zy1000: fix tcl command to read power dropout status
[openocd/dnglaze.git] / src / jtag / zy1000 / zy1000.c
blobb3f94e5cd7e784e01ef6bce59718895d3f414d38
1 /***************************************************************************
2 * Copyright (C) 2007-2010 by Øyvind Harboe *
3 * *
4 * This program is free software; you can redistribute it and/or modify *
5 * it under the terms of the GNU General Public License as published by *
6 * the Free Software Foundation; either version 2 of the License, or *
7 * (at your option) any later version. *
8 * *
9 * This program is distributed in the hope that it will be useful, *
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12 * GNU General Public License for more details. *
13 * *
14 * You should have received a copy of the GNU General Public License *
15 * along with this program; if not, write to the *
16 * Free Software Foundation, Inc., *
17 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
18 ***************************************************************************/
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
22 * The zy1000 is a standalone debugger that has a web interface and
23 * requires no drivers on the developer host as all communication
24 * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25 * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26 * accelerate the JTAG commands, while offering *very* low latency
27 * between OpenOCD and the FPGA registers.
29 * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30 * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31 * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
33 * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34 * revb is using ARM7 + Xilinx.
36 * See Zylin web pages or contact Zylin for more information.
38 * The reason this code is in OpenOCD rather than OpenOCD linked with the
39 * ZY1000 code is that OpenOCD is the long road towards getting
40 * libopenocd into place. libopenocd will support both low performance,
41 * low latency systems(embedded) and high performance high latency
42 * systems(PCs).
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include <time.h>
52 #include <helper/time_support.h>
54 #include <netinet/tcp.h>
56 #if BUILD_ECOSBOARD
57 #include "zy1000_version.h"
59 #include <cyg/hal/hal_io.h> // low level i/o
60 #include <cyg/hal/hal_diag.h>
62 #ifdef CYGPKG_HAL_NIOS2
63 #include <cyg/hal/io.h>
64 #include <cyg/firmwareutil/firmwareutil.h>
65 #endif
67 #define ZYLIN_VERSION GIT_ZY1000_VERSION
68 #define ZYLIN_DATE __DATE__
69 #define ZYLIN_TIME __TIME__
70 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
71 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
73 #endif
75 static int zy1000_khz(int khz, int *jtag_speed)
77 if (khz == 0)
79 *jtag_speed = 0;
81 else
83 *jtag_speed = 64000/khz;
85 return ERROR_OK;
88 static int zy1000_speed_div(int speed, int *khz)
90 if (speed == 0)
92 *khz = 0;
94 else
96 *khz = 64000/speed;
99 return ERROR_OK;
102 static bool readPowerDropout(void)
104 uint32_t state;
105 // sample and clear power dropout
106 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
107 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
108 bool powerDropout;
109 powerDropout = (state & 0x80) != 0;
110 return powerDropout;
114 static bool readSRST(void)
116 uint32_t state;
117 // sample and clear SRST sensing
118 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
119 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
120 bool srstAsserted;
121 srstAsserted = (state & 0x40) != 0;
122 return srstAsserted;
125 static int zy1000_srst_asserted(int *srst_asserted)
127 *srst_asserted = readSRST();
128 return ERROR_OK;
131 static int zy1000_power_dropout(int *dropout)
133 *dropout = readPowerDropout();
134 return ERROR_OK;
137 void zy1000_reset(int trst, int srst)
139 LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
141 /* flush the JTAG FIFO. Not flushing the queue before messing with
142 * reset has such interesting bugs as causing hard to reproduce
143 * RCLK bugs as RCLK will stop responding when TRST is asserted
145 waitIdle();
147 if (!srst)
149 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
151 else
153 /* Danger!!! if clk != 0 when in
154 * idle in TAP_IDLE, reset halt on str912 will fail.
