debug interface: get rid of unused pre_debug fn
[openocd/dave.git] / src / target / arm7_9_common.c
blob45394b7e028d3a507a3c6ec4d5fd8a1530b1b5ed
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2008 by Hongtao Zheng *
12 * hontor@126.com *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
33 #include "embeddedice.h"
34 #include "target_request.h"
35 #include "arm7_9_common.h"
36 #include "time_support.h"
37 #include "arm_simulator.h"
40 int arm7_9_debug_entry(target_t *target);
41 int arm7_9_enable_sw_bkpts(struct target_s *target);
43 /* command handler forward declarations */
44 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
45 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
46 int handle_arm7_9_read_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 int handle_arm7_9_etm_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 /**
54 * Clear watchpoints for an ARM7/9 target.
56 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
57 * @return JTAG error status after executing queue
59 static int arm7_9_clear_watchpoints(arm7_9_common_t *arm7_9)
61 LOG_DEBUG("-");
62 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
63 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
64 arm7_9->sw_breakpoint_count = 0;
65 arm7_9->sw_breakpoints_added = 0;
66 arm7_9->wp0_used = 0;
67 arm7_9->wp1_used = arm7_9->wp1_used_default;
68 arm7_9->wp_available = arm7_9->wp_available_max;
70 return jtag_execute_queue();
73 /**
74 * Assign a watchpoint to one of the two available hardware comparators in an
75 * ARM7 or ARM9 target.
77 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
78 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
80 static void arm7_9_assign_wp(arm7_9_common_t *arm7_9, breakpoint_t *breakpoint)
82 if (!arm7_9->wp0_used)
84 arm7_9->wp0_used = 1;
85 breakpoint->set = 1;
86 arm7_9->wp_available--;
88 else if (!arm7_9->wp1_used)
90 arm7_9->wp1_used = 1;
91 breakpoint->set = 2;
92 arm7_9->wp_available--;
94 else
96 LOG_ERROR("BUG: no hardware comparator available");
98 LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
99 breakpoint->unique_id,
100 breakpoint->address,
101 breakpoint->set );
105 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
107 * @param arm7_9 Pointer to common struct for ARM7/9 targets
108 * @return Error codes if there is a problem finding a watchpoint or the result
109 * of executing the JTAG queue
111 static int arm7_9_set_software_breakpoints(arm7_9_common_t *arm7_9)
113 if (arm7_9->sw_breakpoints_added)
115 return ERROR_OK;
117 if (arm7_9->wp_available < 1)
119 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
120 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
122 arm7_9->wp_available--;
124 /* pick a breakpoint unit */
125 if (!arm7_9->wp0_used)
127 arm7_9->sw_breakpoints_added = 1;
128 arm7_9->wp0_used = 3;
129 } else if (!arm7_9->wp1_used)
131 arm7_9->sw_breakpoints_added = 2;
132 arm7_9->wp1_used = 3;
134 else
136 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
137 return ERROR_FAIL;
140 if (arm7_9->sw_breakpoints_added == 1)
142 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
143 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
144 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
145 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
146 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
148 else if (arm7_9->sw_breakpoints_added == 2)
150 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
151 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
152 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
153 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
154 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
156 else
158 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
159 return ERROR_FAIL;
161 LOG_DEBUG("SW BP using hw wp: %d",
162 arm7_9->sw_breakpoints_added );
164 return jtag_execute_queue();
168 * Setup the common pieces for an ARM7/9 target after reset or on startup.
170 * @param target Pointer to an ARM7/9 target to setup
171 * @return Result of clearing the watchpoints on the target
173 int arm7_9_setup(target_t *target)
175 armv4_5_common_t *armv4_5 = target->arch_info;
176 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
178 return arm7_9_clear_watchpoints(arm7_9);
182 * Retrieves the architecture information pointers for ARMv4/5 and ARM7/9
183 * targets. A return of ERROR_OK signifies that the target is a valid target
184 * and that the pointers have been set properly.
186 * @param target Pointer to the target device to get the pointers from
187 * @param armv4_5_p Pointer to be filled in with the common struct for ARMV4/5
188 * targets
189 * @param arm7_9_p Pointer to be filled in with the common struct for ARM7/9
190 * targets
191 * @return ERROR_OK if successful
193 int arm7_9_get_arch_pointers(target_t *target, armv4_5_common_t **armv4_5_p, arm7_9_common_t **arm7_9_p)
195 armv4_5_common_t *armv4_5 = target->arch_info;
196 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
198 if (armv4_5->common_magic != ARMV4_5_COMMON_MAGIC)
200 return -1;
203 if (arm7_9->common_magic != ARM7_9_COMMON_MAGIC)
205 return -1;
208 *armv4_5_p = armv4_5;
209 *arm7_9_p = arm7_9;
211 return ERROR_OK;
215 * Set either a hardware or software breakpoint on an ARM7/9 target. The
216 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
217 * might have erased the values in Embedded ICE.
219 * @param target Pointer to the target device to set the breakpoints on
220 * @param breakpoint Pointer to the breakpoint to be set
221 * @return For hardware breakpoints, this is the result of executing the JTAG
222 * queue. For software breakpoints, this will be the status of the
223 * required memory reads and writes
225 int arm7_9_set_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
227 armv4_5_common_t *armv4_5 = target->arch_info;
228 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
229 int retval = ERROR_OK;
231 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
232 breakpoint->unique_id,
233 breakpoint->address,
234 breakpoint->type);
236 if (target->state != TARGET_HALTED)
238 LOG_WARNING("target not halted");
239 return ERROR_TARGET_NOT_HALTED;
242 if (breakpoint->type == BKPT_HARD)
244 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
245 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
247 /* reassign a hw breakpoint */
248 if (breakpoint->set == 0)
250 arm7_9_assign_wp(arm7_9, breakpoint);
253 if (breakpoint->set == 1)
255 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
256 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
257 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
258 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
259 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
261 else if (breakpoint->set == 2)
263 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
264 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
265 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
266 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
267 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
269 else
271 LOG_ERROR("BUG: no hardware comparator available");
272 return ERROR_OK;
275 retval = jtag_execute_queue();
277 else if (breakpoint->type == BKPT_SOFT)
279 /* did we already set this breakpoint? */
280 if (breakpoint->set)
281 return ERROR_OK;
283 if (breakpoint->length == 4)
285 uint32_t verify = 0xffffffff;
286 /* keep the original instruction in target endianness */
287 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
289 return retval;
291 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
292 if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
294 return retval;
297 if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
299 return retval;
301 if (verify != arm7_9->arm_bkpt)
303 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
304 return ERROR_OK;
307 else
309 uint16_t verify = 0xffff;
310 /* keep the original instruction in target endianness */
311 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
313 return retval;
315 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
316 if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
318 return retval;
321 if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
323 return retval;
325 if (verify != arm7_9->thumb_bkpt)
327 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
328 return ERROR_OK;
332 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
333 return retval;
335 arm7_9->sw_breakpoint_count++;
337 breakpoint->set = 1;
340 return retval;
344 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
345 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
346 * will be updated. Otherwise, the software breakpoint will be restored to its
347 * original instruction if it hasn't already been modified.
349 * @param target Pointer to ARM7/9 target to unset the breakpoint from
350 * @param breakpoint Pointer to breakpoint to be unset
351 * @return For hardware breakpoints, this is the result of executing the JTAG
352 * queue. For software breakpoints, this will be the status of the
353 * required memory reads and writes
355 int arm7_9_unset_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
357 int retval = ERROR_OK;
359 armv4_5_common_t *armv4_5 = target->arch_info;
360 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
362 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
363 breakpoint->unique_id,
364 breakpoint->address );
366 if (!breakpoint->set)
368 LOG_WARNING("breakpoint not set");
369 return ERROR_OK;
372 if (breakpoint->type == BKPT_HARD)
374 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
375 breakpoint->unique_id,
376 breakpoint->set );
377 if (breakpoint->set == 1)
379 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
380 arm7_9->wp0_used = 0;
381 arm7_9->wp_available++;
383 else if (breakpoint->set == 2)
385 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
386 arm7_9->wp1_used = 0;
387 arm7_9->wp_available++;
389 retval = jtag_execute_queue();
390 breakpoint->set = 0;
392 else
394 /* restore original instruction (kept in target endianness) */
395 if (breakpoint->length == 4)
397 uint32_t current_instr;
398 /* check that user program as not modified breakpoint instruction */
399 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
401 return retval;
403 if (current_instr == arm7_9->arm_bkpt)
404 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
406 return retval;
409 else
411 uint16_t current_instr;
412 /* check that user program as not modified breakpoint instruction */
413 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
415 return retval;
417 if (current_instr == arm7_9->thumb_bkpt)
418 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
420 return retval;
424 if (--arm7_9->sw_breakpoint_count==0)
426 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
427 if (arm7_9->sw_breakpoints_added == 1)
429 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
431 else if (arm7_9->sw_breakpoints_added == 2)
433 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
437 breakpoint->set = 0;
440 return retval;
444 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
445 * dangling breakpoints and that the desired breakpoint can be added.
