TARGET: review scope of functions
[openocd/dnglaze.git] / src / target / target.c
blobf1b292ae022e191051b3f02a65b662df476d3109
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm926ejs_target;
62 extern struct target_type fa526_target;
63 extern struct target_type feroceon_target;
64 extern struct target_type dragonite_target;
65 extern struct target_type xscale_target;
66 extern struct target_type cortexm3_target;
67 extern struct target_type cortexa8_target;
68 extern struct target_type arm11_target;
69 extern struct target_type mips_m4k_target;
70 extern struct target_type avr_target;
71 extern struct target_type dsp563xx_target;
72 extern struct target_type testee_target;
74 static struct target_type *target_types[] =
76 &arm7tdmi_target,
77 &arm9tdmi_target,
78 &arm920t_target,
79 &arm720t_target,
80 &arm966e_target,
81 &arm926ejs_target,
82 &fa526_target,
83 &feroceon_target,
84 &dragonite_target,
85 &xscale_target,
86 &cortexm3_target,
87 &cortexa8_target,
88 &arm11_target,
89 &mips_m4k_target,
90 &avr_target,
91 &dsp563xx_target,
92 &testee_target,
93 NULL,
96 struct target *all_targets = NULL;
97 static struct target_event_callback *target_event_callbacks = NULL;
98 static struct target_timer_callback *target_timer_callbacks = NULL;
100 static const Jim_Nvp nvp_assert[] = {
101 { .name = "assert", NVP_ASSERT },
102 { .name = "deassert", NVP_DEASSERT },
103 { .name = "T", NVP_ASSERT },
104 { .name = "F", NVP_DEASSERT },
105 { .name = "t", NVP_ASSERT },
106 { .name = "f", NVP_DEASSERT },
107 { .name = NULL, .value = -1 }
110 static const Jim_Nvp nvp_error_target[] = {
111 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
112 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
113 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
114 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
115 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
116 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
117 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
118 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
119 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
120 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
121 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
122 { .value = -1, .name = NULL }
125 static const char *target_strerror_safe(int err)
127 const Jim_Nvp *n;
129 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
130 if (n->name == NULL) {
131 return "unknown";
132 } else {
133 return n->name;
137 static const Jim_Nvp nvp_target_event[] = {
138 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
139 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
141 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
142 { .value = TARGET_EVENT_HALTED, .name = "halted" },
143 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
144 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
145 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
147 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
148 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
150 /* historical name */
152 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
154 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
155 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
156 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
157 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
158 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
159 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
160 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
161 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
162 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
163 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
164 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
166 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
167 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
169 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
170 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
172 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
173 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
175 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
176 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
178 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
179 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
181 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
182 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
183 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
185 { .name = NULL, .value = -1 }
188 static const Jim_Nvp nvp_target_state[] = {
189 { .name = "unknown", .value = TARGET_UNKNOWN },
190 { .name = "running", .value = TARGET_RUNNING },
191 { .name = "halted", .value = TARGET_HALTED },
192 { .name = "reset", .value = TARGET_RESET },
193 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
194 { .name = NULL, .value = -1 },
197 static const Jim_Nvp nvp_target_debug_reason [] = {
198 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
199 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
200 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
201 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
202 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
203 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
204 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
205 { .name = NULL, .value = -1 },
208 static const Jim_Nvp nvp_target_endian[] = {
209 { .name = "big", .value = TARGET_BIG_ENDIAN },
210 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
211 { .name = "be", .value = TARGET_BIG_ENDIAN },
212 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
213 { .name = NULL, .value = -1 },
216 static const Jim_Nvp nvp_reset_modes[] = {
217 { .name = "unknown", .value = RESET_UNKNOWN },
218 { .name = "run" , .value = RESET_RUN },
219 { .name = "halt" , .value = RESET_HALT },
220 { .name = "init" , .value = RESET_INIT },
221 { .name = NULL , .value = -1 },
224 const char *debug_reason_name(struct target *t)
226 const char *cp;
228 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
229 t->debug_reason)->name;
230 if (!cp) {
231 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
232 cp = "(*BUG*unknown*BUG*)";
234 return cp;
237 const char *
238 target_state_name( struct target *t )
240 const char *cp;
241 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
242 if( !cp ){
243 LOG_ERROR("Invalid target state: %d", (int)(t->state));
244 cp = "(*BUG*unknown*BUG*)";
246 return cp;
249 /* determine the number of the new target */
250 static int new_target_number(void)
252 struct target *t;
253 int x;
255 /* number is 0 based */
256 x = -1;
257 t = all_targets;
258 while (t) {
259 if (x < t->target_number) {
260 x = t->target_number;
262 t = t->next;
264 return x + 1;
267 /* read a uint32_t from a buffer in target memory endianness */
268 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
270 if (target->endianness == TARGET_LITTLE_ENDIAN)
271 return le_to_h_u32(buffer);
272 else
273 return be_to_h_u32(buffer);
276 /* read a uint16_t from a buffer in target memory endianness */
277 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
279 if (target->endianness == TARGET_LITTLE_ENDIAN)
280 return le_to_h_u16(buffer);
281 else
282 return be_to_h_u16(buffer);
285 /* read a uint8_t from a buffer in target memory endianness */
286 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
288 return *buffer & 0x0ff;
291 /* write a uint32_t to a buffer in target memory endianness */
292 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
294 if (target->endianness == TARGET_LITTLE_ENDIAN)
295 h_u32_to_le(buffer, value);
296 else
297 h_u32_to_be(buffer, value);
300 /* write a uint16_t to a buffer in target memory endianness */
301 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
303 if (target->endianness == TARGET_LITTLE_ENDIAN)
304 h_u16_to_le(buffer, value);
305 else
306 h_u16_to_be(buffer, value);
309 /* write a uint8_t to a buffer in target memory endianness */
310 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
312 *buffer = value;
315 /* return a pointer to a configured target; id is name or number */
316 struct target *get_target(const char *id)
318 struct target *target;
320 /* try as tcltarget name */
321 for (target = all_targets; target; target = target->next) {
322 if (target->cmd_name == NULL)
323 continue;
324 if (strcmp(id, target->cmd_name) == 0)
325 return target;
328 /* It's OK to remove this fallback sometime after August 2010 or so */
330 /* no match, try as number */
331 unsigned num;
332 if (parse_uint(id, &num) != ERROR_OK)
333 return NULL;
335 for (target = all_targets; target; target = target->next) {
336 if (target->target_number == (int)num) {
337 LOG_WARNING("use '%s' as target identifier, not '%u'",
338 target->cmd_name, num);
339 return target;
343 return NULL;
346 /* returns a pointer to the n-th configured target */
347 static struct target *get_target_by_num(int num)
349 struct target *target = all_targets;
351 while (target) {
352 if (target->target_number == num) {
353 return target;
355 target = target->next;
358 return NULL;
361 struct target* get_current_target(struct command_context *cmd_ctx)
363 struct target *target = get_target_by_num(cmd_ctx->current_target);
365 if (target == NULL)
367 LOG_ERROR("BUG: current_target out of bounds");
368 exit(-1);
371 return target;
374 int target_poll(struct target *target)
376 int retval;
378 /* We can't poll until after examine */
379 if (!target_was_examined(target))
381 /* Fail silently lest we pollute the log */
382 return ERROR_FAIL;
385 retval = target->type->poll(target);
386 if (retval != ERROR_OK)
387 return retval;
389 if (target->halt_issued)
391 if (target->state == TARGET_HALTED)
393 target->halt_issued = false;
394 } else
396 long long t = timeval_ms() - target->halt_issued_time;
397 if (t>1000)
399 target->halt_issued = false;
400 LOG_INFO("Halt timed out, wake up GDB.");
401 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
406 return ERROR_OK;
409 int target_halt(struct target *target)
411 int retval;
412 /* We can't poll until after examine */
413 if (!target_was_examined(target))
415 LOG_ERROR("Target not examined yet");
416 return ERROR_FAIL;
419 retval = target->type->halt(target);
420 if (retval != ERROR_OK)
421 return retval;
423 target->halt_issued = true;
424 target->halt_issued_time = timeval_ms();
426 return ERROR_OK;
430 * Make the target (re)start executing using its saved execution
431 * context (possibly with some modifications).
433 * @param target Which target should start executing.
434 * @param current True to use the target's saved program counter instead
435 * of the address parameter
436 * @param address Optionally used as the program counter.
437 * @param handle_breakpoints True iff breakpoints at the resumption PC
438 * should be skipped. (For example, maybe execution was stopped by
439 * such a breakpoint, in which case it would be counterprodutive to
440 * let it re-trigger.
441 * @param debug_execution False if all working areas allocated by OpenOCD
442 * should be released and/or restored to their original contents.
443 * (This would for example be true to run some downloaded "helper"
444 * algorithm code, which resides in one such working buffer and uses
445 * another for data storage.)
447 * @todo Resolve the ambiguity about what the "debug_execution" flag
448 * signifies. For example, Target implementations don't agree on how
449 * it relates to invalidation of the register cache, or to whether
450 * breakpoints and watchpoints should be enabled. (It would seem wrong
451 * to enable breakpoints when running downloaded "helper" algorithms
452 * (debug_execution true), since the breakpoints would be set to match
453 * target firmware being debugged, not the helper algorithm.... and
454 * enabling them could cause such helpers to malfunction (for example,
455 * by overwriting data with a breakpoint instruction. On the other
456 * hand the infrastructure for running such helpers might use this
457 * procedure but rely on hardware breakpoint to detect termination.)
459 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
461 int retval;
463 /* We can't poll until after examine */
464 if (!target_was_examined(target))
466 LOG_ERROR("Target not examined yet");
467 return ERROR_FAIL;
470 /* note that resume *must* be asynchronous. The CPU can halt before
471 * we poll. The CPU can even halt at the current PC as a result of
472 * a software breakpoint being inserted by (a bug?) the application.
474 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
475 return retval;
477 /* Invalidate any cached protect/erase/... flash status, since
478 * almost all targets will now be able modify the flash by
479 * themselves. We want flash drivers and infrastructure to
480 * be able to rely on (non-invalidated) cached state.
482 * For now we require that algorithms provided by OpenOCD are
483 * used only by code which properly maintains that cached state.
484 * state
486 * REVISIT do the same for NAND ; maybe other flash flavors too...
488 if (!target->running_alg)
489 nor_resume(target);
490 return retval;
493 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
495 char buf[100];
496 int retval;
497 Jim_Nvp *n;
498 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
499 if (n->name == NULL) {
500 LOG_ERROR("invalid reset mode");
501 return ERROR_FAIL;
504 /* disable polling during reset to make reset event scripts
505 * more predictable, i.e. dr/irscan & pathmove in events will
506 * not have JTAG operations injected into the middle of a sequence.
508 bool save_poll = jtag_poll_get_enabled();
510 jtag_poll_set_enabled(false);
512 sprintf(buf, "ocd_process_reset %s", n->name);
513 retval = Jim_Eval(cmd_ctx->interp, buf);
515 jtag_poll_set_enabled(save_poll);
517 if (retval != JIM_OK) {
518 Jim_PrintErrorMessage(cmd_ctx->interp);
519 return ERROR_FAIL;
522 /* We want any events to be processed before the prompt */
523 retval = target_call_timer_callbacks_now();
525 struct target *target;
526 for (target = all_targets; target; target = target->next) {
527 target->type->check_reset(target);
530 return retval;
533 static int identity_virt2phys(struct target *target,
534 uint32_t virtual, uint32_t *physical)
536 *physical = virtual;
537 return ERROR_OK;
540 static int no_mmu(struct target *target, int *enabled)
542 *enabled = 0;
543 return ERROR_OK;
546 static int default_examine(struct target *target)
548 target_set_examined(target);
549 return ERROR_OK;
552 /* no check by default */
553 static int default_check_reset(struct target *target)
555 return ERROR_OK;
558 int target_examine_one(struct target *target)
560 return target->type->examine(target);
563 static int jtag_enable_callback(enum jtag_event event, void *priv)
565 struct target *target = priv;
567 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
568 return ERROR_OK;
570 jtag_unregister_event_callback(jtag_enable_callback, target);
571 return target_examine_one(target);
575 /* Targets that correctly implement init + examine, i.e.
576 * no communication with target during init:
578 * XScale
580 int target_examine(void)
582 int retval = ERROR_OK;
583 struct target *target;
585 for (target = all_targets; target; target = target->next)
587 /* defer examination, but don't skip it */
588 if (!target->tap->enabled) {
589 jtag_register_event_callback(jtag_enable_callback,
590 target);
591 continue;
593 if ((retval = target_examine_one(target)) != ERROR_OK)
594 return retval;
596 return retval;
598 const char *target_type_name(struct target *target)
600 return target->type->name;
603 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
605 if (!target_was_examined(target))
607 LOG_ERROR("Target not examined yet");
608 return ERROR_FAIL;
610 return target->type->write_memory_imp(target, address, size, count, buffer);
613 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
615 if (!target_was_examined(target))
617 LOG_ERROR("Target not examined yet");
618 return ERROR_FAIL;
620 return target->type->read_memory_imp(target, address, size, count, buffer);
623 static int target_soft_reset_halt_imp(struct target *target)
625 if (!target_was_examined(target))
627 LOG_ERROR("Target not examined yet");
628 return ERROR_FAIL;
630 if (!target->type->soft_reset_halt_imp) {
631 LOG_ERROR("Target %s does not support soft_reset_halt",
632 target_name(target));
633 return ERROR_FAIL;
635 return target->type->soft_reset_halt_imp(target);
639 * Downloads a target-specific native code algorithm to the target,
640 * and executes it. * Note that some targets may need to set up, enable,
641 * and tear down a breakpoint (hard or * soft) to detect algorithm
642 * termination, while others may support lower overhead schemes where
643 * soft breakpoints embedded in the algorithm automatically terminate the
644 * algorithm.
646 * @param target used to run the algorithm
647 * @param arch_info target-specific description of the algorithm.
649 int target_run_algorithm(struct target *target,
650 int num_mem_params, struct mem_param *mem_params,
651 int num_reg_params, struct reg_param *reg_param,
652 uint32_t entry_point, uint32_t exit_point,
653 int timeout_ms, void *arch_info)
655 int retval = ERROR_FAIL;
657 if (!target_was_examined(target))
659 LOG_ERROR("Target not examined yet");
660 goto done;
662 if (!target->type->run_algorithm) {
663 LOG_ERROR("Target type '%s' does not support %s",
664 target_type_name(target), __func__);
665 goto done;
668 target->running_alg = true;
669 retval = target->type->run_algorithm(target,
670 num_mem_params, mem_params,
671 num_reg_params, reg_param,
672 entry_point, exit_point, timeout_ms, arch_info);
673 target->running_alg = false;
675 done:
676 return retval;
680 int target_read_memory(struct target *target,
681 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
683 return target->type->read_memory(target, address, size, count, buffer);
686 static int target_read_phys_memory(struct target *target,
687 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
689 return target->type->read_phys_memory(target, address, size, count, buffer);
692 int target_write_memory(struct target *target,
693 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
695 return target->type->write_memory(target, address, size, count, buffer);
698 static int target_write_phys_memory(struct target *target,
699 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
701 return target->type->write_phys_memory(target, address, size, count, buffer);
704 int target_bulk_write_memory(struct target *target,
705 uint32_t address, uint32_t count, uint8_t *buffer)
707 return target->type->bulk_write_memory(target, address, count, buffer);
710 int target_add_breakpoint(struct target *target,
711 struct breakpoint *breakpoint)
713 if (target->state != TARGET_HALTED) {
714 LOG_WARNING("target %s is not halted", target->cmd_name);
715 return ERROR_TARGET_NOT_HALTED;
717 return target->type->add_breakpoint(target, breakpoint);
719 int target_remove_breakpoint(struct target *target,
720 struct breakpoint *breakpoint)
722 return target->type->remove_breakpoint(target, breakpoint);
725 int target_add_watchpoint(struct target *target,
726 struct watchpoint *watchpoint)
728 if (target->state != TARGET_HALTED) {
729 LOG_WARNING("target %s is not halted", target->cmd_name);
730 return ERROR_TARGET_NOT_HALTED;
732 return target->type->add_watchpoint(target, watchpoint);
734 int target_remove_watchpoint(struct target *target,
735 struct watchpoint *watchpoint)
737 return target->type->remove_watchpoint(target, watchpoint);
740 int target_get_gdb_reg_list(struct target *target,
741 struct reg **reg_list[], int *reg_list_size)
743 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
745 int target_step(struct target *target,
746 int current, uint32_t address, int handle_breakpoints)
748 return target->type->step(target, current, address, handle_breakpoints);
753 * Reset the @c examined flag for the given target.