156 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
159 if (!trst)
161 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
163 else
165 /* assert reset */
166 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
169 if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
171 /* we're now in the RESET state until trst is deasserted */
172 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
173 } else
175 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
176 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
179 /* wait for srst to float back up */
180 if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
181 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
183 bool first = true;
184 long long start;
185 long total = 0;
186 for (;;)
188 // We don't want to sense our own reset, so we clear here.
189 // There is of course a timing hole where we could loose
190 // a "real" reset.
191 if (!readSRST())
193 if (total > 1)
195 LOG_USER("SRST took %dms to deassert", (int)total);
197 break;
200 if (first)
202 first = false;
203 start = timeval_ms();
206 total = timeval_ms() - start;
208 keep_alive();
210 if (total > 5000)
212 LOG_ERROR("SRST took too long to deassert: %dms", (int)total);
213 break;
220 int zy1000_speed(int speed)
222 /* flush JTAG master FIFO before setting speed */
223 waitIdle();
225 if (speed == 0)
227 /*0 means RCLK*/
228 speed = 0;
229 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
230 LOG_DEBUG("jtag_speed using RCLK");
232 else
234 if (speed > 8190 || speed < 2)
236 LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
237 return ERROR_INVALID_ARGUMENTS;
240 LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
241 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
242 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
244 return ERROR_OK;
247 static bool savePower;
250 static void setPower(bool power)
252 savePower = power;
253 if (power)
255 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
256 } else
258 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
262 COMMAND_HANDLER(handle_power_command)
264 switch (CMD_ARGC)
266 case 1: {
267 bool enable;
268 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
269 setPower(enable);
270 // fall through
272 case 0:
273 LOG_INFO("Target power %s", savePower ? "on" : "off");
274 break;
275 default:
276 return ERROR_INVALID_ARGUMENTS;
279 return ERROR_OK;
282 #if !BUILD_ECOSBOARD
283 static char *tcp_server = "notspecified";
284 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
286 if (argc != 2)
287 return JIM_ERR;
289 tcp_server = strdup(Jim_GetString(argv[1], NULL));
291 return JIM_OK;
293 #endif
295 #if BUILD_ECOSBOARD
296 /* Give TELNET a way to find out what version this is */
297 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
299 if ((argc < 1) || (argc > 3))
300 return JIM_ERR;
301 const char *version_str = NULL;
303 if (argc == 1)
305 version_str = ZYLIN_OPENOCD_VERSION;
306 } else
308 const char *str = Jim_GetString(argv[1], NULL);
309 const char *str2 = NULL;
310 if (argc > 2)
311 str2 = Jim_GetString(argv[2], NULL);
312 if (strcmp("openocd", str) == 0)
314 version_str = ZYLIN_OPENOCD;
316 else if (strcmp("zy1000", str) == 0)
318 version_str = ZYLIN_VERSION;
320 else if (strcmp("date", str) == 0)
322 version_str = ZYLIN_DATE;
324 else if (strcmp("time", str) == 0)
326 version_str = ZYLIN_TIME;
328 else if (strcmp("pcb", str) == 0)
330 #ifdef CYGPKG_HAL_NIOS2
331 version_str="c";
332 #else
333 version_str="b";
334 #endif
336 #ifdef CYGPKG_HAL_NIOS2
337 else if (strcmp("fpga", str) == 0)
340 /* return a list of 32 bit integers to describe the expected
341 * and actual FPGA
343 static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
