TARGET: removed unsed parameter
[openocd/ellerodev.git] / src / target / arm920t.c
blobb8ff8191e66dbe995f788417e8cdb68fd629d0a1
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
19 ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
24 #include "arm920t.h"
25 #include <helper/time_support.h>
26 #include "target_type.h"
27 #include "register.h"
28 #include "arm_opcodes.h"
32 * For information about the ARM920T, see ARM DDI 0151C especially
33 * Chapter 9 about debug support, which shows how to manipulate each
34 * of the different scan chains:
36 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
37 * 1 ... debugging; watchpoint and breakpoint status, etc; also
38 * MMU and cache access in conjunction with scan chain 15
39 * 2 ... EmbeddedICE
40 * 3 ... external boundary scan (SoC-specific, unused here)
41 * 4 ... access to cache tag RAM
42 * 6 ... ETM9
43 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
44 * "interpreted" works with a few actual MRC/MCR instructions
45 * "physical" provides register-like behaviors. Section 9.6.7
46 * covers these details.
48 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
51 #if 0
52 #define _DEBUG_INSTRUCTION_EXECUTION_
53 #endif
55 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
56 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
57 * JTAG scan, while reads use two.
59 * Table 9-9 lists the thirteen registers which support physical access.
60 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
61 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
63 * x == bit[38]
64 * y == bits[37:34]
65 * z == bit[33]
67 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
69 /* Registers supporting physical Read access (from table 9-9) */
70 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
71 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
72 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
73 /* NOTE: several more registers support only physical read access */
75 /* Registers supporting physical Read/Write access (from table 9-9) */
76 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
77 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
78 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
79 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
80 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
82 static int arm920t_read_cp15_physical(struct target *target,
83 int reg_addr, uint32_t *value)
85 struct arm920t_common *arm920t = target_to_arm920(target);
86 struct arm_jtag *jtag_info;
87 struct scan_field fields[4];
88 uint8_t access_type_buf = 1;
89 uint8_t reg_addr_buf = reg_addr & 0x3f;
90 uint8_t nr_w_buf = 0;
92 jtag_info = &arm920t->arm7_9_common.jtag_info;
94 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
95 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
97 fields[0].num_bits = 1;
98 fields[0].out_value = &access_type_buf;
99 fields[0].in_value = NULL;
101 fields[1].num_bits = 32;
102 fields[1].out_value = NULL;
103 fields[1].in_value = NULL;
105 fields[2].num_bits = 6;
106 fields[2].out_value = &reg_addr_buf;
107 fields[2].in_value = NULL;
109 fields[3].num_bits = 1;
110 fields[3].out_value = &nr_w_buf;
111 fields[3].in_value = NULL;
113 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
115 fields[1].in_value = (uint8_t *)value;
117 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
119 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
121 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
122 jtag_execute_queue();
123 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
124 #endif
126 return ERROR_OK;
129 static int arm920t_write_cp15_physical(struct target *target,
130 int reg_addr, uint32_t value)
132 struct arm920t_common *arm920t = target_to_arm920(target);
133 struct arm_jtag *jtag_info;
134 struct scan_field fields[4];
135 uint8_t access_type_buf = 1;
136 uint8_t reg_addr_buf = reg_addr & 0x3f;
137 uint8_t nr_w_buf = 1;
138 uint8_t value_buf[4];
140 jtag_info = &arm920t->arm7_9_common.jtag_info;
142 buf_set_u32(value_buf, 0, 32, value);
144 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
145 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
147 fields[0].num_bits = 1;
148 fields[0].out_value = &access_type_buf;
149 fields[0].in_value = NULL;
151 fields[1].num_bits = 32;
152 fields[1].out_value = value_buf;
153 fields[1].in_value = NULL;
155 fields[2].num_bits = 6;
156 fields[2].out_value = &reg_addr_buf;
157 fields[2].in_value = NULL;
159 fields[3].num_bits = 1;
160 fields[3].out_value = &nr_w_buf;
161 fields[3].in_value = NULL;
163 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
165 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
166 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
167 #endif
169 return ERROR_OK;
172 /* See table 9-10 for scan chain 15 format during interpreted access mode.
173 * If the TESTSTATE register is set for interpreted access, certain CP15
174 * MRC and MCR instructions may be executed through scan chain 15.
176 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
177 * executed using scan chain 15 interpreted mode.