754 * Pure paranoia -- targets are zeroed on allocation.
756 static void target_reset_examined(struct target *target)
758 target->examined = false;
761 static int
762 err_read_phys_memory(struct target *target, uint32_t address,
763 uint32_t size, uint32_t count, uint8_t *buffer)
765 LOG_ERROR("Not implemented: %s", __func__);
766 return ERROR_FAIL;
769 static int
770 err_write_phys_memory(struct target *target, uint32_t address,
771 uint32_t size, uint32_t count, uint8_t *buffer)
773 LOG_ERROR("Not implemented: %s", __func__);
774 return ERROR_FAIL;
777 static int handle_target(void *priv);
779 static int target_init_one(struct command_context *cmd_ctx,
780 struct target *target)
782 target_reset_examined(target);
784 struct target_type *type = target->type;
785 if (type->examine == NULL)
786 type->examine = default_examine;
788 if (type->check_reset== NULL)
789 type->check_reset = default_check_reset;
791 int retval = type->init_target(cmd_ctx, target);
792 if (ERROR_OK != retval)
794 LOG_ERROR("target '%s' init failed", target_name(target));
795 return retval;
799 * @todo get rid of those *memory_imp() methods, now that all
800 * callers are using target_*_memory() accessors ... and make
801 * sure the "physical" paths handle the same issues.
803 /* a non-invasive way(in terms of patches) to add some code that
804 * runs before the type->write/read_memory implementation
806 type->write_memory_imp = target->type->write_memory;
807 type->write_memory = target_write_memory_imp;
809 type->read_memory_imp = target->type->read_memory;
810 type->read_memory = target_read_memory_imp;
812 type->soft_reset_halt_imp = target->type->soft_reset_halt;
813 type->soft_reset_halt = target_soft_reset_halt_imp;
815 /* Sanity-check MMU support ... stub in what we must, to help
816 * implement it in stages, but warn if we need to do so.
818 if (type->mmu)
820 if (type->write_phys_memory == NULL)
822 LOG_ERROR("type '%s' is missing write_phys_memory",
823 type->name);
824 type->write_phys_memory = err_write_phys_memory;
826 if (type->read_phys_memory == NULL)
828 LOG_ERROR("type '%s' is missing read_phys_memory",
829 type->name);
830 type->read_phys_memory = err_read_phys_memory;
832 if (type->virt2phys == NULL)
834 LOG_ERROR("type '%s' is missing virt2phys", type->name);
835 type->virt2phys = identity_virt2phys;
838 else
840 /* Make sure no-MMU targets all behave the same: make no
841 * distinction between physical and virtual addresses, and
842 * ensure that virt2phys() is always an identity mapping.
844 if (type->write_phys_memory || type->read_phys_memory
845 || type->virt2phys)
847 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
850 type->mmu = no_mmu;
851 type->write_phys_memory = type->write_memory;
852 type->read_phys_memory = type->read_memory;
853 type->virt2phys = identity_virt2phys;
855 return ERROR_OK;
858 static int target_init(struct command_context *cmd_ctx)
860 struct target *target;
861 int retval;
863 for (target = all_targets; target; target = target->next)
865 retval = target_init_one(cmd_ctx, target);
866 if (ERROR_OK != retval)
867 return retval;
870 if (!all_targets)
871 return ERROR_OK;
873 retval = target_register_user_commands(cmd_ctx);
874 if (ERROR_OK != retval)
875 return retval;
877 retval = target_register_timer_callback(&handle_target,
878 100, 1, cmd_ctx->interp);
879 if (ERROR_OK != retval)
880 return retval;
882 return ERROR_OK;
885 COMMAND_HANDLER(handle_target_init_command)
887 if (CMD_ARGC != 0)
888 return ERROR_COMMAND_SYNTAX_ERROR;
890 static bool target_initialized = false;
891 if (target_initialized)
893 LOG_INFO("'target init' has already been called");
894 return ERROR_OK;
896 target_initialized = true;
898 LOG_DEBUG("Initializing targets...");
899 return target_init(CMD_CTX);
902 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
904 struct target_event_callback **callbacks_p = &target_event_callbacks;
906 if (callback == NULL)
908 return ERROR_INVALID_ARGUMENTS;
911 if (*callbacks_p)
913 while ((*callbacks_p)->next)
914 callbacks_p = &((*callbacks_p)->next);
915 callbacks_p = &((*callbacks_p)->next);
918 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
919 (*callbacks_p)->callback = callback;
920 (*callbacks_p)->priv = priv;
921 (*callbacks_p)->next = NULL;
923 return ERROR_OK;
926 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
928 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
929 struct timeval now;
931 if (callback == NULL)
933 return ERROR_INVALID_ARGUMENTS;
936 if (*callbacks_p)
938 while ((*callbacks_p)->next)
939 callbacks_p = &((*callbacks_p)->next);
940 callbacks_p = &((*callbacks_p)->next);
943 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
944 (*callbacks_p)->callback = callback;
945 (*callbacks_p)->periodic = periodic;
946 (*callbacks_p)->time_ms = time_ms;
948 gettimeofday(&now, NULL);
949 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
950 time_ms -= (time_ms % 1000);
951 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
952 if ((*callbacks_p)->when.tv_usec > 1000000)
954 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
955 (*callbacks_p)->when.tv_sec += 1;
958 (*callbacks_p)->priv = priv;
959 (*callbacks_p)->next = NULL;
961 return ERROR_OK;
964 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
966 struct target_event_callback **p = &target_event_callbacks;
967 struct target_event_callback *c = target_event_callbacks;
969 if (callback == NULL)
971 return ERROR_INVALID_ARGUMENTS;
974 while (c)
976 struct target_event_callback *next = c->next;
977 if ((c->callback == callback) && (c->priv == priv))
979 *p = next;
980 free(c);
981 return ERROR_OK;
983 else
984 p = &(c->next);
985 c = next;
988 return ERROR_OK;
991 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
993 struct target_timer_callback **p = &target_timer_callbacks;
994 struct target_timer_callback *c = target_timer_callbacks;
996 if (callback == NULL)
998 return ERROR_INVALID_ARGUMENTS;
1001 while (c)
1003 struct target_timer_callback *next = c->next;
1004 if ((c->callback == callback) && (c->priv == priv))
1006 *p = next;
1007 free(c);
1008 return ERROR_OK;
1010 else
1011 p = &(c->next);
1012 c = next;
1015 return ERROR_OK;
1018 int target_call_event_callbacks(struct target *target, enum target_event event)
1020 struct target_event_callback *callback = target_event_callbacks;
1021 struct target_event_callback *next_callback;
1023 if (event == TARGET_EVENT_HALTED)
1025 /* execute early halted first */
1026 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1029 LOG_DEBUG("target event %i (%s)",
1030 event,
1031 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1033 target_handle_event(target, event);
1035 while (callback)
1037 next_callback = callback->next;
1038 callback->callback(target, event, callback->priv);
1039 callback = next_callback;
1042 return ERROR_OK;
1045 static int target_timer_callback_periodic_restart(
1046 struct target_timer_callback *cb, struct timeval *now)
1048 int time_ms = cb->time_ms;
1049 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1050 time_ms -= (time_ms % 1000);
1051 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1052 if (cb->when.tv_usec > 1000000)
1054 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1055 cb->when.tv_sec += 1;
1057 return ERROR_OK;
1060 static int target_call_timer_callback(struct target_timer_callback *cb,
1061 struct timeval *now)
1063 cb->callback(cb->priv);
1065 if (cb->periodic)
1066 return target_timer_callback_periodic_restart(cb, now);
1068 return target_unregister_timer_callback(cb->callback, cb->priv);
1071 static int target_call_timer_callbacks_check_time(int checktime)
1073 keep_alive();
1075 struct timeval now;
1076 gettimeofday(&now, NULL);
1078 struct target_timer_callback *callback = target_timer_callbacks;
1079 while (callback)
1081 // cleaning up may unregister and free this callback
1082 struct target_timer_callback *next_callback = callback->next;
1084 bool call_it = callback->callback &&
1085 ((!checktime && callback->periodic) ||
1086 now.tv_sec > callback->when.tv_sec ||
1087 (now.tv_sec == callback->when.tv_sec &&
1088 now.tv_usec >= callback->when.tv_usec));
1090 if (call_it)
1092 int retval = target_call_timer_callback(callback, &now);
1093 if (retval != ERROR_OK)
1094 return retval;
1097 callback = next_callback;
1100 return ERROR_OK;
1103 int target_call_timer_callbacks(void)
1105 return target_call_timer_callbacks_check_time(1);
1108 /* invoke periodic callbacks immediately */
1109 int target_call_timer_callbacks_now(void)
1111 return target_call_timer_callbacks_check_time(0);
1114 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1116 struct working_area *c = target->working_areas;
1117 struct working_area *new_wa = NULL;
1119 /* Reevaluate working area address based on MMU state*/
1120 if (target->working_areas == NULL)
1122 int retval;
1123 int enabled;
1125 retval = target->type->mmu(target, &enabled);
1126 if (retval != ERROR_OK)
1128 return retval;
1131 if (!enabled) {
1132 if (target->working_area_phys_spec) {
1133 LOG_DEBUG("MMU disabled, using physical "
1134 "address for working memory 0x%08x",
1135 (unsigned)target->working_area_phys);
1136 target->working_area = target->working_area_phys;
1137 } else {
1138 LOG_ERROR("No working memory available. "
1139 "Specify -work-area-phys to target.");
1140 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1142 } else {
1143 if (target->working_area_virt_spec) {
1144 LOG_DEBUG("MMU enabled, using virtual "
1145 "address for working memory 0x%08x",
1146 (unsigned)target->working_area_virt);
1147 target->working_area = target->working_area_virt;
1148 } else {
1149 LOG_ERROR("No working memory available. "
1150 "Specify -work-area-virt to target.");
1151 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1156 /* only allocate multiples of 4 byte */
1157 if (size % 4)
1159 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1160 size = (size + 3) & (~3);
1163 /* see if there's already a matching working area */
1164 while (c)
1166 if ((c->free) && (c->size == size))
1168 new_wa = c;
1169 break;
1171 c = c->next;
1174 /* if not, allocate a new one */
1175 if (!new_wa)
1177 struct working_area **p = &target->working_areas;
1178 uint32_t first_free = target->working_area;
1179 uint32_t free_size = target->working_area_size;
1181 c = target->working_areas;
1182 while (c)
1184 first_free += c->size;
1185 free_size -= c->size;
1186 p = &c->next;
1187 c = c->next;
1190 if (free_size < size)
1192 LOG_WARNING("not enough working area available(requested %u, free %u)",
1193 (unsigned)(size), (unsigned)(free_size));
1194 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1197 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1199 new_wa = malloc(sizeof(struct working_area));
1200 new_wa->next = NULL;
1201 new_wa->size = size;
1202 new_wa->address = first_free;
1204 if (target->backup_working_area)
1206 int retval;
1207 new_wa->backup = malloc(new_wa->size);
1208 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1210 free(new_wa->backup);
1211 free(new_wa);
1212 return retval;
1215 else
1217 new_wa->backup = NULL;
1220 /* put new entry in list */
1221 *p = new_wa;
1224 /* mark as used, and return the new (reused) area */
1225 new_wa->free = 0;
1226 *area = new_wa;
1228 /* user pointer */
1229 new_wa->user = area;
1231 return ERROR_OK;
1234 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1236 if (area->free)
1237 return ERROR_OK;
1239 if (restore && target->backup_working_area)
1241 int retval;
1242 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1243 return retval;
1246 area->free = 1;
1248 /* mark user pointer invalid */
1249 *area->user = NULL;
1250 area->user = NULL;
1252 return ERROR_OK;
1255 int target_free_working_area(struct target *target, struct working_area *area)
1257 return target_free_working_area_restore(target, area, 1);
1260 /* free resources and restore memory, if restoring memory fails,
1261 * free up resources anyway
1263 static void target_free_all_working_areas_restore(struct target *target, int restore)
1265 struct working_area *c = target->working_areas;
1267 while (c)
1269 struct working_area *next = c->next;
1270 target_free_working_area_restore(target, c, restore);
1272 if (c->backup)
1273 free(c->backup);
1275 free(c);
1277 c = next;
1280 target->working_areas = NULL;
1283 void target_free_all_working_areas(struct target *target)
1285 target_free_all_working_areas_restore(target, 1);
1288 int target_arch_state(struct target *target)
1290 int retval;
1291 if (target == NULL)
1293 LOG_USER("No target has been configured");
1294 return ERROR_OK;
1297 LOG_USER("target state: %s", target_state_name( target ));
1299 if (target->state != TARGET_HALTED)
1300 return ERROR_OK;
1302 retval = target->type->arch_state(target);
1303 return retval;
1306 /* Single aligned words are guaranteed to use 16 or 32 bit access
1307 * mode respectively, otherwise data is handled as quickly as
1308 * possible
1310 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1312 int retval;
1313 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1314 (int)size, (unsigned)address);
1316 if (!target_was_examined(target))
1318 LOG_ERROR("Target not examined yet");
1319 return ERROR_FAIL;
1322 if (size == 0) {
1323 return ERROR_OK;
1326 if ((address + size - 1) < address)
1328 /* GDB can request this when e.g. PC is 0xfffffffc*/
1329 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1330 (unsigned)address,
1331 (unsigned)size);
1332 return ERROR_FAIL;
1335 if (((address % 2) == 0) && (size == 2))
1337 return target_write_memory(target, address, 2, 1, buffer);
1340 /* handle unaligned head bytes */
1341 if (address % 4)
1343 uint32_t unaligned = 4 - (address % 4);
1345 if (unaligned > size)
1346 unaligned = size;
1348 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1349 return retval;
1351 buffer += unaligned;
1352 address += unaligned;
1353 size -= unaligned;
1356 /* handle aligned words */
1357 if (size >= 4)
1359 int aligned = size - (size % 4);
1361 /* use bulk writes above a certain limit. This may have to be changed */
1362 if (aligned > 128)
1364 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1365 return retval;
1367 else
1369 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1370 return retval;
1373 buffer += aligned;
1374 address += aligned;
1375 size -= aligned;
1378 /* handle tail writes of less than 4 bytes */
1379 if (size > 0)
1381 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1382 return retval;
1385 return ERROR_OK;
1388 /* Single aligned words are guaranteed to use 16 or 32 bit access
1389 * mode respectively, otherwise data is handled as quickly as
1390 * possible
1392 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1394 int retval;
1395 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1396 (int)size, (unsigned)address);
1398 if (!target_was_examined(target))
1400 LOG_ERROR("Target not examined yet");