447 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
448 * @param breakpoint Pointer to the breakpoint to be added
449 * @return An error status if there is a problem adding the breakpoint or the
450 * result of setting the breakpoint
452 int arm7_9_add_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
454 armv4_5_common_t *armv4_5 = target->arch_info;
455 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
457 if (target->state != TARGET_HALTED)
459 LOG_WARNING("target not halted");
460 return ERROR_TARGET_NOT_HALTED;
463 if (arm7_9->breakpoint_count == 0)
465 /* make sure we don't have any dangling breakpoints. This is vital upon
466 * GDB connect/disconnect
468 arm7_9_clear_watchpoints(arm7_9);
471 if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
473 LOG_INFO("no watchpoint unit available for hardware breakpoint");
474 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
477 if ((breakpoint->length != 2) && (breakpoint->length != 4))
479 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
480 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
483 if (breakpoint->type == BKPT_HARD)
485 arm7_9_assign_wp(arm7_9, breakpoint);
488 arm7_9->breakpoint_count++;
490 return arm7_9_set_breakpoint(target, breakpoint);
494 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
495 * dangling breakpoints and updates available watchpoints if it is a hardware
496 * breakpoint.
498 * @param target Pointer to the target to have a breakpoint removed
499 * @param breakpoint Pointer to the breakpoint to be removed
500 * @return Error status if there was a problem unsetting the breakpoint or the
501 * watchpoints could not be cleared
503 int arm7_9_remove_breakpoint(struct target_s *target, breakpoint_t *breakpoint)
505 int retval = ERROR_OK;
506 armv4_5_common_t *armv4_5 = target->arch_info;
507 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
509 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
511 return retval;
514 if (breakpoint->type == BKPT_HARD)
515 arm7_9->wp_available++;
517 arm7_9->breakpoint_count--;
518 if (arm7_9->breakpoint_count == 0)
520 /* make sure we don't have any dangling breakpoints */
521 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
523 return retval;
527 return ERROR_OK;
531 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
532 * considered a bug to call this function when there are no available watchpoint
533 * units.
535 * @param target Pointer to an ARM7/9 target to set a watchpoint on
536 * @param watchpoint Pointer to the watchpoint to be set
537 * @return Error status if watchpoint set fails or the result of executing the
538 * JTAG queue
540 int arm7_9_set_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
542 int retval = ERROR_OK;
543 armv4_5_common_t *armv4_5 = target->arch_info;
544 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
545 int rw_mask = 1;
546 uint32_t mask;
548 mask = watchpoint->length - 1;
550 if (target->state != TARGET_HALTED)
552 LOG_WARNING("target not halted");
553 return ERROR_TARGET_NOT_HALTED;
556 if (watchpoint->rw == WPT_ACCESS)
557 rw_mask = 0;
558 else
559 rw_mask = 1;
561 if (!arm7_9->wp0_used)
563 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
564 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
565 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
566 if (watchpoint->mask != 0xffffffffu)
567 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
568 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
569 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
571 if ((retval = jtag_execute_queue()) != ERROR_OK)
573 return retval;
575 watchpoint->set = 1;
576 arm7_9->wp0_used = 2;
578 else if (!arm7_9->wp1_used)
580 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
581 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
582 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
583 if (watchpoint->mask != 0xffffffffu)
584 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
585 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
586 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
588 if ((retval = jtag_execute_queue()) != ERROR_OK)
590 return retval;
592 watchpoint->set = 2;
593 arm7_9->wp1_used = 2;
595 else
597 LOG_ERROR("BUG: no hardware comparator available");
598 return ERROR_OK;
601 return ERROR_OK;
605 * Unset an existing watchpoint and clear the used watchpoint unit.
607 * @param target Pointer to the target to have the watchpoint removed
608 * @param watchpoint Pointer to the watchpoint to be removed
609 * @return Error status while trying to unset the watchpoint or the result of
610 * executing the JTAG queue
612 int arm7_9_unset_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
614 int retval = ERROR_OK;
615 armv4_5_common_t *armv4_5 = target->arch_info;
616 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
618 if (target->state != TARGET_HALTED)
620 LOG_WARNING("target not halted");
621 return ERROR_TARGET_NOT_HALTED;
624 if (!watchpoint->set)
626 LOG_WARNING("breakpoint not set");
627 return ERROR_OK;
630 if (watchpoint->set == 1)
632 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
633 if ((retval = jtag_execute_queue()) != ERROR_OK)
635 return retval;
637 arm7_9->wp0_used = 0;
639 else if (watchpoint->set == 2)
641 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
642 if ((retval = jtag_execute_queue()) != ERROR_OK)
644 return retval;
646 arm7_9->wp1_used = 0;
648 watchpoint->set = 0;
650 return ERROR_OK;
654 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
655 * available, an error response is returned.
657 * @param target Pointer to the ARM7/9 target to add a watchpoint to
658 * @param watchpoint Pointer to the watchpoint to be added
659 * @return Error status while trying to add the watchpoint
661 int arm7_9_add_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
663 armv4_5_common_t *armv4_5 = target->arch_info;
664 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
666 if (target->state != TARGET_HALTED)
668 LOG_WARNING("target not halted");
669 return ERROR_TARGET_NOT_HALTED;
672 if (arm7_9->wp_available < 1)
674 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
677 if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
679 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
682 arm7_9->wp_available--;
684 return ERROR_OK;
688 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
689 * the used watchpoint unit will be reopened.
691 * @param target Pointer to the target to remove a watchpoint from
692 * @param watchpoint Pointer to the watchpoint to be removed
693 * @return Result of trying to unset the watchpoint
695 int arm7_9_remove_watchpoint(struct target_s *target, watchpoint_t *watchpoint)
697 int retval = ERROR_OK;
698 armv4_5_common_t *armv4_5 = target->arch_info;
699 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
701 if (watchpoint->set)
703 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
705 return retval;
709 arm7_9->wp_available++;
711 return ERROR_OK;
715 * Restarts the target by sending a RESTART instruction and moving the JTAG
716 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
717 * asserted by the processor.
719 * @param target Pointer to target to issue commands to
720 * @return Error status if there is a timeout or a problem while executing the
721 * JTAG queue
723 int arm7_9_execute_sys_speed(struct target_s *target)
725 int retval;
727 armv4_5_common_t *armv4_5 = target->arch_info;
728 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
729 arm_jtag_t *jtag_info = &arm7_9->jtag_info;
730 reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
732 /* set RESTART instruction */
733 jtag_set_end_state(TAP_IDLE);
734 if (arm7_9->need_bypass_before_restart) {
735 arm7_9->need_bypass_before_restart = 0;
736 arm_jtag_set_instr(jtag_info, 0xf, NULL);
738 arm_jtag_set_instr(jtag_info, 0x4, NULL);
740 long long then = timeval_ms();
741 int timeout;
742 while (!(timeout = ((timeval_ms()-then) > 1000)))
744 /* read debug status register */
745 embeddedice_read_reg(dbg_stat);
746 if ((retval = jtag_execute_queue()) != ERROR_OK)
747 return retval;
748 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
749 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
750 break;
751 if (debug_level >= 3)
753 alive_sleep(100);
754 } else
756 keep_alive();
759 if (timeout)
761 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
762 return ERROR_TARGET_TIMEOUT;
765 return ERROR_OK;
769 * Restarts the target by sending a RESTART instruction and moving the JTAG
770 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
771 * waiting until they are.
773 * @param target Pointer to the target to issue commands to
774 * @return Always ERROR_OK
776 int arm7_9_execute_fast_sys_speed(struct target_s *target)
778 static int set = 0;
779 static uint8_t check_value[4], check_mask[4];
781 armv4_5_common_t *armv4_5 = target->arch_info;
782 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
783 arm_jtag_t *jtag_info = &arm7_9->jtag_info;
784 reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
786 /* set RESTART instruction */
787 jtag_set_end_state(TAP_IDLE);
788 if (arm7_9->need_bypass_before_restart) {
789 arm7_9->need_bypass_before_restart = 0;
790 arm_jtag_set_instr(jtag_info, 0xf, NULL);
792 arm_jtag_set_instr(jtag_info, 0x4, NULL);
794 if (!set)
796 /* check for DBGACK and SYSCOMP set (others don't care) */
798 /* NB! These are constants that must be available until after next jtag_execute() and
799 * we evaluate the values upon first execution in lieu of setting up these constants
800 * during early setup.
801 * */
802 buf_set_u32(check_value, 0, 32, 0x9);
803 buf_set_u32(check_mask, 0, 32, 0x9);
804 set = 1;
807 /* read debug status register */
808 embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
810 return ERROR_OK;
814 * Get some data from the ARM7/9 target.
816 * @param target Pointer to the ARM7/9 target to read data from
817 * @param size The number of 32bit words to be read
818 * @param buffer Pointer to the buffer that will hold the data
819 * @return The result of receiving data from the Embedded ICE unit
821 int arm7_9_target_request_data(target_t *target, uint32_t size, uint8_t *buffer)
823 armv4_5_common_t *armv4_5 = target->arch_info;
824 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
825 arm_jtag_t *jtag_info = &arm7_9->jtag_info;
826 uint32_t *data;
827 int retval = ERROR_OK;
828 uint32_t i;
830 data = malloc(size * (sizeof(uint32_t)));
832 retval = embeddedice_receive(jtag_info, data, size);
834 /* return the 32-bit ints in the 8-bit array */
835 for (i = 0; i < size; i++)
837 h_u32_to_le(buffer + (i * 4), data[i]);
840 free(data);
842 return retval;
846 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
847 * target is running and the DCC control register has the W bit high, this will
848 * execute the request on the target.
