint8_t *buffer)
1654 return cortex_a9_write_memory(target, address, 4, count, buffer);
1657 static int cortex_a9_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1659 #if 0
1660 u16 dcrdr;
1662 mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1663 *ctrl = (uint8_t)dcrdr;
1664 *value = (uint8_t)(dcrdr >> 8);
1666 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1668 /* write ack back to software dcc register
1669 * signify we have read data */
1670 if (dcrdr & (1 << 0))
1672 dcrdr = 0;
1673 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1675 #endif
1676 return ERROR_OK;
1680 static int cortex_a9_handle_target_request(void *priv)
1682 struct target *target = priv;
1683 struct armv7a_common *armv7a = target_to_armv7a(target);
1684 struct adiv5_dap *swjdp = &armv7a->dap;
1685 int retval;
1687 if (!target_was_examined(target))
1688 return ERROR_OK;
1689 if (!target->dbg_msg_enabled)
1690 return ERROR_OK;
1692 if (target->state == TARGET_RUNNING)
1694 uint8_t data = 0;
1695 uint8_t ctrl = 0;
1697 retval = cortex_a9_dcc_read(swjdp, &data, &ctrl);
1698 if (retval != ERROR_OK)
1699 return retval;
1701 /* check if we have data */
1702 if (ctrl & (1 << 0))
1704 uint32_t request;
1706 /* we assume target is quick enough */
1707 request = data;
1708 retval = cortex_a9_dcc_read(swjdp, &data, &ctrl);
1709 if (retval != ERROR_OK)
1710 return retval;
1711 request |= (data << 8);
1712 retval = cortex_a9_dcc_read(swjdp, &data, &ctrl);
1713 if (retval != ERROR_OK)
1714 return retval;
1715 request |= (data << 16);
1716 retval = cortex_a9_dcc_read(swjdp, &data, &ctrl);
1717 if (retval != ERROR_OK)
1718 return retval;
1719 request |= (data << 24);
1720 target_request(target, request);
1724 return ERROR_OK;
1728 * Cortex-A9 target information and configuration
1731 static int cortex_a9_examine_first(struct target *target)
1733 struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1734 struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1735 struct adiv5_dap *swjdp = &armv7a->dap;
1736 int i;
1737 int retval = ERROR_OK;
1738 uint32_t didr, ctypr, ttypr, cpuid;
1740 /* We do one extra read to ensure DAP is configured,
1741 * we call ahbap_debugport_init(swjdp) instead
1743 retval = ahbap_debugport_init(swjdp);
1744 if (retval != ERROR_OK)
1745 return retval;
1747 dap_ap_select(swjdp, swjdp_debugap);
1750 * FIXME: assuming omap4430
1752 * APB DBGBASE reads 0x80040000, but this points to an empty ROM table.
1753 * 0x80000000 is cpu0 coresight region
1755 if (target->coreid > 3) {
1756 LOG_ERROR("cortex_a9 supports up to 4 cores");
1757 return ERROR_INVALID_ARGUMENTS;
1759 armv7a->debug_base = 0x80000000 |
1760 ((target->coreid & 0x3) << CORTEX_A9_PADDRDBG_CPU_SHIFT);
1762 retval = mem_ap_read_atomic_u32(swjdp,
1763 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1764 if (retval != ERROR_OK)
1765 return retval;
1767 if ((retval = mem_ap_read_atomic_u32(swjdp,
1768 armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1770 LOG_DEBUG("Examine %s failed", "CPUID");
1771 return retval;
1774 if ((retval = mem_ap_read_atomic_u32(swjdp,
1775 armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1777 LOG_DEBUG("Examine %s failed", "CTYPR");
1778 return retval;
1781 if ((retval = mem_ap_read_atomic_u32(swjdp,
1782 armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1784 LOG_DEBUG("Examine %s failed", "TTYPR");
1785 return retval;
1788 if ((retval = mem_ap_read_atomic_u32(swjdp,
1789 armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1791 LOG_DEBUG("Examine %s failed", "DIDR");
1792 return retval;