1401 return ERROR_FAIL;
1404 if (size == 0) {
1405 return ERROR_OK;
1408 if ((address + size - 1) < address)
1410 /* GDB can request this when e.g. PC is 0xfffffffc*/
1411 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1412 address,
1413 size);
1414 return ERROR_FAIL;
1417 if (((address % 2) == 0) && (size == 2))
1419 return target_read_memory(target, address, 2, 1, buffer);
1422 /* handle unaligned head bytes */
1423 if (address % 4)
1425 uint32_t unaligned = 4 - (address % 4);
1427 if (unaligned > size)
1428 unaligned = size;
1430 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1431 return retval;
1433 buffer += unaligned;
1434 address += unaligned;
1435 size -= unaligned;
1438 /* handle aligned words */
1439 if (size >= 4)
1441 int aligned = size - (size % 4);
1443 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1444 return retval;
1446 buffer += aligned;
1447 address += aligned;
1448 size -= aligned;
1451 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1452 if(size >=2)
1454 int aligned = size - (size%2);
1455 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1456 if (retval != ERROR_OK)
1457 return retval;
1459 buffer += aligned;
1460 address += aligned;
1461 size -= aligned;
1463 /* handle tail writes of less than 4 bytes */
1464 if (size > 0)
1466 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1467 return retval;
1470 return ERROR_OK;
1473 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1475 uint8_t *buffer;
1476 int retval;
1477 uint32_t i;
1478 uint32_t checksum = 0;
1479 if (!target_was_examined(target))
1481 LOG_ERROR("Target not examined yet");
1482 return ERROR_FAIL;
1485 if ((retval = target->type->checksum_memory(target, address,
1486 size, &checksum)) != ERROR_OK)
1488 buffer = malloc(size);
1489 if (buffer == NULL)
1491 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1492 return ERROR_INVALID_ARGUMENTS;
1494 retval = target_read_buffer(target, address, size, buffer);
1495 if (retval != ERROR_OK)
1497 free(buffer);
1498 return retval;
1501 /* convert to target endianess */
1502 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1504 uint32_t target_data;
1505 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1506 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1509 retval = image_calculate_checksum(buffer, size, &checksum);
1510 free(buffer);
1513 *crc = checksum;
1515 return retval;
1518 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1520 int retval;
1521 if (!target_was_examined(target))
1523 LOG_ERROR("Target not examined yet");
1524 return ERROR_FAIL;
1527 if (target->type->blank_check_memory == 0)
1528 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1530 retval = target->type->blank_check_memory(target, address, size, blank);
1532 return retval;
1535 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1537 uint8_t value_buf[4];
1538 if (!target_was_examined(target))
1540 LOG_ERROR("Target not examined yet");
1541 return ERROR_FAIL;
1544 int retval = target_read_memory(target, address, 4, 1, value_buf);
1546 if (retval == ERROR_OK)
1548 *value = target_buffer_get_u32(target, value_buf);
1549 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1550 address,
1551 *value);
1553 else
1555 *value = 0x0;
1556 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1557 address);
1560 return retval;
1563 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1565 uint8_t value_buf[2];
1566 if (!target_was_examined(target))
1568 LOG_ERROR("Target not examined yet");
1569 return ERROR_FAIL;
1572 int retval = target_read_memory(target, address, 2, 1, value_buf);
1574 if (retval == ERROR_OK)
1576 *value = target_buffer_get_u16(target, value_buf);
1577 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1578 address,
1579 *value);
1581 else
1583 *value = 0x0;
1584 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1585 address);
1588 return retval;
1591 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1593 int retval = target_read_memory(target, address, 1, 1, value);
1594 if (!target_was_examined(target))
1596 LOG_ERROR("Target not examined yet");
1597 return ERROR_FAIL;
1600 if (retval == ERROR_OK)
1602 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1603 address,
1604 *value);
1606 else
1608 *value = 0x0;
1609 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1610 address);
1613 return retval;
1616 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1618 int retval;
1619 uint8_t value_buf[4];
1620 if (!target_was_examined(target))
1622 LOG_ERROR("Target not examined yet");
1623 return ERROR_FAIL;
1626 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1627 address,
1628 value);
1630 target_buffer_set_u32(target, value_buf, value);
1631 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1633 LOG_DEBUG("failed: %i", retval);
1636 return retval;
1639 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1641 int retval;
1642 uint8_t value_buf[2];
1643 if (!target_was_examined(target))
1645 LOG_ERROR("Target not examined yet");
1646 return ERROR_FAIL;
1649 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1650 address,
1651 value);
1653 target_buffer_set_u16(target, value_buf, value);
1654 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1656 LOG_DEBUG("failed: %i", retval);
1659 return retval;
1662 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1664 int retval;
1665 if (!target_was_examined(target))
1667 LOG_ERROR("Target not examined yet");
1668 return ERROR_FAIL;
1671 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1672 address, value);
1674 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1676 LOG_DEBUG("failed: %i", retval);
1679 return retval;
1682 COMMAND_HANDLER(handle_targets_command)
1684 struct target *target = all_targets;
1686 if (CMD_ARGC == 1)
1688 target = get_target(CMD_ARGV[0]);
1689 if (target == NULL) {
1690 command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1691 goto DumpTargets;
1693 if (!target->tap->enabled) {
1694 command_print(CMD_CTX,"Target: TAP %s is disabled, "
1695 "can't be the current target\n",
1696 target->tap->dotted_name);
1697 return ERROR_FAIL;
1700 CMD_CTX->current_target = target->target_number;
1701 return ERROR_OK;
1703 DumpTargets:
1705 target = all_targets;
1706 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1707 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1708 while (target)
1710 const char *state;
1711 char marker = ' ';
1713 if (target->tap->enabled)
1714 state = target_state_name( target );
1715 else
1716 state = "tap-disabled";
1718 if (CMD_CTX->current_target == target->target_number)
1719 marker = '*';
1721 /* keep columns lined up to match the headers above */
1722 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1723 target->target_number,
1724 marker,
1725 target_name(target),
1726 target_type_name(target),
1727 Jim_Nvp_value2name_simple(nvp_target_endian,
1728 target->endianness)->name,
1729 target->tap->dotted_name,
1730 state);
1731 target = target->next;
1734 return ERROR_OK;
1737 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1739 static int powerDropout;
1740 static int srstAsserted;
1742 static int runPowerRestore;
1743 static int runPowerDropout;
1744 static int runSrstAsserted;
1745 static int runSrstDeasserted;
1747 static int sense_handler(void)
1749 static int prevSrstAsserted = 0;
1750 static int prevPowerdropout = 0;
1752 int retval;
1753 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1754 return retval;
1756 int powerRestored;
1757 powerRestored = prevPowerdropout && !powerDropout;
1758 if (powerRestored)
1760 runPowerRestore = 1;
1763 long long current = timeval_ms();
1764 static long long lastPower = 0;
1765 int waitMore = lastPower + 2000 > current;
1766 if (powerDropout && !waitMore)
1768 runPowerDropout = 1;
1769 lastPower = current;
1772 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1773 return retval;
1775 int srstDeasserted;
1776 srstDeasserted = prevSrstAsserted && !srstAsserted;
1778 static long long lastSrst = 0;
1779 waitMore = lastSrst + 2000 > current;
1780 if (srstDeasserted && !waitMore)
1782 runSrstDeasserted = 1;
1783 lastSrst = current;
1786 if (!prevSrstAsserted && srstAsserted)
1788 runSrstAsserted = 1;
1791 prevSrstAsserted = srstAsserted;
1792 prevPowerdropout = powerDropout;
1794 if (srstDeasserted || powerRestored)
1796 /* Other than logging the event we can't do anything here.
1797 * Issuing a reset is a particularly bad idea as we might
1798 * be inside a reset already.
1802 return ERROR_OK;
1805 /* process target state changes */
1806 static int handle_target(void *priv)
1808 Jim_Interp *interp = (Jim_Interp *)priv;
1809 int retval = ERROR_OK;
1811 if (!is_jtag_poll_safe())
1813 /* polling is disabled currently */
1814 return ERROR_OK;
1817 /* we do not want to recurse here... */
1818 static int recursive = 0;
1819 if (! recursive)
1821 recursive = 1;
1822 sense_handler();
1823 /* danger! running these procedures can trigger srst assertions and power dropouts.
1824 * We need to avoid an infinite loop/recursion here and we do that by
1825 * clearing the flags after running these events.
1827 int did_something = 0;
1828 if (runSrstAsserted)
1830 LOG_INFO("srst asserted detected, running srst_asserted proc.");
1831 Jim_Eval(interp, "srst_asserted");
1832 did_something = 1;
1834 if (runSrstDeasserted)
1836 Jim_Eval(interp, "srst_deasserted");
1837 did_something = 1;
1839 if (runPowerDropout)
1841 LOG_INFO("Power dropout detected, running power_dropout proc.");
1842 Jim_Eval(interp, "power_dropout");
1843 did_something = 1;
1845 if (runPowerRestore)
1847 Jim_Eval(interp, "power_restore");
1848 did_something = 1;
1851 if (did_something)
1853 /* clear detect flags */
1854 sense_handler();
1857 /* clear action flags */
1859 runSrstAsserted = 0;
1860 runSrstDeasserted = 0;
1861 runPowerRestore = 0;
1862 runPowerDropout = 0;
1864 recursive = 0;
1867 /* Poll targets for state changes unless that's globally disabled.
1868 * Skip targets that are currently disabled.
1870 for (struct target *target = all_targets;
1871 is_jtag_poll_safe() && target;
1872 target = target->next)
1874 if (!target->tap->enabled)
1875 continue;
1877 /* only poll target if we've got power and srst isn't asserted */
1878 if (!powerDropout && !srstAsserted)
1880 /* polling may fail silently until the target has been examined */
1881 if ((retval = target_poll(target)) != ERROR_OK)
1883 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1884 * *why* we are aborting GDB, then we'll spam telnet when the
1885 * poll is failing persistently.
1887 * If we could implement an event that detected the
1888 * target going from non-pollable to pollable, we could issue
1889 * an error only upon the transition.
1891 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1892 return retval;
1897 return retval;
1900 COMMAND_HANDLER(handle_reg_command)
1902 struct target *target;
1903 struct reg *reg = NULL;
1904 unsigned count = 0;
1905 char *value;
1907 LOG_DEBUG("-");
1909 target = get_current_target(CMD_CTX);
1911 /* list all available registers for the current target */
1912 if (CMD_ARGC == 0)
1914 struct reg_cache *cache = target->reg_cache;
1916 count = 0;
1917 while (cache)
1919 unsigned i;
1921 command_print(CMD_CTX, "===== %s", cache->name);
1923 for (i = 0, reg = cache->reg_list;
1924 i < cache->num_regs;
1925 i++, reg++, count++)
1927 /* only print cached values if they are valid */
1928 if (reg->valid) {
1929 value = buf_to_str(reg->value,
1930 reg->size, 16);
1931 command_print(CMD_CTX,
1932 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1933 count, reg->name,
1934 reg->size, value,
1935 reg->dirty
1936 ? " (dirty)"
1937 : "");
1938 free(value);
1939 } else {
1940 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1941 count, reg->name,
1942 reg->size) ;
1945 cache = cache->next;
1948 return ERROR_OK;
1951 /* access a single register by its ordinal number */
1952 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1954 unsigned num;
1955 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1957 struct reg_cache *cache = target->reg_cache;
1958 count = 0;
1959 while (cache)
1961 unsigned i;
1962 for (i = 0; i < cache->num_regs; i++)
1964 if (count++ == num)
1966 reg = &cache->reg_list[i];
1967 break;
1970 if (reg)
1971 break;
1972 cache = cache->next;
1975 if (!reg)
1977 command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1978 return ERROR_OK;
1980 } else /* access a single register by its name */
1982 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1984 if (!reg)
1986 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1987 return ERROR_OK;
1991 /* display a register */
1992 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1994 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1995 reg->valid = 0;
1997 if (reg->valid == 0)
1999 reg->type->get(reg);
2001 value = buf_to_str(reg->value, reg->size, 16);
2002 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2003 free(value);
2004 return ERROR_OK;
2007 /* set register value */
2008 if (CMD_ARGC == 2)
2010 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2011 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2013 reg->type->set(reg, buf);
2015 value = buf_to_str(reg->value, reg->size, 16);
2016 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2017 free(value);
2019 free(buf);
2021 return ERROR_OK;
2024 command_print(CMD_CTX, "usage: reg <#|name> [value]");
2026 return ERROR_OK;
2029 COMMAND_HANDLER(handle_poll_command)
2031 int retval = ERROR_OK;
2032 struct target *target = get_current_target(CMD_CTX);
2034 if (CMD_ARGC == 0)
2036 command_print(CMD_CTX, "background polling: %s",
2037 jtag_poll_get_enabled() ? "on" : "off");
2038 command_print(CMD_CTX, "TAP: %s (%s)",
2039 target->tap->dotted_name,
2040 target->tap->enabled ? "enabled" : "disabled");
2041 if (!target->tap->enabled)
2042 return ERROR_OK;
2043 if ((retval = target_poll(target)) != ERROR_OK)
2044 return retval;
2045 if ((retval = target_arch_state(target)) != ERROR_OK)
2046 return retval;
2048 else if (CMD_ARGC == 1)
2050 bool enable;
2051 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2052 jtag_poll_set_enabled(enable);
2054 else
2056 return ERROR_COMMAND_SYNTAX_ERROR;
2059 return retval;
2062 COMMAND_HANDLER(handle_wait_halt_command)
2064 if (CMD_ARGC > 1)
2065 return ERROR_COMMAND_SYNTAX_ERROR;
2067 unsigned ms = 5000;
2068 if (1 == CMD_ARGC)
2070 int retval = parse_uint(CMD_ARGV[0], &ms);
2071 if (ERROR_OK != retval)
2073 command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2074 return ERROR_COMMAND_SYNTAX_ERROR;
2076 // convert seconds (given) to milliseconds (needed)
2077 ms *= 1000;
2080 struct target *target = get_current_target(CMD_CTX);
2081 return target_wait_state(target, TARGET_HALTED, ms);
2084 /* wait for target state to change. The trick here is to have a low
2085 * latency for short waits and not to suck up all the CPU time
2086 * on longer waits.
