TARGET: removed unused parameters
[openocd/dnglaze.git] / src / target / arm920t.c
blobb99b4d5e9c05ae3cb2e82d5924509d0f770c4eff
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
19 ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
24 #include "arm920t.h"
25 #include <helper/time_support.h>
26 #include "target_type.h"
27 #include "register.h"
28 #include "arm_opcodes.h"
32 * For information about the ARM920T, see ARM DDI 0151C especially
33 * Chapter 9 about debug support, which shows how to manipulate each
34 * of the different scan chains:
36 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
37 * 1 ... debugging; watchpoint and breakpoint status, etc; also
38 * MMU and cache access in conjunction with scan chain 15
39 * 2 ... EmbeddedICE
40 * 3 ... external boundary scan (SoC-specific, unused here)
41 * 4 ... access to cache tag RAM
42 * 6 ... ETM9
43 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
44 * "interpreted" works with a few actual MRC/MCR instructions
45 * "physical" provides register-like behaviors. Section 9.6.7
46 * covers these details.
48 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
51 #if 0
52 #define _DEBUG_INSTRUCTION_EXECUTION_
53 #endif
55 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
56 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
57 * JTAG scan, while reads use two.
59 * Table 9-9 lists the thirteen registers which support physical access.
60 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
61 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
63 * x == bit[38]
64 * y == bits[37:34]
65 * z == bit[33]
67 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
69 /* Registers supporting physical Read access (from table 9-9) */
70 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
71 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
72 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
73 /* NOTE: several more registers support only physical read access */
75 /* Registers supporting physical Read/Write access (from table 9-9) */
76 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
77 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
78 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
79 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
80 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
82 static int arm920t_read_cp15_physical(struct target *target,
83 int reg_addr, uint32_t *value)
85 struct arm920t_common *arm920t = target_to_arm920(target);
86 struct arm_jtag *jtag_info;
87 struct scan_field fields[4];
88 uint8_t access_type_buf = 1;
89 uint8_t reg_addr_buf = reg_addr & 0x3f;
90 uint8_t nr_w_buf = 0;
92 jtag_info = &arm920t->arm7_9_common.jtag_info;
94 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
95 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
97 fields[0].num_bits = 1;
98 fields[0].out_value = &access_type_buf;
99 fields[0].in_value = NULL;
101 fields[1].num_bits = 32;
102 fields[1].out_value = NULL;
103 fields[1].in_value = NULL;
105 fields[2].num_bits = 6;
106 fields[2].out_value = &reg_addr_buf;
107 fields[2].in_value = NULL;
109 fields[3].num_bits = 1;
110 fields[3].out_value = &nr_w_buf;
111 fields[3].in_value = NULL;
113 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
115 fields[1].in_value = (uint8_t *)value;
117 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
119 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
121 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
122 jtag_execute_queue();
123 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
124 #endif
126 return ERROR_OK;
129 static int arm920t_write_cp15_physical(struct target *target,
130 int reg_addr, uint32_t value)
132 struct arm920t_common *arm920t = target_to_arm920(target);
133 struct arm_jtag *jtag_info;
134 struct scan_field fields[4];
135 uint8_t access_type_buf = 1;
136 uint8_t reg_addr_buf = reg_addr & 0x3f;
137 uint8_t nr_w_buf = 1;
138 uint8_t value_buf[4];
140 jtag_info = &arm920t->arm7_9_common.jtag_info;
142 buf_set_u32(value_buf, 0, 32, value);
144 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
145 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
147 fields[0].num_bits = 1;
148 fields[0].out_value = &access_type_buf;
149 fields[0].in_value = NULL;
151 fields[1].num_bits = 32;
152 fields[1].out_value = value_buf;
153 fields[1].in_value = NULL;
155 fields[2].num_bits = 6;
156 fields[2].out_value = &reg_addr_buf;
157 fields[2].in_value = NULL;
159 fields[3].num_bits = 1;
160 fields[3].out_value = &nr_w_buf;
161 fields[3].in_value = NULL;
163 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
165 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
166 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
167 #endif
169 return ERROR_OK;
172 /* See table 9-10 for scan chain 15 format during interpreted access mode.
173 * If the TESTSTATE register is set for interpreted access, certain CP15
174 * MRC and MCR instructions may be executed through scan chain 15.
176 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
177 * executed using scan chain 15 interpreted mode.