179 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
180 uint32_t arm_opcode)
182 int retval;
183 struct arm920t_common *arm920t = target_to_arm920(target);
184 struct arm_jtag *jtag_info;
185 struct scan_field fields[4];
186 uint8_t access_type_buf = 0; /* interpreted access */
187 uint8_t reg_addr_buf = 0x0;
188 uint8_t nr_w_buf = 0;
189 uint8_t cp15_opcode_buf[4];
191 jtag_info = &arm920t->arm7_9_common.jtag_info;
193 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
194 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
196 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
198 fields[0].num_bits = 1;
199 fields[0].out_value = &access_type_buf;
200 fields[0].in_value = NULL;
202 fields[1].num_bits = 32;
203 fields[1].out_value = cp15_opcode_buf;
204 fields[1].in_value = NULL;
206 fields[2].num_bits = 6;
207 fields[2].out_value = &reg_addr_buf;
208 fields[2].in_value = NULL;
210 fields[3].num_bits = 1;
211 fields[3].out_value = &nr_w_buf;
212 fields[3].in_value = NULL;
214 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
216 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
217 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
218 retval = arm7_9_execute_sys_speed(target);
219 if (retval != ERROR_OK)
220 return retval;
222 if ((retval = jtag_execute_queue()) != ERROR_OK)
224 LOG_ERROR("failed executing JTAG queue");
225 return retval;
228 return ERROR_OK;
231 static int arm920t_read_cp15_interpreted(struct target *target,
232 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
234 struct arm *armv4_5 = target_to_arm(target);
235 uint32_t* regs_p[1];
236 uint32_t regs[2];
237 uint32_t cp15c15 = 0x0;
238 struct reg *r = armv4_5->core_cache->reg_list;
240 /* load address into R1 */
241 regs[1] = address;
242 arm9tdmi_write_core_regs(target, 0x2, regs);
244 /* read-modify-write CP15 test state register
245 * to enable interpreted access mode */
246 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
247 jtag_execute_queue();
248 cp15c15 |= 1; /* set interpret mode */
249 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
251 /* execute CP15 instruction and ARM load (reading from coprocessor) */
252 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
254 /* disable interpreted access mode */
255 cp15c15 &= ~1U; /* clear interpret mode */
256 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
258 /* retrieve value from R0 */
259 regs_p[0] = value;
260 arm9tdmi_read_core_regs(target, 0x1, regs_p);
261 jtag_execute_queue();
263 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
264 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
265 cp15_opcode, address, *value);
266 #endif
268 if (!is_arm_mode(armv4_5->core_mode))
269 return ERROR_FAIL;
271 r[0].dirty = 1;
272 r[1].dirty = 1;
274 return ERROR_OK;
277 static
278 int arm920t_write_cp15_interpreted(struct target *target,
279 uint32_t cp15_opcode, uint32_t value, uint32_t address)
281 uint32_t cp15c15 = 0x0;
282 struct arm *armv4_5 = target_to_arm(target);
283 uint32_t regs[2];
284 struct reg *r = armv4_5->core_cache->reg_list;
286 /* load value, address into R0, R1 */
287 regs[0] = value;
288 regs[1] = address;
289 arm9tdmi_write_core_regs(target, 0x3, regs);
291 /* read-modify-write CP15 test state register
292 * to enable interpreted access mode */
293 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
294 jtag_execute_queue();
295 cp15c15 |= 1; /* set interpret mode */
296 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
298 /* execute CP15 instruction and ARM store (writing to coprocessor) */
299 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
301 /* disable interpreted access mode */
302 cp15c15 &= ~1U; /* set interpret mode */
303 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
305 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
306 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
307 cp15_opcode, value, address);
308 #endif
310 if (!is_arm_mode(armv4_5->core_mode))
311 return ERROR_FAIL;
313 r[0].dirty = 1;
314 r[1].dirty = 1;
316 return ERROR_OK;
319 // EXPORTED to FA256
320 uint32_t arm920t_get_ttb(struct target *target)
322 int retval;
323 uint32_t ttb = 0x0;
325 if ((retval = arm920t_read_cp15_interpreted(target,
326 /* FIXME use opcode macro */
327 0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
328 return retval;
330 return ttb;
333 // EXPORTED to FA256
334 void arm920t_disable_mmu_caches(struct target *target, int mmu,
335 int d_u_cache, int i_cache)
337 uint32_t cp15_control;
339 /* read cp15 control register */
340 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
341 jtag_execute_queue();
343 if (mmu)
344 cp15_control &= ~0x1U;
346 if (d_u_cache)
347 cp15_control &= ~0x4U;
349 if (i_cache)
350 cp15_control &= ~0x1000U;
352 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
355 // EXPORTED to FA256
356 void arm920t_enable_mmu_caches(struct target *target, int mmu,
357 int d_u_cache, int i_cache)
359 uint32_t cp15_control;
361 /* read cp15 control register */
362 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
363 jtag_execute_queue();
365 if (mmu)
366 cp15_control |= 0x1U;
368 if (d_u_cache)
369 cp15_control |= 0x4U;
371 if (i_cache)
372 cp15_control |= 0x1000U;
374 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
377 // EXPORTED to FA256
378 void arm920t_post_debug_entry(struct target *target)
380 uint32_t cp15c15;
381 struct arm920t_common *arm920t = target_to_arm920(target);
383 /* examine cp15 control reg */
384 arm920t_read_cp15_physical(target,
385 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
386 jtag_execute_queue();
387 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
389 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
391 uint32_t cache_type_reg;
392 /* identify caches */
393 arm920t_read_cp15_physical(target,
394 CP15PHYS_CACHETYPE, &cache_type_reg);
395 jtag_execute_queue();
396 armv4_5_identify_cache(cache_type_reg,
397 &arm920t->armv4_5_mmu.armv4_5_cache);
400 arm920t->armv4_5_mmu.mmu_enabled =
401 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
402 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
403 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
404 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
405 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
407 /* save i/d fault status and address register */
408 /* FIXME use opcode macros */
409 arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
410 arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
411 arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