2088 * After 500ms, keep_alive() is invoked
2090 int target_wait_state(struct target *target, enum target_state state, int ms)
2092 int retval;
2093 long long then = 0, cur;
2094 int once = 1;
2096 for (;;)
2098 if ((retval = target_poll(target)) != ERROR_OK)
2099 return retval;
2100 if (target->state == state)
2102 break;
2104 cur = timeval_ms();
2105 if (once)
2107 once = 0;
2108 then = timeval_ms();
2109 LOG_DEBUG("waiting for target %s...",
2110 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2113 if (cur-then > 500)
2115 keep_alive();
2118 if ((cur-then) > ms)
2120 LOG_ERROR("timed out while waiting for target %s",
2121 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2122 return ERROR_FAIL;
2126 return ERROR_OK;
2129 COMMAND_HANDLER(handle_halt_command)
2131 LOG_DEBUG("-");
2133 struct target *target = get_current_target(CMD_CTX);
2134 int retval = target_halt(target);
2135 if (ERROR_OK != retval)
2136 return retval;
2138 if (CMD_ARGC == 1)
2140 unsigned wait;
2141 retval = parse_uint(CMD_ARGV[0], &wait);
2142 if (ERROR_OK != retval)
2143 return ERROR_COMMAND_SYNTAX_ERROR;
2144 if (!wait)
2145 return ERROR_OK;
2148 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2151 COMMAND_HANDLER(handle_soft_reset_halt_command)
2153 struct target *target = get_current_target(CMD_CTX);
2155 LOG_USER("requesting target halt and executing a soft reset");
2157 target->type->soft_reset_halt(target);
2159 return ERROR_OK;
2162 COMMAND_HANDLER(handle_reset_command)
2164 if (CMD_ARGC > 1)
2165 return ERROR_COMMAND_SYNTAX_ERROR;
2167 enum target_reset_mode reset_mode = RESET_RUN;
2168 if (CMD_ARGC == 1)
2170 const Jim_Nvp *n;
2171 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2172 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2173 return ERROR_COMMAND_SYNTAX_ERROR;
2175 reset_mode = n->value;
2178 /* reset *all* targets */
2179 return target_process_reset(CMD_CTX, reset_mode);
2183 COMMAND_HANDLER(handle_resume_command)
2185 int current = 1;
2186 if (CMD_ARGC > 1)
2187 return ERROR_COMMAND_SYNTAX_ERROR;
2189 struct target *target = get_current_target(CMD_CTX);
2190 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2192 /* with no CMD_ARGV, resume from current pc, addr = 0,
2193 * with one arguments, addr = CMD_ARGV[0],
2194 * handle breakpoints, not debugging */
2195 uint32_t addr = 0;
2196 if (CMD_ARGC == 1)
2198 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2199 current = 0;
2202 return target_resume(target, current, addr, 1, 0);
2205 COMMAND_HANDLER(handle_step_command)
2207 if (CMD_ARGC > 1)
2208 return ERROR_COMMAND_SYNTAX_ERROR;
2210 LOG_DEBUG("-");
2212 /* with no CMD_ARGV, step from current pc, addr = 0,
2213 * with one argument addr = CMD_ARGV[0],
2214 * handle breakpoints, debugging */
2215 uint32_t addr = 0;
2216 int current_pc = 1;
2217 if (CMD_ARGC == 1)
2219 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2220 current_pc = 0;
2223 struct target *target = get_current_target(CMD_CTX);
2225 return target->type->step(target, current_pc, addr, 1);
2228 static void handle_md_output(struct command_context *cmd_ctx,
2229 struct target *target, uint32_t address, unsigned size,
2230 unsigned count, const uint8_t *buffer)
2232 const unsigned line_bytecnt = 32;
2233 unsigned line_modulo = line_bytecnt / size;
2235 char output[line_bytecnt * 4 + 1];
2236 unsigned output_len = 0;
2238 const char *value_fmt;
2239 switch (size) {
2240 case 4: value_fmt = "%8.8x "; break;
2241 case 2: value_fmt = "%4.4x "; break;
2242 case 1: value_fmt = "%2.2x "; break;
2243 default:
2244 /* "can't happen", caller checked */
2245 LOG_ERROR("invalid memory read size: %u", size);
2246 return;
2249 for (unsigned i = 0; i < count; i++)
2251 if (i % line_modulo == 0)
2253 output_len += snprintf(output + output_len,
2254 sizeof(output) - output_len,
2255 "0x%8.8x: ",
2256 (unsigned)(address + (i*size)));
2259 uint32_t value = 0;
2260 const uint8_t *value_ptr = buffer + i * size;
2261 switch (size) {
2262 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2263 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2264 case 1: value = *value_ptr;
2266 output_len += snprintf(output + output_len,
2267 sizeof(output) - output_len,
2268 value_fmt, value);
2270 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2272 command_print(cmd_ctx, "%s", output);
2273 output_len = 0;
2278 COMMAND_HANDLER(handle_md_command)
2280 if (CMD_ARGC < 1)
2281 return ERROR_COMMAND_SYNTAX_ERROR;
2283 unsigned size = 0;
2284 switch (CMD_NAME[2]) {
2285 case 'w': size = 4; break;
2286 case 'h': size = 2; break;
2287 case 'b': size = 1; break;
2288 default: return ERROR_COMMAND_SYNTAX_ERROR;
2291 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2292 int (*fn)(struct target *target,
2293 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2294 if (physical)
2296 CMD_ARGC--;
2297 CMD_ARGV++;
2298 fn=target_read_phys_memory;
2299 } else
2301 fn=target_read_memory;
2303 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2305 return ERROR_COMMAND_SYNTAX_ERROR;
2308 uint32_t address;
2309 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2311 unsigned count = 1;
2312 if (CMD_ARGC == 2)
2313 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2315 uint8_t *buffer = calloc(count, size);
2317 struct target *target = get_current_target(CMD_CTX);
2318 int retval = fn(target, address, size, count, buffer);
2319 if (ERROR_OK == retval)
2320 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2322 free(buffer);
2324 return retval;
2327 typedef int (*target_write_fn)(struct target *target,
2328 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2330 static int target_write_memory_fast(struct target *target,
2331 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2333 return target_write_buffer(target, address, size * count, buffer);
2336 static int target_fill_mem(struct target *target,
2337 uint32_t address,
2338 target_write_fn fn,
2339 unsigned data_size,
2340 /* value */
2341 uint32_t b,
2342 /* count */
2343 unsigned c)
2345 /* We have to write in reasonably large chunks to be able
2346 * to fill large memory areas with any sane speed */
2347 const unsigned chunk_size = 16384;
2348 uint8_t *target_buf = malloc(chunk_size * data_size);
2349 if (target_buf == NULL)
2351 LOG_ERROR("Out of memory");
2352 return ERROR_FAIL;
2355 for (unsigned i = 0; i < chunk_size; i ++)
2357 switch (data_size)
2359 case 4:
2360 target_buffer_set_u32(target, target_buf + i*data_size, b);
2361 break;
2362 case 2:
2363 target_buffer_set_u16(target, target_buf + i*data_size, b);
2364 break;
2365 case 1:
2366 target_buffer_set_u8(target, target_buf + i*data_size, b);
2367 break;
2368 default:
2369 exit(-1);
2373 int retval = ERROR_OK;
2375 for (unsigned x = 0; x < c; x += chunk_size)
2377 unsigned current;
2378 current = c - x;
2379 if (current > chunk_size)
2381 current = chunk_size;
2383 int retval = fn(target, address + x * data_size, data_size, current, target_buf);
2384 if (retval != ERROR_OK)
2386 break;
2388 /* avoid GDB timeouts */
2389 keep_alive();
2391 free(target_buf);
2393 return retval;
2397 COMMAND_HANDLER(handle_mw_command)
2399 if (CMD_ARGC < 2)
2401 return ERROR_COMMAND_SYNTAX_ERROR;
2403 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2404 target_write_fn fn;
2405 if (physical)
2407 CMD_ARGC--;
2408 CMD_ARGV++;
2409 fn=target_write_phys_memory;
2410 } else
2412 fn = target_write_memory_fast;
2414 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2415 return ERROR_COMMAND_SYNTAX_ERROR;
2417 uint32_t address;
2418 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2420 uint32_t value;
2421 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2423 unsigned count = 1;
2424 if (CMD_ARGC == 3)
2425 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2427 struct target *target = get_current_target(CMD_CTX);
2428 unsigned wordsize;
2429 switch (CMD_NAME[2])
2431 case 'w':
2432 wordsize = 4;
2433 break;
2434 case 'h':
2435 wordsize = 2;
2436 break;
2437 case 'b':
2438 wordsize = 1;
2439 break;
2440 default:
2441 return ERROR_COMMAND_SYNTAX_ERROR;
2444 return target_fill_mem(target, address, fn, wordsize, value, count);
2447 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2448 uint32_t *min_address, uint32_t *max_address)
2450 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2451 return ERROR_COMMAND_SYNTAX_ERROR;
2453 /* a base address isn't always necessary,
2454 * default to 0x0 (i.e. don't relocate) */
2455 if (CMD_ARGC >= 2)
2457 uint32_t addr;
2458 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2459 image->base_address = addr;
2460 image->base_address_set = 1;
2462 else
2463 image->base_address_set = 0;
2465 image->start_address_set = 0;
2467 if (CMD_ARGC >= 4)
2469 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2471 if (CMD_ARGC == 5)
2473 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2474 // use size (given) to find max (required)
2475 *max_address += *min_address;
2478 if (*min_address > *max_address)
2479 return ERROR_COMMAND_SYNTAX_ERROR;
2481 return ERROR_OK;
2484 COMMAND_HANDLER(handle_load_image_command)
2486 uint8_t *buffer;
2487 size_t buf_cnt;
2488 uint32_t image_size;
2489 uint32_t min_address = 0;
2490 uint32_t max_address = 0xffffffff;
2491 int i;
2492 struct image image;
2494 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2495 &image, &min_address, &max_address);
2496 if (ERROR_OK != retval)
2497 return retval;
2499 struct target *target = get_current_target(CMD_CTX);
2501 struct duration bench;
2502 duration_start(&bench);
2504 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2506 return ERROR_OK;
2509 image_size = 0x0;
2510 retval = ERROR_OK;
2511 for (i = 0; i < image.num_sections; i++)
2513 buffer = malloc(image.sections[i].size);
2514 if (buffer == NULL)
2516 command_print(CMD_CTX,
2517 "error allocating buffer for section (%d bytes)",
2518 (int)(image.sections[i].size));
2519 break;
2522 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2524 free(buffer);
2525 break;
2528 uint32_t offset = 0;
2529 uint32_t length = buf_cnt;
2531 /* DANGER!!! beware of unsigned comparision here!!! */
2533 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2534 (image.sections[i].base_address < max_address))
2536 if (image.sections[i].base_address < min_address)
2538 /* clip addresses below */
2539 offset += min_address-image.sections[i].base_address;
2540 length -= offset;
2543 if (image.sections[i].base_address + buf_cnt > max_address)
2545 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2548 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2550 free(buffer);
2551 break;
2553 image_size += length;
2554 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2555 (unsigned int)length,
2556 image.sections[i].base_address + offset);
2559 free(buffer);
2562 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2564 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2565 "in %fs (%0.3f kb/s)", image_size,
2566 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2569 image_close(&image);
2571 return retval;
2575 COMMAND_HANDLER(handle_dump_image_command)
2577 struct fileio fileio;
2579 uint8_t buffer[560];
2580 int retvaltemp;
2583 struct target *target = get_current_target(CMD_CTX);
2585 if (CMD_ARGC != 3)
2587 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2588 return ERROR_OK;
2591 uint32_t address;
2592 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2593 uint32_t size;
2594 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2596 if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2598 return ERROR_OK;
2601 struct duration bench;
2602 duration_start(&bench);
2604 int retval = ERROR_OK;
2605 while (size > 0)
2607 size_t size_written;
2608 uint32_t this_run_size = (size > 560) ? 560 : size;
2609 retval = target_read_buffer(target, address, this_run_size, buffer);
2610 if (retval != ERROR_OK)
2612 break;
2615 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2616 if (retval != ERROR_OK)
2618 break;
2621 size -= this_run_size;
2622 address += this_run_size;
2625 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2626 return retvaltemp;
2628 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2630 command_print(CMD_CTX,
2631 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2632 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2635 return retval;
2638 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2640 uint8_t *buffer;
2641 size_t buf_cnt;
2642 uint32_t image_size;
2643 int i;
2644 int retval;
2645 uint32_t checksum = 0;
2646 uint32_t mem_checksum = 0;
2648 struct image image;
2650 struct target *target = get_current_target(CMD_CTX);
2652 if (CMD_ARGC < 1)
2654 return ERROR_COMMAND_SYNTAX_ERROR;
2657 if (!target)
2659 LOG_ERROR("no target selected");
2660 return ERROR_FAIL;
2663 struct duration bench;
2664 duration_start(&bench);
2666 if (CMD_ARGC >= 2)
2668 uint32_t addr;
2669 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2670 image.base_address = addr;
2671 image.base_address_set = 1;
2673 else
2675 image.base_address_set = 0;
2676 image.base_address = 0x0;
2679 image.start_address_set = 0;
2681 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2683 return retval;
2686 image_size = 0x0;
2687 retval = ERROR_OK;
2688 for (i = 0; i < image.num_sections; i++)
2690 buffer = malloc(image.sections[i].size);
2691 if (buffer == NULL)
2693 command_print(CMD_CTX,
2694 "error allocating buffer for section (%d bytes)",
2695 (int)(image.sections[i].size));
2696 break;
2698 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2700 free(buffer);
2701 break;
2704 if (verify)
2706 /* calculate checksum of image */
2707 image_calculate_checksum(buffer, buf_cnt, &checksum);
2709 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2710 if (retval != ERROR_OK)
2712 free(buffer);
2713 break;
2716 if (checksum != mem_checksum)
2718 /* failed crc checksum, fall back to a binary compare */
2719 uint8_t *data;
2721 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2723 data = (uint8_t*)malloc(buf_cnt);
2725 /* Can we use 32bit word accesses? */
2726 int size = 1;
2727 int count = buf_cnt;
2728 if ((count % 4) == 0)
2730 size *= 4;
2731 count /= 4;
2733 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2734 if (retval == ERROR_OK)
2736 uint32_t t;
2737 for (t = 0; t < buf_cnt; t++)
2739 if (data[t] != buffer[t])
2741 command_print(CMD_CTX,
2742 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2743 (unsigned)(t + image.sections[i].base_address),
2744 data[t],
2745 buffer[t]);
2746 free(data);
2747 free(buffer);
2748 retval = ERROR_FAIL;
2749 goto done;
2751 if ((t%16384) == 0)
2753 keep_alive();
2758 free(data);
2760 } else
2762 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2763 image.sections[i].base_address,
2764 buf_cnt);
2767 free(buffer);
2768 image_size += buf_cnt;
2770 done:
2771 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2773 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2774 "in %fs (%0.3f kb/s)", image_size,
2775 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2778 image_close(&image);
2780 return retval;
2783 COMMAND_HANDLER(handle_verify_image_command)
2785 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2788 COMMAND_HANDLER(handle_test_image_command)
2790 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2793 static int handle_bp_command_list(struct command_context *cmd_ctx)
2795 struct target *target = get_current_target(cmd_ctx);
2796 struct breakpoint *breakpoint = target->breakpoints;
2797 while (breakpoint)
2799 if (breakpoint->type == BKPT_SOFT)
2801 char* buf = buf_to_str(breakpoint->orig_instr,
2802 breakpoint->length, 16);
2803 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2804 breakpoint->address,
2805 breakpoint->length,
2806 breakpoint->set, buf);
2807 free(buf);
2809 else
2811 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2812 breakpoint->address,
2813 breakpoint->length, breakpoint->set);
2816 breakpoint = breakpoint->next;
2818 return ERROR_OK;
2821 static int handle_bp_command_set(struct command_context *cmd_ctx,
2822 uint32_t addr, uint32_t length, int hw)
2824 struct target *target = get_current_target(cmd_ctx);
2825 int retval = breakpoint_add(target, addr, length, hw);
2826 if (ERROR_OK == retval)
2827 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2828 else
2829 LOG_ERROR("Failure setting breakpoint");
2830 return retval;
2833 COMMAND_HANDLER(handle_bp_command)
2835 if (CMD_ARGC == 0)
2836 return handle_bp_command_list(CMD_CTX);
2838 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2840 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2841 return ERROR_COMMAND_SYNTAX_ERROR;
2844 uint32_t addr;
2845 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2846 uint32_t length;
2847 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2849 int hw = BKPT_SOFT;
2850 if (CMD_ARGC == 3)
2852 if (strcmp(CMD_ARGV[2], "hw") == 0)
2853 hw = BKPT_HARD;
2854 else
2855 return ERROR_COMMAND_SYNTAX_ERROR;
2858 return handle_bp_command_set(CMD_CTX, addr, length, hw);
2861 COMMAND_HANDLER(handle_rbp_command)
2863 if (CMD_ARGC != 1)
2864 return ERROR_COMMAND_SYNTAX_ERROR;
2866 uint32_t addr;
2867 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2869 struct target *target = get_current_target(CMD_CTX);
2870 breakpoint_remove(target, addr);
2872 return ERROR_OK;
2875 COMMAND_HANDLER(handle_wp_command)
2877 struct target *target = get_current_target(CMD_CTX);
2879 if (CMD_ARGC == 0)
2881 struct watchpoint *watchpoint = target->watchpoints;
2883 while (watchpoint)
2885 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2886 ", len: 0x%8.8" PRIx32
2887 ", r/w/a: %i, value: 0x%8.8" PRIx32
2888 ", mask: 0x%8.8" PRIx32,
2889 watchpoint->address,
2890 watchpoint->length,
2891 (int)watchpoint->rw,
2892 watchpoint->value,
2893 watchpoint->mask);
2894 watchpoint = watchpoint->next;
2896 return ERROR_OK;
2899 enum watchpoint_rw type = WPT_ACCESS;
2900 uint32_t addr = 0;
2901 uint32_t length = 0;
2902 uint32_t data_value = 0x0;
2903 uint32_t data_mask = 0xffffffff;
2905 switch (CMD_ARGC)
2907 case 5:
2908 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2909 // fall through
2910 case 4:
2911 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2912 // fall through
2913 case 3:
2914 switch (CMD_ARGV[2][0])
2916 case 'r':
2917 type = WPT_READ;
2918 break;
2919 case 'w':
2920 type = WPT_WRITE;
2921 break;
2922 case 'a':
2923 type = WPT_ACCESS;
2924 break;
2925 default:
2926 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2927 return ERROR_COMMAND_SYNTAX_ERROR;
2929 // fall through
2930 case 2:
2931 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2932 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2933 break;
2935 default:
2936 command_print(CMD_CTX, "usage: wp [address length "
2937 "[(r|w|a) [value [mask]]]]");
2938 return ERROR_COMMAND_SYNTAX_ERROR;
2941 int retval = watchpoint_add(target, addr, length, type,
2942 data_value, data_mask);
2943 if (ERROR_OK != retval)
2944 LOG_ERROR("Failure setting watchpoints");
2946 return retval;
2949 COMMAND_HANDLER(handle_rwp_command)
2951 if (CMD_ARGC != 1)
2952 return ERROR_COMMAND_SYNTAX_ERROR;
2954 uint32_t addr;
2955 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2957 struct target *target = get_current_target(CMD_CTX);
2958 watchpoint_remove(target, addr);
2960 return ERROR_OK;
2965 * Translate a virtual address to a physical address.