179 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
180 uint32_t arm_opcode)
182 int retval;
183 struct arm920t_common *arm920t = target_to_arm920(target);
184 struct arm_jtag *jtag_info;
185 struct scan_field fields[4];
186 uint8_t access_type_buf = 0; /* interpreted access */
187 uint8_t reg_addr_buf = 0x0;
188 uint8_t nr_w_buf = 0;
189 uint8_t cp15_opcode_buf[4];
191 jtag_info = &arm920t->arm7_9_common.jtag_info;
193 arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
194 arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
196 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
198 fields[0].num_bits = 1;
199 fields[0].out_value = &access_type_buf;
200 fields[0].in_value = NULL;
202 fields[1].num_bits = 32;
203 fields[1].out_value = cp15_opcode_buf;
204 fields[1].in_value = NULL;
206 fields[2].num_bits = 6;
207 fields[2].out_value = &reg_addr_buf;
208 fields[2].in_value = NULL;
210 fields[3].num_bits = 1;
211 fields[3].out_value = &nr_w_buf;
212 fields[3].in_value = NULL;
214 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
216 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
217 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
218 retval = arm7_9_execute_sys_speed(target);
219 if (retval != ERROR_OK)
220 return retval;
222 if ((retval = jtag_execute_queue()) != ERROR_OK)
224 LOG_ERROR("failed executing JTAG queue");
225 return retval;
228 return ERROR_OK;
231 static int arm920t_read_cp15_interpreted(struct target *target,
232 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
234 struct arm *armv4_5 = target_to_arm(target);
235 uint32_t* regs_p[1];
236 uint32_t regs[2];
237 uint32_t cp15c15 = 0x0;
238 struct reg *r = armv4_5->core_cache->reg_list;
240 /* load address into R1 */
241 regs[1] = address;
242 arm9tdmi_write_core_regs(target, 0x2, regs);
244 /* read-modify-write CP15 test state register
245 * to enable interpreted access mode */
246 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
247 jtag_execute_queue();
248 cp15c15 |= 1; /* set interpret mode */
249 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
251 /* execute CP15 instruction and ARM load (reading from coprocessor) */
252 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
254 /* disable interpreted access mode */
255 cp15c15 &= ~1U; /* clear interpret mode */
256 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
258 /* retrieve value from R0 */
259 regs_p[0] = value;
260 arm9tdmi_read_core_regs(target, 0x1, regs_p);
261 jtag_execute_queue();
263 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
264 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
265 cp15_opcode, address, *value);
266 #endif
268 if (!is_arm_mode(armv4_5->core_mode))
269 return ERROR_FAIL;
271 r[0].dirty = 1;
272 r[1].dirty = 1;
274 return ERROR_OK;
277 static
278 int arm920t_write_cp15_interpreted(struct target *target,
279 uint32_t cp15_opcode, uint32_t value, uint32_t address)
281 uint32_t cp15c15 = 0x0;
282 struct arm *armv4_5 = target_to_arm(target);
283 uint32_t regs[2];
284 struct reg *r = armv4_5->core_cache->reg_list;
286 /* load value, address into R0, R1 */
287 regs[0] = value;
288 regs[1] = address;
289 arm9tdmi_write_core_regs(target, 0x3, regs);
291 /* read-modify-write CP15 test state register
292 * to enable interpreted access mode */
293 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
294 jtag_execute_queue();
295 cp15c15 |= 1; /* set interpret mode */
296 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
298 /* execute CP15 instruction and ARM store (writing to coprocessor) */
299 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
301 /* disable interpreted access mode */
302 cp15c15 &= ~1U; /* set interpret mode */
303 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
305 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
306 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
307 cp15_opcode, value, address);
308 #endif
310 if (!is_arm_mode(armv4_5->core_mode))
311 return ERROR_FAIL;
313 r[0].dirty = 1;
314 r[1].dirty = 1;
316 return ERROR_OK;
319 // EXPORTED to FA256
320 uint32_t arm920t_get_ttb(struct target *target)
322 int retval;
323 uint32_t ttb = 0x0;
325 if ((retval = arm920t_read_cp15_interpreted(target,
326 /* FIXME use opcode macro */
327 0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
328 return retval;
330 return ttb;
333 // EXPORTED to FA256
334 void arm920t_disable_mmu_caches(struct target *target, int mmu,
335 int d_u_cache, int i_cache)
337 uint32_t cp15_control;
339 /* read cp15 control register */
340 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
341 jtag_execute_queue();
343 if (mmu)
344 cp15_control &= ~0x1U;
346 if (d_u_cache)
347 cp15_control &= ~0x4U;
349 if (i_cache)
350 cp15_control &= ~0x1000U;
352 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
355 // EXPORTED to FA256
356 void arm920t_enable_mmu_caches(struct target *target, int mmu,
357 int d_u_cache, int i_cache)
359 uint32_t cp15_control;
361 /* read cp15 control register */
362 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
363 jtag_execute_queue();
365 if (mmu)
366 cp15_control |= 0x1U;
368 if (d_u_cache)
369 cp15_control |= 0x4U;
371 if (i_cache)
372 cp15_control |= 0x1000U;
374 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
377 // EXPORTED to FA256
378 void arm920t_post_debug_entry(struct target *target)
380 uint32_t cp15c15;
381 struct arm920t_common *arm920t = target_to_arm920(target);
383 /* examine cp15 control reg */
384 arm920t_read_cp15_physical(target,
385 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
386 jtag_execute_queue();
387 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
389 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
391 uint32_t cache_type_reg;
392 /* identify caches */
393 arm920t_read_cp15_physical(target,
394 CP15PHYS_CACHETYPE, &cache_type_reg);
395 jtag_execute_queue();
396 armv4_5_identify_cache(cache_type_reg,
397 &arm920t->armv4_5_mmu.armv4_5_cache);
400 arm920t->armv4_5_mmu.mmu_enabled =
401 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
402 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
403 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
404 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
405 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
407 /* save i/d fault status and address register */
408 /* FIXME use opcode macros */
409 arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
410 arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
