ARM semihosting: fix writing to stdout
[openocd/dave.git] / src / target / target.c
blob1eb65a62e0f40f3938062a03b2957e0be955f4da
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
39 #include "target.h"
40 #include "target_type.h"
41 #include "target_request.h"
42 #include "breakpoints.h"
43 #include "register.h"
44 #include "trace.h"
45 #include "image.h"
48 static int target_array2mem(Jim_Interp *interp, struct target *target,
49 int argc, Jim_Obj *const *argv);
50 static int target_mem2array(Jim_Interp *interp, struct target *target,
51 int argc, Jim_Obj *const *argv);
53 /* targets */
54 extern struct target_type arm7tdmi_target;
55 extern struct target_type arm720t_target;
56 extern struct target_type arm9tdmi_target;
57 extern struct target_type arm920t_target;
58 extern struct target_type arm966e_target;
59 extern struct target_type arm926ejs_target;
60 extern struct target_type fa526_target;
61 extern struct target_type feroceon_target;
62 extern struct target_type dragonite_target;
63 extern struct target_type xscale_target;
64 extern struct target_type cortexm3_target;
65 extern struct target_type cortexa8_target;
66 extern struct target_type arm11_target;
67 extern struct target_type mips_m4k_target;
68 extern struct target_type avr_target;
69 extern struct target_type dsp563xx_target;
70 extern struct target_type testee_target;
72 struct target_type *target_types[] =
74 &arm7tdmi_target,
75 &arm9tdmi_target,
76 &arm920t_target,
77 &arm720t_target,
78 &arm966e_target,
79 &arm926ejs_target,
80 &fa526_target,
81 &feroceon_target,
82 &dragonite_target,
83 &xscale_target,
84 &cortexm3_target,
85 &cortexa8_target,
86 &arm11_target,
87 &mips_m4k_target,
88 &avr_target,
89 &dsp563xx_target,
90 &testee_target,
91 NULL,
94 struct target *all_targets = NULL;
95 struct target_event_callback *target_event_callbacks = NULL;
96 struct target_timer_callback *target_timer_callbacks = NULL;
98 static const Jim_Nvp nvp_assert[] = {
99 { .name = "assert", NVP_ASSERT },
100 { .name = "deassert", NVP_DEASSERT },
101 { .name = "T", NVP_ASSERT },
102 { .name = "F", NVP_DEASSERT },
103 { .name = "t", NVP_ASSERT },
104 { .name = "f", NVP_DEASSERT },
105 { .name = NULL, .value = -1 }
108 static const Jim_Nvp nvp_error_target[] = {
109 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
110 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
111 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
112 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
113 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
114 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
115 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
116 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
117 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
118 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
119 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
120 { .value = -1, .name = NULL }
123 const char *target_strerror_safe(int err)
125 const Jim_Nvp *n;
127 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
128 if (n->name == NULL) {
129 return "unknown";
130 } else {
131 return n->name;
135 static const Jim_Nvp nvp_target_event[] = {
136 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
137 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
139 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
140 { .value = TARGET_EVENT_HALTED, .name = "halted" },
141 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
142 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
143 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
145 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
146 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
148 /* historical name */
150 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
152 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
153 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
154 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
155 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
156 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
157 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
158 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
159 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
160 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
161 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
162 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
164 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