2967 * The low-level target implementation must have logged a detailed error
2968 * which is forwarded to telnet/GDB session.
2970 COMMAND_HANDLER(handle_virt2phys_command)
2972 if (CMD_ARGC != 1)
2973 return ERROR_COMMAND_SYNTAX_ERROR;
2975 uint32_t va;
2976 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2977 uint32_t pa;
2979 struct target *target = get_current_target(CMD_CTX);
2980 int retval = target->type->virt2phys(target, va, &pa);
2981 if (retval == ERROR_OK)
2982 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2984 return retval;
2987 static void writeData(FILE *f, const void *data, size_t len)
2989 size_t written = fwrite(data, 1, len, f);
2990 if (written != len)
2991 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2994 static void writeLong(FILE *f, int l)
2996 int i;
2997 for (i = 0; i < 4; i++)
2999 char c = (l >> (i*8))&0xff;
3000 writeData(f, &c, 1);
3005 static void writeString(FILE *f, char *s)
3007 writeData(f, s, strlen(s));
3010 /* Dump a gmon.out histogram file. */
3011 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3013 uint32_t i;
3014 FILE *f = fopen(filename, "w");
3015 if (f == NULL)
3016 return;
3017 writeString(f, "gmon");
3018 writeLong(f, 0x00000001); /* Version */
3019 writeLong(f, 0); /* padding */
3020 writeLong(f, 0); /* padding */
3021 writeLong(f, 0); /* padding */
3023 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3024 writeData(f, &zero, 1);
3026 /* figure out bucket size */
3027 uint32_t min = samples[0];
3028 uint32_t max = samples[0];
3029 for (i = 0; i < sampleNum; i++)
3031 if (min > samples[i])
3033 min = samples[i];
3035 if (max < samples[i])
3037 max = samples[i];
3041 int addressSpace = (max-min + 1);
3043 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3044 uint32_t length = addressSpace;
3045 if (length > maxBuckets)
3047 length = maxBuckets;
3049 int *buckets = malloc(sizeof(int)*length);
3050 if (buckets == NULL)
3052 fclose(f);
3053 return;
3055 memset(buckets, 0, sizeof(int)*length);
3056 for (i = 0; i < sampleNum;i++)
3058 uint32_t address = samples[i];
3059 long long a = address-min;
3060 long long b = length-1;
3061 long long c = addressSpace-1;
3062 int index = (a*b)/c; /* danger!!!! int32 overflows */
3063 buckets[index]++;
3066 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3067 writeLong(f, min); /* low_pc */
3068 writeLong(f, max); /* high_pc */
3069 writeLong(f, length); /* # of samples */
3070 writeLong(f, 64000000); /* 64MHz */
3071 writeString(f, "seconds");
3072 for (i = 0; i < (15-strlen("seconds")); i++)
3073 writeData(f, &zero, 1);
3074 writeString(f, "s");
3076 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3078 char *data = malloc(2*length);
3079 if (data != NULL)
3081 for (i = 0; i < length;i++)
3083 int val;
3084 val = buckets[i];
3085 if (val > 65535)
3087 val = 65535;
3089 data[i*2]=val&0xff;
3090 data[i*2 + 1]=(val >> 8)&0xff;
3092 free(buckets);
3093 writeData(f, data, length * 2);
3094 free(data);
3095 } else
3097 free(buckets);
3100 fclose(f);
3103 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3104 * which will be used as a random sampling of PC */
3105 COMMAND_HANDLER(handle_profile_command)
3107 struct target *target = get_current_target(CMD_CTX);
3108 struct timeval timeout, now;
3110 gettimeofday(&timeout, NULL);
3111 if (CMD_ARGC != 2)
3113 return ERROR_COMMAND_SYNTAX_ERROR;
3115 unsigned offset;
3116 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3118 timeval_add_time(&timeout, offset, 0);
3121 * @todo: Some cores let us sample the PC without the
3122 * annoying halt/resume step; for example, ARMv7 PCSR.
3123 * Provide a way to use that more efficient mechanism.
3126 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3128 static const int maxSample = 10000;
3129 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3130 if (samples == NULL)
3131 return ERROR_OK;
3133 int numSamples = 0;
3134 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3135 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3137 for (;;)
3139 int retval;
3140 target_poll(target);
3141 if (target->state == TARGET_HALTED)
3143 uint32_t t=*((uint32_t *)reg->value);
3144 samples[numSamples++]=t;
3145 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3146 target_poll(target);
3147 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3148 } else if (target->state == TARGET_RUNNING)
3150 /* We want to quickly sample the PC. */
3151 if ((retval = target_halt(target)) != ERROR_OK)
3153 free(samples);
3154 return retval;
3156 } else
3158 command_print(CMD_CTX, "Target not halted or running");
3159 retval = ERROR_OK;
3160 break;
3162 if (retval != ERROR_OK)
3164 break;
3167 gettimeofday(&now, NULL);
3168 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3170 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3171 if ((retval = target_poll(target)) != ERROR_OK)
3173 free(samples);
3174 return retval;
3176 if (target->state == TARGET_HALTED)
3178 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3180 if ((retval = target_poll(target)) != ERROR_OK)
3182 free(samples);
3183 return retval;
3185 writeGmon(samples, numSamples, CMD_ARGV[1]);
3186 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3187 break;
3190 free(samples);
3192 return ERROR_OK;
3195 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3197 char *namebuf;
3198 Jim_Obj *nameObjPtr, *valObjPtr;
3199 int result;
3201 namebuf = alloc_printf("%s(%d)", varname, idx);
3202 if (!namebuf)
3203 return JIM_ERR;
3205 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3206 valObjPtr = Jim_NewIntObj(interp, val);
3207 if (!nameObjPtr || !valObjPtr)
3209 free(namebuf);
3210 return JIM_ERR;
3213 Jim_IncrRefCount(nameObjPtr);
3214 Jim_IncrRefCount(valObjPtr);
3215 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3216 Jim_DecrRefCount(interp, nameObjPtr);
3217 Jim_DecrRefCount(interp, valObjPtr);
3218 free(namebuf);
3219 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3220 return result;
3223 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3225 struct command_context *context;
3226 struct target *target;
3228 context = Jim_GetAssocData(interp, "context");
3229 if (context == NULL)
3231 LOG_ERROR("mem2array: no command context");
3232 return JIM_ERR;
3234 target = get_current_target(context);
3235 if (target == NULL)
3237 LOG_ERROR("mem2array: no current target");
3238 return JIM_ERR;
3241 return target_mem2array(interp, target, argc-1, argv + 1);
3244 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3246 long l;
3247 uint32_t width;
3248 int len;
3249 uint32_t addr;
3250 uint32_t count;
3251 uint32_t v;
3252 const char *varname;
3253 int n, e, retval;
3254 uint32_t i;
3256 /* argv[1] = name of array to receive the data
3257 * argv[2] = desired width
3258 * argv[3] = memory address
3259 * argv[4] = count of times to read
3261 if (argc != 4) {
3262 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3263 return JIM_ERR;
3265 varname = Jim_GetString(argv[0], &len);
3266 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3268 e = Jim_GetLong(interp, argv[1], &l);
3269 width = l;
3270 if (e != JIM_OK) {
3271 return e;
3274 e = Jim_GetLong(interp, argv[2], &l);
3275 addr = l;
3276 if (e != JIM_OK) {
3277 return e;
3279 e = Jim_GetLong(interp, argv[3], &l);
3280 len = l;
3281 if (e != JIM_OK) {
3282 return e;
3284 switch (width) {
3285 case 8:
3286 width = 1;
3287 break;
3288 case 16:
3289 width = 2;
3290 break;
3291 case 32:
3292 width = 4;
3293 break;
3294 default:
3295 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3296 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3297 return JIM_ERR;
3299 if (len == 0) {
3300 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3301 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3302 return JIM_ERR;
3304 if ((addr + (len * width)) < addr) {
3305 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3306 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3307 return JIM_ERR;
3309 /* absurd transfer size? */
3310 if (len > 65536) {
3311 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3312 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3313 return JIM_ERR;
3316 if ((width == 1) ||
3317 ((width == 2) && ((addr & 1) == 0)) ||
3318 ((width == 4) && ((addr & 3) == 0))) {
3319 /* all is well */
3320 } else {
3321 char buf[100];
3322 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3323 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3324 addr,
3325 width);
3326 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3327 return JIM_ERR;
3330 /* Transfer loop */
3332 /* index counter */
3333 n = 0;
3335 size_t buffersize = 4096;
3336 uint8_t *buffer = malloc(buffersize);
3337 if (buffer == NULL)
3338 return JIM_ERR;
3340 /* assume ok */
3341 e = JIM_OK;
3342 while (len) {
3343 /* Slurp... in buffer size chunks */
3345 count = len; /* in objects.. */
3346 if (count > (buffersize/width)) {
3347 count = (buffersize/width);
3350 retval = target_read_memory(target, addr, width, count, buffer);
3351 if (retval != ERROR_OK) {
3352 /* BOO !*/
3353 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3354 (unsigned int)addr,
3355 (int)width,
3356 (int)count);
3357 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3358 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3359 e = JIM_ERR;
3360 len = 0;
3361 } else {
3362 v = 0; /* shut up gcc */
3363 for (i = 0 ;i < count ;i++, n++) {
3364 switch (width) {
3365 case 4:
3366 v = target_buffer_get_u32(target, &buffer[i*width]);
3367 break;
3368 case 2:
3369 v = target_buffer_get_u16(target, &buffer[i*width]);
3370 break;
3371 case 1:
3372 v = buffer[i] & 0x0ff;
3373 break;
3375 new_int_array_element(interp, varname, n, v);
3377 len -= count;
3381 free(buffer);
3383 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3385 return JIM_OK;
3388 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3390 char *namebuf;
3391 Jim_Obj *nameObjPtr, *valObjPtr;
3392 int result;
3393 long l;
3395 namebuf = alloc_printf("%s(%d)", varname, idx);
3396 if (!namebuf)
3397 return JIM_ERR;
3399 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3400 if (!nameObjPtr)
3402 free(namebuf);
3403 return JIM_ERR;
3406 Jim_IncrRefCount(nameObjPtr);
3407 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3408 Jim_DecrRefCount(interp, nameObjPtr);
3409 free(namebuf);
3410 if (valObjPtr == NULL)
3411 return JIM_ERR;
3413 result = Jim_GetLong(interp, valObjPtr, &l);
3414 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3415 *val = l;
3416 return result;
3419 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3421 struct command_context *context;
3422 struct target *target;
3424 context = Jim_GetAssocData(interp, "context");
3425 if (context == NULL) {
3426 LOG_ERROR("array2mem: no command context");
3427 return JIM_ERR;
3429 target = get_current_target(context);
3430 if (target == NULL) {
3431 LOG_ERROR("array2mem: no current target");
3432 return JIM_ERR;
3435 return target_array2mem(interp,target, argc-1, argv + 1);
3438 static int target_array2mem(Jim_Interp *interp, struct target *target,
3439 int argc, Jim_Obj *const *argv)
3441 long l;
3442 uint32_t width;
3443 int len;
3444 uint32_t addr;
3445 uint32_t count;
3446 uint32_t v;
3447 const char *varname;
3448 int n, e, retval;
3449 uint32_t i;
3451 /* argv[1] = name of array to get the data
3452 * argv[2] = desired width
3453 * argv[3] = memory address
3454 * argv[4] = count to write
3456 if (argc != 4) {
3457 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3458 return JIM_ERR;
3460 varname = Jim_GetString(argv[0], &len);
3461 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3463 e = Jim_GetLong(interp, argv[1], &l);
3464 width = l;
3465 if (e != JIM_OK) {
3466 return e;
3469 e = Jim_GetLong(interp, argv[2], &l);
3470 addr = l;
3471 if (e != JIM_OK) {
3472 return e;
3474 e = Jim_GetLong(interp, argv[3], &l);
3475 len = l;
3476 if (e != JIM_OK) {
3477 return e;
3479 switch (width) {
3480 case 8:
3481 width = 1;
3482 break;
3483 case 16:
3484 width = 2;
3485 break;
3486 case 32:
3487 width = 4;
3488 break;
3489 default:
3490 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3491 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3492 return JIM_ERR;
3494 if (len == 0) {
3495 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3496 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3497 return JIM_ERR;
3499 if ((addr + (len * width)) < addr) {
3500 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3501 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3502 return JIM_ERR;
3504 /* absurd transfer size? */
3505 if (len > 65536) {
3506 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3507 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3508 return JIM_ERR;
3511 if ((width == 1) ||
3512 ((width == 2) && ((addr & 1) == 0)) ||
3513 ((width == 4) && ((addr & 3) == 0))) {
3514 /* all is well */
3515 } else {
3516 char buf[100];
3517 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3518 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3519 (unsigned int)addr,
3520 (int)width);
3521 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3522 return JIM_ERR;
3525 /* Transfer loop */
3527 /* index counter */
3528 n = 0;
3529 /* assume ok */
3530 e = JIM_OK;
3532 size_t buffersize = 4096;
3533 uint8_t *buffer = malloc(buffersize);
3534 if (buffer == NULL)
3535 return JIM_ERR;
3537 while (len) {
3538 /* Slurp... in buffer size chunks */
3540 count = len; /* in objects.. */
3541 if (count > (buffersize/width)) {
3542 count = (buffersize/width);
3545 v = 0; /* shut up gcc */
3546 for (i = 0 ;i < count ;i++, n++) {
3547 get_int_array_element(interp, varname, n, &v);
3548 switch (width) {
3549 case 4:
3550 target_buffer_set_u32(target, &buffer[i*width], v);
3551 break;
3552 case 2:
3553 target_buffer_set_u16(target, &buffer[i*width], v);
3554 break;
3555 case 1:
3556 buffer[i] = v & 0x0ff;
3557 break;
3560 len -= count;
3562 retval = target_write_memory(target, addr, width, count, buffer);
3563 if (retval != ERROR_OK) {
3564 /* BOO !*/
3565 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3566 (unsigned int)addr,
3567 (int)width,
3568 (int)count);
3569 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3570 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3571 e = JIM_ERR;
3572 len = 0;
3576 free(buffer);
3578 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3580 return JIM_OK;
3583 void target_all_handle_event(enum target_event e)
3585 struct target *target;
3587 LOG_DEBUG("**all*targets: event: %d, %s",
3588 (int)e,
3589 Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3591 target = all_targets;
3592 while (target) {
3593 target_handle_event(target, e);
3594 target = target->next;
3599 /* FIX? should we propagate errors here rather than printing them
3600 * and continuing?