411 arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
412 arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
414 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
415 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
416 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
418 if (arm920t->preserve_cache)
420 /* read-modify-write CP15 test state register
421 * to disable I/D-cache linefills */
422 arm920t_read_cp15_physical(target,
423 CP15PHYS_TESTSTATE, &cp15c15);
424 jtag_execute_queue();
425 cp15c15 |= 0x600;
426 arm920t_write_cp15_physical(target,
427 CP15PHYS_TESTSTATE, cp15c15);
431 // EXPORTED to FA256
432 void arm920t_pre_restore_context(struct target *target)
434 uint32_t cp15c15;
435 struct arm920t_common *arm920t = target_to_arm920(target);
437 /* restore i/d fault status and address register */
438 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
439 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
440 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
441 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
443 /* read-modify-write CP15 test state register
444 * to reenable I/D-cache linefills */
445 if (arm920t->preserve_cache)
447 arm920t_read_cp15_physical(target,
448 CP15PHYS_TESTSTATE, &cp15c15);
449 jtag_execute_queue();
450 cp15c15 &= ~0x600U;
451 arm920t_write_cp15_physical(target,
452 CP15PHYS_TESTSTATE, cp15c15);
456 static const char arm920_not[] = "target is not an ARM920";
458 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
459 struct arm920t_common *arm920t)
461 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
462 command_print(cmd_ctx, arm920_not);
463 return ERROR_TARGET_INVALID;
466 return ERROR_OK;
469 /** Logs summary of ARM920 state for a halted target. */
470 int arm920t_arch_state(struct target *target)
472 static const char *state[] =
474 "disabled", "enabled"
477 struct arm920t_common *arm920t = target_to_arm920(target);
478 struct arm *armv4_5;
480 if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
482 LOG_ERROR("BUG: %s", arm920_not);
483 return ERROR_TARGET_INVALID;
486 armv4_5 = &arm920t->arm7_9_common.armv4_5_common;
488 arm_arch_state(target);
489 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
490 state[arm920t->armv4_5_mmu.mmu_enabled],
491 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
492 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
494 return ERROR_OK;
497 static int arm920_mmu(struct target *target, int *enabled)
499 if (target->state != TARGET_HALTED) {
500 LOG_ERROR("%s: target not halted", __func__);
501 return ERROR_TARGET_INVALID;
504 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
505 return ERROR_OK;
508 static int arm920_virt2phys(struct target *target,
509 uint32_t virt, uint32_t *phys)
511 uint32_t cb;
512 struct arm920t_common *arm920t = target_to_arm920(target);
514 uint32_t ret;
515 int retval = armv4_5_mmu_translate_va(target,
516 &arm920t->armv4_5_mmu, virt, &cb, &ret);
517 if (retval != ERROR_OK)
518 return retval;
519 *phys = ret;
520 return ERROR_OK;
523 /** Reads a buffer, in the specified word size, with current MMU settings. */
524 int arm920t_read_memory(struct target *target, uint32_t address,
525 uint32_t size, uint32_t count, uint8_t *buffer)
527 int retval;
529 retval = arm7_9_read_memory(target, address, size, count, buffer);
531 return retval;
535 static int arm920t_read_phys_memory(struct target *target,
536 uint32_t address, uint32_t size,
537 uint32_t count, uint8_t *buffer)
539 struct arm920t_common *arm920t = target_to_arm920(target);
541 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
542 address, size, count, buffer);
545 static int arm920t_write_phys_memory(struct target *target,
546 uint32_t address, uint32_t size,
547 uint32_t count, uint8_t *buffer)
549 struct arm920t_common *arm920t = target_to_arm920(target);
551 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
552 address, size, count, buffer);
556 /** Writes a buffer, in the specified word size, with current MMU settings. */
557 int arm920t_write_memory(struct target *target, uint32_t address,
558 uint32_t size, uint32_t count, uint8_t *buffer)
560 int retval;
561 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
562 struct arm920t_common *arm920t = target_to_arm920(target);
564 /* FIX!!!! this should be cleaned up and made much more general. The
565 * plan is to write up and test on arm920t specifically and
566 * then generalize and clean up afterwards.
568 * Also it should be moved to the callbacks that handle breakpoints
569 * specifically and not the generic memory write fn's. See XScale code.
571 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
572 ((size==2) || (size==4)))
574 /* special case the handling of single word writes to
575 * bypass MMU, to allow implementation of breakpoints
576 * in memory marked read only
577 * by MMU
579 uint32_t cb;
580 uint32_t pa;
583 * We need physical address and cb
585 retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
586 address, &cb, &pa);
587 if (retval != ERROR_OK)
588 return retval;
590 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
592 if (cb & 0x1)
594 LOG_DEBUG("D-Cache buffered, "
595 "drain write buffer");
597 * Buffered ?
598 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
601 retval = arm920t_write_cp15_interpreted(target,
602 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
603 0x0, 0);
604 if (retval != ERROR_OK)
605 return retval;
608 if (cb == 0x3)
611 * Write back memory ? -> clean cache
613 * There is no way to clean cache lines using
614 * cp15 scan chain, so copy the full cache
615 * line from cache to physical memory.
617 uint8_t data[32];
619 LOG_DEBUG("D-Cache in 'write back' mode, "
620 "flush cache line");
622 retval = target_read_memory(target,
623 address & cache_mask, 1,
624 sizeof(data), &data[0]);
625 if (retval != ERROR_OK)
626 return retval;
628 retval = armv4_5_mmu_write_physical(target,
629 &arm920t->armv4_5_mmu,
630 pa & cache_mask, 1,
631 sizeof(data), &data[0]);
632 if (retval != ERROR_OK)
633 return retval;
636 /* Cached ? */
637 if (cb & 0x2)
640 * Cached ? -> Invalidate data cache using MVA
642 * MCR p15,0,Rd,c7,c6,1
644 LOG_DEBUG("D-Cache enabled, "
645 "invalidate cache line");
647 retval = arm920t_write_cp15_interpreted(target,
648 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
649 address & cache_mask);
650 if (retval != ERROR_OK)
651 return retval;
655 /* write directly to physical memory,
656 * bypassing any read only MMU bits, etc.