412 arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
414 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
415 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
416 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
418 if (arm920t->preserve_cache)
420 /* read-modify-write CP15 test state register
421 * to disable I/D-cache linefills */
422 arm920t_read_cp15_physical(target,
423 CP15PHYS_TESTSTATE, &cp15c15);
424 jtag_execute_queue();
425 cp15c15 |= 0x600;
426 arm920t_write_cp15_physical(target,
427 CP15PHYS_TESTSTATE, cp15c15);
431 // EXPORTED to FA256
432 void arm920t_pre_restore_context(struct target *target)
434 uint32_t cp15c15;
435 struct arm920t_common *arm920t = target_to_arm920(target);
437 /* restore i/d fault status and address register */
438 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
439 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
440 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
441 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
443 /* read-modify-write CP15 test state register
444 * to reenable I/D-cache linefills */
445 if (arm920t->preserve_cache)
447 arm920t_read_cp15_physical(target,
448 CP15PHYS_TESTSTATE, &cp15c15);
449 jtag_execute_queue();
450 cp15c15 &= ~0x600U;
451 arm920t_write_cp15_physical(target,
452 CP15PHYS_TESTSTATE, cp15c15);
456 static const char arm920_not[] = "target is not an ARM920";
458 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
459 struct arm920t_common *arm920t)
461 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
462 command_print(cmd_ctx, arm920_not);
463 return ERROR_TARGET_INVALID;
466 return ERROR_OK;
469 /** Logs summary of ARM920 state for a halted target. */
470 int arm920t_arch_state(struct target *target)
472 static const char *state[] =
474 "disabled", "enabled"
477 struct arm920t_common *arm920t = target_to_arm920(target);
478 struct arm *armv4_5;
480 if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
482 LOG_ERROR("BUG: %s", arm920_not);
483 return ERROR_TARGET_INVALID;
486 armv4_5 = &arm920t->arm7_9_common.armv4_5_common;
488 arm_arch_state(target);
489 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
490 state[arm920t->armv4_5_mmu.mmu_enabled],
491 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
492 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
494 return ERROR_OK;
497 static int arm920_mmu(struct target *target, int *enabled)
499 if (target->state != TARGET_HALTED) {
500 LOG_ERROR("%s: target not halted", __func__);
501 return ERROR_TARGET_INVALID;
504 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
505 return ERROR_OK;
508 static int arm920_virt2phys(struct target *target,
509 uint32_t virt, uint32_t *phys)
511 uint32_t cb;
512 int domain;
513 uint32_t ap;
514 struct arm920t_common *arm920t = target_to_arm920(target);
516 uint32_t ret;
517 int retval = armv4_5_mmu_translate_va(target,
518 &arm920t->armv4_5_mmu, virt, &cb, &domain, &ap, &ret);
519 if (retval != ERROR_OK)
520 return retval;
521 *phys = ret;
522 return ERROR_OK;
525 /** Reads a buffer, in the specified word size, with current MMU settings. */
526 int arm920t_read_memory(struct target *target, uint32_t address,
527 uint32_t size, uint32_t count, uint8_t *buffer)
529 int retval;
531 retval = arm7_9_read_memory(target, address, size, count, buffer);
533 return retval;
537 static int arm920t_read_phys_memory(struct target *target,
538 uint32_t address, uint32_t size,
539 uint32_t count, uint8_t *buffer)
541 struct arm920t_common *arm920t = target_to_arm920(target);
543 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
544 address, size, count, buffer);
547 static int arm920t_write_phys_memory(struct target *target,
548 uint32_t address, uint32_t size,
549 uint32_t count, uint8_t *buffer)
551 struct arm920t_common *arm920t = target_to_arm920(target);
553 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
554 address, size, count, buffer);
558 /** Writes a buffer, in the specified word size, with current MMU settings. */
559 int arm920t_write_memory(struct target *target, uint32_t address,
560 uint32_t size, uint32_t count, uint8_t *buffer)
562 int retval;
563 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
564 struct arm920t_common *arm920t = target_to_arm920(target);
566 /* FIX!!!! this should be cleaned up and made much more general. The
567 * plan is to write up and test on arm920t specifically and
568 * then generalize and clean up afterwards.
570 * Also it should be moved to the callbacks that handle breakpoints
571 * specifically and not the generic memory write fn's. See XScale code.
573 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
574 ((size==2) || (size==4)))
576 /* special case the handling of single word writes to
577 * bypass MMU, to allow implementation of breakpoints
578 * in memory marked read only
579 * by MMU
581 uint32_t cb;
582 int domain;
583 uint32_t ap;
584 uint32_t pa;
587 * We need physical address and cb
589 retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
590 address, &cb, &domain, &ap, &pa);
591 if (retval != ERROR_OK)
592 return retval;
594 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
596 if (cb & 0x1)
598 LOG_DEBUG("D-Cache buffered, "
599 "drain write buffer");
601 * Buffered ?
602 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
605 retval = arm920t_write_cp15_interpreted(target,
606 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
607 0x0, 0);
608 if (retval != ERROR_OK)
609 return retval;
612 if (cb == 0x3)
615 * Write back memory ? -> clean cache
617 * There is no way to clean cache lines using
618 * cp15 scan chain, so copy the full cache
619 * line from cache to physical memory.
621 uint8_t data[32];
623 LOG_DEBUG("D-Cache in 'write back' mode, "
624 "flush cache line");
626 retval = target_read_memory(target,
627 address & cache_mask, 1,
628 sizeof(data), &data[0]);
629 if (retval != ERROR_OK)
630 return retval;
632 retval = armv4_5_mmu_write_physical(target,
633 &arm920t->armv4_5_mmu,
634 pa & cache_mask, 1,
635 sizeof(data), &data[0]);
636 if (retval != ERROR_OK)
637 return retval;
640 /* Cached ? */
641 if (cb & 0x2)
644 * Cached ? -> Invalidate data cache using MVA
646 * MCR p15,0,Rd,c7,c6,1
648 LOG_DEBUG("D-Cache enabled, "
649 "invalidate cache line");
651 retval = arm920t_write_cp15_interpreted(target,
652 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
653 address & cache_mask);
654 if (retval != ERROR_OK)
655 return retval;
659 /* write directly to physical memory,
660 * bypassing any read only MMU bits, etc.