3602 void target_handle_event(struct target *target, enum target_event e)
3604 struct target_event_action *teap;
3606 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3607 if (teap->event == e) {
3608 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3609 target->target_number,
3610 target_name(target),
3611 target_type_name(target),
3613 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3614 Jim_GetString(teap->body, NULL));
3615 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3617 Jim_PrintErrorMessage(teap->interp);
3624 * Returns true only if the target has a handler for the specified event.
3626 bool target_has_event_action(struct target *target, enum target_event event)
3628 struct target_event_action *teap;
3630 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3631 if (teap->event == event)
3632 return true;
3634 return false;
3637 enum target_cfg_param {
3638 TCFG_TYPE,
3639 TCFG_EVENT,
3640 TCFG_WORK_AREA_VIRT,
3641 TCFG_WORK_AREA_PHYS,
3642 TCFG_WORK_AREA_SIZE,
3643 TCFG_WORK_AREA_BACKUP,
3644 TCFG_ENDIAN,
3645 TCFG_VARIANT,
3646 TCFG_CHAIN_POSITION,
3649 static Jim_Nvp nvp_config_opts[] = {
3650 { .name = "-type", .value = TCFG_TYPE },
3651 { .name = "-event", .value = TCFG_EVENT },
3652 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3653 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3654 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3655 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3656 { .name = "-endian" , .value = TCFG_ENDIAN },
3657 { .name = "-variant", .value = TCFG_VARIANT },
3658 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3660 { .name = NULL, .value = -1 }
3663 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3665 Jim_Nvp *n;
3666 Jim_Obj *o;
3667 jim_wide w;
3668 char *cp;
3669 int e;
3671 /* parse config or cget options ... */
3672 while (goi->argc > 0) {
3673 Jim_SetEmptyResult(goi->interp);
3674 /* Jim_GetOpt_Debug(goi); */
3676 if (target->type->target_jim_configure) {
3677 /* target defines a configure function */
3678 /* target gets first dibs on parameters */
3679 e = (*(target->type->target_jim_configure))(target, goi);
3680 if (e == JIM_OK) {
3681 /* more? */
3682 continue;
3684 if (e == JIM_ERR) {
3685 /* An error */
3686 return e;
3688 /* otherwise we 'continue' below */
3690 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3691 if (e != JIM_OK) {
3692 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3693 return e;
3695 switch (n->value) {
3696 case TCFG_TYPE:
3697 /* not setable */
3698 if (goi->isconfigure) {
3699 Jim_SetResult_sprintf(goi->interp,
3700 "not settable: %s", n->name);
3701 return JIM_ERR;
3702 } else {
3703 no_params:
3704 if (goi->argc != 0) {
3705 Jim_WrongNumArgs(goi->interp,
3706 goi->argc, goi->argv,
3707 "NO PARAMS");
3708 return JIM_ERR;
3711 Jim_SetResultString(goi->interp,
3712 target_type_name(target), -1);
3713 /* loop for more */
3714 break;
3715 case TCFG_EVENT:
3716 if (goi->argc == 0) {
3717 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3718 return JIM_ERR;
3721 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3722 if (e != JIM_OK) {
3723 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3724 return e;
3727 if (goi->isconfigure) {
3728 if (goi->argc != 1) {
3729 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3730 return JIM_ERR;
3732 } else {
3733 if (goi->argc != 0) {
3734 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3735 return JIM_ERR;
3740 struct target_event_action *teap;
3742 teap = target->event_action;
3743 /* replace existing? */
3744 while (teap) {
3745 if (teap->event == (enum target_event)n->value) {
3746 break;
3748 teap = teap->next;
3751 if (goi->isconfigure) {
3752 bool replace = true;
3753 if (teap == NULL) {
3754 /* create new */
3755 teap = calloc(1, sizeof(*teap));
3756 replace = false;
3758 teap->event = n->value;
3759 teap->interp = goi->interp;
3760 Jim_GetOpt_Obj(goi, &o);
3761 if (teap->body) {
3762 Jim_DecrRefCount(teap->interp, teap->body);
3764 teap->body = Jim_DuplicateObj(goi->interp, o);
3766 * FIXME:
3767 * Tcl/TK - "tk events" have a nice feature.
3768 * See the "BIND" command.
3769 * We should support that here.
3770 * You can specify %X and %Y in the event code.
3771 * The idea is: %T - target name.
3772 * The idea is: %N - target number
3773 * The idea is: %E - event name.
3775 Jim_IncrRefCount(teap->body);
3777 if (!replace)
3779 /* add to head of event list */
3780 teap->next = target->event_action;
3781 target->event_action = teap;
3783 Jim_SetEmptyResult(goi->interp);
3784 } else {
3785 /* get */
3786 if (teap == NULL) {
3787 Jim_SetEmptyResult(goi->interp);
3788 } else {
3789 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3793 /* loop for more */
3794 break;
3796 case TCFG_WORK_AREA_VIRT:
3797 if (goi->isconfigure) {
3798 target_free_all_working_areas(target);
3799 e = Jim_GetOpt_Wide(goi, &w);
3800 if (e != JIM_OK) {
3801 return e;
3803 target->working_area_virt = w;
3804 target->working_area_virt_spec = true;
3805 } else {
3806 if (goi->argc != 0) {
3807 goto no_params;
3810 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3811 /* loop for more */
3812 break;
3814 case TCFG_WORK_AREA_PHYS:
3815 if (goi->isconfigure) {
3816 target_free_all_working_areas(target);
3817 e = Jim_GetOpt_Wide(goi, &w);
3818 if (e != JIM_OK) {
3819 return e;
3821 target->working_area_phys = w;
3822 target->working_area_phys_spec = true;
3823 } else {
3824 if (goi->argc != 0) {
3825 goto no_params;
3828 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3829 /* loop for more */
3830 break;
3832 case TCFG_WORK_AREA_SIZE:
3833 if (goi->isconfigure) {
3834 target_free_all_working_areas(target);
3835 e = Jim_GetOpt_Wide(goi, &w);
3836 if (e != JIM_OK) {
3837 return e;
3839 target->working_area_size = w;
3840 } else {
3841 if (goi->argc != 0) {
3842 goto no_params;
3845 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3846 /* loop for more */
3847 break;
3849 case TCFG_WORK_AREA_BACKUP:
3850 if (goi->isconfigure) {
3851 target_free_all_working_areas(target);
3852 e = Jim_GetOpt_Wide(goi, &w);
3853 if (e != JIM_OK) {
3854 return e;
3856 /* make this exactly 1 or 0 */
3857 target->backup_working_area = (!!w);
3858 } else {
3859 if (goi->argc != 0) {
3860 goto no_params;
3863 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3864 /* loop for more e*/
3865 break;
3867 case TCFG_ENDIAN:
3868 if (goi->isconfigure) {
3869 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3870 if (e != JIM_OK) {
3871 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3872 return e;
3874 target->endianness = n->value;
3875 } else {
3876 if (goi->argc != 0) {
3877 goto no_params;
3880 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3881 if (n->name == NULL) {
3882 target->endianness = TARGET_LITTLE_ENDIAN;
3883 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3885 Jim_SetResultString(goi->interp, n->name, -1);
3886 /* loop for more */
3887 break;
3889 case TCFG_VARIANT:
3890 if (goi->isconfigure) {
3891 if (goi->argc < 1) {
3892 Jim_SetResult_sprintf(goi->interp,
3893 "%s ?STRING?",
3894 n->name);
3895 return JIM_ERR;
3897 if (target->variant) {
3898 free((void *)(target->variant));
3900 e = Jim_GetOpt_String(goi, &cp, NULL);
3901 target->variant = strdup(cp);
3902 } else {
3903 if (goi->argc != 0) {
3904 goto no_params;
3907 Jim_SetResultString(goi->interp, target->variant,-1);
3908 /* loop for more */
3909 break;
3910 case TCFG_CHAIN_POSITION:
3911 if (goi->isconfigure) {
3912 Jim_Obj *o;
3913 struct jtag_tap *tap;
3914 target_free_all_working_areas(target);
3915 e = Jim_GetOpt_Obj(goi, &o);
3916 if (e != JIM_OK) {
3917 return e;
3919 tap = jtag_tap_by_jim_obj(goi->interp, o);
3920 if (tap == NULL) {
3921 return JIM_ERR;
3923 /* make this exactly 1 or 0 */
3924 target->tap = tap;
3925 } else {
3926 if (goi->argc != 0) {
3927 goto no_params;
3930 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3931 /* loop for more e*/
3932 break;
3934 } /* while (goi->argc) */
3937 /* done - we return */
3938 return JIM_OK;
3941 static int
3942 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3944 Jim_GetOptInfo goi;
3946 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3947 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3948 int need_args = 1 + goi.isconfigure;
3949 if (goi.argc < need_args)
3951 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3952 goi.isconfigure
3953 ? "missing: -option VALUE ..."