658 retval = armv4_5_mmu_write_physical(target,
659 &arm920t->armv4_5_mmu, pa, size,
660 count, buffer);
661 if (retval != ERROR_OK)
662 return retval;
663 } else
665 if ((retval = arm7_9_write_memory(target, address,
666 size, count, buffer)) != ERROR_OK)
667 return retval;
670 /* If ICache is enabled, we have to invalidate affected ICache lines
671 * the DCache is forced to write-through,
672 * so we don't have to clean it here
674 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
676 if (count <= 1)
678 /* invalidate ICache single entry with MVA
679 * mcr 15, 0, r0, cr7, cr5, {1}
681 LOG_DEBUG("I-Cache enabled, "
682 "invalidating affected I-Cache line");
683 retval = arm920t_write_cp15_interpreted(target,
684 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
685 0x0, address & cache_mask);
686 if (retval != ERROR_OK)
687 return retval;
689 else
691 /* invalidate ICache
692 * mcr 15, 0, r0, cr7, cr5, {0}
694 retval = arm920t_write_cp15_interpreted(target,
695 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
696 0x0, 0x0);
697 if (retval != ERROR_OK)
698 return retval;
702 return ERROR_OK;
705 // EXPORTED to FA256
706 int arm920t_soft_reset_halt(struct target *target)
708 int retval = ERROR_OK;
709 struct arm920t_common *arm920t = target_to_arm920(target);
710 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
711 struct arm *armv4_5 = &arm7_9->armv4_5_common;
712 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
714 if ((retval = target_halt(target)) != ERROR_OK)
716 return retval;
719 long long then = timeval_ms();
720 int timeout;
721 while (!(timeout = ((timeval_ms()-then) > 1000)))
723 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)
724 == 0)
726 embeddedice_read_reg(dbg_stat);
727 if ((retval = jtag_execute_queue()) != ERROR_OK)
729 return retval;
731 } else
733 break;
735 if (debug_level >= 3)
737 /* do not eat all CPU, time out after 1 se*/
738 alive_sleep(100);
739 } else
741 keep_alive();
744 if (timeout)
746 LOG_ERROR("Failed to halt CPU after 1 sec");
747 return ERROR_TARGET_TIMEOUT;
750 target->state = TARGET_HALTED;
752 /* SVC, ARM state, IRQ and FIQ disabled */
753 uint32_t cpsr;
755 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
756 cpsr &= ~0xff;
757 cpsr |= 0xd3;
758 arm_set_cpsr(armv4_5, cpsr);
759 armv4_5->cpsr->dirty = 1;
761 /* start fetching from 0x0 */
762 buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
763 armv4_5->pc->dirty = 1;
764 armv4_5->pc->valid = 1;
766 arm920t_disable_mmu_caches(target, 1, 1, 1);
767 arm920t->armv4_5_mmu.mmu_enabled = 0;
768 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
769 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
771 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
774 /* FIXME remove forward decls */
775 static int arm920t_mrc(struct target *target, int cpnum,
776 uint32_t op1, uint32_t op2,
777 uint32_t CRn, uint32_t CRm,
778 uint32_t *value);
779 static int arm920t_mcr(struct target *target, int cpnum,
780 uint32_t op1, uint32_t op2,
781 uint32_t CRn, uint32_t CRm,
782 uint32_t value);
784 static int arm920t_init_arch_info(struct target *target,
785 struct arm920t_common *arm920t, struct jtag_tap *tap)
787 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
789 arm7_9->armv4_5_common.mrc = arm920t_mrc;
790 arm7_9->armv4_5_common.mcr = arm920t_mcr;
792 /* initialize arm7/arm9 specific info (including armv4_5) */
793 arm9tdmi_init_arch_info(target, arm7_9, tap);
795 arm920t->common_magic = ARM920T_COMMON_MAGIC;
797 arm7_9->post_debug_entry = arm920t_post_debug_entry;
798 arm7_9->pre_restore_context = arm920t_pre_restore_context;
800 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
801 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
802 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
803 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
804 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
805 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
806 arm920t->armv4_5_mmu.has_tiny_pages = 1;
807 arm920t->armv4_5_mmu.mmu_enabled = 0;
809 /* disabling linefills leads to lockups, so keep them enabled for now
810 * this doesn't affect correctness, but might affect timing issues, if
811 * important data is evicted from the cache during the debug session
812 * */
813 arm920t->preserve_cache = 0;
815 /* override hw single-step capability from ARM9TDMI */
816 arm7_9->has_single_step = 1;
818 return ERROR_OK;
821 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
823 struct arm920t_common *arm920t;
825 arm920t = calloc(1,sizeof(struct arm920t_common));
826 return arm920t_init_arch_info(target, arm920t, target->tap);
829 COMMAND_HANDLER(arm920t_handle_read_cache_command)
831 int retval = ERROR_OK;
832 struct target *target = get_current_target(CMD_CTX);
833 struct arm920t_common *arm920t = target_to_arm920(target);
834 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
835 struct arm *armv4_5 = &arm7_9->armv4_5_common;
836 uint32_t cp15c15;
837 uint32_t cp15_ctrl, cp15_ctrl_saved;
838 uint32_t regs[16];
839 uint32_t *regs_p[16];
840 uint32_t C15_C_D_Ind, C15_C_I_Ind;
841 int i;
842 FILE *output;
843 struct arm920t_cache_line d_cache[8][64], i_cache[8][64];
844 int segment, index;
845 struct reg *r;
847 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
848 if (retval != ERROR_OK)
849 return retval;
851 if (CMD_ARGC != 1)
853 command_print(CMD_CTX, "usage: arm920t read_cache <filename>");
854 return ERROR_OK;
857 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
859 LOG_DEBUG("error opening cache content file");
860 return ERROR_OK;
863 for (i = 0; i < 16; i++)
864 regs_p[i] = &regs[i];
866 /* disable MMU and Caches */
867 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
868 if ((retval = jtag_execute_queue()) != ERROR_OK)
870 return retval;
872 cp15_ctrl_saved = cp15_ctrl;
873 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
874 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