165 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
167 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
168 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
170 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
171 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
173 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
174 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
176 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
177 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
179 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
180 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
181 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
183 { .name = NULL, .value = -1 }
186 static const Jim_Nvp nvp_target_state[] = {
187 { .name = "unknown", .value = TARGET_UNKNOWN },
188 { .name = "running", .value = TARGET_RUNNING },
189 { .name = "halted", .value = TARGET_HALTED },
190 { .name = "reset", .value = TARGET_RESET },
191 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
192 { .name = NULL, .value = -1 },
195 static const Jim_Nvp nvp_target_debug_reason [] = {
196 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
197 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
198 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
199 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
200 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
201 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
202 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
203 { .name = NULL, .value = -1 },
206 static const Jim_Nvp nvp_target_endian[] = {
207 { .name = "big", .value = TARGET_BIG_ENDIAN },
208 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
209 { .name = "be", .value = TARGET_BIG_ENDIAN },
210 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
211 { .name = NULL, .value = -1 },
214 static const Jim_Nvp nvp_reset_modes[] = {
215 { .name = "unknown", .value = RESET_UNKNOWN },
216 { .name = "run" , .value = RESET_RUN },
217 { .name = "halt" , .value = RESET_HALT },
218 { .name = "init" , .value = RESET_INIT },
219 { .name = NULL , .value = -1 },
222 const char *debug_reason_name(struct target *t)
224 const char *cp;
226 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
227 t->debug_reason)->name;
228 if (!cp) {
229 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
230 cp = "(*BUG*unknown*BUG*)";
232 return cp;
235 const char *
236 target_state_name( struct target *t )
238 const char *cp;
239 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
240 if( !cp ){
241 LOG_ERROR("Invalid target state: %d", (int)(t->state));
242 cp = "(*BUG*unknown*BUG*)";
244 return cp;
247 /* determine the number of the new target */
248 static int new_target_number(void)
250 struct target *t;
251 int x;
253 /* number is 0 based */
254 x = -1;
255 t = all_targets;
256 while (t) {
257 if (x < t->target_number) {
258 x = t->target_number;
260 t = t->next;
262 return x + 1;
265 /* read a uint32_t from a buffer in target memory endianness */
266 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
268 if (target->endianness == TARGET_LITTLE_ENDIAN)
269 return le_to_h_u32(buffer);
270 else
271 return be_to_h_u32(buffer);
274 /* read a uint16_t from a buffer in target memory endianness */
275 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
277 if (target->endianness == TARGET_LITTLE_ENDIAN)
278 return le_to_h_u16(buffer);
279 else
280 return be_to_h_u16(buffer);
283 /* read a uint8_t from a buffer in target memory endianness */
284 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
286 return *buffer & 0x0ff;
289 /* write a uint32_t to a buffer in target memory endianness */
290 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
292 if (target->endianness == TARGET_LITTLE_ENDIAN)
293 h_u32_to_le(buffer, value);
294 else
295 h_u32_to_be(buffer, value);
298 /* write a uint16_t to a buffer in target memory endianness */
299 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
301 if (target->endianness == TARGET_LITTLE_ENDIAN)
302 h_u16_to_le(buffer, value);
303 else
304 h_u16_to_be(buffer, value);
307 /* write a uint8_t to a buffer in target memory endianness */
308 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
310 *buffer = value;
313 /* return a pointer to a configured target; id is name or number */
314 struct target *get_target(const char *id)
316 struct target *target;
318 /* try as tcltarget name */
319 for (target = all_targets; target; target = target->next) {