850 * @param priv Void pointer expected to be a target_t pointer
851 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
852 * from the Embedded ICE unit
854 int arm7_9_handle_target_request(void *priv)
856 int retval = ERROR_OK;
857 target_t *target = priv;
858 if (!target_was_examined(target))
859 return ERROR_OK;
860 armv4_5_common_t *armv4_5 = target->arch_info;
861 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
862 arm_jtag_t *jtag_info = &arm7_9->jtag_info;
863 reg_t *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
865 if (!target->dbg_msg_enabled)
866 return ERROR_OK;
868 if (target->state == TARGET_RUNNING)
870 /* read DCC control register */
871 embeddedice_read_reg(dcc_control);
872 if ((retval = jtag_execute_queue()) != ERROR_OK)
874 return retval;
877 /* check W bit */
878 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
880 uint32_t request;
882 if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
884 return retval;
886 if ((retval = target_request(target, request)) != ERROR_OK)
888 return retval;
893 return ERROR_OK;
897 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
898 * is manipulated to the right halted state based on its current state. This is
899 * what happens:
901 * <table>
902 * <tr><th > State</th><th > Action</th></tr>
903 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
904 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
905 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
906 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
907 * </table>
909 * If the target does not end up in the halted state, a warning is produced. If
910 * DBGACK is cleared, then the target is expected to either be running or
911 * running in debug.
913 * @param target Pointer to the ARM7/9 target to poll
914 * @return ERROR_OK or an error status if a command fails
916 int arm7_9_poll(target_t *target)
918 int retval;
919 armv4_5_common_t *armv4_5 = target->arch_info;
920 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
921 reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
923 /* read debug status register */
924 embeddedice_read_reg(dbg_stat);
925 if ((retval = jtag_execute_queue()) != ERROR_OK)
927 return retval;
930 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
932 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
933 if (target->state == TARGET_UNKNOWN)
935 /* Starting OpenOCD with target in debug-halt */
936 target->state = TARGET_RUNNING;
937 LOG_DEBUG("DBGACK already set during server startup.");
939 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
941 int check_pc = 0;
942 if (target->state == TARGET_RESET)
944 if (target->reset_halt)
946 enum reset_types jtag_reset_config = jtag_get_reset_config();
947 if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
949 check_pc = 1;
954 target->state = TARGET_HALTED;
956 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
957 return retval;
959 if (check_pc)
961 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
962 uint32_t t=*((uint32_t *)reg->value);
963 if (t != 0)
965 LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
969 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
971 return retval;
974 if (target->state == TARGET_DEBUG_RUNNING)
976 target->state = TARGET_HALTED;
977 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
978 return retval;
980 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
982 return retval;
985 if (target->state != TARGET_HALTED)
987 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
990 else
992 if (target->state != TARGET_DEBUG_RUNNING)
993 target->state = TARGET_RUNNING;
996 return ERROR_OK;
1000 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
1001 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
1002 * affected) completely stop the JTAG clock while the core is held in reset
1003 * (SRST). It isn't possible to program the halt condition once reset is
1004 * asserted, hence a hook that allows the target to set up its reset-halt
1005 * condition is setup prior to asserting reset.
1007 * @param target Pointer to an ARM7/9 target to assert reset on
1008 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
1010 int arm7_9_assert_reset(target_t *target)
1012 armv4_5_common_t *armv4_5 = target->arch_info;
1013 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1014 LOG_DEBUG("target->state: %s",
1015 target_state_name(target));
1017 enum reset_types jtag_reset_config = jtag_get_reset_config();
1018 if (!(jtag_reset_config & RESET_HAS_SRST))
1020 LOG_ERROR("Can't assert SRST");
1021 return ERROR_FAIL;
1024 /* At this point trst has been asserted/deasserted once. We would
1025 * like to program EmbeddedICE while SRST is asserted, instead of
1026 * depending on SRST to leave that module alone. However, many CPUs
1027 * gate the JTAG clock while SRST is asserted; or JTAG may need
1028 * clock stability guarantees (adaptive clocking might help).
1030 * So we assume JTAG access during SRST is off the menu unless it's
1031 * been specifically enabled.
1033 bool srst_asserted = false;
1035 if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
1036 && (jtag_reset_config & RESET_SRST_NO_GATING))
1038 jtag_add_reset(0, 1);
1039 srst_asserted = true;
1042 if (target->reset_halt)
1045 * Some targets do not support communication while SRST is asserted. We need to
1046 * set up the reset vector catch here.
1048 * If TRST is asserted, then these settings will be reset anyway, so setting them
1049 * here is harmless.
1051 if (arm7_9->has_vector_catch)
1053 /* program vector catch register to catch reset vector */
1054 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1056 /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1057 jtag_add_runtest(1, jtag_get_end_state());
1059 else
1061 /* program watchpoint unit to match on reset vector address */
1062 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1063 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1064 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1065 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1066 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1070 /* here we should issue an SRST only, but we may have to assert TRST as well */
1071 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1073 jtag_add_reset(1, 1);
1074 } else if (!srst_asserted)
1076 jtag_add_reset(0, 1);
1079 target->state = TARGET_RESET;
1080 jtag_add_sleep(50000);
1082 armv4_5_invalidate_core_regs(target);
1084 if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1086 /* debug entry was already prepared in arm7_9_assert_reset() */
1087 target->debug_reason = DBG_REASON_DBGRQ;
1090 return ERROR_OK;
1094 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1095 * and the target is being reset into a halt, a warning will be triggered
1096 * because it is not possible to reset into a halted mode in this case. The
1097 * target is halted using the target's functions.
1099 * @param target Pointer to the target to have the reset deasserted
1100 * @return ERROR_OK or an error from polling or halting the target
1102 int arm7_9_deassert_reset(target_t *target)
1104 int retval = ERROR_OK;
1105 LOG_DEBUG("target->state: %s",
1106 target_state_name(target));
1108 /* deassert reset lines */
1109 jtag_add_reset(0, 0);
1111 enum reset_types jtag_reset_config = jtag_get_reset_config();
1112 if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1114 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1115 /* set up embedded ice registers again */
1116 if ((retval = target_examine_one(target)) != ERROR_OK)
1117 return retval;
1119 if ((retval = target_poll(target)) != ERROR_OK)
1121 return retval;
1124 if ((retval = target_halt(target)) != ERROR_OK)
1126 return retval;
1130 return retval;
1134 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1135 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1136 * vector catch was used, it is restored. Otherwise, the control value is
1137 * restored and the watchpoint unit is restored if it was in use.
1139 * @param target Pointer to the ARM7/9 target to have halt cleared
1140 * @return Always ERROR_OK
1142 int arm7_9_clear_halt(target_t *target)
1144 armv4_5_common_t *armv4_5 = target->arch_info;
1145 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1146 reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1148 /* we used DBGRQ only if we didn't come out of reset */
1149 if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1151 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1153 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1154 embeddedice_store_reg(dbg_ctrl);
1156 else
1158 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1160 /* if we came out of reset, and vector catch is supported, we used
1161 * vector catch to enter debug state
1162 * restore the register in that case
1164 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1166 else
1168 /* restore registers if watchpoint unit 0 was in use
1170 if (arm7_9->wp0_used)
1172 if (arm7_9->debug_entry_from_reset)
1174 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1176 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1177 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1178 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1180 /* control value always has to be restored, as it was either disabled,
1181 * or enabled with possibly different bits
1183 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1187 return ERROR_OK;
1191 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1192 * and then there is a wait until the processor shows the halt. This wait can
1193 * timeout and results in an error being returned. The software reset involves
1194 * clearing the halt, updating the debug control register, changing to ARM mode,
1195 * reset of the program counter, and reset of all of the registers.
1197 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1198 * @return Error status if any of the commands fail, otherwise ERROR_OK
1200 int arm7_9_soft_reset_halt(struct target_s *target)
1202 armv4_5_common_t *armv4_5 = target->arch_info;
1203 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1204 reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1205 reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1206 int i;
1207 int retval;
1209 /* FIX!!! replace some of this code with tcl commands
1211 * halt # the halt command is synchronous
1212 * armv4_5 core_state arm
1216 if ((retval = target_halt(target)) != ERROR_OK)
1217 return retval;
1219 long long then = timeval_ms();
1220 int timeout;
1221 while (!(timeout = ((timeval_ms()-then) > 1000)))
1223 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1224 break;
1225 embeddedice_read_reg(dbg_stat);
1226 if ((retval = jtag_execute_queue()) != ERROR_OK)
1227 return retval;
1228 if (debug_level >= 3)
1230 alive_sleep(100);
1231 } else
1233 keep_alive();
1236 if (timeout)
1238 LOG_ERROR("Failed to halt CPU after 1 sec");
1239 return ERROR_TARGET_TIMEOUT;
1241 target->state = TARGET_HALTED;
1243 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1244 * ensure that DBGRQ is cleared
1246 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1247 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1248 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1249 embeddedice_store_reg(dbg_ctrl);
1251 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1253 return retval;
1256 /* if the target is in Thumb state, change to ARM state */
1257 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1259 uint32_t r0_thumb, pc_thumb;
1260 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1261 /* Entered debug from Thumb mode */
1262 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1263 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1266 /* all register content is now invalid */
1267 if ((retval = armv4_5_invalidate_core_regs(target)) != ERROR_OK)
1269 return retval;
1272 /* SVC, ARM state, IRQ and FIQ disabled */
1273 buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
1274 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
1275 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1277 /* start fetching from 0x0 */
1278 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1279 armv4_5->core_cache->reg_list[15].dirty = 1;
1280 armv4_5->core_cache->reg_list[15].valid = 1;
1282 armv4_5->core_mode = ARMV4_5_MODE_SVC;
1283 armv4_5->core_state = ARMV4_5_STATE_ARM;
1285 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1286 return ERROR_FAIL;
1288 /* reset registers */
1289 for (i = 0; i <= 14; i++)
1291 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1292 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1293 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1296 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1298 return retval;
1301 return ERROR_OK;
1305 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1306 * line or by programming a watchpoint to trigger on any address. It is
1307 * considered a bug to call this function while the target is in the
1308 * TARGET_RESET state.