1795 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1796 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1797 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1798 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1800 armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1801 retval = cortex_a9_dpm_setup(cortex_a9, didr);
1802 if (retval != ERROR_OK)
1803 return retval;
1805 /* Setup Breakpoint Register Pairs */
1806 cortex_a9->brp_num = ((didr >> 24) & 0x0F) + 1;
1807 cortex_a9->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1808 cortex_a9->brp_num_available = cortex_a9->brp_num;
1809 cortex_a9->brp_list = calloc(cortex_a9->brp_num, sizeof(struct cortex_a9_brp));
1810 // cortex_a9->brb_enabled = ????;
1811 for (i = 0; i < cortex_a9->brp_num; i++)
1813 cortex_a9->brp_list[i].used = 0;
1814 if (i < (cortex_a9->brp_num-cortex_a9->brp_num_context))
1815 cortex_a9->brp_list[i].type = BRP_NORMAL;
1816 else
1817 cortex_a9->brp_list[i].type = BRP_CONTEXT;
1818 cortex_a9->brp_list[i].value = 0;
1819 cortex_a9->brp_list[i].control = 0;
1820 cortex_a9->brp_list[i].BRPn = i;
1823 LOG_DEBUG("Configured %i hw breakpoints", cortex_a9->brp_num);
1825 target_set_examined(target);
1826 return ERROR_OK;
1829 static int cortex_a9_examine(struct target *target)
1831 int retval = ERROR_OK;
1833 /* don't re-probe hardware after each reset */
1834 if (!target_was_examined(target))
1835 retval = cortex_a9_examine_first(target);
1837 /* Configure core debug access */
1838 if (retval == ERROR_OK)
1839 retval = cortex_a9_init_debug_access(target);
1841 return retval;
1845 * Cortex-A9 target creation and initialization
1848 static int cortex_a9_init_target(struct command_context *cmd_ctx,
1849 struct target *target)
1851 /* examine_first() does a bunch of this */
1852 return ERROR_OK;
1855 static int cortex_a9_init_arch_info(struct target *target,
1856 struct cortex_a9_common *cortex_a9, struct jtag_tap *tap)
1858 struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1859 struct arm *armv4_5 = &armv7a->armv4_5_common;
1860 struct adiv5_dap *dap = &armv7a->dap;
1862 armv7a->armv4_5_common.dap = dap;
1864 /* Setup struct cortex_a9_common */
1865 cortex_a9->common_magic = CORTEX_A9_COMMON_MAGIC;
1866 armv4_5->arch_info = armv7a;
1868 /* prepare JTAG information for the new target */
1869 cortex_a9->jtag_info.tap = tap;
1870 cortex_a9->jtag_info.scann_size = 4;
1872 /* Leave (only) generic DAP stuff for debugport_init() */
1873 dap->jtag_info = &cortex_a9->jtag_info;
1874 dap->memaccess_tck = 80;
1876 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1877 dap->tar_autoincr_block = (1 << 10);
1879 cortex_a9->fast_reg_read = 0;
1881 /* Set default value */
1882 cortex_a9->current_address_mode = ARM_MODE_ANY;
1884 /* register arch-specific functions */
1885 armv7a->examine_debug_reason = NULL;
1887 armv7a->post_debug_entry = cortex_a9_post_debug_entry;
1889 armv7a->pre_restore_context = NULL;
1890 armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1891 armv7a->armv4_5_mmu.get_ttb = cortex_a9_get_ttb;
1892 armv7a->armv4_5_mmu.read_memory = cortex_a9_read_phys_memory;
1893 armv7a->armv4_5_mmu.write_memory = cortex_a9_write_phys_memory;
1894 armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a9_disable_mmu_caches;
1895 armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a9_enable_mmu_caches;
1896 armv7a->armv4_5_mmu.has_tiny_pages = 1;
1897 armv7a->armv4_5_mmu.mmu_enabled = 0;
1900 // arm7_9->handle_target_request = cortex_a9_handle_target_request;
1902 /* REVISIT v7a setup should be in a v7a-specific routine */
1903 arm_init_arch_info(target, armv4_5);
1904 armv7a->common_magic = ARMV7_COMMON_MAGIC;
1906 target_register_timer_callback(cortex_a9_handle_target_request, 1, 1, target);
1908 return ERROR_OK;
1911 static int cortex_a9_target_create(struct target *target, Jim_Interp *interp)