662 retval = armv4_5_mmu_write_physical(target,
663 &arm920t->armv4_5_mmu, pa, size,
664 count, buffer);
665 if (retval != ERROR_OK)
666 return retval;
667 } else
669 if ((retval = arm7_9_write_memory(target, address,
670 size, count, buffer)) != ERROR_OK)
671 return retval;
674 /* If ICache is enabled, we have to invalidate affected ICache lines
675 * the DCache is forced to write-through,
676 * so we don't have to clean it here
678 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
680 if (count <= 1)
682 /* invalidate ICache single entry with MVA
683 * mcr 15, 0, r0, cr7, cr5, {1}
685 LOG_DEBUG("I-Cache enabled, "
686 "invalidating affected I-Cache line");
687 retval = arm920t_write_cp15_interpreted(target,
688 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
689 0x0, address & cache_mask);
690 if (retval != ERROR_OK)
691 return retval;
693 else
695 /* invalidate ICache
696 * mcr 15, 0, r0, cr7, cr5, {0}
698 retval = arm920t_write_cp15_interpreted(target,
699 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
700 0x0, 0x0);
701 if (retval != ERROR_OK)
702 return retval;
706 return ERROR_OK;
709 // EXPORTED to FA256
710 int arm920t_soft_reset_halt(struct target *target)
712 int retval = ERROR_OK;
713 struct arm920t_common *arm920t = target_to_arm920(target);
714 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
715 struct arm *armv4_5 = &arm7_9->armv4_5_common;
716 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
718 if ((retval = target_halt(target)) != ERROR_OK)
720 return retval;
723 long long then = timeval_ms();
724 int timeout;
725 while (!(timeout = ((timeval_ms()-then) > 1000)))
727 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)
728 == 0)
730 embeddedice_read_reg(dbg_stat);
731 if ((retval = jtag_execute_queue()) != ERROR_OK)
733 return retval;
735 } else
737 break;
739 if (debug_level >= 3)
741 /* do not eat all CPU, time out after 1 se*/
742 alive_sleep(100);
743 } else
745 keep_alive();
748 if (timeout)
750 LOG_ERROR("Failed to halt CPU after 1 sec");
751 return ERROR_TARGET_TIMEOUT;
754 target->state = TARGET_HALTED;
756 /* SVC, ARM state, IRQ and FIQ disabled */
757 uint32_t cpsr;
759 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
760 cpsr &= ~0xff;
761 cpsr |= 0xd3;
762 arm_set_cpsr(armv4_5, cpsr);
763 armv4_5->cpsr->dirty = 1;
765 /* start fetching from 0x0 */
766 buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
767 armv4_5->pc->dirty = 1;
768 armv4_5->pc->valid = 1;
770 arm920t_disable_mmu_caches(target, 1, 1, 1);
771 arm920t->armv4_5_mmu.mmu_enabled = 0;
772 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
773 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
775 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
778 /* FIXME remove forward decls */
779 static int arm920t_mrc(struct target *target, int cpnum,
780 uint32_t op1, uint32_t op2,
781 uint32_t CRn, uint32_t CRm,
782 uint32_t *value);
783 static int arm920t_mcr(struct target *target, int cpnum,
784 uint32_t op1, uint32_t op2,
785 uint32_t CRn, uint32_t CRm,
786 uint32_t value);
788 static int arm920t_init_arch_info(struct target *target,
789 struct arm920t_common *arm920t, struct jtag_tap *tap)
791 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
793 arm7_9->armv4_5_common.mrc = arm920t_mrc;
794 arm7_9->armv4_5_common.mcr = arm920t_mcr;
796 /* initialize arm7/arm9 specific info (including armv4_5) */
797 arm9tdmi_init_arch_info(target, arm7_9, tap);
799 arm920t->common_magic = ARM920T_COMMON_MAGIC;
801 arm7_9->post_debug_entry = arm920t_post_debug_entry;
802 arm7_9->pre_restore_context = arm920t_pre_restore_context;
804 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
805 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
806 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
807 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
808 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
809 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
810 arm920t->armv4_5_mmu.has_tiny_pages = 1;
811 arm920t->armv4_5_mmu.mmu_enabled = 0;
813 /* disabling linefills leads to lockups, so keep them enabled for now
814 * this doesn't affect correctness, but might affect timing issues, if
815 * important data is evicted from the cache during the debug session
816 * */
817 arm920t->preserve_cache = 0;
819 /* override hw single-step capability from ARM9TDMI */
820 arm7_9->has_single_step = 1;
822 return ERROR_OK;
825 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
827 struct arm920t_common *arm920t;
829 arm920t = calloc(1,sizeof(struct arm920t_common));
830 return arm920t_init_arch_info(target, arm920t, target->tap);
833 COMMAND_HANDLER(arm920t_handle_read_cache_command)
835 int retval = ERROR_OK;
836 struct target *target = get_current_target(CMD_CTX);
837 struct arm920t_common *arm920t = target_to_arm920(target);
838 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
839 struct arm *armv4_5 = &arm7_9->armv4_5_common;
840 uint32_t cp15c15;
841 uint32_t cp15_ctrl, cp15_ctrl_saved;
842 uint32_t regs[16];
843 uint32_t *regs_p[16];
844 uint32_t C15_C_D_Ind, C15_C_I_Ind;
845 int i;
846 FILE *output;
847 struct arm920t_cache_line d_cache[8][64], i_cache[8][64];
848 int segment, index;
849 struct reg *r;
851 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
852 if (retval != ERROR_OK)
853 return retval;
855 if (CMD_ARGC != 1)
857 command_print(CMD_CTX, "usage: arm920t read_cache <filename>");
858 return ERROR_OK;
861 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
863 LOG_DEBUG("error opening cache content file");
864 return ERROR_OK;
867 for (i = 0; i < 16; i++)
868 regs_p[i] = &regs[i];
870 /* disable MMU and Caches */
871 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
872 if ((retval = jtag_execute_queue()) != ERROR_OK)
874 return retval;
876 cp15_ctrl_saved = cp15_ctrl;
877 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
878 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