320 if (target->cmd_name == NULL)
321 continue;
322 if (strcmp(id, target->cmd_name) == 0)
323 return target;
326 /* It's OK to remove this fallback sometime after August 2010 or so */
328 /* no match, try as number */
329 unsigned num;
330 if (parse_uint(id, &num) != ERROR_OK)
331 return NULL;
333 for (target = all_targets; target; target = target->next) {
334 if (target->target_number == (int)num) {
335 LOG_WARNING("use '%s' as target identifier, not '%u'",
336 target->cmd_name, num);
337 return target;
341 return NULL;
344 /* returns a pointer to the n-th configured target */
345 static struct target *get_target_by_num(int num)
347 struct target *target = all_targets;
349 while (target) {
350 if (target->target_number == num) {
351 return target;
353 target = target->next;
356 return NULL;
359 struct target* get_current_target(struct command_context *cmd_ctx)
361 struct target *target = get_target_by_num(cmd_ctx->current_target);
363 if (target == NULL)
365 LOG_ERROR("BUG: current_target out of bounds");
366 exit(-1);
369 return target;
372 int target_poll(struct target *target)
374 int retval;
376 /* We can't poll until after examine */
377 if (!target_was_examined(target))
379 /* Fail silently lest we pollute the log */
380 return ERROR_FAIL;
383 retval = target->type->poll(target);
384 if (retval != ERROR_OK)
385 return retval;
387 if (target->halt_issued)
389 if (target->state == TARGET_HALTED)
391 target->halt_issued = false;
392 } else
394 long long t = timeval_ms() - target->halt_issued_time;
395 if (t>1000)
397 target->halt_issued = false;
398 LOG_INFO("Halt timed out, wake up GDB.");
399 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
404 return ERROR_OK;
407 int target_halt(struct target *target)
409 int retval;
410 /* We can't poll until after examine */
411 if (!target_was_examined(target))
413 LOG_ERROR("Target not examined yet");
414 return ERROR_FAIL;
417 retval = target->type->halt(target);
418 if (retval != ERROR_OK)
419 return retval;
421 target->halt_issued = true;
422 target->halt_issued_time = timeval_ms();
424 return ERROR_OK;
427 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
429 int retval;
431 /* We can't poll until after examine */
432 if (!target_was_examined(target))
434 LOG_ERROR("Target not examined yet");
435 return ERROR_FAIL;
438 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
439 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
440 * the application.
442 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
443 return retval;
445 return retval;
448 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
450 char buf[100];
451 int retval;
452 Jim_Nvp *n;
453 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
454 if (n->name == NULL) {
455 LOG_ERROR("invalid reset mode");
456 return ERROR_FAIL;
459 /* disable polling during reset to make reset event scripts
460 * more predictable, i.e. dr/irscan & pathmove in events will
461 * not have JTAG operations injected into the middle of a sequence.
463 bool save_poll = jtag_poll_get_enabled();
465 jtag_poll_set_enabled(false);
467 sprintf(buf, "ocd_process_reset %s", n->name);
468 retval = Jim_Eval(cmd_ctx->interp, buf);
470 jtag_poll_set_enabled(save_poll);
472 if (retval != JIM_OK) {
473 Jim_PrintErrorMessage(cmd_ctx->interp);
474 return ERROR_FAIL;
477 /* We want any events to be processed before the prompt */
478 retval = target_call_timer_callbacks_now();
480 struct target *target;
481 for (target = all_targets; target; target = target->next) {
482 target->type->check_reset(target);
485 return retval;
488 static int identity_virt2phys(struct target *target,
489 uint32_t virtual, uint32_t *physical)
491 *physical = virtual;
492 return ERROR_OK;
495 static int no_mmu(struct target *target, int *enabled)
497 *enabled = 0;
498 return ERROR_OK;
501 static int default_examine(struct target *target)
503 target_set_examined(target);
504 return ERROR_OK;
507 /* no check by default */
508 static int default_check_reset(struct target *target)
510 return ERROR_OK;
513 int target_examine_one(struct target *target)
515 return target->type->examine(target);
518 static int jtag_enable_callback(enum jtag_event event, void *priv)
520 struct target *target = priv;
522 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
523 return ERROR_OK;
525 jtag_unregister_event_callback(jtag_enable_callback, target);
526 return target_examine_one(target);
530 /* Targets that correctly implement init + examine, i.e.