1913 struct cortex_a9_common *cortex_a9 = calloc(1, sizeof(struct cortex_a9_common));
1915 return cortex_a9_init_arch_info(target, cortex_a9, target->tap);
1918 static int cortex_a9_get_ttb(struct target *target, uint32_t *result)
1920 struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1921 struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1922 uint32_t ttb = 0, retval = ERROR_OK;
1924 /* current_address_mode is set inside cortex_a9_virt2phys()
1925 where we can determine if address belongs to user or kernel */
1926 if(cortex_a9->current_address_mode == ARM_MODE_SVC)
1928 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1929 retval = armv7a->armv4_5_common.mrc(target, 15,
1930 0, 1, /* op1, op2 */
1931 2, 0, /* CRn, CRm */
1932 &ttb);
1933 if (retval != ERROR_OK)
1934 return retval;
1936 else if(cortex_a9->current_address_mode == ARM_MODE_USR)
1938 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1939 retval = armv7a->armv4_5_common.mrc(target, 15,
1940 0, 0, /* op1, op2 */
1941 2, 0, /* CRn, CRm */
1942 &ttb);
1943 if (retval != ERROR_OK)
1944 return retval;
1946 /* we don't know whose address is: user or kernel
1947 we assume that if we are in kernel mode then
1948 address belongs to kernel else if in user mode
1949 - to user */
1950 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
1952 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1953 retval = armv7a->armv4_5_common.mrc(target, 15,
1954 0, 1, /* op1, op2 */
1955 2, 0, /* CRn, CRm */
1956 &ttb);
1957 if (retval != ERROR_OK)
1958 return retval;
1960 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
1962 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1963 retval = armv7a->armv4_5_common.mrc(target, 15,
1964 0, 0, /* op1, op2 */
1965 2, 0, /* CRn, CRm */
1966 &ttb);
1967 if (retval != ERROR_OK)
1968 return retval;
1970 /* finally we don't know whose ttb to use: user or kernel */
1971 else
1972 LOG_ERROR("Don't know how to get ttb for current mode!!!");
1974 ttb &= 0xffffc000;
1976 *result = ttb;
1978 return ERROR_OK;
1981 static int cortex_a9_disable_mmu_caches(struct target *target, int mmu,
1982 int d_u_cache, int i_cache)
1984 struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
1985 struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
1986 uint32_t cp15_control;
1987 int retval;
1989 /* read cp15 control register */
1990 retval = armv7a->armv4_5_common.mrc(target, 15,
1991 0, 0, /* op1, op2 */
1992 1, 0, /* CRn, CRm */
1993 &cp15_control);
1994 if (retval != ERROR_OK)
1995 return retval;
1998 if (mmu)
1999 cp15_control &= ~0x1U;
2001 if (d_u_cache)
2002 cp15_control &= ~0x4U;
2004 if (i_cache)
2005 cp15_control &= ~0x1000U;
2007 retval = armv7a->armv4_5_common.mcr(target, 15,
2008 0, 0, /* op1, op2 */
2009 1, 0, /* CRn, CRm */
2010 cp15_control);
2011 return retval;
2014 static int cortex_a9_enable_mmu_caches(struct target *target, int mmu,
2015 int d_u_cache, int i_cache)
2017 struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
2018 struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
2019 uint32_t cp15_control;
2020 int retval;
2022 /* read cp15 control register */
2023 retval = armv7a->armv4_5_common.mrc(target, 15,
2024 0, 0, /* op1, op2 */
2025 1, 0, /* CRn, CRm */
2026 &cp15_control);
2027 if (retval != ERROR_OK)
2028 return retval;
2030 if (mmu)
2031 cp15_control |= 0x1U;
2033 if (d_u_cache)
2034 cp15_control |= 0x4U;
2036 if (i_cache)
2037 cp15_control |= 0x1000U;
2039 retval = armv7a->armv4_5_common.mcr(target, 15,
2040 0, 0, /* op1, op2 */
2041 1, 0, /* CRn, CRm */
2042 cp15_control);
2043 return retval;
2047 static int cortex_a9_mmu(struct target *target, int *enabled)
2049 if (target->state != TARGET_HALTED) {
2050 LOG_ERROR("%s: target not halted", __func__);