879 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
881 /* read CP15 test state register */
882 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
883 jtag_execute_queue();
885 /* read DCache content */
886 fprintf(output, "DCache:\n");
888 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
889 for (segment = 0;
890 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
891 segment++)
893 fprintf(output, "\nsegment: %i\n----------", segment);
895 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
896 regs[0] = 0x0 | (segment << 5);
897 arm9tdmi_write_core_regs(target, 0x1, regs);
899 /* set interpret mode */
900 cp15c15 |= 0x1;
901 arm920t_write_cp15_physical(target,
902 CP15PHYS_TESTSTATE, cp15c15);
904 /* D CAM Read, loads current victim into C15.C.D.Ind */
905 arm920t_execute_cp15(target,
906 ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
908 /* read current victim */
909 arm920t_read_cp15_physical(target,
910 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
912 /* clear interpret mode */
913 cp15c15 &= ~0x1;
914 arm920t_write_cp15_physical(target,
915 CP15PHYS_TESTSTATE, cp15c15);
917 for (index = 0; index < 64; index++)
919 /* Ra:
920 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
922 regs[0] = 0x0 | (segment << 5) | (index << 26);
923 arm9tdmi_write_core_regs(target, 0x1, regs);
925 /* set interpret mode */
926 cp15c15 |= 0x1;
927 arm920t_write_cp15_physical(target,
928 CP15PHYS_TESTSTATE, cp15c15);
930 /* Write DCache victim */
931 arm920t_execute_cp15(target,
932 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
934 /* Read D RAM */
935 arm920t_execute_cp15(target,
936 ARMV4_5_MCR(15,2,0,15,10,2),
937 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
939 /* Read D CAM */
940 arm920t_execute_cp15(target,
941 ARMV4_5_MCR(15,2,0,15,6,2),
942 ARMV4_5_LDR(9, 0));
944 /* clear interpret mode */
945 cp15c15 &= ~0x1;
946 arm920t_write_cp15_physical(target,
947 CP15PHYS_TESTSTATE, cp15c15);
949 /* read D RAM and CAM content */
950 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
951 if ((retval = jtag_execute_queue()) != ERROR_OK)
953 return retval;
956 d_cache[segment][index].cam = regs[9];
958 /* mask LFSR[6] */
959 regs[9] &= 0xfffffffe;
960 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
961 PRIx32 ", content (%s):\n",
962 segment, index, regs[9],
963 (regs[9] & 0x10) ? "valid" : "invalid");
965 for (i = 1; i < 9; i++)
967 d_cache[segment][index].data[i] = regs[i];
968 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
969 i-1, regs[i]);
974 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
975 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
976 arm9tdmi_write_core_regs(target, 0x1, regs);
978 /* set interpret mode */
979 cp15c15 |= 0x1;
980 arm920t_write_cp15_physical(target,
981 CP15PHYS_TESTSTATE, cp15c15);
983 /* Write DCache victim */
984 arm920t_execute_cp15(target,
985 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
987 /* clear interpret mode */
988 cp15c15 &= ~0x1;
989 arm920t_write_cp15_physical(target,
990 CP15PHYS_TESTSTATE, cp15c15);
993 /* read ICache content */
994 fprintf(output, "ICache:\n");
996 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
997 for (segment = 0;
998 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
999 segment++)
1001 fprintf(output, "segment: %i\n----------", segment);
1003 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1004 regs[0] = 0x0 | (segment << 5);
1005 arm9tdmi_write_core_regs(target, 0x1, regs);
1007 /* set interpret mode */
1008 cp15c15 |= 0x1;
1009 arm920t_write_cp15_physical(target,
1010 CP15PHYS_TESTSTATE, cp15c15);
1012 /* I CAM Read, loads current victim into C15.C.I.Ind */
1013 arm920t_execute_cp15(target,
1014 ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
1016 /* read current victim */
1017 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1018 &C15_C_I_Ind);
1020 /* clear interpret mode */
1021 cp15c15 &= ~0x1;
1022 arm920t_write_cp15_physical(target,
1023 CP15PHYS_TESTSTATE, cp15c15);
1025 for (index = 0; index < 64; index++)
1027 /* Ra:
1028 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1030 regs[0] = 0x0 | (segment << 5) | (index << 26);
1031 arm9tdmi_write_core_regs(target, 0x1, regs);
1033 /* set interpret mode */
1034 cp15c15 |= 0x1;
1035 arm920t_write_cp15_physical(target,
1036 CP15PHYS_TESTSTATE, cp15c15);
1038 /* Write ICache victim */
1039 arm920t_execute_cp15(target,
1040 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1042 /* Read I RAM */
1043 arm920t_execute_cp15(target,
1044 ARMV4_5_MCR(15,2,0,15,9,2),
1045 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1047 /* Read I CAM */
1048 arm920t_execute_cp15(target,
1049 ARMV4_5_MCR(15,2,0,15,5,2),
1050 ARMV4_5_LDR(9, 0));
1052 /* clear interpret mode */
1053 cp15c15 &= ~0x1;
1054 arm920t_write_cp15_physical(target,
1055 CP15PHYS_TESTSTATE, cp15c15);
1057 /* read I RAM and CAM content */
1058 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1059 if ((retval = jtag_execute_queue()) != ERROR_OK)
1061 return retval;
1064 i_cache[segment][index].cam = regs[9];
1066 /* mask LFSR[6] */
1067 regs[9] &= 0xfffffffe;
1068 fprintf(output, "\nsegment: %i, index: %i, "
1069 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1070 segment, index, regs[9],
1071 (regs[9] & 0x10) ? "valid" : "invalid");
1073 for (i = 1; i < 9; i++)
1075 i_cache[segment][index].data[i] = regs[i];
1076 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1077 i-1, regs[i]);
1081 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1082 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1083 arm9tdmi_write_core_regs(target, 0x1, regs);
1085 /* set interpret mode */
1086 cp15c15 |= 0x1;
1087 arm920t_write_cp15_physical(target,
1088 CP15PHYS_TESTSTATE, cp15c15);
1090 /* Write ICache victim */
1091 arm920t_execute_cp15(target,
1092 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1094 /* clear interpret mode */