1310 * @param target Pointer to the ARM7/9 target to be halted
1311 * @return Always ERROR_OK
1313 int arm7_9_halt(target_t *target)
1315 if (target->state == TARGET_RESET)
1317 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1318 return ERROR_OK;
1321 armv4_5_common_t *armv4_5 = target->arch_info;
1322 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1323 reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1325 LOG_DEBUG("target->state: %s",
1326 target_state_name(target));
1328 if (target->state == TARGET_HALTED)
1330 LOG_DEBUG("target was already halted");
1331 return ERROR_OK;
1334 if (target->state == TARGET_UNKNOWN)
1336 LOG_WARNING("target was in unknown state when halt was requested");
1339 if (arm7_9->use_dbgrq)
1341 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1343 if (arm7_9->set_special_dbgrq) {
1344 arm7_9->set_special_dbgrq(target);
1345 } else {
1346 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1347 embeddedice_store_reg(dbg_ctrl);
1350 else
1352 /* program watchpoint unit to match on any address
1354 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1355 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1356 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1357 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1360 target->debug_reason = DBG_REASON_DBGRQ;
1362 return ERROR_OK;
1366 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1367 * ARM. The JTAG queue is then executed and the reason for debug entry is
1368 * examined. Once done, the target is verified to be halted and the processor
1369 * is forced into ARM mode. The core registers are saved for the current core
1370 * mode and the program counter (register 15) is updated as needed. The core
1371 * registers and CPSR and SPSR are saved for restoration later.
1373 * @param target Pointer to target that is entering debug mode
1374 * @return Error code if anything fails, otherwise ERROR_OK
1376 int arm7_9_debug_entry(target_t *target)
1378 int i;
1379 uint32_t context[16];
1380 uint32_t* context_p[16];
1381 uint32_t r0_thumb, pc_thumb;
1382 uint32_t cpsr;
1383 int retval;
1384 /* get pointers to arch-specific information */
1385 armv4_5_common_t *armv4_5 = target->arch_info;
1386 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1387 reg_t *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1388 reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1390 #ifdef _DEBUG_ARM7_9_
1391 LOG_DEBUG("-");
1392 #endif
1394 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1395 * ensure that DBGRQ is cleared
1397 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1398 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1399 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1400 embeddedice_store_reg(dbg_ctrl);
1402 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1404 return retval;
1407 if ((retval = jtag_execute_queue()) != ERROR_OK)
1409 return retval;
1412 if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1413 return retval;
1416 if (target->state != TARGET_HALTED)
1418 LOG_WARNING("target not halted");
1419 return ERROR_TARGET_NOT_HALTED;
1422 /* if the target is in Thumb state, change to ARM state */
1423 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1425 LOG_DEBUG("target entered debug from Thumb state");
1426 /* Entered debug from Thumb mode */
1427 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1428 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1429 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1431 else
1433 LOG_DEBUG("target entered debug from ARM state");
1434 /* Entered debug from ARM mode */
1435 armv4_5->core_state = ARMV4_5_STATE_ARM;
1438 for (i = 0; i < 16; i++)
1439 context_p[i] = &context[i];
1440 /* save core registers (r0 - r15 of current core mode) */
1441 arm7_9->read_core_regs(target, 0xffff, context_p);
1443 arm7_9->read_xpsr(target, &cpsr, 0);
1445 if ((retval = jtag_execute_queue()) != ERROR_OK)
1446 return retval;
1448 /* if the core has been executing in Thumb state, set the T bit */
1449 if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1450 cpsr |= 0x20;
1452 buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
1453 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1454 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1456 armv4_5->core_mode = cpsr & 0x1f;
1458 if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
1460 target->state = TARGET_UNKNOWN;
1461 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1462 return ERROR_TARGET_FAILURE;
1465 LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
1467 if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1469 LOG_DEBUG("thumb state, applying fixups");
1470 context[0] = r0_thumb;
1471 context[15] = pc_thumb;
1472 } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1474 /* adjust value stored by STM */
1475 context[15] -= 3 * 4;
1478 if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1479 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1480 else
1481 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1483 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1484 return ERROR_FAIL;
1486 for (i = 0; i <= 15; i++)
1488 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1489 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1490 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1491 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1494 LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1496 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1497 return ERROR_FAIL;
1499 /* exceptions other than USR & SYS have a saved program status register */
1500 if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1502 uint32_t spsr;
1503 arm7_9->read_xpsr(target, &spsr, 1);
1504 if ((retval = jtag_execute_queue()) != ERROR_OK)
1506 return retval;
1508 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1509 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1510 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1513 /* r0 and r15 (pc) have to be restored later */
1514 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1515 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1517 if ((retval = jtag_execute_queue()) != ERROR_OK)
1518 return retval;
1520 if (arm7_9->post_debug_entry)
1521 arm7_9->post_debug_entry(target);
1523 return ERROR_OK;
1527 * Validate the full context for an ARM7/9 target in all processor modes. If
1528 * there are any invalid registers for the target, they will all be read. This
1529 * includes the PSR.
1531 * @param target Pointer to the ARM7/9 target to capture the full context from
1532 * @return Error if the target is not halted, has an invalid core mode, or if
1533 * the JTAG queue fails to execute
1535 int arm7_9_full_context(target_t *target)
1537 int i;
1538 int retval;
1539 armv4_5_common_t *armv4_5 = target->arch_info;
1540 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1542 LOG_DEBUG("-");
1544 if (target->state != TARGET_HALTED)
1546 LOG_WARNING("target not halted");
1547 return ERROR_TARGET_NOT_HALTED;
1550 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1551 return ERROR_FAIL;
1553 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1554 * SYS shares registers with User, so we don't touch SYS
1556 for (i = 0; i < 6; i++)
1558 uint32_t mask = 0;
1559 uint32_t* reg_p[16];
1560 int j;
1561 int valid = 1;
1563 /* check if there are invalid registers in the current mode
1565 for (j = 0; j <= 16; j++)
1567 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1568 valid = 0;
1571 if (!valid)
1573 uint32_t tmp_cpsr;
1575 /* change processor mode (and mask T bit) */
1576 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1577 tmp_cpsr |= armv4_5_number_to_mode(i);
1578 tmp_cpsr &= ~0x20;
1579 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1581 for (j = 0; j < 15; j++)
1583 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1585 reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1586 mask |= 1 << j;
1587 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1588 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1592 /* if only the PSR is invalid, mask is all zeroes */
1593 if (mask)
1594 arm7_9->read_core_regs(target, mask, reg_p);
1596 /* check if the PSR has to be read */
1597 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1599 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1600 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1601 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1606 /* restore processor mode (mask T bit) */
1607 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
1609 if ((retval = jtag_execute_queue()) != ERROR_OK)
1611 return retval;
1613 return ERROR_OK;
1617 * Restore the processor context on an ARM7/9 target. The full processor
1618 * context is analyzed to see if any of the registers are dirty on this end, but
1619 * have a valid new value. If this is the case, the processor is changed to the
1620 * appropriate mode and the new register values are written out to the
1621 * processor. If there happens to be a dirty register with an invalid value, an
1622 * error will be logged.
1624 * @param target Pointer to the ARM7/9 target to have its context restored
1625 * @return Error status if the target is not halted or the core mode in the
1626 * armv4_5 struct is invalid.