344 uint32_t id, timestamp;
345 HAL_READ_UINT32(SYSID_BASE, id);
346 HAL_READ_UINT32(SYSID_BASE+4, timestamp);
347 sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
348 version_str = fpga_id;
349 if ((argc>2) && (strcmp("time", str2) == 0))
351 time_t last_mod = timestamp;
352 char * t = ctime (&last_mod) ;
353 t[strlen(t)-1] = 0;
354 version_str = t;
357 #endif
359 else
361 return JIM_ERR;
365 Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
367 return JIM_OK;
369 #endif
371 #ifdef CYGPKG_HAL_NIOS2
374 struct info_forward
376 void *data;
377 struct cyg_upgrade_info *upgraded_file;
380 static void report_info(void *data, const char * format, va_list args)
382 char *s = alloc_vprintf(format, args);
383 LOG_USER_N("%s", s);
384 free(s);
387 struct cyg_upgrade_info firmware_info =
389 (uint8_t *)0x84000000,
390 "/ram/firmware.phi",
391 "Firmware",
392 0x0300000,
393 0x1f00000 -
394 0x0300000,
395 "ZylinNiosFirmware\n",
396 report_info,
399 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
401 if (argc != 2)
402 return JIM_ERR;
404 int length;
405 const char *str = Jim_GetString(argv[1], &length);
407 /* */
408 int tmpFile;
409 if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
411 return JIM_ERR;
413 bool success;
414 success = write(tmpFile, str, length) == length;
415 close(tmpFile);
416 if (!success)
417 return JIM_ERR;
419 if (!cyg_firmware_upgrade(NULL, firmware_info))
420 return JIM_ERR;
422 return JIM_OK;
424 #endif
426 static int
427 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
428 int argc,
429 Jim_Obj * const *argv)
431 if (argc != 1)
433 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
434 return JIM_ERR;
437 bool dropout = readPowerDropout();
439 Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
441 return JIM_OK;
446 int zy1000_quit(void)
449 return ERROR_OK;
454 int interface_jtag_execute_queue(void)
456 uint32_t empty;
458 waitIdle();
459 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
460 /* clear JTAG error register */
461 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
463 if ((empty&0x400) != 0)
465 LOG_WARNING("RCLK timeout");
466 /* the error is informative only as we don't want to break the firmware if there
467 * is a false positive.
469 // return ERROR_FAIL;
471 return ERROR_OK;
478 static uint32_t getShiftValue(void)
480 uint32_t value;
481 waitIdle();
482 ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
483 VERBOSE(LOG_INFO("getShiftValue %08x", value));
484 return value;
486 #if 0
487 static uint32_t getShiftValueFlip(void)
489 uint32_t value;
490 waitIdle();
491 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x18, value);
492 VERBOSE(LOG_INFO("getShiftValue %08x (flipped)", value));
493 return value;
495 #endif
497 #if 0
498 static void shiftValueInnerFlip(const tap_state_t state, const tap_state_t endState, int repeat, uint32_t value)
500 VERBOSE(LOG_INFO("shiftValueInner %s %s %d %08x (flipped)", tap_state_name(state), tap_state_name(endState), repeat, value));
501 uint32_t a,b;
502 a = state;
503 b = endState;
504 ZY1000_POKE(ZY1000_JTAG_BASE + 0xc, value);
505 ZY1000_POKE(ZY1000_JTAG_BASE + 0x8, (1 << 15) | (repeat << 8) | (a << 4) | b);
506 VERBOSE(getShiftValueFlip());
508 #endif
510 // here we shuffle N bits out/in
511 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause, tap_state_t shiftState, tap_state_t end_state)
513 tap_state_t pause_state = shiftState;
514 for (int j = 0; j < num_bits; j += 32)
516 int k = num_bits - j;
517 if (k > 32)
519 k = 32;
520 /* we have more to shift out */
521 } else if (pause)
523 /* this was the last to shift out this time */
524 pause_state = end_state;
527 // we have (num_bits + 7)/8 bytes of bits to toggle out.