1095 cp15c15 &= ~0x1;
1096 arm920t_write_cp15_physical(target,
1097 CP15PHYS_TESTSTATE, cp15c15);
1100 /* restore CP15 MMU and Cache settings */
1101 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1103 command_print(CMD_CTX, "cache content successfully output to %s",
1104 CMD_ARGV[0]);
1106 fclose(output);
1108 if (!is_arm_mode(armv4_5->core_mode))
1109 return ERROR_FAIL;
1111 /* force writeback of the valid data */
1112 r = armv4_5->core_cache->reg_list;
1113 r[0].dirty = r[0].valid;
1114 r[1].dirty = r[1].valid;
1115 r[2].dirty = r[2].valid;
1116 r[3].dirty = r[3].valid;
1117 r[4].dirty = r[4].valid;
1118 r[5].dirty = r[5].valid;
1119 r[6].dirty = r[6].valid;
1120 r[7].dirty = r[7].valid;
1122 r = arm_reg_current(armv4_5, 8);
1123 r->dirty = r->valid;
1125 r = arm_reg_current(armv4_5, 9);
1126 r->dirty = r->valid;
1128 return ERROR_OK;
1131 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1133 int retval = ERROR_OK;
1134 struct target *target = get_current_target(CMD_CTX);
1135 struct arm920t_common *arm920t = target_to_arm920(target);
1136 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1137 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1138 uint32_t cp15c15;
1139 uint32_t cp15_ctrl, cp15_ctrl_saved;
1140 uint32_t regs[16];
1141 uint32_t *regs_p[16];
1142 int i;
1143 FILE *output;
1144 uint32_t Dlockdown, Ilockdown;
1145 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1146 int victim;
1147 struct reg *r;
1149 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1150 if (retval != ERROR_OK)
1151 return retval;
1153 if (CMD_ARGC != 1)
1155 command_print(CMD_CTX, "usage: arm920t read_mmu <filename>");
1156 return ERROR_OK;
1159 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
1161 LOG_DEBUG("error opening mmu content file");
1162 return ERROR_OK;
1165 for (i = 0; i < 16; i++)
1166 regs_p[i] = &regs[i];
1168 /* disable MMU and Caches */
1169 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1170 if ((retval = jtag_execute_queue()) != ERROR_OK)
1172 return retval;
1174 cp15_ctrl_saved = cp15_ctrl;
1175 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1176 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1177 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1179 /* read CP15 test state register */
1180 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1181 if ((retval = jtag_execute_queue()) != ERROR_OK)
1183 return retval;
1186 /* prepare reading D TLB content
1187 * */
1189 /* set interpret mode */
1190 cp15c15 |= 0x1;
1191 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1193 /* Read D TLB lockdown */
1194 arm920t_execute_cp15(target,
1195 ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
1197 /* clear interpret mode */
1198 cp15c15 &= ~0x1;
1199 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1201 /* read D TLB lockdown stored to r1 */
1202 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1203 if ((retval = jtag_execute_queue()) != ERROR_OK)
1205 return retval;
1207 Dlockdown = regs[1];
1209 for (victim = 0; victim < 64; victim += 8)
1211 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1212 * base remains unchanged, victim goes through entries 0 to 63
1214 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1215 arm9tdmi_write_core_regs(target, 0x2, regs);
1217 /* set interpret mode */
1218 cp15c15 |= 0x1;
1219 arm920t_write_cp15_physical(target,
1220 CP15PHYS_TESTSTATE, cp15c15);
1222 /* Write D TLB lockdown */
1223 arm920t_execute_cp15(target,
1224 ARMV4_5_MCR(15,0,0,10,0,0),
1225 ARMV4_5_STR(1, 0));
1227 /* Read D TLB CAM */
1228 arm920t_execute_cp15(target,
1229 ARMV4_5_MCR(15,4,0,15,6,4),
1230 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1232 /* clear interpret mode */
1233 cp15c15 &= ~0x1;
1234 arm920t_write_cp15_physical(target,
1235 CP15PHYS_TESTSTATE, cp15c15);
1237 /* read D TLB CAM content stored to r2-r9 */
1238 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1239 if ((retval = jtag_execute_queue()) != ERROR_OK)
1241 return retval;
1244 for (i = 0; i < 8; i++)
1245 d_tlb[victim + i].cam = regs[i + 2];
1248 for (victim = 0; victim < 64; victim++)
1250 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1251 * base remains unchanged, victim goes through entries 0 to 63
1253 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1254 arm9tdmi_write_core_regs(target, 0x2, regs);
1256 /* set interpret mode */
1257 cp15c15 |= 0x1;
1258 arm920t_write_cp15_physical(target,
1259 CP15PHYS_TESTSTATE, cp15c15);
1261 /* Write D TLB lockdown */
1262 arm920t_execute_cp15(target,
1263 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1265 /* Read D TLB RAM1 */
1266 arm920t_execute_cp15(target,
1267 ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
1269 /* Read D TLB RAM2 */
1270 arm920t_execute_cp15(target,
1271 ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
1273 /* clear interpret mode */
1274 cp15c15 &= ~0x1;
1275 arm920t_write_cp15_physical(target,
1276 CP15PHYS_TESTSTATE, cp15c15);
1278 /* read D TLB RAM content stored to r2 and r3 */
1279 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1280 if ((retval = jtag_execute_queue()) != ERROR_OK)
1282 return retval;
1285 d_tlb[victim].ram1 = regs[2];
1286 d_tlb[victim].ram2 = regs[3];
1289 /* restore D TLB lockdown */
1290 regs[1] = Dlockdown;
1291 arm9tdmi_write_core_regs(target, 0x2, regs);
1293 /* Write D TLB lockdown */
1294 arm920t_execute_cp15(target,
1295 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1297 /* prepare reading I TLB content
1298 * */
1300 /* set interpret mode */
1301 cp15c15 |= 0x1;
1302 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1304 /* Read I TLB lockdown */
1305 arm920t_execute_cp15(target,
1306 ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
1308 /* clear interpret mode */
1309 cp15c15 &= ~0x1;
1310 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1312 /* read I TLB lockdown stored to r1 */