875 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
877 /* read CP15 test state register */
878 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
879 jtag_execute_queue();
881 /* read DCache content */
882 fprintf(output, "DCache:\n");
884 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
885 for (segment = 0;
886 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
887 segment++)
889 fprintf(output, "\nsegment: %i\n----------", segment);
891 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
892 regs[0] = 0x0 | (segment << 5);
893 arm9tdmi_write_core_regs(target, 0x1, regs);
895 /* set interpret mode */
896 cp15c15 |= 0x1;
897 arm920t_write_cp15_physical(target,
898 CP15PHYS_TESTSTATE, cp15c15);
900 /* D CAM Read, loads current victim into C15.C.D.Ind */
901 arm920t_execute_cp15(target,
902 ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
904 /* read current victim */
905 arm920t_read_cp15_physical(target,
906 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
908 /* clear interpret mode */
909 cp15c15 &= ~0x1;
910 arm920t_write_cp15_physical(target,
911 CP15PHYS_TESTSTATE, cp15c15);
913 for (index = 0; index < 64; index++)
915 /* Ra:
916 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
918 regs[0] = 0x0 | (segment << 5) | (index << 26);
919 arm9tdmi_write_core_regs(target, 0x1, regs);
921 /* set interpret mode */
922 cp15c15 |= 0x1;
923 arm920t_write_cp15_physical(target,
924 CP15PHYS_TESTSTATE, cp15c15);
926 /* Write DCache victim */
927 arm920t_execute_cp15(target,
928 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
930 /* Read D RAM */
931 arm920t_execute_cp15(target,
932 ARMV4_5_MCR(15,2,0,15,10,2),
933 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
935 /* Read D CAM */
936 arm920t_execute_cp15(target,
937 ARMV4_5_MCR(15,2,0,15,6,2),
938 ARMV4_5_LDR(9, 0));
940 /* clear interpret mode */
941 cp15c15 &= ~0x1;
942 arm920t_write_cp15_physical(target,
943 CP15PHYS_TESTSTATE, cp15c15);
945 /* read D RAM and CAM content */
946 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
947 if ((retval = jtag_execute_queue()) != ERROR_OK)
949 return retval;
952 d_cache[segment][index].cam = regs[9];
954 /* mask LFSR[6] */
955 regs[9] &= 0xfffffffe;
956 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
957 PRIx32 ", content (%s):\n",
958 segment, index, regs[9],
959 (regs[9] & 0x10) ? "valid" : "invalid");
961 for (i = 1; i < 9; i++)
963 d_cache[segment][index].data[i] = regs[i];
964 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
965 i-1, regs[i]);
970 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
971 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
972 arm9tdmi_write_core_regs(target, 0x1, regs);
974 /* set interpret mode */
975 cp15c15 |= 0x1;
976 arm920t_write_cp15_physical(target,
977 CP15PHYS_TESTSTATE, cp15c15);
979 /* Write DCache victim */
980 arm920t_execute_cp15(target,
981 ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
983 /* clear interpret mode */
984 cp15c15 &= ~0x1;
985 arm920t_write_cp15_physical(target,
986 CP15PHYS_TESTSTATE, cp15c15);
989 /* read ICache content */
990 fprintf(output, "ICache:\n");
992 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
993 for (segment = 0;
994 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
995 segment++)
997 fprintf(output, "segment: %i\n----------", segment);
999 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1000 regs[0] = 0x0 | (segment << 5);
1001 arm9tdmi_write_core_regs(target, 0x1, regs);
1003 /* set interpret mode */
1004 cp15c15 |= 0x1;
1005 arm920t_write_cp15_physical(target,
1006 CP15PHYS_TESTSTATE, cp15c15);
1008 /* I CAM Read, loads current victim into C15.C.I.Ind */
1009 arm920t_execute_cp15(target,
1010 ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
1012 /* read current victim */
1013 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1014 &C15_C_I_Ind);
1016 /* clear interpret mode */
1017 cp15c15 &= ~0x1;
1018 arm920t_write_cp15_physical(target,
1019 CP15PHYS_TESTSTATE, cp15c15);
1021 for (index = 0; index < 64; index++)
1023 /* Ra:
1024 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1026 regs[0] = 0x0 | (segment << 5) | (index << 26);
1027 arm9tdmi_write_core_regs(target, 0x1, regs);
1029 /* set interpret mode */
1030 cp15c15 |= 0x1;
1031 arm920t_write_cp15_physical(target,
1032 CP15PHYS_TESTSTATE, cp15c15);
1034 /* Write ICache victim */
1035 arm920t_execute_cp15(target,
1036 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1038 /* Read I RAM */
1039 arm920t_execute_cp15(target,
1040 ARMV4_5_MCR(15,2,0,15,9,2),
1041 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1043 /* Read I CAM */
1044 arm920t_execute_cp15(target,
1045 ARMV4_5_MCR(15,2,0,15,5,2),
1046 ARMV4_5_LDR(9, 0));
1048 /* clear interpret mode */
1049 cp15c15 &= ~0x1;
1050 arm920t_write_cp15_physical(target,
1051 CP15PHYS_TESTSTATE, cp15c15);
1053 /* read I RAM and CAM content */
1054 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1055 if ((retval = jtag_execute_queue()) != ERROR_OK)
1057 return retval;
1060 i_cache[segment][index].cam = regs[9];
1062 /* mask LFSR[6] */
1063 regs[9] &= 0xfffffffe;
1064 fprintf(output, "\nsegment: %i, index: %i, "
1065 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1066 segment, index, regs[9],
1067 (regs[9] & 0x10) ? "valid" : "invalid");
1069 for (i = 1; i < 9; i++)
1071 i_cache[segment][index].data[i] = regs[i];
1072 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1073 i-1, regs[i]);
1077 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1078 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1079 arm9tdmi_write_core_regs(target, 0x1, regs);
1081 /* set interpret mode */
1082 cp15c15 |= 0x1;
1083 arm920t_write_cp15_physical(target,
1084 CP15PHYS_TESTSTATE, cp15c15);
1086 /* Write ICache victim */
1087 arm920t_execute_cp15(target,
1088 ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