1628 int arm7_9_restore_context(target_t *target)
1630 armv4_5_common_t *armv4_5 = target->arch_info;
1631 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1632 reg_t *reg;
1633 armv4_5_core_reg_t *reg_arch_info;
1634 enum armv4_5_mode current_mode = armv4_5->core_mode;
1635 int i, j;
1636 int dirty;
1637 int mode_change;
1639 LOG_DEBUG("-");
1641 if (target->state != TARGET_HALTED)
1643 LOG_WARNING("target not halted");
1644 return ERROR_TARGET_NOT_HALTED;
1647 if (arm7_9->pre_restore_context)
1648 arm7_9->pre_restore_context(target);
1650 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1651 return ERROR_FAIL;
1653 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1654 * SYS shares registers with User, so we don't touch SYS
1656 for (i = 0; i < 6; i++)
1658 LOG_DEBUG("examining %s mode", armv4_5_mode_strings[i]);
1659 dirty = 0;
1660 mode_change = 0;
1661 /* check if there are dirty registers in the current mode
1663 for (j = 0; j <= 16; j++)
1665 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1666 reg_arch_info = reg->arch_info;
1667 if (reg->dirty == 1)
1669 if (reg->valid == 1)
1671 dirty = 1;
1672 LOG_DEBUG("examining dirty reg: %s", reg->name);
1673 if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1674 && (reg_arch_info->mode != current_mode)
1675 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1676 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1678 mode_change = 1;
1679 LOG_DEBUG("require mode change");
1682 else
1684 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1689 if (dirty)
1691 uint32_t mask = 0x0;
1692 int num_regs = 0;
1693 uint32_t regs[16];
1695 if (mode_change)
1697 uint32_t tmp_cpsr;
1699 /* change processor mode (mask T bit) */
1700 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1701 tmp_cpsr |= armv4_5_number_to_mode(i);
1702 tmp_cpsr &= ~0x20;
1703 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1704 current_mode = armv4_5_number_to_mode(i);
1707 for (j = 0; j <= 14; j++)
1709 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1710 reg_arch_info = reg->arch_info;
1713 if (reg->dirty == 1)
1715 regs[j] = buf_get_u32(reg->value, 0, 32);
1716 mask |= 1 << j;
1717 num_regs++;
1718 reg->dirty = 0;
1719 reg->valid = 1;
1720 LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32 "", j, armv4_5_mode_strings[i], regs[j]);
1724 if (mask)
1726 arm7_9->write_core_regs(target, mask, regs);
1729 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1730 reg_arch_info = reg->arch_info;
1731 if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1733 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1734 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1739 if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
1741 /* restore processor mode (mask T bit) */
1742 uint32_t tmp_cpsr;
1744 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1745 tmp_cpsr |= armv4_5_number_to_mode(i);
1746 tmp_cpsr &= ~0x20;
1747 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1748 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1750 else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
1752 /* CPSR has been changed, full restore necessary (mask T bit) */
1753 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
1754 arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
1755 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1756 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1759 /* restore PC */
1760 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1761 arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1762 armv4_5->core_cache->reg_list[15].dirty = 0;
1764 if (arm7_9->post_restore_context)
1765 arm7_9->post_restore_context(target);
1767 return ERROR_OK;
1771 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1772 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1773 * restart.
1775 * @param target Pointer to the ARM7/9 target to be restarted
1776 * @return Result of executing the JTAG queue
1778 int arm7_9_restart_core(struct target_s *target)
1780 armv4_5_common_t *armv4_5 = target->arch_info;
1781 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1782 arm_jtag_t *jtag_info = &arm7_9->jtag_info;
1784 /* set RESTART instruction */
1785 jtag_set_end_state(TAP_IDLE);
1786 if (arm7_9->need_bypass_before_restart) {
1787 arm7_9->need_bypass_before_restart = 0;
1788 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1790 arm_jtag_set_instr(jtag_info, 0x4, NULL);
1792 jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1793 return jtag_execute_queue();
1797 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1798 * iterated through and are set on the target if they aren't already set.
1800 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1802 void arm7_9_enable_watchpoints(struct target_s *target)
1804 watchpoint_t *watchpoint = target->watchpoints;
1806 while (watchpoint)
1808 if (watchpoint->set == 0)
1809 arm7_9_set_watchpoint(target, watchpoint);
1810 watchpoint = watchpoint->next;
1815 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1816 * iterated through and are set on the target.
1818 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1820 void arm7_9_enable_breakpoints(struct target_s *target)
1822 breakpoint_t *breakpoint = target->breakpoints;
1824 /* set any pending breakpoints */
1825 while (breakpoint)
1827 arm7_9_set_breakpoint(target, breakpoint);
1828 breakpoint = breakpoint->next;
1832 int arm7_9_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1834 armv4_5_common_t *armv4_5 = target->arch_info;
1835 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1836 breakpoint_t *breakpoint = target->breakpoints;
1837 reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1838 int err, retval = ERROR_OK;
1840 LOG_DEBUG("-");
1842 if (target->state != TARGET_HALTED)
1844 LOG_WARNING("target not halted");
1845 return ERROR_TARGET_NOT_HALTED;
1848 if (!debug_execution)
1850 target_free_all_working_areas(target);
1853 /* current = 1: continue on current pc, otherwise continue at <address> */
1854 if (!current)
1855 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1857 uint32_t current_pc;
1858 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1860 /* the front-end may request us not to handle breakpoints */
1861 if (handle_breakpoints)
1863 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1865 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1866 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1868 return retval;
1871 /* calculate PC of next instruction */
1872 uint32_t next_pc;
1873 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1875 uint32_t current_opcode;
1876 target_read_u32(target, current_pc, &current_opcode);
1877 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1878 return retval;
1881 LOG_DEBUG("enable single-step");
1882 arm7_9->enable_single_step(target, next_pc);
1884 target->debug_reason = DBG_REASON_SINGLESTEP;
1886 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1888 return retval;
1891 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1892 arm7_9->branch_resume(target);
1893 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1895 arm7_9->branch_resume_thumb(target);
1897 else
1899 LOG_ERROR("unhandled core state");
1900 return ERROR_FAIL;
1903 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1904 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1905 err = arm7_9_execute_sys_speed(target);
1907 LOG_DEBUG("disable single-step");
1908 arm7_9->disable_single_step(target);
1910 if (err != ERROR_OK)
1912 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1914 return retval;
1916 target->state = TARGET_UNKNOWN;
1917 return err;
1920 arm7_9_debug_entry(target);
1921 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1923 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1924 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1926 return retval;
1931 /* enable any pending breakpoints and watchpoints */
1932 arm7_9_enable_breakpoints(target);
1933 arm7_9_enable_watchpoints(target);
1935 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1937 return retval;
1940 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1942 arm7_9->branch_resume(target);
1944 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1946 arm7_9->branch_resume_thumb(target);
1948 else
1950 LOG_ERROR("unhandled core state");
1951 return ERROR_FAIL;
1954 /* deassert DBGACK and INTDIS */
1955 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1956 /* INTDIS only when we really resume, not during debug execution */
1957 if (!debug_execution)
1958 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1959 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1961 if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1963 return retval;
1966 target->debug_reason = DBG_REASON_NOTHALTED;
1968 if (!debug_execution)
1970 /* registers are now invalid */
1971 armv4_5_invalidate_core_regs(target);
1972 target->state = TARGET_RUNNING;
1973 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1975 return retval;
1978 else
1980 target->state = TARGET_DEBUG_RUNNING;
1981 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1983 return retval;
1987 LOG_DEBUG("target resumed");
1989 return ERROR_OK;
1992 void arm7_9_enable_eice_step(target_t *target, uint32_t next_pc)
1994 armv4_5_common_t *armv4_5 = target->arch_info;
1995 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
1997 uint32_t current_pc;
1998 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2000 if (next_pc != current_pc)
2002 /* setup an inverse breakpoint on the current PC
2003 * - comparator 1 matches the current address
2004 * - rangeout from comparator 1 is connected to comparator 0 rangein
2005 * - comparator 0 matches any address, as long as rangein is low */
2006 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
2007 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
2008 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
2009 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
2010 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
2011 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
2012 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
2013 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
2014 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
2016 else
2018 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
2019 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
2020 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
2021 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
2022 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