528 // bits are pushed out LSB to MSB
529 uint32_t value;
530 value = 0;
531 if (out_value != NULL)
533 for (int l = 0; l < k; l += 8)
535 value|=out_value[(j + l)/8]<<l;
538 /* mask away unused bits for easier debugging */
539 if (k < 32)
541 value&=~(((uint32_t)0xffffffff) << k);
542 } else
544 /* Shifting by >= 32 is not defined by the C standard
545 * and will in fact shift by &0x1f bits on nios */
548 shiftValueInner(shiftState, pause_state, k, value);
550 if (in_value != NULL)
552 // data in, LSB to MSB
553 value = getShiftValue();
554 // we're shifting in data to MSB, shift data to be aligned for returning the value
555 value >>= 32-k;
557 for (int l = 0; l < k; l += 8)
559 in_value[(j + l)/8]=(value >> l)&0xff;
565 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
567 for (int i = 0; i < num_fields; i++)
569 scanBits(fields[i].out_value,
570 fields[i].in_value,
571 fields[i].num_bits,
572 (i == num_fields-1),
573 shiftState,
574 end_state);
578 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
580 int scan_size = 0;
581 struct jtag_tap *tap, *nextTap;
582 tap_state_t pause_state = TAP_IRSHIFT;
584 for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
586 nextTap = jtag_tap_next_enabled(tap);
587 if (nextTap==NULL)
589 pause_state = state;
591 scan_size = tap->ir_length;
593 /* search the list */
594 if (tap == active)
596 scanFields(1, fields, TAP_IRSHIFT, pause_state);
597 /* update device information */
598 buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
600 tap->bypass = 0;
601 } else
603 /* if a device isn't listed, set it to BYPASS */
604 assert(scan_size <= 32);
605 shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
607 tap->bypass = 1;
611 return ERROR_OK;
618 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
620 scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
621 return ERROR_OK;
624 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
626 struct jtag_tap *tap, *nextTap;
627 tap_state_t pause_state = TAP_DRSHIFT;
628 for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
630 nextTap = jtag_tap_next_enabled(tap);
631 if (nextTap==NULL)
633 pause_state = state;
636 /* Find a range of fields to write to this tap */
637 if (tap == active)
639 assert(!tap->bypass);
641 scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
642 } else
644 /* Shift out a 0 for disabled tap's */
645 assert(tap->bypass);
646 shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
649 return ERROR_OK;
652 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
654 scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
655 return ERROR_OK;
658 int interface_jtag_add_tlr()
660 setCurrentState(TAP_RESET);
661 return ERROR_OK;
665 int interface_jtag_add_reset(int req_trst, int req_srst)
667 zy1000_reset(req_trst, req_srst);
668 return ERROR_OK;
671 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
673 /* num_cycles can be 0 */
674 setCurrentState(clockstate);
676 /* execute num_cycles, 32 at the time. */
677 int i;
678 for (i = 0; i < num_cycles; i += 32)
680 int num;
681 num = 32;
682 if (num_cycles-i < num)
684 num = num_cycles-i;
686 shiftValueInner(clockstate, clockstate, num, 0);
689 #if !TEST_MANUAL()
690 /* finish in end_state */
691 setCurrentState(state);
692 #else
693 tap_state_t t = TAP_IDLE;
694 /* test manual drive code on any target */
695 int tms;
696 uint8_t tms_scan = tap_get_tms_path(t, state);
697 int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
699 for (i = 0; i < tms_count; i++)
701 tms = (tms_scan >> i) & 1;
702 waitIdle();
703 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
705 waitIdle();
706 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
707 #endif
709 return ERROR_OK;
712 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
714 return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
717 int interface_jtag_add_clocks(int num_cycles)
719 return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
722 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
724 /*wait for the fifo to be empty*/
725 waitIdle();
727 for (unsigned i = 0; i < num_bits; i++)
729 int tms;
731 if (((seq[i/8] >> (i % 8)) & 1) == 0)
733 tms = 0;
735 else
737 tms = 1;