1090 /* clear interpret mode */
1091 cp15c15 &= ~0x1;
1092 arm920t_write_cp15_physical(target,
1093 CP15PHYS_TESTSTATE, cp15c15);
1096 /* restore CP15 MMU and Cache settings */
1097 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1099 command_print(CMD_CTX, "cache content successfully output to %s",
1100 CMD_ARGV[0]);
1102 fclose(output);
1104 if (!is_arm_mode(armv4_5->core_mode))
1105 return ERROR_FAIL;
1107 /* force writeback of the valid data */
1108 r = armv4_5->core_cache->reg_list;
1109 r[0].dirty = r[0].valid;
1110 r[1].dirty = r[1].valid;
1111 r[2].dirty = r[2].valid;
1112 r[3].dirty = r[3].valid;
1113 r[4].dirty = r[4].valid;
1114 r[5].dirty = r[5].valid;
1115 r[6].dirty = r[6].valid;
1116 r[7].dirty = r[7].valid;
1118 r = arm_reg_current(armv4_5, 8);
1119 r->dirty = r->valid;
1121 r = arm_reg_current(armv4_5, 9);
1122 r->dirty = r->valid;
1124 return ERROR_OK;
1127 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1129 int retval = ERROR_OK;
1130 struct target *target = get_current_target(CMD_CTX);
1131 struct arm920t_common *arm920t = target_to_arm920(target);
1132 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1133 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1134 uint32_t cp15c15;
1135 uint32_t cp15_ctrl, cp15_ctrl_saved;
1136 uint32_t regs[16];
1137 uint32_t *regs_p[16];
1138 int i;
1139 FILE *output;
1140 uint32_t Dlockdown, Ilockdown;
1141 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1142 int victim;
1143 struct reg *r;
1145 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1146 if (retval != ERROR_OK)
1147 return retval;
1149 if (CMD_ARGC != 1)
1151 command_print(CMD_CTX, "usage: arm920t read_mmu <filename>");
1152 return ERROR_OK;
1155 if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
1157 LOG_DEBUG("error opening mmu content file");
1158 return ERROR_OK;
1161 for (i = 0; i < 16; i++)
1162 regs_p[i] = &regs[i];
1164 /* disable MMU and Caches */
1165 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1166 if ((retval = jtag_execute_queue()) != ERROR_OK)
1168 return retval;
1170 cp15_ctrl_saved = cp15_ctrl;
1171 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1172 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1173 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1175 /* read CP15 test state register */
1176 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1177 if ((retval = jtag_execute_queue()) != ERROR_OK)
1179 return retval;
1182 /* prepare reading D TLB content
1183 * */
1185 /* set interpret mode */
1186 cp15c15 |= 0x1;
1187 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1189 /* Read D TLB lockdown */
1190 arm920t_execute_cp15(target,
1191 ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
1193 /* clear interpret mode */
1194 cp15c15 &= ~0x1;
1195 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1197 /* read D TLB lockdown stored to r1 */
1198 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1199 if ((retval = jtag_execute_queue()) != ERROR_OK)
1201 return retval;
1203 Dlockdown = regs[1];
1205 for (victim = 0; victim < 64; victim += 8)
1207 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1208 * base remains unchanged, victim goes through entries 0 to 63
1210 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1211 arm9tdmi_write_core_regs(target, 0x2, regs);
1213 /* set interpret mode */
1214 cp15c15 |= 0x1;
1215 arm920t_write_cp15_physical(target,
1216 CP15PHYS_TESTSTATE, cp15c15);
1218 /* Write D TLB lockdown */
1219 arm920t_execute_cp15(target,
1220 ARMV4_5_MCR(15,0,0,10,0,0),
1221 ARMV4_5_STR(1, 0));
1223 /* Read D TLB CAM */
1224 arm920t_execute_cp15(target,
1225 ARMV4_5_MCR(15,4,0,15,6,4),
1226 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1228 /* clear interpret mode */
1229 cp15c15 &= ~0x1;
1230 arm920t_write_cp15_physical(target,
1231 CP15PHYS_TESTSTATE, cp15c15);
1233 /* read D TLB CAM content stored to r2-r9 */
1234 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1235 if ((retval = jtag_execute_queue()) != ERROR_OK)
1237 return retval;
1240 for (i = 0; i < 8; i++)
1241 d_tlb[victim + i].cam = regs[i + 2];
1244 for (victim = 0; victim < 64; victim++)
1246 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1247 * base remains unchanged, victim goes through entries 0 to 63
1249 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1250 arm9tdmi_write_core_regs(target, 0x2, regs);
1252 /* set interpret mode */
1253 cp15c15 |= 0x1;
1254 arm920t_write_cp15_physical(target,
1255 CP15PHYS_TESTSTATE, cp15c15);
1257 /* Write D TLB lockdown */
1258 arm920t_execute_cp15(target,
1259 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1261 /* Read D TLB RAM1 */
1262 arm920t_execute_cp15(target,
1263 ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
1265 /* Read D TLB RAM2 */
1266 arm920t_execute_cp15(target,
1267 ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
1269 /* clear interpret mode */
1270 cp15c15 &= ~0x1;
1271 arm920t_write_cp15_physical(target,
1272 CP15PHYS_TESTSTATE, cp15c15);
1274 /* read D TLB RAM content stored to r2 and r3 */
1275 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1276 if ((retval = jtag_execute_queue()) != ERROR_OK)
1278 return retval;
1281 d_tlb[victim].ram1 = regs[2];
1282 d_tlb[victim].ram2 = regs[3];
1285 /* restore D TLB lockdown */
1286 regs[1] = Dlockdown;
1287 arm9tdmi_write_core_regs(target, 0x2, regs);
1289 /* Write D TLB lockdown */
1290 arm920t_execute_cp15(target,
1291 ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
1293 /* prepare reading I TLB content
1294 * */
1296 /* set interpret mode */
1297 cp15c15 |= 0x1;
1298 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1300 /* Read I TLB lockdown */
1301 arm920t_execute_cp15(target,
1302 ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
1304 /* clear interpret mode */
1305 cp15c15 &= ~0x1;
1306 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1308 /* read I TLB lockdown stored to r1 */