2023 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
2024 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
2025 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
2026 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
2030 void arm7_9_disable_eice_step(target_t *target)
2032 armv4_5_common_t *armv4_5 = target->arch_info;
2033 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2035 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
2036 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
2037 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
2038 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
2039 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2040 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2041 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2042 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2043 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2046 int arm7_9_step(struct target_s *target, int current, uint32_t address, int handle_breakpoints)
2048 armv4_5_common_t *armv4_5 = target->arch_info;
2049 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2050 breakpoint_t *breakpoint = NULL;
2051 int err, retval;
2053 if (target->state != TARGET_HALTED)
2055 LOG_WARNING("target not halted");
2056 return ERROR_TARGET_NOT_HALTED;
2059 /* current = 1: continue on current pc, otherwise continue at <address> */
2060 if (!current)
2061 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2063 uint32_t current_pc;
2064 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2066 /* the front-end may request us not to handle breakpoints */
2067 if (handle_breakpoints)
2068 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2069 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2071 return retval;
2074 target->debug_reason = DBG_REASON_SINGLESTEP;
2076 /* calculate PC of next instruction */
2077 uint32_t next_pc;
2078 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2080 uint32_t current_opcode;
2081 target_read_u32(target, current_pc, &current_opcode);
2082 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2083 return retval;
2086 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2088 return retval;
2091 arm7_9->enable_single_step(target, next_pc);
2093 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2095 arm7_9->branch_resume(target);
2097 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2099 arm7_9->branch_resume_thumb(target);
2101 else
2103 LOG_ERROR("unhandled core state");
2104 return ERROR_FAIL;
2107 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2109 return retval;
2112 err = arm7_9_execute_sys_speed(target);
2113 arm7_9->disable_single_step(target);
2115 /* registers are now invalid */
2116 armv4_5_invalidate_core_regs(target);
2118 if (err != ERROR_OK)
2120 target->state = TARGET_UNKNOWN;
2121 } else {
2122 arm7_9_debug_entry(target);
2123 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2125 return retval;
2127 LOG_DEBUG("target stepped");
2130 if (breakpoint)
2131 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2133 return retval;
2136 return err;
2139 int arm7_9_read_core_reg(struct target_s *target, int num, enum armv4_5_mode mode)
2141 uint32_t* reg_p[16];
2142 uint32_t value;
2143 int retval;
2144 armv4_5_common_t *armv4_5 = target->arch_info;
2145 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2147 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2148 return ERROR_FAIL;
2150 enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2152 if ((num < 0) || (num > 16))
2153 return ERROR_INVALID_ARGUMENTS;
2155 if ((mode != ARMV4_5_MODE_ANY)
2156 && (mode != armv4_5->core_mode)
2157 && (reg_mode != ARMV4_5_MODE_ANY))
2159 uint32_t tmp_cpsr;
2161 /* change processor mode (mask T bit) */
2162 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2163 tmp_cpsr |= mode;
2164 tmp_cpsr &= ~0x20;
2165 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2168 if ((num >= 0) && (num <= 15))
2170 /* read a normal core register */
2171 reg_p[num] = &value;
2173 arm7_9->read_core_regs(target, 1 << num, reg_p);
2175 else
2177 /* read a program status register
2178 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2180 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2181 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2183 arm7_9->read_xpsr(target, &value, spsr);
2186 if ((retval = jtag_execute_queue()) != ERROR_OK)
2188 return retval;
2191 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2192 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2193 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
2195 if ((mode != ARMV4_5_MODE_ANY)
2196 && (mode != armv4_5->core_mode)
2197 && (reg_mode != ARMV4_5_MODE_ANY)) {
2198 /* restore processor mode (mask T bit) */
2199 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2202 return ERROR_OK;
2205 int arm7_9_write_core_reg(struct target_s *target, int num, enum armv4_5_mode mode, uint32_t value)
2207 uint32_t reg[16];
2208 armv4_5_common_t *armv4_5 = target->arch_info;
2209 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2211 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2212 return ERROR_FAIL;
2214 enum armv4_5_mode reg_mode = ((armv4_5_core_reg_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2216 if ((num < 0) || (num > 16))
2217 return ERROR_INVALID_ARGUMENTS;
2219 if ((mode != ARMV4_5_MODE_ANY)
2220 && (mode != armv4_5->core_mode)
2221 && (reg_mode != ARMV4_5_MODE_ANY)) {
2222 uint32_t tmp_cpsr;
2224 /* change processor mode (mask T bit) */
2225 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2226 tmp_cpsr |= mode;
2227 tmp_cpsr &= ~0x20;
2228 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2231 if ((num >= 0) && (num <= 15))
2233 /* write a normal core register */
2234 reg[num] = value;
2236 arm7_9->write_core_regs(target, 1 << num, reg);
2238 else
2240 /* write a program status register
2241 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2243 armv4_5_core_reg_t *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2244 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2246 /* if we're writing the CPSR, mask the T bit */
2247 if (!spsr)
2248 value &= ~0x20;
2250 arm7_9->write_xpsr(target, value, spsr);
2253 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2254 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2256 if ((mode != ARMV4_5_MODE_ANY)
2257 && (mode != armv4_5->core_mode)
2258 && (reg_mode != ARMV4_5_MODE_ANY)) {
2259 /* restore processor mode (mask T bit) */
2260 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2263 return jtag_execute_queue();
2266 int arm7_9_read_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2268 armv4_5_common_t *armv4_5 = target->arch_info;
2269 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2271 uint32_t reg[16];
2272 uint32_t num_accesses = 0;
2273 int thisrun_accesses;
2274 int i;
2275 uint32_t cpsr;
2276 int retval;
2277 int last_reg = 0;
2279 LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2281 if (target->state != TARGET_HALTED)
2283 LOG_WARNING("target not halted");
2284 return ERROR_TARGET_NOT_HALTED;
2287 /* sanitize arguments */
2288 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2289 return ERROR_INVALID_ARGUMENTS;
2291 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2292 return ERROR_TARGET_UNALIGNED_ACCESS;
2294 /* load the base register with the address of the first word */
2295 reg[0] = address;
2296 arm7_9->write_core_regs(target, 0x1, reg);
2298 int j = 0;
2300 switch (size)
2302 case 4:
2303 while (num_accesses < count)
2305 uint32_t reg_list;
2306 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2307 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2309 if (last_reg <= thisrun_accesses)
2310 last_reg = thisrun_accesses;
2312 arm7_9->load_word_regs(target, reg_list);
2314 /* fast memory reads are only safe when the target is running
2315 * from a sufficiently high clock (32 kHz is usually too slow)
2317 if (arm7_9->fast_memory_access)
2318 retval = arm7_9_execute_fast_sys_speed(target);
2319 else
2320 retval = arm7_9_execute_sys_speed(target);
2321 if (retval != ERROR_OK)
2322 return retval;
2324 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2326 /* advance buffer, count number of accesses */
2327 buffer += thisrun_accesses * 4;
2328 num_accesses += thisrun_accesses;
2330 if ((j++%1024) == 0)
2332 keep_alive();
2335 break;
2336 case 2:
2337 while (num_accesses < count)
2339 uint32_t reg_list;
2340 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2341 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2343 for (i = 1; i <= thisrun_accesses; i++)
2345 if (i > last_reg)
2346 last_reg = i;
2347 arm7_9->load_hword_reg(target, i);
2348 /* fast memory reads are only safe when the target is running
2349 * from a sufficiently high clock (32 kHz is usually too slow)
2351 if (arm7_9->fast_memory_access)
2352 retval = arm7_9_execute_fast_sys_speed(target);
2353 else
2354 retval = arm7_9_execute_sys_speed(target);
2355 if (retval != ERROR_OK)
2357 return retval;
2362 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2364 /* advance buffer, count number of accesses */
2365 buffer += thisrun_accesses * 2;
2366 num_accesses += thisrun_accesses;
2368 if ((j++%1024) == 0)
2370 keep_alive();
2373 break;
2374 case 1:
2375 while (num_accesses < count)
2377 uint32_t reg_list;
2378 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2379 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2381 for (i = 1; i <= thisrun_accesses; i++)
2383 if (i > last_reg)
2384 last_reg = i;
2385 arm7_9->load_byte_reg(target, i);
2386 /* fast memory reads are only safe when the target is running
2387 * from a sufficiently high clock (32 kHz is usually too slow)
2389 if (arm7_9->fast_memory_access)
2390 retval = arm7_9_execute_fast_sys_speed(target);
2391 else
2392 retval = arm7_9_execute_sys_speed(target);
2393 if (retval != ERROR_OK)
2395 return retval;
2399 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2401 /* advance buffer, count number of accesses */
2402 buffer += thisrun_accesses * 1;
2403 num_accesses += thisrun_accesses;
2405 if ((j++%1024) == 0)
2407 keep_alive();
2410 break;
2411 default:
2412 LOG_ERROR("BUG: we shouldn't get here");
2413 exit(-1);
2414 break;
2417 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2418 return ERROR_FAIL;
2420 for (i = 0; i <= last_reg; i++)
2421 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2423 arm7_9->read_xpsr(target, &cpsr, 0);
2424 if ((retval = jtag_execute_queue()) != ERROR_OK)
2426 LOG_ERROR("JTAG error while reading cpsr");