2051 return ERROR_TARGET_INVALID;
2054 *enabled = target_to_cortex_a9(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
2055 return ERROR_OK;
2058 static int cortex_a9_virt2phys(struct target *target,
2059 uint32_t virt, uint32_t *phys)
2061 uint32_t cb;
2062 struct cortex_a9_common *cortex_a9 = target_to_cortex_a9(target);
2063 // struct armv7a_common *armv7a = &cortex_a9->armv7a_common;
2064 struct armv7a_common *armv7a = target_to_armv7a(target);
2066 /* We assume that virtual address is separated
2067 between user and kernel in Linux style:
2068 0x00000000-0xbfffffff - User space
2069 0xc0000000-0xffffffff - Kernel space */
2070 if( virt < 0xc0000000 ) /* Linux user space */
2071 cortex_a9->current_address_mode = ARM_MODE_USR;
2072 else /* Linux kernel */
2073 cortex_a9->current_address_mode = ARM_MODE_SVC;
2074 uint32_t ret;
2075 int retval = armv4_5_mmu_translate_va(target,
2076 &armv7a->armv4_5_mmu, virt, &cb, &ret);
2077 if (retval != ERROR_OK)
2078 return retval;
2079 /* Reset the flag. We don't want someone else to use it by error */
2080 cortex_a9->current_address_mode = ARM_MODE_ANY;
2082 *phys = ret;
2083 return ERROR_OK;
2086 COMMAND_HANDLER(cortex_a9_handle_cache_info_command)
2088 struct target *target = get_current_target(CMD_CTX);
2089 struct armv7a_common *armv7a = target_to_armv7a(target);
2091 return armv4_5_handle_cache_info_command(CMD_CTX,
2092 &armv7a->armv4_5_mmu.armv4_5_cache);
2096 COMMAND_HANDLER(cortex_a9_handle_dbginit_command)
2098 struct target *target = get_current_target(CMD_CTX);
2099 if (!target_was_examined(target))
2101 LOG_ERROR("target not examined yet");
2102 return ERROR_FAIL;
2105 return cortex_a9_init_debug_access(target);
2108 static const struct command_registration cortex_a9_exec_command_handlers[] = {
2110 .name = "cache_info",
2111 .handler = cortex_a9_handle_cache_info_command,
2112 .mode = COMMAND_EXEC,
2113 .help = "display information about target caches",
2116 .name = "dbginit",
2117 .handler = cortex_a9_handle_dbginit_command,
2118 .mode = COMMAND_EXEC,
2119 .help = "Initialize core debug",
2121 COMMAND_REGISTRATION_DONE
2123 static const struct command_registration cortex_a9_command_handlers[] = {
2125 .chain = arm_command_handlers,
2128 .chain = armv7a_command_handlers,
2131 .name = "cortex_a9",
2132 .mode = COMMAND_ANY,
2133 .help = "Cortex-A9 command group",
2134 .chain = cortex_a9_exec_command_handlers,
2136 COMMAND_REGISTRATION_DONE
2139 struct target_type cortexa9_target = {
2140 .name = "cortex_a9",
2142 .poll = cortex_a9_poll,
2143 .arch_state = armv7a_arch_state,
2145 .target_request_data = NULL,
2147 .halt = cortex_a9_halt,
2148 .resume = cortex_a9_resume,
2149 .step = cortex_a9_step,
2151 .assert_reset = cortex_a9_assert_reset,
2152 .deassert_reset = cortex_a9_deassert_reset,
2153 .soft_reset_halt = NULL,
2155 /* REVISIT allow exporting VFP3 registers ... */
2156 .get_gdb_reg_list = arm_get_gdb_reg_list,
2158 .read_memory = cortex_a9_read_memory,
2159 .write_memory = cortex_a9_write_memory,
2160 .bulk_write_memory = cortex_a9_bulk_write_memory,
2162 .checksum_memory = arm_checksum_memory,
2163 .blank_check_memory = arm_blank_check_memory,
2165 .run_algorithm = armv4_5_run_algorithm,
2167 .add_breakpoint = cortex_a9_add_breakpoint,
2168 .remove_breakpoint = cortex_a9_remove_breakpoint,
2169 .add_watchpoint = NULL,
2170 .remove_watchpoint = NULL,
2172 .commands = cortex_a9_command_handlers,
2173 .target_create = cortex_a9_target_create,
2174 .init_target = cortex_a9_init_target,
2175 .examine = cortex_a9_examine,
2177 .read_phys_memory = cortex_a9_read_phys_memory,
2178 .write_phys_memory = cortex_a9_write_phys_memory,
2179 .mmu = cortex_a9_mmu,
2180 .virt2phys = cortex_a9_virt2phys,