1309 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1310 if ((retval = jtag_execute_queue()) != ERROR_OK)
1312 return retval;
1314 Ilockdown = regs[1];
1316 for (victim = 0; victim < 64; victim += 8)
1318 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1319 * base remains unchanged, victim goes through entries 0 to 63
1321 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1322 arm9tdmi_write_core_regs(target, 0x2, regs);
1324 /* set interpret mode */
1325 cp15c15 |= 0x1;
1326 arm920t_write_cp15_physical(target,
1327 CP15PHYS_TESTSTATE, cp15c15);
1329 /* Write I TLB lockdown */
1330 arm920t_execute_cp15(target,
1331 ARMV4_5_MCR(15,0,0,10,0,1),
1332 ARMV4_5_STR(1, 0));
1334 /* Read I TLB CAM */
1335 arm920t_execute_cp15(target,
1336 ARMV4_5_MCR(15,4,0,15,5,4),
1337 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1339 /* clear interpret mode */
1340 cp15c15 &= ~0x1;
1341 arm920t_write_cp15_physical(target,
1342 CP15PHYS_TESTSTATE, cp15c15);
1344 /* read I TLB CAM content stored to r2-r9 */
1345 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1346 if ((retval = jtag_execute_queue()) != ERROR_OK)
1348 return retval;
1351 for (i = 0; i < 8; i++)
1352 i_tlb[i + victim].cam = regs[i + 2];
1355 for (victim = 0; victim < 64; victim++)
1357 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1358 * base remains unchanged, victim goes through entries 0 to 63
1360 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1361 arm9tdmi_write_core_regs(target, 0x2, regs);
1363 /* set interpret mode */
1364 cp15c15 |= 0x1;
1365 arm920t_write_cp15_physical(target,
1366 CP15PHYS_TESTSTATE, cp15c15);
1368 /* Write I TLB lockdown */
1369 arm920t_execute_cp15(target,
1370 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1372 /* Read I TLB RAM1 */
1373 arm920t_execute_cp15(target,
1374 ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
1376 /* Read I TLB RAM2 */
1377 arm920t_execute_cp15(target,
1378 ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
1380 /* clear interpret mode */
1381 cp15c15 &= ~0x1;
1382 arm920t_write_cp15_physical(target,
1383 CP15PHYS_TESTSTATE, cp15c15);
1385 /* read I TLB RAM content stored to r2 and r3 */
1386 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1387 if ((retval = jtag_execute_queue()) != ERROR_OK)
1389 return retval;
1392 i_tlb[victim].ram1 = regs[2];
1393 i_tlb[victim].ram2 = regs[3];
1396 /* restore I TLB lockdown */
1397 regs[1] = Ilockdown;
1398 arm9tdmi_write_core_regs(target, 0x2, regs);
1400 /* Write I TLB lockdown */
1401 arm920t_execute_cp15(target,
1402 ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
1404 /* restore CP15 MMU and Cache settings */
1405 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1407 /* output data to file */
1408 fprintf(output, "D TLB content:\n");
1409 for (i = 0; i < 64; i++)
1411 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1412 " 0x%8.8" PRIx32 " %s\n",
1413 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1414 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1417 fprintf(output, "\n\nI TLB content:\n");
1418 for (i = 0; i < 64; i++)
1420 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1421 " 0x%8.8" PRIx32 " %s\n",
1422 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1423 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1426 command_print(CMD_CTX, "mmu content successfully output to %s",
1427 CMD_ARGV[0]);
1429 fclose(output);
1431 if (!is_arm_mode(armv4_5->core_mode))
1432 return ERROR_FAIL;
1434 /* force writeback of the valid data */
1435 r = armv4_5->core_cache->reg_list;
1436 r[0].dirty = r[0].valid;
1437 r[1].dirty = r[1].valid;
1438 r[2].dirty = r[2].valid;
1439 r[3].dirty = r[3].valid;
1440 r[4].dirty = r[4].valid;
1441 r[5].dirty = r[5].valid;
1442 r[6].dirty = r[6].valid;
1443 r[7].dirty = r[7].valid;
1445 r = arm_reg_current(armv4_5, 8);
1446 r->dirty = r->valid;
1448 r = arm_reg_current(armv4_5, 9);
1449 r->dirty = r->valid;
1451 return ERROR_OK;
1454 COMMAND_HANDLER(arm920t_handle_cp15_command)
1456 int retval;
1457 struct target *target = get_current_target(CMD_CTX);
1458 struct arm920t_common *arm920t = target_to_arm920(target);
1460 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1461 if (retval != ERROR_OK)
1462 return retval;
1464 if (target->state != TARGET_HALTED)
1466 command_print(CMD_CTX, "target must be stopped for "
1467 "\"%s\" command", CMD_NAME);
1468 return ERROR_OK;
1471 /* one argument, read a register.
1472 * two arguments, write it.
1474 if (CMD_ARGC >= 1)
1476 int address;
1477 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1479 if (CMD_ARGC == 1)
1481 uint32_t value;
1482 if ((retval = arm920t_read_cp15_physical(target,
1483 address, &value)) != ERROR_OK)
1485 command_print(CMD_CTX,
1486 "couldn't access reg %i", address);
1487 return ERROR_OK;
1489 if ((retval = jtag_execute_queue()) != ERROR_OK)
1491 return retval;
1494 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1495 address, value);
1497 else if (CMD_ARGC == 2)
1499 uint32_t value;
1500 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1501 retval = arm920t_write_cp15_physical(target,
1502 address, value);
1503 if (retval != ERROR_OK)
1505 command_print(CMD_CTX,
1506 "couldn't access reg %i", address);
1507 /* REVISIT why lie? "return retval"? */
1508 return ERROR_OK;
1510 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1511 address, value);
1515 return ERROR_OK;
1518 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1520 int retval;
1521 struct target *target = get_current_target(CMD_CTX);
1522 struct arm920t_common *arm920t = target_to_arm920(target);
1524 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1525 if (retval != ERROR_OK)
1526 return retval;
1529 if (target->state != TARGET_HALTED)
1531 command_print(CMD_CTX, "target must be stopped for "
1532 "\"%s\" command", CMD_NAME);
1533 return ERROR_OK;
1536 /* one argument, read a register.
1537 * two arguments, write it.