1313 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1314 if ((retval = jtag_execute_queue()) != ERROR_OK)
1316 return retval;
1318 Ilockdown = regs[1];
1320 for (victim = 0; victim < 64; victim += 8)
1322 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1323 * base remains unchanged, victim goes through entries 0 to 63
1325 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1326 arm9tdmi_write_core_regs(target, 0x2, regs);
1328 /* set interpret mode */
1329 cp15c15 |= 0x1;
1330 arm920t_write_cp15_physical(target,
1331 CP15PHYS_TESTSTATE, cp15c15);
1333 /* Write I TLB lockdown */
1334 arm920t_execute_cp15(target,
1335 ARMV4_5_MCR(15,0,0,10,0,1),
1336 ARMV4_5_STR(1, 0));
1338 /* Read I TLB CAM */
1339 arm920t_execute_cp15(target,
1340 ARMV4_5_MCR(15,4,0,15,5,4),
1341 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1343 /* clear interpret mode */
1344 cp15c15 &= ~0x1;
1345 arm920t_write_cp15_physical(target,
1346 CP15PHYS_TESTSTATE, cp15c15);
1348 /* read I TLB CAM content stored to r2-r9 */
1349 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1350 if ((retval = jtag_execute_queue()) != ERROR_OK)
1352 return retval;
1355 for (i = 0; i < 8; i++)
1356 i_tlb[i + victim].cam = regs[i + 2];
1359 for (victim = 0; victim < 64; victim++)
1361 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1362 * base remains unchanged, victim goes through entries 0 to 63
1364 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1365 arm9tdmi_write_core_regs(target, 0x2, regs);
1367 /* set interpret mode */
1368 cp15c15 |= 0x1;
1369 arm920t_write_cp15_physical(target,
1370 CP15PHYS_TESTSTATE, cp15c15);
1372 /* Write I TLB lockdown */
1373 arm920t_execute_cp15(target,
1374 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1376 /* Read I TLB RAM1 */
1377 arm920t_execute_cp15(target,
1378 ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
1380 /* Read I TLB RAM2 */
1381 arm920t_execute_cp15(target,
1382 ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
1384 /* clear interpret mode */
1385 cp15c15 &= ~0x1;
1386 arm920t_write_cp15_physical(target,
1387 CP15PHYS_TESTSTATE, cp15c15);
1389 /* read I TLB RAM content stored to r2 and r3 */
1390 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1391 if ((retval = jtag_execute_queue()) != ERROR_OK)
1393 return retval;
1396 i_tlb[victim].ram1 = regs[2];
1397 i_tlb[victim].ram2 = regs[3];
1400 /* restore I TLB lockdown */
1401 regs[1] = Ilockdown;
1402 arm9tdmi_write_core_regs(target, 0x2, regs);
1404 /* Write I TLB lockdown */
1405 arm920t_execute_cp15(target,
1406 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1408 /* restore CP15 MMU and Cache settings */
1409 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1411 /* output data to file */
1412 fprintf(output, "D TLB content:\n");
1413 for (i = 0; i < 64; i++)
1415 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1416 " 0x%8.8" PRIx32 " %s\n",
1417 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1418 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1421 fprintf(output, "\n\nI TLB content:\n");
1422 for (i = 0; i < 64; i++)
1424 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1425 " 0x%8.8" PRIx32 " %s\n",
1426 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1427 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1430 command_print(CMD_CTX, "mmu content successfully output to %s",
1431 CMD_ARGV[0]);
1433 fclose(output);
1435 if (!is_arm_mode(armv4_5->core_mode))
1436 return ERROR_FAIL;
1438 /* force writeback of the valid data */
1439 r = armv4_5->core_cache->reg_list;
1440 r[0].dirty = r[0].valid;
1441 r[1].dirty = r[1].valid;
1442 r[2].dirty = r[2].valid;
1443 r[3].dirty = r[3].valid;
1444 r[4].dirty = r[4].valid;
1445 r[5].dirty = r[5].valid;
1446 r[6].dirty = r[6].valid;
1447 r[7].dirty = r[7].valid;
1449 r = arm_reg_current(armv4_5, 8);
1450 r->dirty = r->valid;
1452 r = arm_reg_current(armv4_5, 9);
1453 r->dirty = r->valid;
1455 return ERROR_OK;
1458 COMMAND_HANDLER(arm920t_handle_cp15_command)
1460 int retval;
1461 struct target *target = get_current_target(CMD_CTX);
1462 struct arm920t_common *arm920t = target_to_arm920(target);
1464 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1465 if (retval != ERROR_OK)
1466 return retval;
1468 if (target->state != TARGET_HALTED)
1470 command_print(CMD_CTX, "target must be stopped for "
1471 "\"%s\" command", CMD_NAME);
1472 return ERROR_OK;
1475 /* one argument, read a register.
1476 * two arguments, write it.
1478 if (CMD_ARGC >= 1)
1480 int address;
1481 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1483 if (CMD_ARGC == 1)
1485 uint32_t value;
1486 if ((retval = arm920t_read_cp15_physical(target,
1487 address, &value)) != ERROR_OK)
1489 command_print(CMD_CTX,
1490 "couldn't access reg %i", address);
1491 return ERROR_OK;
1493 if ((retval = jtag_execute_queue()) != ERROR_OK)
1495 return retval;
1498 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1499 address, value);
1501 else if (CMD_ARGC == 2)
1503 uint32_t value;
1504 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1505 retval = arm920t_write_cp15_physical(target,
1506 address, value);
1507 if (retval != ERROR_OK)
1509 command_print(CMD_CTX,
1510 "couldn't access reg %i", address);
1511 /* REVISIT why lie? "return retval"? */
1512 return ERROR_OK;
1514 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1515 address, value);
1519 return ERROR_OK;
1522 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1524 int retval;
1525 struct target *target = get_current_target(CMD_CTX);
1526 struct arm920t_common *arm920t = target_to_arm920(target);
1528 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1529 if (retval != ERROR_OK)
1530 return retval;
1533 if (target->state != TARGET_HALTED)
1535 command_print(CMD_CTX, "target must be stopped for "
1536 "\"%s\" command", CMD_NAME);
1537 return ERROR_OK;
1540 /* one argument, read a register.
1541 * two arguments, write it.