531 * no communication with target during init:
533 * XScale
535 int target_examine(void)
537 int retval = ERROR_OK;
538 struct target *target;
540 for (target = all_targets; target; target = target->next)
542 /* defer examination, but don't skip it */
543 if (!target->tap->enabled) {
544 jtag_register_event_callback(jtag_enable_callback,
545 target);
546 continue;
548 if ((retval = target_examine_one(target)) != ERROR_OK)
549 return retval;
551 return retval;
553 const char *target_type_name(struct target *target)
555 return target->type->name;
558 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
560 if (!target_was_examined(target))
562 LOG_ERROR("Target not examined yet");
563 return ERROR_FAIL;
565 return target->type->write_memory_imp(target, address, size, count, buffer);
568 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
570 if (!target_was_examined(target))
572 LOG_ERROR("Target not examined yet");
573 return ERROR_FAIL;
575 return target->type->read_memory_imp(target, address, size, count, buffer);
578 static int target_soft_reset_halt_imp(struct target *target)
580 if (!target_was_examined(target))
582 LOG_ERROR("Target not examined yet");
583 return ERROR_FAIL;
585 if (!target->type->soft_reset_halt_imp) {
586 LOG_ERROR("Target %s does not support soft_reset_halt",
587 target_name(target));
588 return ERROR_FAIL;
590 return target->type->soft_reset_halt_imp(target);
593 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
595 if (!target_was_examined(target))
597 LOG_ERROR("Target not examined yet");
598 return ERROR_FAIL;
600 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
603 int target_read_memory(struct target *target,
604 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
606 return target->type->read_memory(target, address, size, count, buffer);
609 int target_read_phys_memory(struct target *target,
610 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
612 return target->type->read_phys_memory(target, address, size, count, buffer);
615 int target_write_memory(struct target *target,
616 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
618 return target->type->write_memory(target, address, size, count, buffer);
621 int target_write_phys_memory(struct target *target,
622 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
624 return target->type->write_phys_memory(target, address, size, count, buffer);
627 int target_bulk_write_memory(struct target *target,
628 uint32_t address, uint32_t count, uint8_t *buffer)
630 return target->type->bulk_write_memory(target, address, count, buffer);
633 int target_add_breakpoint(struct target *target,
634 struct breakpoint *breakpoint)
636 if (target->state != TARGET_HALTED) {
637 LOG_WARNING("target %s is not halted", target->cmd_name);
638 return ERROR_TARGET_NOT_HALTED;
640 return target->type->add_breakpoint(target, breakpoint);
642 int target_remove_breakpoint(struct target *target,
643 struct breakpoint *breakpoint)
645 return target->type->remove_breakpoint(target, breakpoint);
648 int target_add_watchpoint(struct target *target,
649 struct watchpoint *watchpoint)
651 if (target->state != TARGET_HALTED) {
652 LOG_WARNING("target %s is not halted", target->cmd_name);
653 return ERROR_TARGET_NOT_HALTED;
655 return target->type->add_watchpoint(target, watchpoint);
657 int target_remove_watchpoint(struct target *target,
658 struct watchpoint *watchpoint)
660 return target->type->remove_watchpoint(target, watchpoint);
663 int target_get_gdb_reg_list(struct target *target,
664 struct reg **reg_list[], int *reg_list_size)
666 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
668 int target_step(struct target *target,
669 int current, uint32_t address, int handle_breakpoints)
671 return target->type->step(target, current, address, handle_breakpoints);
675 int target_run_algorithm(struct target *target,
676 int num_mem_params, struct mem_param *mem_params,
677 int num_reg_params, struct reg_param *reg_param,
678 uint32_t entry_point, uint32_t exit_point,
679 int timeout_ms, void *arch_info)
681 return target->type->run_algorithm(target,
682 num_mem_params, mem_params, num_reg_params, reg_param,
683 entry_point, exit_point, timeout_ms, arch_info);
687 * Reset the @c examined flag for the given target.
688 * Pure paranoia -- targets are zeroed on allocation.