3954 : "missing: -option ...");
3955 return JIM_ERR;
3957 struct target *target = Jim_CmdPrivData(goi.interp);
3958 return target_configure(&goi, target);
3961 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3963 const char *cmd_name = Jim_GetString(argv[0], NULL);
3965 Jim_GetOptInfo goi;
3966 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3968 /* danger! goi.argc will be modified below! */
3969 argc = goi.argc;
3971 if (argc != 2 && argc != 3)
3973 Jim_SetResult_sprintf(goi.interp,
3974 "usage: %s <address> <data> [<count>]", cmd_name);
3975 return JIM_ERR;
3979 jim_wide a;
3980 int e = Jim_GetOpt_Wide(&goi, &a);
3981 if (e != JIM_OK)
3982 return e;
3984 jim_wide b;
3985 e = Jim_GetOpt_Wide(&goi, &b);
3986 if (e != JIM_OK)
3987 return e;
3989 jim_wide c = 1;
3990 if (argc == 3)
3992 e = Jim_GetOpt_Wide(&goi, &c);
3993 if (e != JIM_OK)
3994 return e;
3997 struct target *target = Jim_CmdPrivData(goi.interp);
3998 unsigned data_size;
3999 if (strcasecmp(cmd_name, "mww") == 0) {
4000 data_size = 4;
4002 else if (strcasecmp(cmd_name, "mwh") == 0) {
4003 data_size = 2;
4005 else if (strcasecmp(cmd_name, "mwb") == 0) {
4006 data_size = 1;
4007 } else {
4008 LOG_ERROR("command '%s' unknown: ", cmd_name);
4009 return JIM_ERR;
4012 return (target_fill_mem(target, a, target_write_memory_fast, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4015 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4017 const char *cmd_name = Jim_GetString(argv[0], NULL);
4019 Jim_GetOptInfo goi;
4020 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4022 /* danger! goi.argc will be modified below! */
4023 argc = goi.argc;
4025 if ((argc != 1) && (argc != 2))
4027 Jim_SetResult_sprintf(goi.interp,
4028 "usage: %s <address> [<count>]", cmd_name);
4029 return JIM_ERR;
4032 jim_wide a;
4033 int e = Jim_GetOpt_Wide(&goi, &a);
4034 if (e != JIM_OK) {
4035 return JIM_ERR;
4037 jim_wide c;
4038 if (argc == 2) {
4039 e = Jim_GetOpt_Wide(&goi, &c);
4040 if (e != JIM_OK) {
4041 return JIM_ERR;
4043 } else {
4044 c = 1;
4046 jim_wide b = 1; /* shut up gcc */
4047 if (strcasecmp(cmd_name, "mdw") == 0)
4048 b = 4;
4049 else if (strcasecmp(cmd_name, "mdh") == 0)
4050 b = 2;
4051 else if (strcasecmp(cmd_name, "mdb") == 0)
4052 b = 1;
4053 else {
4054 LOG_ERROR("command '%s' unknown: ", cmd_name);
4055 return JIM_ERR;
4058 /* convert count to "bytes" */
4059 c = c * b;
4061 struct target *target = Jim_CmdPrivData(goi.interp);
4062 uint8_t target_buf[32];
4063 jim_wide x, y, z;
4064 while (c > 0) {
4065 y = c;
4066 if (y > 16) {
4067 y = 16;
4069 e = target_read_memory(target, a, b, y / b, target_buf);
4070 if (e != ERROR_OK) {
4071 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4072 return JIM_ERR;
4075 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4076 switch (b) {
4077 case 4:
4078 for (x = 0; x < 16 && x < y; x += 4)
4080 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4081 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4083 for (; (x < 16) ; x += 4) {
4084 Jim_fprintf(interp, interp->cookie_stdout, " ");
4086 break;
4087 case 2:
4088 for (x = 0; x < 16 && x < y; x += 2)
4090 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4091 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4093 for (; (x < 16) ; x += 2) {
4094 Jim_fprintf(interp, interp->cookie_stdout, " ");
4096 break;
4097 case 1:
4098 default:
4099 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4100 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4101 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4103 for (; (x < 16) ; x += 1) {
4104 Jim_fprintf(interp, interp->cookie_stdout, " ");
4106 break;
4108 /* ascii-ify the bytes */
4109 for (x = 0 ; x < y ; x++) {
4110 if ((target_buf[x] >= 0x20) &&
4111 (target_buf[x] <= 0x7e)) {
4112 /* good */
4113 } else {
4114 /* smack it */
4115 target_buf[x] = '.';
4118 /* space pad */
4119 while (x < 16) {
4120 target_buf[x] = ' ';
4121 x++;
4123 /* terminate */
4124 target_buf[16] = 0;
4125 /* print - with a newline */
4126 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4127 /* NEXT... */
4128 c -= 16;
4129 a += 16;
4131 return JIM_OK;
4134 static int jim_target_mem2array(Jim_Interp *interp,
4135 int argc, Jim_Obj *const *argv)
4137 struct target *target = Jim_CmdPrivData(interp);
4138 return target_mem2array(interp, target, argc - 1, argv + 1);
4141 static int jim_target_array2mem(Jim_Interp *interp,
4142 int argc, Jim_Obj *const *argv)
4144 struct target *target = Jim_CmdPrivData(interp);
4145 return target_array2mem(interp, target, argc - 1, argv + 1);
4148 static int jim_target_tap_disabled(Jim_Interp *interp)
4150 Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4151 return JIM_ERR;
4154 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4156 if (argc != 1)
4158 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4159 return JIM_ERR;
4161 struct target *target = Jim_CmdPrivData(interp);
4162 if (!target->tap->enabled)
4163 return jim_target_tap_disabled(interp);
4165 int e = target->type->examine(target);
4166 if (e != ERROR_OK)
4168 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4169 return JIM_ERR;
4171 return JIM_OK;
4174 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4176 if (argc != 1)
4178 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4179 return JIM_ERR;
4181 struct target *target = Jim_CmdPrivData(interp);
4183 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4184 return JIM_ERR;
4186 return JIM_OK;
4189 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4191 if (argc != 1)
4193 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4194 return JIM_ERR;
4196 struct target *target = Jim_CmdPrivData(interp);
4197 if (!target->tap->enabled)
4198 return jim_target_tap_disabled(interp);
4200 int e;
4201 if (!(target_was_examined(target))) {
4202 e = ERROR_TARGET_NOT_EXAMINED;
4203 } else {
4204 e = target->type->poll(target);
4206 if (e != ERROR_OK)
4208 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4209 return JIM_ERR;
4211 return JIM_OK;
4214 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4216 Jim_GetOptInfo goi;
4217 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4219 if (goi.argc != 2)
4221 Jim_WrongNumArgs(interp, 0, argv,
4222 "([tT]|[fF]|assert|deassert) BOOL");
4223 return JIM_ERR;
4226 Jim_Nvp *n;
4227 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4228 if (e != JIM_OK)
4230 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4231 return e;
4233 /* the halt or not param */
4234 jim_wide a;
4235 e = Jim_GetOpt_Wide(&goi, &a);
4236 if (e != JIM_OK)
4237 return e;
4239 struct target *target = Jim_CmdPrivData(goi.interp);
4240 if (!target->tap->enabled)
4241 return jim_target_tap_disabled(interp);
4242 if (!(target_was_examined(target)))
4244 LOG_ERROR("Target not examined yet");
4245 return ERROR_TARGET_NOT_EXAMINED;
4247 if (!target->type->assert_reset || !target->type->deassert_reset)
4249 Jim_SetResult_sprintf(interp,
4250 "No target-specific reset for %s",
4251 target_name(target));
4252 return JIM_ERR;
4254 /* determine if we should halt or not. */
4255 target->reset_halt = !!a;
4256 /* When this happens - all workareas are invalid. */
4257 target_free_all_working_areas_restore(target, 0);
4259 /* do the assert */
4260 if (n->value == NVP_ASSERT) {
4261 e = target->type->assert_reset(target);
4262 } else {
4263 e = target->type->deassert_reset(target);
4265 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4268 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4270 if (argc != 1) {
4271 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4272 return JIM_ERR;
4274 struct target *target = Jim_CmdPrivData(interp);
4275 if (!target->tap->enabled)
4276 return jim_target_tap_disabled(interp);
4277 int e = target->type->halt(target);
4278 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4281 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4283 Jim_GetOptInfo goi;
4284 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4286 /* params: <name> statename timeoutmsecs */
4287 if (goi.argc != 2)
4289 const char *cmd_name = Jim_GetString(argv[0], NULL);
4290 Jim_SetResult_sprintf(goi.interp,
4291 "%s <state_name> <timeout_in_msec>", cmd_name);
4292 return JIM_ERR;
4295 Jim_Nvp *n;
4296 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4297 if (e != JIM_OK) {
4298 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4299 return e;
4301 jim_wide a;
4302 e = Jim_GetOpt_Wide(&goi, &a);
4303 if (e != JIM_OK) {
4304 return e;
4306 struct target *target = Jim_CmdPrivData(interp);
4307 if (!target->tap->enabled)
4308 return jim_target_tap_disabled(interp);
4310 e = target_wait_state(target, n->value, a);
4311 if (e != ERROR_OK)
4313 Jim_SetResult_sprintf(goi.interp,
4314 "target: %s wait %s fails (%d) %s",
4315 target_name(target), n->name,
4316 e, target_strerror_safe(e));
4317 return JIM_ERR;
4319 return JIM_OK;
4321 /* List for human, Events defined for this target.
4322 * scripts/programs should use 'name cget -event NAME'
4324 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4326 struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4327 struct target *target = Jim_CmdPrivData(interp);
4328 struct target_event_action *teap = target->event_action;
4329 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4330 target->target_number,
4331 target_name(target));
4332 command_print(cmd_ctx, "%-25s | Body", "Event");
4333 command_print(cmd_ctx, "------------------------- | "
4334 "----------------------------------------");
4335 while (teap)
4337 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4338 command_print(cmd_ctx, "%-25s | %s",
4339 opt->name, Jim_GetString(teap->body, NULL));
4340 teap = teap->next;
4342 command_print(cmd_ctx, "***END***");
4343 return JIM_OK;
4345 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4347 if (argc != 1)
4349 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4350 return JIM_ERR;
4352 struct target *target = Jim_CmdPrivData(interp);
4353 Jim_SetResultString(interp, target_state_name(target), -1);
4354 return JIM_OK;
4356 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4358 Jim_GetOptInfo goi;
4359 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4360 if (goi.argc != 1)
4362 const char *cmd_name = Jim_GetString(argv[0], NULL);
4363 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4364 return JIM_ERR;
4366 Jim_Nvp *n;
4367 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4368 if (e != JIM_OK)
4370 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4371 return e;
4373 struct target *target = Jim_CmdPrivData(interp);
4374 target_handle_event(target, n->value);
4375 return JIM_OK;
4378 static const struct command_registration target_instance_command_handlers[] = {
4380 .name = "configure",
4381 .mode = COMMAND_CONFIG,
4382 .jim_handler = jim_target_configure,
4383 .help = "configure a new target for use",
4384 .usage = "[target_attribute ...]",
4387 .name = "cget",
4388 .mode = COMMAND_ANY,
4389 .jim_handler = jim_target_configure,
4390 .help = "returns the specified target attribute",
4391 .usage = "target_attribute",
4394 .name = "mww",
4395 .mode = COMMAND_EXEC,
4396 .jim_handler = jim_target_mw,
4397 .help = "Write 32-bit word(s) to target memory",
4398 .usage = "address data [count]",
4401 .name = "mwh",
4402 .mode = COMMAND_EXEC,
4403 .jim_handler = jim_target_mw,
4404 .help = "Write 16-bit half-word(s) to target memory",
4405 .usage = "address data [count]",
4408 .name = "mwb",
4409 .mode = COMMAND_EXEC,
4410 .jim_handler = jim_target_mw,
4411 .help = "Write byte(s) to target memory",
4412 .usage = "address data [count]",
4415 .name = "mdw",
4416 .mode = COMMAND_EXEC,
4417 .jim_handler = jim_target_md,
4418 .help = "Display target memory as 32-bit words",
4419 .usage = "address [count]",
4422 .name = "mdh",
4423 .mode = COMMAND_EXEC,
4424 .jim_handler = jim_target_md,
4425 .help = "Display target memory as 16-bit half-words",
4426 .usage = "address [count]",
4429 .name = "mdb",
4430 .mode = COMMAND_EXEC,
4431 .jim_handler = jim_target_md,
4432 .help = "Display target memory as 8-bit bytes",
4433 .usage = "address [count]",
4436 .name = "array2mem",
4437 .mode = COMMAND_EXEC,
4438 .jim_handler = jim_target_array2mem,
4439 .help = "Writes Tcl array of 8/16/32 bit numbers "
4440 "to target memory",
4441 .usage = "arrayname bitwidth address count",
4444 .name = "mem2array",
4445 .mode = COMMAND_EXEC,
4446 .jim_handler = jim_target_mem2array,
4447 .help = "Loads Tcl array of 8/16/32 bit numbers "
4448 "from target memory",
4449 .usage = "arrayname bitwidth address count",
4452 .name = "eventlist",
4453 .mode = COMMAND_EXEC,
4454 .jim_handler = jim_target_event_list,
4455 .help = "displays a table of events defined for this target",
4458 .name = "curstate",
4459 .mode = COMMAND_EXEC,
4460 .jim_handler = jim_target_current_state,
4461 .help = "displays the current state of this target",
4464 .name = "arp_examine",
4465 .mode = COMMAND_EXEC,
4466 .jim_handler = jim_target_examine,
4467 .help = "used internally for reset processing",
4470 .name = "arp_halt_gdb",
4471 .mode = COMMAND_EXEC,
4472 .jim_handler = jim_target_halt_gdb,
4473 .help = "used internally for reset processing to halt GDB",
4476 .name = "arp_poll",
4477 .mode = COMMAND_EXEC,
4478 .jim_handler = jim_target_poll,
4479 .help = "used internally for reset processing",
4482 .name = "arp_reset",
4483 .mode = COMMAND_EXEC,
4484 .jim_handler = jim_target_reset,
4485 .help = "used internally for reset processing",
4488 .name = "arp_halt",
4489 .mode = COMMAND_EXEC,
4490 .jim_handler = jim_target_halt,
4491 .help = "used internally for reset processing",
4494 .name = "arp_waitstate",
4495 .mode = COMMAND_EXEC,
4496 .jim_handler = jim_target_wait_state,
4497 .help = "used internally for reset processing",
4500 .name = "invoke-event",
4501 .mode = COMMAND_EXEC,
4502 .jim_handler = jim_target_invoke_event,
4503 .help = "invoke handler for specified event",
4504 .usage = "event_name",
4506 COMMAND_REGISTRATION_DONE
4509 static int target_create(Jim_GetOptInfo *goi)
4511 Jim_Obj *new_cmd;
4512 Jim_Cmd *cmd;
4513 const char *cp;
4514 char *cp2;
4515 int e;
4516 int x;
4517 struct target *target;
4518 struct command_context *cmd_ctx;
4520 cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4521 if (goi->argc < 3) {
4522 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4523 return JIM_ERR;
4526 /* COMMAND */
4527 Jim_GetOpt_Obj(goi, &new_cmd);
4528 /* does this command exist? */
4529 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4530 if (cmd) {
4531 cp = Jim_GetString(new_cmd, NULL);
4532 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4533 return JIM_ERR;
4536 /* TYPE */
4537 e = Jim_GetOpt_String(goi, &cp2, NULL);
4538 cp = cp2;
4539 /* now does target type exist */
4540 for (x = 0 ; target_types[x] ; x++) {
4541 if (0 == strcmp(cp, target_types[x]->name)) {
4542 /* found */
4543 break;
4546 if (target_types[x] == NULL) {
4547 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4548 for (x = 0 ; target_types[x] ; x++) {
4549 if (target_types[x + 1]) {
4550 Jim_AppendStrings(goi->interp,
4551 Jim_GetResult(goi->interp),
4552 target_types[x]->name,
4553 ", ", NULL);
4554 } else {
4555 Jim_AppendStrings(goi->interp,
4556 Jim_GetResult(goi->interp),
4557 " or ",
4558 target_types[x]->name,NULL);
4561 return JIM_ERR;
4564 /* Create it */
4565 target = calloc(1,sizeof(struct target));
4566 /* set target number */
4567 target->target_number = new_target_number();
4569 /* allocate memory for each unique target type */
4570 target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4572 memcpy(target->type, target_types[x], sizeof(struct target_type));
4574 /* will be set by "-endian" */
4575 target->endianness = TARGET_ENDIAN_UNKNOWN;
4577 target->working_area = 0x0;
4578 target->working_area_size = 0x0;
4579 target->working_areas = NULL;
4580 target->backup_working_area = 0;
4582 target->state = TARGET_UNKNOWN;
4583 target->debug_reason = DBG_REASON_UNDEFINED;
4584 target->reg_cache = NULL;
4585 target->breakpoints = NULL;
4586 target->watchpoints = NULL;
4587 target->next = NULL;
4588 target->arch_info = NULL;
4590 target->display = 1;
4592 target->halt_issued = false;
4594 /* initialize trace information */
4595 target->trace_info = malloc(sizeof(struct trace));
4596 target->trace_info->num_trace_points = 0;
4597 target->trace_info->trace_points_size = 0;
4598 target->trace_info->trace_points = NULL;
4599 target->trace_info->trace_history_size = 0;
4600 target->trace_info->trace_history = NULL;
4601 target->trace_info->trace_history_pos = 0;