2427 return ERROR_TARGET_DATA_ABORT;
2430 if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2432 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2434 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2436 return ERROR_TARGET_DATA_ABORT;
2439 return ERROR_OK;
2442 int arm7_9_write_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2444 armv4_5_common_t *armv4_5 = target->arch_info;
2445 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2446 reg_t *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2448 uint32_t reg[16];
2449 uint32_t num_accesses = 0;
2450 int thisrun_accesses;
2451 int i;
2452 uint32_t cpsr;
2453 int retval;
2454 int last_reg = 0;
2456 #ifdef _DEBUG_ARM7_9_
2457 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2458 #endif
2460 if (target->state != TARGET_HALTED)
2462 LOG_WARNING("target not halted");
2463 return ERROR_TARGET_NOT_HALTED;
2466 /* sanitize arguments */
2467 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2468 return ERROR_INVALID_ARGUMENTS;
2470 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2471 return ERROR_TARGET_UNALIGNED_ACCESS;
2473 /* load the base register with the address of the first word */
2474 reg[0] = address;
2475 arm7_9->write_core_regs(target, 0x1, reg);
2477 /* Clear DBGACK, to make sure memory fetches work as expected */
2478 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2479 embeddedice_store_reg(dbg_ctrl);
2481 switch (size)
2483 case 4:
2484 while (num_accesses < count)
2486 uint32_t reg_list;
2487 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2488 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2490 for (i = 1; i <= thisrun_accesses; i++)
2492 if (i > last_reg)
2493 last_reg = i;
2494 reg[i] = target_buffer_get_u32(target, buffer);
2495 buffer += 4;
2498 arm7_9->write_core_regs(target, reg_list, reg);
2500 arm7_9->store_word_regs(target, reg_list);
2502 /* fast memory writes are only safe when the target is running
2503 * from a sufficiently high clock (32 kHz is usually too slow)
2505 if (arm7_9->fast_memory_access)
2506 retval = arm7_9_execute_fast_sys_speed(target);
2507 else
2508 retval = arm7_9_execute_sys_speed(target);
2509 if (retval != ERROR_OK)
2511 return retval;
2514 num_accesses += thisrun_accesses;
2516 break;
2517 case 2:
2518 while (num_accesses < count)
2520 uint32_t reg_list;
2521 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2522 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2524 for (i = 1; i <= thisrun_accesses; i++)
2526 if (i > last_reg)
2527 last_reg = i;
2528 reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2529 buffer += 2;
2532 arm7_9->write_core_regs(target, reg_list, reg);
2534 for (i = 1; i <= thisrun_accesses; i++)
2536 arm7_9->store_hword_reg(target, i);
2538 /* fast memory writes are only safe when the target is running
2539 * from a sufficiently high clock (32 kHz is usually too slow)
2541 if (arm7_9->fast_memory_access)
2542 retval = arm7_9_execute_fast_sys_speed(target);
2543 else
2544 retval = arm7_9_execute_sys_speed(target);
2545 if (retval != ERROR_OK)
2547 return retval;
2551 num_accesses += thisrun_accesses;
2553 break;
2554 case 1:
2555 while (num_accesses < count)
2557 uint32_t reg_list;
2558 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2559 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2561 for (i = 1; i <= thisrun_accesses; i++)
2563 if (i > last_reg)
2564 last_reg = i;
2565 reg[i] = *buffer++ & 0xff;
2568 arm7_9->write_core_regs(target, reg_list, reg);
2570 for (i = 1; i <= thisrun_accesses; i++)
2572 arm7_9->store_byte_reg(target, i);
2573 /* fast memory writes are only safe when the target is running
2574 * from a sufficiently high clock (32 kHz is usually too slow)
2576 if (arm7_9->fast_memory_access)
2577 retval = arm7_9_execute_fast_sys_speed(target);
2578 else
2579 retval = arm7_9_execute_sys_speed(target);
2580 if (retval != ERROR_OK)
2582 return retval;
2587 num_accesses += thisrun_accesses;
2589 break;
2590 default:
2591 LOG_ERROR("BUG: we shouldn't get here");
2592 exit(-1);
2593 break;
2596 /* Re-Set DBGACK */
2597 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2598 embeddedice_store_reg(dbg_ctrl);
2600 if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2601 return ERROR_FAIL;
2603 for (i = 0; i <= last_reg; i++)
2604 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2606 arm7_9->read_xpsr(target, &cpsr, 0);
2607 if ((retval = jtag_execute_queue()) != ERROR_OK)
2609 LOG_ERROR("JTAG error while reading cpsr");
2610 return ERROR_TARGET_DATA_ABORT;
2613 if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2615 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2617 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2619 return ERROR_TARGET_DATA_ABORT;
2622 return ERROR_OK;
2625 static int dcc_count;
2626 static uint8_t *dcc_buffer;
2628 static int arm7_9_dcc_completion(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2630 int retval = ERROR_OK;
2631 armv4_5_common_t *armv4_5 = target->arch_info;
2632 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2634 if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2635 return retval;
2637 int little = target->endianness == TARGET_LITTLE_ENDIAN;
2638 int count = dcc_count;
2639 uint8_t *buffer = dcc_buffer;
2640 if (count > 2)
2642 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2643 * core function repeated. */
2644 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2645 buffer += 4;
2647 embeddedice_reg_t *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2648 uint8_t reg_addr = ice_reg->addr & 0x1f;
2649 jtag_tap_t *tap;
2650 tap = ice_reg->jtag_info->tap;
2652 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2653 buffer += (count-2)*4;
2655 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2656 } else
2658 int i;
2659 for (i = 0; i < count; i++)
2661 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2662 buffer += 4;
2666 if ((retval = target_halt(target))!= ERROR_OK)
2668 return retval;
2670 return target_wait_state(target, TARGET_HALTED, 500);
2673 static const uint32_t dcc_code[] =
2675 /* r0 == input, points to memory buffer
2676 * r1 == scratch
2679 /* spin until DCC control (c0) reports data arrived */
2680 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2681 0xe3110001, /* tst r1, #1 */
2682 0x0afffffc, /* bne w */
2684 /* read word from DCC (c1), write to memory */
2685 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2686 0xe4801004, /* str r1, [r0], #4 */
2688 /* repeat */
2689 0xeafffff9 /* b w */
2692 int armv4_5_run_algorithm_inner(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target_s *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2694 int arm7_9_bulk_write_memory(target_t *target, uint32_t address, uint32_t count, uint8_t *buffer)
2696 int retval;
2697 armv4_5_common_t *armv4_5 = target->arch_info;
2698 arm7_9_common_t *arm7_9 = armv4_5->arch_info;
2699 int i;
2701 if (!arm7_9->dcc_downloads)
2702 return target_write_memory(target, address, 4, count, buffer);
2704 /* regrab previously allocated working_area, or allocate a new one */
2705 if (!arm7_9->dcc_working_area)
2707 uint8_t dcc_code_buf[6 * 4];
2709 /* make sure we have a working area */
2710 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2712 LOG_INFO("no working area available, falling back to memory writes");
2713 return target_write_memory(target, address, 4, count, buffer);
2716 /* copy target instructions to target endianness */
2717 for (i = 0; i < 6; i++)
2719 target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2722 /* write DCC code to working area */
2723 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2725 return retval;
2729 armv4_5_algorithm_t armv4_5_info;
2730 reg_param_t reg_params[1];
2732 armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2733 armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2734 armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2736 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2738 buf_set_u32(reg_params[0].value, 0, 32, address);
2740 dcc_count = count;
2741 dcc_buffer = buffer;
2742 retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2743 arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2745 if (retval == ERROR_OK)
2747 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2748 if (endaddress != (address + count*4))
2750 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2751 retval = ERROR_FAIL;
2755 destroy_reg_param(&reg_params[0]);
2757 return retval;
2760 int arm7_9_checksum_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* checksum)
2762 working_area_t *crc_algorithm;
2763 armv4_5_algorithm_t armv4_5_info;
2764 reg_param_t reg_params[2];
2765 int retval;
2767 static const uint32_t arm7_9_crc_code[] = {
2768 0xE1A02000, /* mov r2, r0 */
2769 0xE3E00000, /* mov r0, #0xffffffff */
2770 0xE1A03001, /* mov r3, r1 */
2771 0xE3A04000, /* mov r4, #0 */
2772 0xEA00000B, /* b ncomp */
2773 /* nbyte: */
2774 0xE7D21004, /* ldrb r1, [r2, r4] */
2775 0xE59F7030, /* ldr r7, CRC32XOR */
2776 0xE0200C01, /* eor r0, r0, r1, asl 24 */
2777 0xE3A05000, /* mov r5, #0 */
2778 /* loop: */
2779 0xE3500000, /* cmp r0, #0 */
2780 0xE1A06080, /* mov r6, r0, asl #1 */
2781 0xE2855001, /* add r5, r5, #1 */
2782 0xE1A00006, /* mov r0, r6 */
2783 0xB0260007, /* eorlt r0, r6, r7 */
2784 0xE3550008, /* cmp r5, #8 */
2785 0x1AFFFFF8, /* bne loop */
2786 0xE2844001, /* add r4, r4, #1 */
2787 /* ncomp: */
2788 0xE1540003, /* cmp r4, r3 */
2789 0x1AFFFFF1, /* bne nbyte */
2790 /* end: */
2791 0xEAFFFFFE, /* b end */
2792 0x04C11DB7 /* CRC32XOR: .word 0x04C11DB7 */
2795 uint32_t i;
2797 if (target_alloc_working_area(target, sizeof(arm7_9_crc_code), &crc_algorithm) != ERROR_OK)
2799 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2802 /* convert flash writing code into a buffer in target endianness */
2803 for (i = 0; i < (sizeof(arm7_9_crc_code)/sizeof(uint32_t)); i++)
2805 if ((retval = target_write_u32(target, crc_algorithm->address + i*sizeof(uint32_t), arm7_9_crc_code[i])) != ERROR_OK)
2807 return retval;
2811 armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2812 armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2813 armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2815 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2816 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2818 buf_set_u32(reg_params[0].value, 0, 32, address);
2819 buf_set_u32(reg_params[1].value, 0, 32, count);
2821 /* 20 second timeout/megabyte */
2822 int timeout = 20000 * (1 + (count / (1024*1024)));