740 waitIdle();
741 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
744 waitIdle();
745 if (state != TAP_INVALID)
747 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
748 } else
750 /* this would be normal if we are switching to SWD mode */
752 return ERROR_OK;
755 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
757 int state_count;
758 int tms = 0;
760 state_count = 0;
762 tap_state_t cur_state = cmd_queue_cur_state;
764 uint8_t seq[16];
765 memset(seq, 0, sizeof(seq));
766 assert(num_states < (int)((sizeof(seq) * 8)));
768 while (num_states)
770 if (tap_state_transition(cur_state, false) == path[state_count])
772 tms = 0;
774 else if (tap_state_transition(cur_state, true) == path[state_count])
776 tms = 1;
778 else
780 LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
781 exit(-1);
784 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
786 cur_state = path[state_count];
787 state_count++;
788 num_states--;
791 return interface_add_tms_seq(state_count, seq, cur_state);
794 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
796 /* bypass bits before and after */
797 int pre_bits = 0;
798 int post_bits = 0;
800 bool found = false;
801 struct jtag_tap *cur_tap, *nextTap;
802 for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
804 nextTap = jtag_tap_next_enabled(cur_tap);
805 if (cur_tap == tap)
807 found = true;
808 } else
810 if (found)
812 post_bits++;
813 } else
815 pre_bits++;
819 *pre = pre_bits;
820 *post = post_bits;
823 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
826 int pre_bits;
827 int post_bits;
828 jtag_pre_post_bits(tap, &pre_bits, &post_bits);
830 if (pre_bits + post_bits + 6 > 32)
832 int i;
833 for (i = 0; i < count; i++)
835 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
836 buffer += 4;
838 } else
840 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
841 int i;
842 for (i = 0; i < count - 1; i++)
844 /* Fewer pokes means we get to use the FIFO more efficiently */
845 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
846 shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits + pre_bits, (reg_addr | (1 << 5)));
847 buffer += 4;
849 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
850 shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
856 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
858 #if 0
859 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count);
860 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
861 #else
862 static const int bits[] = {32, 2};
863 uint32_t values[] = {0, 0};
865 /* FIX!!!!!! the target_write_memory() API started this nasty problem
866 * with unaligned uint32_t * pointers... */
867 const uint8_t *t = (const uint8_t *)data;
870 /* bypass bits before and after */
871 int pre_bits;
872 int post_bits;
873 jtag_pre_post_bits(tap, &pre_bits, &post_bits);
875 bool found = false;
876 struct jtag_tap *cur_tap, *nextTap;
877 for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
879 nextTap = jtag_tap_next_enabled(cur_tap);
880 if (cur_tap == tap)
882 found = true;
883 } else
885 if (found)
887 post_bits++;
888 } else
890 pre_bits++;
895 post_bits+=2;
898 while (--count > 0)
900 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
902 uint32_t value;
903 value = *t++;
904 value |= (*t++<<8);
905 value |= (*t++<<16);
906 value |= (*t++<<24);
908 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
909 /* minimum 2 bits */
910 shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
912 #if 1
913 /* copy & paste from arm11_dbgtap.c */
914 //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
916 waitIdle();
917 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
918 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
919 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
920 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
921 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
922 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
923 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
924 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
925 /* we don't have to wait for the queue to empty here. waitIdle(); */
926 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