1539 if (CMD_ARGC >= 1)
1541 uint32_t opcode;
1542 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1544 if (CMD_ARGC == 1)
1546 uint32_t value;
1547 retval = arm920t_read_cp15_interpreted(target,
1548 opcode, 0x0, &value);
1549 if (retval != ERROR_OK)
1551 command_print(CMD_CTX,
1552 "couldn't execute %8.8" PRIx32,
1553 opcode);
1554 /* REVISIT why lie? "return retval"? */
1555 return ERROR_OK;
1558 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1559 opcode, value);
1561 else if (CMD_ARGC == 2)
1563 uint32_t value;
1564 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1565 retval = arm920t_write_cp15_interpreted(target,
1566 opcode, value, 0);
1567 if (retval != ERROR_OK)
1569 command_print(CMD_CTX,
1570 "couldn't execute %8.8" PRIx32,
1571 opcode);
1572 /* REVISIT why lie? "return retval"? */
1573 return ERROR_OK;
1575 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1576 opcode, value);
1578 else if (CMD_ARGC == 3)
1580 uint32_t value;
1581 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1582 uint32_t address;
1583 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1584 retval = arm920t_write_cp15_interpreted(target,
1585 opcode, value, address);
1586 if (retval != ERROR_OK)
1588 command_print(CMD_CTX,
1589 "couldn't execute %8.8" PRIx32, opcode);
1590 /* REVISIT why lie? "return retval"? */
1591 return ERROR_OK;
1593 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1594 " %8.8" PRIx32, opcode, value, address);
1597 else
1599 command_print(CMD_CTX,
1600 "usage: arm920t cp15i <opcode> [value] [address]");
1603 return ERROR_OK;
1606 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1608 int retval;
1609 struct target *target = get_current_target(CMD_CTX);
1610 struct arm920t_common *arm920t = target_to_arm920(target);
1612 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1613 if (retval != ERROR_OK)
1614 return retval;
1616 return armv4_5_handle_cache_info_command(CMD_CTX,
1617 &arm920t->armv4_5_mmu.armv4_5_cache);
1621 static int arm920t_mrc(struct target *target, int cpnum,
1622 uint32_t op1, uint32_t op2,
1623 uint32_t CRn, uint32_t CRm,
1624 uint32_t *value)
1626 if (cpnum!=15)
1628 LOG_ERROR("Only cp15 is supported");
1629 return ERROR_FAIL;
1632 /* read "to" r0 */
1633 return arm920t_read_cp15_interpreted(target,
1634 ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1635 0, value);
1638 static int arm920t_mcr(struct target *target, int cpnum,
1639 uint32_t op1, uint32_t op2,
1640 uint32_t CRn, uint32_t CRm,
1641 uint32_t value)
1643 if (cpnum!=15)
1645 LOG_ERROR("Only cp15 is supported");
1646 return ERROR_FAIL;
1649 /* write "from" r0 */
1650 return arm920t_write_cp15_interpreted(target,
1651 ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1652 0, value);
1655 static const struct command_registration arm920t_exec_command_handlers[] = {
1657 .name = "cp15",
1658 .handler = arm920t_handle_cp15_command,
1659 .mode = COMMAND_EXEC,
1660 .help = "display/modify cp15 register",
1661 .usage = "regnum [value]",
1664 .name = "cp15i",
1665 .handler = arm920t_handle_cp15i_command,
1666 .mode = COMMAND_EXEC,
1667 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1668 .help = "display/modify cp15 register using ARM opcode"
1669 " (DEPRECATED)",
1670 .usage = "instruction [value [address]]",
1673 .name = "cache_info",
1674 .handler = arm920t_handle_cache_info_command,
1675 .mode = COMMAND_EXEC,
1676 .help = "display information about target caches",
1679 .name = "read_cache",
1680 .handler = arm920t_handle_read_cache_command,
1681 .mode = COMMAND_EXEC,
1682 .help = "dump I/D cache content to file",
1683 .usage = "filename",
1686 .name = "read_mmu",
1687 .handler = arm920t_handle_read_mmu_command,
1688 .mode = COMMAND_EXEC,
1689 .help = "dump I/D mmu content to file",
1690 .usage = "filename",
1692 COMMAND_REGISTRATION_DONE
1694 const struct command_registration arm920t_command_handlers[] = {
1696 .chain = arm9tdmi_command_handlers,
1699 .name = "arm920t",
1700 .mode = COMMAND_ANY,
1701 .help = "arm920t command group",
1702 .chain = arm920t_exec_command_handlers,
1704 COMMAND_REGISTRATION_DONE
1707 /** Holds methods for ARM920 targets. */
1708 struct target_type arm920t_target =
1710 .name = "arm920t",
1712 .poll = arm7_9_poll,
1713 .arch_state = arm920t_arch_state,
1715 .target_request_data = arm7_9_target_request_data,
1717 .halt = arm7_9_halt,
1718 .resume = arm7_9_resume,
1719 .step = arm7_9_step,
1721 .assert_reset = arm7_9_assert_reset,
1722 .deassert_reset = arm7_9_deassert_reset,
1723 .soft_reset_halt = arm920t_soft_reset_halt,
1725 .get_gdb_reg_list = arm_get_gdb_reg_list,
1727 .read_memory = arm920t_read_memory,
1728 .write_memory = arm920t_write_memory,
1729 .read_phys_memory = arm920t_read_phys_memory,
1730 .write_phys_memory = arm920t_write_phys_memory,
1731 .mmu = arm920_mmu,
1732 .virt2phys = arm920_virt2phys,
1734 .bulk_write_memory = arm7_9_bulk_write_memory,
1736 .checksum_memory = arm_checksum_memory,
1737 .blank_check_memory = arm_blank_check_memory,
1739 .run_algorithm = armv4_5_run_algorithm,
1741 .add_breakpoint = arm7_9_add_breakpoint,
1742 .remove_breakpoint = arm7_9_remove_breakpoint,
1743 .add_watchpoint = arm7_9_add_watchpoint,
1744 .remove_watchpoint = arm7_9_remove_watchpoint,
1746 .commands = arm920t_command_handlers,
1747 .target_create = arm920t_target_create,
1748 .init_target = arm9tdmi_init_target,
1749 .examine = arm7_9_examine,
1750 .check_reset = arm7_9_check_reset,