2824 if ((retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
2825 crc_algorithm->address, crc_algorithm->address + (sizeof(arm7_9_crc_code) - 8), timeout, &armv4_5_info)) != ERROR_OK)
2827 LOG_ERROR("error executing arm7_9 crc algorithm");
2828 destroy_reg_param(&reg_params[0]);
2829 destroy_reg_param(&reg_params[1]);
2830 target_free_working_area(target, crc_algorithm);
2831 return retval;
2834 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
2836 destroy_reg_param(&reg_params[0]);
2837 destroy_reg_param(&reg_params[1]);
2839 target_free_working_area(target, crc_algorithm);
2841 return ERROR_OK;
2844 int arm7_9_blank_check_memory(struct target_s *target, uint32_t address, uint32_t count, uint32_t* blank)
2846 working_area_t *erase_check_algorithm;
2847 reg_param_t reg_params[3];
2848 armv4_5_algorithm_t armv4_5_info;
2849 int retval;
2850 uint32_t i;
2852 static const uint32_t erase_check_code[] =
2854 /* loop: */
2855 0xe4d03001, /* ldrb r3, [r0], #1 */
2856 0xe0022003, /* and r2, r2, r3 */
2857 0xe2511001, /* subs r1, r1, #1 */
2858 0x1afffffb, /* bne loop */
2859 /* end: */
2860 0xeafffffe /* b end */
2863 /* make sure we have a working area */
2864 if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
2866 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2869 /* convert flash writing code into a buffer in target endianness */
2870 for (i = 0; i < (sizeof(erase_check_code)/sizeof(uint32_t)); i++)
2871 if ((retval = target_write_u32(target, erase_check_algorithm->address + i*sizeof(uint32_t), erase_check_code[i])) != ERROR_OK)
2873 return retval;
2876 armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2877 armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2878 armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2880 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
2881 buf_set_u32(reg_params[0].value, 0, 32, address);
2883 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
2884 buf_set_u32(reg_params[1].value, 0, 32, count);
2886 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
2887 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
2889 if ((retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
2890 erase_check_algorithm->address, erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &armv4_5_info)) != ERROR_OK)
2892 destroy_reg_param(&reg_params[0]);
2893 destroy_reg_param(&reg_params[1]);
2894 destroy_reg_param(&reg_params[2]);
2895 target_free_working_area(target, erase_check_algorithm);
2896 return 0;
2899 *blank = buf_get_u32(reg_params[2].value, 0, 32);
2901 destroy_reg_param(&reg_params[0]);
2902 destroy_reg_param(&reg_params[1]);
2903 destroy_reg_param(&reg_params[2]);
2905 target_free_working_area(target, erase_check_algorithm);
2907 return ERROR_OK;
2910 int arm7_9_register_commands(struct command_context_s *cmd_ctx)
2912 command_t *arm7_9_cmd;
2914 arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9", NULL, COMMAND_ANY, "arm7/9 specific commands");
2916 register_command(cmd_ctx, arm7_9_cmd, "write_xpsr", handle_arm7_9_write_xpsr_command, COMMAND_EXEC, "write program status register <value> <not cpsr | spsr>");
2917 register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8", handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC, "write program status register <8bit immediate> <rotate> <not cpsr | spsr>");
2919 register_command(cmd_ctx, arm7_9_cmd, "write_core_reg", handle_arm7_9_write_core_reg_command, COMMAND_EXEC, "write core register <num> <mode> <value>");
2921 register_command(cmd_ctx, arm7_9_cmd, "dbgrq", handle_arm7_9_dbgrq_command,
2922 COMMAND_ANY, "use EmbeddedICE dbgrq instead of breakpoint for target halt requests <enable | disable>");
2923 register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access", handle_arm7_9_fast_memory_access_command,
2924 COMMAND_ANY, "use fast memory accesses instead of slower but potentially safer accesses <enable | disable>");
2925 register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads", handle_arm7_9_dcc_downloads_command,
2926 COMMAND_ANY, "use DCC downloads for larger memory writes <enable | disable>");
2928 armv4_5_register_commands(cmd_ctx);
2930 etm_register_commands(cmd_ctx);
2932 return ERROR_OK;
2935 int handle_arm7_9_write_xpsr_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2937 uint32_t value;
2938 int spsr;
2939 int retval;
2940 target_t *target = get_current_target(cmd_ctx);
2941 armv4_5_common_t *armv4_5;
2942 arm7_9_common_t *arm7_9;
2944 if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2946 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2947 return ERROR_OK;
2950 if (target->state != TARGET_HALTED)
2952 command_print(cmd_ctx, "can't write registers while running");
2953 return ERROR_OK;
2956 if (argc < 2)
2958 command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr | spsr>");
2959 return ERROR_OK;
2962 value = strtoul(args[0], NULL, 0);
2963 spsr = strtol(args[1], NULL, 0);
2965 /* if we're writing the CPSR, mask the T bit */
2966 if (!spsr)
2967 value &= ~0x20;
2969 arm7_9->write_xpsr(target, value, spsr);
2970 if ((retval = jtag_execute_queue()) != ERROR_OK)
2972 LOG_ERROR("JTAG error while writing to xpsr");
2973 return retval;
2976 return ERROR_OK;
2979 int handle_arm7_9_write_xpsr_im8_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2981 uint32_t value;
2982 int rotate;
2983 int spsr;
2984 int retval;
2985 target_t *target = get_current_target(cmd_ctx);
2986 armv4_5_common_t *armv4_5;
2987 arm7_9_common_t *arm7_9;
2989 if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
2991 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2992 return ERROR_OK;
2995 if (target->state != TARGET_HALTED)
2997 command_print(cmd_ctx, "can't write registers while running");
2998 return ERROR_OK;
3001 if (argc < 3)
3003 command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr | spsr>");
3004 return ERROR_OK;
3007 value = strtoul(args[0], NULL, 0);
3008 rotate = strtol(args[1], NULL, 0);
3009 spsr = strtol(args[2], NULL, 0);
3011 arm7_9->write_xpsr_im8(target, value, rotate, spsr);
3012 if ((retval = jtag_execute_queue()) != ERROR_OK)
3014 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
3015 return retval;
3018 return ERROR_OK;
3021 int handle_arm7_9_write_core_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3023 uint32_t value;
3024 uint32_t mode;
3025 int num;
3026 target_t *target = get_current_target(cmd_ctx);
3027 armv4_5_common_t *armv4_5;
3028 arm7_9_common_t *arm7_9;
3030 if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3032 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3033 return ERROR_OK;
3036 if (target->state != TARGET_HALTED)
3038 command_print(cmd_ctx, "can't write registers while running");
3039 return ERROR_OK;
3042 if (argc < 3)
3044 command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
3045 return ERROR_OK;
3048 num = strtol(args[0], NULL, 0);
3049 mode = strtoul(args[1], NULL, 0);
3050 value = strtoul(args[2], NULL, 0);
3052 return arm7_9_write_core_reg(target, num, mode, value);
3055 int handle_arm7_9_dbgrq_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3057 target_t *target = get_current_target(cmd_ctx);
3058 armv4_5_common_t *armv4_5;
3059 arm7_9_common_t *arm7_9;
3061 if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3063 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3064 return ERROR_OK;
3067 if (argc > 0)
3069 if (strcmp("enable", args[0]) == 0)
3071 arm7_9->use_dbgrq = 1;
3073 else if (strcmp("disable", args[0]) == 0)
3075 arm7_9->use_dbgrq = 0;
3077 else
3079 command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable | disable>");
3083 command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
3085 return ERROR_OK;
3088 int handle_arm7_9_fast_memory_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3090 target_t *target = get_current_target(cmd_ctx);
3091 armv4_5_common_t *armv4_5;
3092 arm7_9_common_t *arm7_9;
3094 if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3096 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3097 return ERROR_OK;
3100 if (argc > 0)
3102 if (strcmp("enable", args[0]) == 0)
3104 arm7_9->fast_memory_access = 1;
3106 else if (strcmp("disable", args[0]) == 0)
3108 arm7_9->fast_memory_access = 0;
3110 else
3112 command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable | disable>");
3116 command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
3118 return ERROR_OK;
3121 int handle_arm7_9_dcc_downloads_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3123 target_t *target = get_current_target(cmd_ctx);
3124 armv4_5_common_t *armv4_5;
3125 arm7_9_common_t *arm7_9;
3127 if (arm7_9_get_arch_pointers(target, &armv4_5, &arm7_9) != ERROR_OK)
3129 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
3130 return ERROR_OK;
3133 if (argc > 0)
3135 if (strcmp("enable", args[0]) == 0)
3137 arm7_9->dcc_downloads = 1;
3139 else if (strcmp("disable", args[0]) == 0)
3141 arm7_9->dcc_downloads = 0;
3143 else
3145 command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable | disable>");
3149 command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
3151 return ERROR_OK;
3154 int arm7_9_init_arch_info(target_t *target, arm7_9_common_t *arm7_9)
3156 int retval = ERROR_OK;
3157 armv4_5_common_t *armv4_5 = &arm7_9->armv4_5_common;
3159 arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
3161 if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
3163 return retval;
3166 arm7_9->wp_available = 0; /* this is set up in arm7_9_clear_watchpoints() */
3167 arm7_9->wp_available_max = 2;
3168 arm7_9->sw_breakpoints_added = 0;
3169 arm7_9->sw_breakpoint_count = 0;
3170 arm7_9->breakpoint_count = 0;
3171 arm7_9->wp0_used = 0;
3172 arm7_9->wp1_used = 0;
3173 arm7_9->wp1_used_default = 0;
3174 arm7_9->use_dbgrq = 0;
3176 arm7_9->etm_ctx = NULL;
3177 arm7_9->has_single_step = 0;
3178 arm7_9->has_monitor_mode = 0;
3179 arm7_9->has_vector_catch = 0;
3181 arm7_9->debug_entry_from_reset = 0;
3183 arm7_9->dcc_working_area = NULL;
3185 arm7_9->fast_memory_access = fast_and_dangerous;
3186 arm7_9->dcc_downloads = fast_and_dangerous;
3188 arm7_9->need_bypass_before_restart = 0;
3190 armv4_5->arch_info = arm7_9;
3191 armv4_5->read_core_reg = arm7_9_read_core_reg;
3192 armv4_5->write_core_reg = arm7_9_write_core_reg;
3193 armv4_5->full_context = arm7_9_full_context;
3195 if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
3197 return retval;
3200 if ((retval = target_register_timer_callback(arm7_9_handle_target_request, 1, 1, target)) != ERROR_OK)
3202 return retval;
3205 return ERROR_OK;