927 #else
928 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
930 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
933 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
934 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
935 #endif
938 values[0] = *t++;
939 values[0] |= (*t++<<8);
940 values[0] |= (*t++<<16);
941 values[0] |= (*t++<<24);
943 /* This will happen on the last iteration updating the current tap state
944 * so we don't have to track it during the common code path */
945 jtag_add_dr_out(tap,
947 bits,
948 values,
949 TAP_IDLE);
951 return jtag_execute_queue();
952 #endif
956 static const struct command_registration zy1000_commands[] = {
958 .name = "power",
959 .handler = handle_power_command,
960 .mode = COMMAND_ANY,
961 .help = "Turn power switch to target on/off. "
962 "With no arguments, prints status.",
963 .usage = "('on'|'off)",
965 #if BUILD_ECOSBOARD
967 .name = "zy1000_version",
968 .mode = COMMAND_ANY,
969 .jim_handler = jim_zy1000_version,
970 .help = "Print version info for zy1000.",
971 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
973 #else
975 .name = "zy1000_server",
976 .mode = COMMAND_ANY,
977 .jim_handler = jim_zy1000_server,
978 .help = "Tcpip address for ZY1000 server.",
979 .usage = "address",
981 #endif
983 .name = "powerstatus",
984 .mode = COMMAND_ANY,
985 .jim_handler = zylinjtag_Jim_Command_powerstatus,
986 .help = "Returns power status of target",
988 #ifdef CYGPKG_HAL_NIOS2
990 .name = "updatezy1000firmware",
991 .mode = COMMAND_ANY,
992 .jim_handler = jim_zy1000_writefirmware,
993 .help = "writes firmware to flash",
994 /* .usage = "some_string", */
996 #endif
997 COMMAND_REGISTRATION_DONE
1001 static int tcp_ip = -1;
1003 /* Write large packets if we can */
1004 static size_t out_pos;
1005 static uint8_t out_buffer[16384];
1006 static size_t in_pos;
1007 static size_t in_write;
1008 static uint8_t in_buffer[16384];
1010 static bool flush_writes(void)
1012 bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1013 out_pos = 0;
1014 return ok;
1017 static bool writeLong(uint32_t l)
1019 int i;
1020 for (i = 0; i < 4; i++)
1022 uint8_t c = (l >> (i*8))&0xff;
1023 out_buffer[out_pos++] = c;
1024 if (out_pos >= sizeof(out_buffer))
1026 if (!flush_writes())
1028 return false;
1032 return true;
1035 static bool readLong(uint32_t *out_data)
1037 if (out_pos > 0)
1039 if (!flush_writes())
1041 return false;
1045 uint32_t data = 0;
1046 int i;
1047 for (i = 0; i < 4; i++)
1049 uint8_t c;
1050 if (in_pos == in_write)
1052 /* read more */
1053 int t;
1054 t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1055 if (t < 1)
1057 return false;
1059 in_write = (size_t) t;
1060 in_pos = 0;
1062 c = in_buffer[in_pos++];
1064 data |= (c << (i*8));
1066 *out_data = data;
1067 return true;
1070 enum ZY1000_CMD
1072 ZY1000_CMD_POKE = 0x0,
1073 ZY1000_CMD_PEEK = 0x8,
1074 ZY1000_CMD_SLEEP = 0x1,
1078 #if !BUILD_ECOSBOARD
1080 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1081 #include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
1083 /* We initialize this late since we need to know the server address
1084 * first.
1086 static void tcpip_open(void)
1088 if (tcp_ip >= 0)
1089 return;
1091 struct sockaddr_in echoServAddr; /* Echo server address */
1093 /* Create a reliable, stream socket using TCP */
1094 if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1096 fprintf(stderr, "Failed to connect to zy1000 server\n");
1097 exit(-1);
1100 /* Construct the server address structure */
1101 memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1102 echoServAddr.sin_family = AF_INET; /* Internet address family */
1103 echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1104 echoServAddr.sin_port = htons(7777); /* Server port */
1106 /* Establish the connection to the echo server */
1107 if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1109 fprintf(stderr, "Failed to connect to zy1000 server\n");
1110 exit(-1);
1113 int flag = 1;
1114 setsockopt(tcp_ip, /* socket affected */
1115 IPPROTO_TCP, /* set option at TCP level */
1116 TCP_NODELAY, /* name of option */
1117 (char *)&flag, /* the cast is historical cruft */