1543 if (CMD_ARGC >= 1)
1545 uint32_t opcode;
1546 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1548 if (CMD_ARGC == 1)
1550 uint32_t value;
1551 retval = arm920t_read_cp15_interpreted(target,
1552 opcode, 0x0, &value);
1553 if (retval != ERROR_OK)
1555 command_print(CMD_CTX,
1556 "couldn't execute %8.8" PRIx32,
1557 opcode);
1558 /* REVISIT why lie? "return retval"? */
1559 return ERROR_OK;
1562 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1563 opcode, value);
1565 else if (CMD_ARGC == 2)
1567 uint32_t value;
1568 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1569 retval = arm920t_write_cp15_interpreted(target,
1570 opcode, value, 0);
1571 if (retval != ERROR_OK)
1573 command_print(CMD_CTX,
1574 "couldn't execute %8.8" PRIx32,
1575 opcode);
1576 /* REVISIT why lie? "return retval"? */
1577 return ERROR_OK;
1579 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1580 opcode, value);
1582 else if (CMD_ARGC == 3)
1584 uint32_t value;
1585 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1586 uint32_t address;
1587 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1588 retval = arm920t_write_cp15_interpreted(target,
1589 opcode, value, address);
1590 if (retval != ERROR_OK)
1592 command_print(CMD_CTX,
1593 "couldn't execute %8.8" PRIx32, opcode);
1594 /* REVISIT why lie? "return retval"? */
1595 return ERROR_OK;
1597 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1598 " %8.8" PRIx32, opcode, value, address);
1601 else
1603 command_print(CMD_CTX,
1604 "usage: arm920t cp15i <opcode> [value] [address]");
1607 return ERROR_OK;
1610 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1612 int retval;
1613 struct target *target = get_current_target(CMD_CTX);
1614 struct arm920t_common *arm920t = target_to_arm920(target);
1616 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1617 if (retval != ERROR_OK)
1618 return retval;
1620 return armv4_5_handle_cache_info_command(CMD_CTX,
1621 &arm920t->armv4_5_mmu.armv4_5_cache);
1625 static int arm920t_mrc(struct target *target, int cpnum,
1626 uint32_t op1, uint32_t op2,
1627 uint32_t CRn, uint32_t CRm,
1628 uint32_t *value)
1630 if (cpnum!=15)
1632 LOG_ERROR("Only cp15 is supported");
1633 return ERROR_FAIL;
1636 /* read "to" r0 */
1637 return arm920t_read_cp15_interpreted(target,
1638 ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1639 0, value);
1642 static int arm920t_mcr(struct target *target, int cpnum,
1643 uint32_t op1, uint32_t op2,
1644 uint32_t CRn, uint32_t CRm,
1645 uint32_t value)
1647 if (cpnum!=15)
1649 LOG_ERROR("Only cp15 is supported");
1650 return ERROR_FAIL;
1653 /* write "from" r0 */
1654 return arm920t_write_cp15_interpreted(target,
1655 ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1656 0, value);
1659 static const struct command_registration arm920t_exec_command_handlers[] = {
1661 .name = "cp15",
1662 .handler = arm920t_handle_cp15_command,
1663 .mode = COMMAND_EXEC,
1664 .help = "display/modify cp15 register",
1665 .usage = "regnum [value]",
1668 .name = "cp15i",
1669 .handler = arm920t_handle_cp15i_command,
1670 .mode = COMMAND_EXEC,
1671 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1672 .help = "display/modify cp15 register using ARM opcode"
1673 " (DEPRECATED)",
1674 .usage = "instruction [value [address]]",
1677 .name = "cache_info",
1678 .handler = arm920t_handle_cache_info_command,
1679 .mode = COMMAND_EXEC,
1680 .help = "display information about target caches",
1683 .name = "read_cache",
1684 .handler = arm920t_handle_read_cache_command,
1685 .mode = COMMAND_EXEC,
1686 .help = "dump I/D cache content to file",
1687 .usage = "filename",
1690 .name = "read_mmu",
1691 .handler = arm920t_handle_read_mmu_command,
1692 .mode = COMMAND_EXEC,
1693 .help = "dump I/D mmu content to file",
1694 .usage = "filename",
1696 COMMAND_REGISTRATION_DONE
1698 const struct command_registration arm920t_command_handlers[] = {
1700 .chain = arm9tdmi_command_handlers,
1703 .name = "arm920t",
1704 .mode = COMMAND_ANY,
1705 .help = "arm920t command group",
1706 .chain = arm920t_exec_command_handlers,
1708 COMMAND_REGISTRATION_DONE
1711 /** Holds methods for ARM920 targets. */
1712 struct target_type arm920t_target =
1714 .name = "arm920t",
1716 .poll = arm7_9_poll,
1717 .arch_state = arm920t_arch_state,
1719 .target_request_data = arm7_9_target_request_data,
1721 .halt = arm7_9_halt,
1722 .resume = arm7_9_resume,
1723 .step = arm7_9_step,
1725 .assert_reset = arm7_9_assert_reset,
1726 .deassert_reset = arm7_9_deassert_reset,
1727 .soft_reset_halt = arm920t_soft_reset_halt,
1729 .get_gdb_reg_list = arm_get_gdb_reg_list,
1731 .read_memory = arm920t_read_memory,
1732 .write_memory = arm920t_write_memory,
1733 .read_phys_memory = arm920t_read_phys_memory,
1734 .write_phys_memory = arm920t_write_phys_memory,
1735 .mmu = arm920_mmu,
1736 .virt2phys = arm920_virt2phys,
1738 .bulk_write_memory = arm7_9_bulk_write_memory,
1740 .checksum_memory = arm_checksum_memory,
1741 .blank_check_memory = arm_blank_check_memory,
1743 .run_algorithm = armv4_5_run_algorithm,
1745 .add_breakpoint = arm7_9_add_breakpoint,
1746 .remove_breakpoint = arm7_9_remove_breakpoint,
1747 .add_watchpoint = arm7_9_add_watchpoint,
1748 .remove_watchpoint = arm7_9_remove_watchpoint,
1750 .commands = arm920t_command_handlers,
1751 .target_create = arm920t_target_create,
1752 .init_target = arm9tdmi_init_target,
1753 .examine = arm7_9_examine,
1754 .check_reset = arm7_9_check_reset,