4602 target->trace_info->trace_history_overflowed = 0;
4604 target->dbgmsg = NULL;
4605 target->dbg_msg_enabled = 0;
4607 target->endianness = TARGET_ENDIAN_UNKNOWN;
4609 /* Do the rest as "configure" options */
4610 goi->isconfigure = 1;
4611 e = target_configure(goi, target);
4613 if (target->tap == NULL)
4615 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4616 e = JIM_ERR;
4619 if (e != JIM_OK) {
4620 free(target->type);
4621 free(target);
4622 return e;
4625 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4626 /* default endian to little if not specified */
4627 target->endianness = TARGET_LITTLE_ENDIAN;
4630 /* incase variant is not set */
4631 if (!target->variant)
4632 target->variant = strdup("");
4634 cp = Jim_GetString(new_cmd, NULL);
4635 target->cmd_name = strdup(cp);
4637 /* create the target specific commands */
4638 if (target->type->commands) {
4639 e = register_commands(cmd_ctx, NULL, target->type->commands);
4640 if (ERROR_OK != e)
4641 LOG_ERROR("unable to register '%s' commands", cp);
4643 if (target->type->target_create) {
4644 (*(target->type->target_create))(target, goi->interp);
4647 /* append to end of list */
4649 struct target **tpp;
4650 tpp = &(all_targets);
4651 while (*tpp) {
4652 tpp = &((*tpp)->next);
4654 *tpp = target;
4657 /* now - create the new target name command */
4658 const const struct command_registration target_subcommands[] = {
4660 .chain = target_instance_command_handlers,
4663 .chain = target->type->commands,
4665 COMMAND_REGISTRATION_DONE
4667 const const struct command_registration target_commands[] = {
4669 .name = cp,
4670 .mode = COMMAND_ANY,
4671 .help = "target command group",
4672 .chain = target_subcommands,
4674 COMMAND_REGISTRATION_DONE
4676 e = register_commands(cmd_ctx, NULL, target_commands);
4677 if (ERROR_OK != e)
4678 return JIM_ERR;
4680 struct command *c = command_find_in_context(cmd_ctx, cp);
4681 assert(c);
4682 command_set_handler_data(c, target);
4684 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4687 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4689 if (argc != 1)
4691 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4692 return JIM_ERR;
4694 struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4695 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4696 return JIM_OK;
4699 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4701 if (argc != 1)
4703 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4704 return JIM_ERR;
4706 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4707 for (unsigned x = 0; NULL != target_types[x]; x++)
4709 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4710 Jim_NewStringObj(interp, target_types[x]->name, -1));
4712 return JIM_OK;
4715 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4717 if (argc != 1)
4719 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4720 return JIM_ERR;
4722 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4723 struct target *target = all_targets;
4724 while (target)
4726 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4727 Jim_NewStringObj(interp, target_name(target), -1));
4728 target = target->next;
4730 return JIM_OK;
4733 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4735 Jim_GetOptInfo goi;
4736 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4737 if (goi.argc < 3)
4739 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4740 "<name> <target_type> [<target_options> ...]");
4741 return JIM_ERR;
4743 return target_create(&goi);
4746 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4748 Jim_GetOptInfo goi;
4749 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4751 /* It's OK to remove this mechanism sometime after August 2010 or so */
4752 LOG_WARNING("don't use numbers as target identifiers; use names");
4753 if (goi.argc != 1)
4755 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4756 return JIM_ERR;
4758 jim_wide w;
4759 int e = Jim_GetOpt_Wide(&goi, &w);
4760 if (e != JIM_OK)
4761 return JIM_ERR;
4763 struct target *target;
4764 for (target = all_targets; NULL != target; target = target->next)
4766 if (target->target_number != w)
4767 continue;
4769 Jim_SetResultString(goi.interp, target_name(target), -1);
4770 return JIM_OK;
4772 Jim_SetResult_sprintf(goi.interp,
4773 "Target: number %d does not exist", (int)(w));
4774 return JIM_ERR;
4777 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4779 if (argc != 1)
4781 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4782 return JIM_ERR;
4784 unsigned count = 0;
4785 struct target *target = all_targets;
4786 while (NULL != target)
4788 target = target->next;
4789 count++;
4791 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4792 return JIM_OK;
4795 static const struct command_registration target_subcommand_handlers[] = {
4797 .name = "init",
4798 .mode = COMMAND_CONFIG,
4799 .handler = handle_target_init_command,
4800 .help = "initialize targets",
4803 .name = "create",
4804 /* REVISIT this should be COMMAND_CONFIG ... */
4805 .mode = COMMAND_ANY,
4806 .jim_handler = jim_target_create,
4807 .usage = "name type '-chain-position' name [options ...]",
4808 .help = "Creates and selects a new target",
4811 .name = "current",
4812 .mode = COMMAND_ANY,
4813 .jim_handler = jim_target_current,
4814 .help = "Returns the currently selected target",
4817 .name = "types",
4818 .mode = COMMAND_ANY,
4819 .jim_handler = jim_target_types,
4820 .help = "Returns the available target types as "
4821 "a list of strings",
4824 .name = "names",
4825 .mode = COMMAND_ANY,
4826 .jim_handler = jim_target_names,
4827 .help = "Returns the names of all targets as a list of strings",
4830 .name = "number",
4831 .mode = COMMAND_ANY,
4832 .jim_handler = jim_target_number,
4833 .usage = "number",
4834 .help = "Returns the name of the numbered target "
4835 "(DEPRECATED)",
4838 .name = "count",
4839 .mode = COMMAND_ANY,
4840 .jim_handler = jim_target_count,
4841 .help = "Returns the number of targets as an integer "
4842 "(DEPRECATED)",
4844 COMMAND_REGISTRATION_DONE
4847 struct FastLoad
4849 uint32_t address;
4850 uint8_t *data;
4851 int length;
4855 static int fastload_num;
4856 static struct FastLoad *fastload;
4858 static void free_fastload(void)
4860 if (fastload != NULL)
4862 int i;
4863 for (i = 0; i < fastload_num; i++)
4865 if (fastload[i].data)
4866 free(fastload[i].data);
4868 free(fastload);
4869 fastload = NULL;
4876 COMMAND_HANDLER(handle_fast_load_image_command)
4878 uint8_t *buffer;
4879 size_t buf_cnt;
4880 uint32_t image_size;
4881 uint32_t min_address = 0;
4882 uint32_t max_address = 0xffffffff;
4883 int i;
4885 struct image image;
4887 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4888 &image, &min_address, &max_address);
4889 if (ERROR_OK != retval)
4890 return retval;
4892 struct duration bench;
4893 duration_start(&bench);
4895 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4897 return ERROR_OK;
4900 image_size = 0x0;
4901 retval = ERROR_OK;
4902 fastload_num = image.num_sections;
4903 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4904 if (fastload == NULL)
4906 image_close(&image);
4907 return ERROR_FAIL;
4909 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4910 for (i = 0; i < image.num_sections; i++)
4912 buffer = malloc(image.sections[i].size);
4913 if (buffer == NULL)
4915 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4916 (int)(image.sections[i].size));
4917 break;
4920 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4922 free(buffer);
4923 break;
4926 uint32_t offset = 0;
4927 uint32_t length = buf_cnt;
4930 /* DANGER!!! beware of unsigned comparision here!!! */
4932 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4933 (image.sections[i].base_address < max_address))
4935 if (image.sections[i].base_address < min_address)
4937 /* clip addresses below */
4938 offset += min_address-image.sections[i].base_address;
4939 length -= offset;
4942 if (image.sections[i].base_address + buf_cnt > max_address)
4944 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4947 fastload[i].address = image.sections[i].base_address + offset;
4948 fastload[i].data = malloc(length);
4949 if (fastload[i].data == NULL)
4951 free(buffer);
4952 break;
4954 memcpy(fastload[i].data, buffer + offset, length);
4955 fastload[i].length = length;
4957 image_size += length;
4958 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4959 (unsigned int)length,
4960 ((unsigned int)(image.sections[i].base_address + offset)));
4963 free(buffer);
4966 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4968 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4969 "in %fs (%0.3f kb/s)", image_size,
4970 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4972 command_print(CMD_CTX,
4973 "WARNING: image has not been loaded to target!"
4974 "You can issue a 'fast_load' to finish loading.");
4977 image_close(&image);
4979 if (retval != ERROR_OK)
4981 free_fastload();
4984 return retval;
4987 COMMAND_HANDLER(handle_fast_load_command)
4989 if (CMD_ARGC > 0)
4990 return ERROR_COMMAND_SYNTAX_ERROR;
4991 if (fastload == NULL)
4993 LOG_ERROR("No image in memory");
4994 return ERROR_FAIL;
4996 int i;
4997 int ms = timeval_ms();
4998 int size = 0;
4999 int retval = ERROR_OK;
5000 for (i = 0; i < fastload_num;i++)
5002 struct target *target = get_current_target(CMD_CTX);
5003 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5004 (unsigned int)(fastload[i].address),
5005 (unsigned int)(fastload[i].length));
5006 if (retval == ERROR_OK)
5008 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5010 size += fastload[i].length;
5012 int after = timeval_ms();
5013 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5014 return retval;
5017 static const struct command_registration target_command_handlers[] = {
5019 .name = "targets",
5020 .handler = handle_targets_command,
5021 .mode = COMMAND_ANY,
5022 .help = "change current default target (one parameter) "
5023 "or prints table of all targets (no parameters)",
5024 .usage = "[target]",
5027 .name = "target",
5028 .mode = COMMAND_CONFIG,
5029 .help = "configure target",
5031 .chain = target_subcommand_handlers,
5033 COMMAND_REGISTRATION_DONE
5036 int target_register_commands(struct command_context *cmd_ctx)
5038 return register_commands(cmd_ctx, NULL, target_command_handlers);
5041 static bool target_reset_nag = true;
5043 bool get_target_reset_nag(void)
5045 return target_reset_nag;
5048 COMMAND_HANDLER(handle_target_reset_nag)
5050 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5051 &target_reset_nag, "Nag after each reset about options to improve "
5052 "performance");
5055 static const struct command_registration target_exec_command_handlers[] = {
5057 .name = "fast_load_image",
5058 .handler = handle_fast_load_image_command,
5059 .mode = COMMAND_ANY,
5060 .help = "Load image into server memory for later use by "
5061 "fast_load; primarily for profiling",
5062 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5063 "[min_address [max_length]]",
5066 .name = "fast_load",
5067 .handler = handle_fast_load_command,
5068 .mode = COMMAND_EXEC,
5069 .help = "loads active fast load image to current target "
5070 "- mainly for profiling purposes",
5073 .name = "profile",
5074 .handler = handle_profile_command,
5075 .mode = COMMAND_EXEC,
5076 .help = "profiling samples the CPU PC",
5078 /** @todo don't register virt2phys() unless target supports it */
5080 .name = "virt2phys",
5081 .handler = handle_virt2phys_command,
5082 .mode = COMMAND_ANY,
5083 .help = "translate a virtual address into a physical address",
5084 .usage = "virtual_address",
5087 .name = "reg",
5088 .handler = handle_reg_command,
5089 .mode = COMMAND_EXEC,
5090 .help = "display or set a register; with no arguments, "
5091 "displays all registers and their values",
5092 .usage = "[(register_name|register_number) [value]]",
5095 .name = "poll",
5096 .handler = handle_poll_command,
5097 .mode = COMMAND_EXEC,
5098 .help = "poll target state; or reconfigure background polling",
5099 .usage = "['on'|'off']",
5102 .name = "wait_halt",
5103 .handler = handle_wait_halt_command,
5104 .mode = COMMAND_EXEC,
5105 .help = "wait up to the specified number of milliseconds "
5106 "(default 5) for a previously requested halt",
5107 .usage = "[milliseconds]",
5110 .name = "halt",
5111 .handler = handle_halt_command,
5112 .mode = COMMAND_EXEC,
5113 .help = "request target to halt, then wait up to the specified"
5114 "number of milliseconds (default 5) for it to complete",
5115 .usage = "[milliseconds]",
5118 .name = "resume",
5119 .handler = handle_resume_command,
5120 .mode = COMMAND_EXEC,
5121 .help = "resume target execution from current PC or address",
5122 .usage = "[address]",
5125 .name = "reset",
5126 .handler = handle_reset_command,
5127 .mode = COMMAND_EXEC,
5128 .usage = "[run|halt|init]",
5129 .help = "Reset all targets into the specified mode."
5130 "Default reset mode is run, if not given.",
5133 .name = "soft_reset_halt",
5134 .handler = handle_soft_reset_halt_command,
5135 .mode = COMMAND_EXEC,
5136 .help = "halt the target and do a soft reset",
5139 .name = "step",
5140 .handler = handle_step_command,
5141 .mode = COMMAND_EXEC,
5142 .help = "step one instruction from current PC or address",
5143 .usage = "[address]",
5146 .name = "mdw",
5147 .handler = handle_md_command,
5148 .mode = COMMAND_EXEC,
5149 .help = "display memory words",
5150 .usage = "['phys'] address [count]",
5153 .name = "mdh",
5154 .handler = handle_md_command,
5155 .mode = COMMAND_EXEC,
5156 .help = "display memory half-words",
5157 .usage = "['phys'] address [count]",
5160 .name = "mdb",
5161 .handler = handle_md_command,
5162 .mode = COMMAND_EXEC,
5163 .help = "display memory bytes",
5164 .usage = "['phys'] address [count]",
5167 .name = "mww",
5168 .handler = handle_mw_command,
5169 .mode = COMMAND_EXEC,
5170 .help = "write memory word",
5171 .usage = "['phys'] address value [count]",
5174 .name = "mwh",
5175 .handler = handle_mw_command,
5176 .mode = COMMAND_EXEC,
5177 .help = "write memory half-word",
5178 .usage = "['phys'] address value [count]",
5181 .name = "mwb",
5182 .handler = handle_mw_command,
5183 .mode = COMMAND_EXEC,
5184 .help = "write memory byte",
5185 .usage = "['phys'] address value [count]",
5188 .name = "bp",
5189 .handler = handle_bp_command,
5190 .mode = COMMAND_EXEC,
5191 .help = "list or set hardware or software breakpoint",
5192 .usage = "[address length ['hw']]",
5195 .name = "rbp",
5196 .handler = handle_rbp_command,
5197 .mode = COMMAND_EXEC,
5198 .help = "remove breakpoint",
5199 .usage = "address",
5202 .name = "wp",
5203 .handler = handle_wp_command,
5204 .mode = COMMAND_EXEC,
5205 .help = "list (no params) or create watchpoints",
5206 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5209 .name = "rwp",
5210 .handler = handle_rwp_command,
5211 .mode = COMMAND_EXEC,
5212 .help = "remove watchpoint",
5213 .usage = "address",
5216 .name = "load_image",
5217 .handler = handle_load_image_command,
5218 .mode = COMMAND_EXEC,
5219 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5220 "[min_address] [max_length]",
5223 .name = "dump_image",
5224 .handler = handle_dump_image_command,
5225 .mode = COMMAND_EXEC,
5226 .usage = "filename address size",
5229 .name = "verify_image",
5230 .handler = handle_verify_image_command,
5231 .mode = COMMAND_EXEC,
5232 .usage = "filename [offset [type]]",
5235 .name = "test_image",
5236 .handler = handle_test_image_command,
5237 .mode = COMMAND_EXEC,
5238 .usage = "filename [offset [type]]",
5241 .name = "ocd_mem2array",
5242 .mode = COMMAND_EXEC,
5243 .jim_handler = jim_mem2array,
5244 .help = "read 8/16/32 bit memory and return as a TCL array "
5245 "for script processing",
5246 .usage = "arrayname bitwidth address count",
5249 .name = "ocd_array2mem",
5250 .mode = COMMAND_EXEC,
5251 .jim_handler = jim_array2mem,
5252 .help = "convert a TCL array to memory locations "
5253 "and write the 8/16/32 bit values",
5254 .usage = "arrayname bitwidth address count",
5257 .name = "reset_nag",
5258 .handler = handle_target_reset_nag,
5259 .mode = COMMAND_ANY,
5260 .help = "Nag after each reset about options that could have been "
5261 "enabled to improve performance. ",
5262 .usage = "['enable'|'disable']",
5264 COMMAND_REGISTRATION_DONE
5266 static int target_register_user_commands(struct command_context *cmd_ctx)
5268 int retval = ERROR_OK;
5269 if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5270 return retval;
5272 if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5273 return retval;
5276 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);