1118 sizeof(int)); /* length of option value */
1123 /* send a poke */
1124 void zy1000_tcpout(uint32_t address, uint32_t data)
1126 tcpip_open();
1127 if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1128 !writeLong(data))
1130 fprintf(stderr, "Could not write to zy1000 server\n");
1131 exit(-1);
1135 uint32_t zy1000_tcpin(uint32_t address)
1137 tcpip_open();
1138 uint32_t data;
1139 if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1140 !readLong(&data))
1142 fprintf(stderr, "Could not read from zy1000 server\n");
1143 exit(-1);
1145 return data;
1148 int interface_jtag_add_sleep(uint32_t us)
1150 tcpip_open();
1151 if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1152 !writeLong(us))
1154 fprintf(stderr, "Could not read from zy1000 server\n");
1155 exit(-1);
1157 return ERROR_OK;
1161 #endif
1163 #if BUILD_ECOSBOARD
1164 static char tcpip_stack[2048];
1166 static cyg_thread tcpip_thread_object;
1167 static cyg_handle_t tcpip_thread_handle;
1169 /* Infinite loop peeking & poking */
1170 static void tcpipserver(void)
1172 for (;;)
1174 uint32_t address;
1175 if (!readLong(&address))
1176 return;
1177 enum ZY1000_CMD c = (address >> 24) & 0xff;
1178 address &= 0xffffff;
1179 switch (c)
1181 case ZY1000_CMD_POKE:
1183 uint32_t data;
1184 if (!readLong(&data))
1185 return;
1186 address &= ~0x80000000;
1187 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1188 break;
1190 case ZY1000_CMD_PEEK:
1192 uint32_t data;
1193 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1194 if (!writeLong(data))
1195 return;
1196 break;
1198 case ZY1000_CMD_SLEEP:
1200 uint32_t data;
1201 if (!readLong(&data))
1202 return;
1203 jtag_sleep(data);
1204 break;
1206 default:
1207 return;
1213 static void tcpip_server(cyg_addrword_t data)
1215 int so_reuseaddr_option = 1;
1217 int fd;
1218 if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1220 LOG_ERROR("error creating socket: %s", strerror(errno));
1221 exit(-1);
1224 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1225 sizeof(int));
1227 struct sockaddr_in sin;
1228 unsigned int address_size;
1229 address_size = sizeof(sin);
1230 memset(&sin, 0, sizeof(sin));
1231 sin.sin_family = AF_INET;
1232 sin.sin_addr.s_addr = INADDR_ANY;
1233 sin.sin_port = htons(7777);
1235 if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1237 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1238 exit(-1);
1241 if (listen(fd, 1) == -1)
1243 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1244 exit(-1);
1248 for (;;)
1250 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1251 if (tcp_ip < 0)
1253 continue;
1256 int flag = 1;
1257 setsockopt(tcp_ip, /* socket affected */
1258 IPPROTO_TCP, /* set option at TCP level */
1259 TCP_NODELAY, /* name of option */
1260 (char *)&flag, /* the cast is historical cruft */
1261 sizeof(int)); /* length of option value */
1263 bool save_poll = jtag_poll_get_enabled();
1265 /* polling will screw up the "connection" */
1266 jtag_poll_set_enabled(false);
1268 tcpipserver();
1270 jtag_poll_set_enabled(save_poll);
1272 close(tcp_ip);
1275 close(fd);
1279 int interface_jtag_add_sleep(uint32_t us)
1281 jtag_sleep(us);
1282 return ERROR_OK;
1285 #endif
1288 int zy1000_init(void)
1290 #if BUILD_ECOSBOARD
1291 LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1292 #endif
1294 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1296 setPower(true); // on by default
1299 /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1300 zy1000_reset(0, 0);
1301 zy1000_speed(jtag_get_speed());
1304 #if BUILD_ECOSBOARD
1305 cyg_thread_create(1, tcpip_server, (cyg_addrword_t) 0, "tcip/ip server",
1306 (void *) tcpip_stack, sizeof(tcpip_stack),
1307 &tcpip_thread_handle, &tcpip_thread_object);
1308 cyg_thread_resume(tcpip_thread_handle);
1309 #endif
1311 return ERROR_OK;
1316 struct jtag_interface zy1000_interface =
1318 .name = "ZY1000",
1319 .supported = DEBUG_CAP_TMS_SEQ,
1320 .execute_queue = NULL,
1321 .speed = zy1000_speed,
1322 .commands = zy1000_commands,
1323 .init = zy1000_init,
1324 .quit = zy1000_quit,
1325 .khz = zy1000_khz,
1326 .speed_div = zy1000_speed_div,
1327 .power_dropout = zy1000_power_dropout,
1328 .srst_asserted = zy1000_srst_asserted,