690 static void target_reset_examined(struct target *target)
692 target->examined = false;
695 static int
696 err_read_phys_memory(struct target *target, uint32_t address,
697 uint32_t size, uint32_t count, uint8_t *buffer)
699 LOG_ERROR("Not implemented: %s", __func__);
700 return ERROR_FAIL;
703 static int
704 err_write_phys_memory(struct target *target, uint32_t address,
705 uint32_t size, uint32_t count, uint8_t *buffer)
707 LOG_ERROR("Not implemented: %s", __func__);
708 return ERROR_FAIL;
711 static int handle_target(void *priv);
713 static int target_init_one(struct command_context *cmd_ctx,
714 struct target *target)
716 target_reset_examined(target);
718 struct target_type *type = target->type;
719 if (type->examine == NULL)
720 type->examine = default_examine;
722 if (type->check_reset== NULL)
723 type->check_reset = default_check_reset;
725 int retval = type->init_target(cmd_ctx, target);
726 if (ERROR_OK != retval)
728 LOG_ERROR("target '%s' init failed", target_name(target));
729 return retval;
733 * @todo get rid of those *memory_imp() methods, now that all
734 * callers are using target_*_memory() accessors ... and make
735 * sure the "physical" paths handle the same issues.
737 /* a non-invasive way(in terms of patches) to add some code that
738 * runs before the type->write/read_memory implementation
740 type->write_memory_imp = target->type->write_memory;
741 type->write_memory = target_write_memory_imp;
743 type->read_memory_imp = target->type->read_memory;
744 type->read_memory = target_read_memory_imp;
746 type->soft_reset_halt_imp = target->type->soft_reset_halt;
747 type->soft_reset_halt = target_soft_reset_halt_imp;
749 type->run_algorithm_imp = target->type->run_algorithm;
750 type->run_algorithm = target_run_algorithm_imp;
752 /* Sanity-check MMU support ... stub in what we must, to help
753 * implement it in stages, but warn if we need to do so.
755 if (type->mmu)
757 if (type->write_phys_memory == NULL)
759 LOG_ERROR("type '%s' is missing write_phys_memory",
760 type->name);
761 type->write_phys_memory = err_write_phys_memory;
763 if (type->read_phys_memory == NULL)
765 LOG_ERROR("type '%s' is missing read_phys_memory",
766 type->name);
767 type->read_phys_memory = err_read_phys_memory;
769 if (type->virt2phys == NULL)
771 LOG_ERROR("type '%s' is missing virt2phys", type->name);
772 type->virt2phys = identity_virt2phys;
775 else
777 /* Make sure no-MMU targets all behave the same: make no
778 * distinction between physical and virtual addresses, and
779 * ensure that virt2phys() is always an identity mapping.
781 if (type->write_phys_memory || type->read_phys_memory
782 || type->virt2phys)
784 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
787 type->mmu = no_mmu;
788 type->write_phys_memory = type->write_memory;
789 type->read_phys_memory = type->read_memory;
790 type->virt2phys = identity_virt2phys;
792 return ERROR_OK;
795 int target_init(struct command_context *cmd_ctx)
797 struct target *target;
798 int retval;
800 for (target = all_targets; target; target = target->next)
802 retval = target_init_one(cmd_ctx, target);
803 if (ERROR_OK != retval)
804 return retval;
807 if (!all_targets)
808 return ERROR_OK;
810 retval = target_register_user_commands(cmd_ctx);
811 if (ERROR_OK != retval)
812 return retval;
814 retval = target_register_timer_callback(&handle_target,
815 100, 1, cmd_ctx->interp);
816 if (ERROR_OK != retval)
817 return retval;
819 return ERROR_OK;
822 COMMAND_HANDLER(handle_target_init_command)
824 if (CMD_ARGC != 0)
825 return ERROR_COMMAND_SYNTAX_ERROR;
827 static bool target_initialized = false;
828 if (target_initialized)
830 LOG_INFO("'target init' has already been called");
831 return ERROR_OK;
833 target_initialized = true;
835 LOG_DEBUG("Initializing targets...");
836 return target_init(CMD_CTX);
839 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
841 struct target_event_callback **callbacks_p = &target_event_callbacks;
843 if (callback == NULL)
845 return ERROR_INVALID_ARGUMENTS;
848 if (*callbacks_p)
850 while ((*callbacks_p)->next)
851 callbacks_p = &((*callbacks_p)->next);
852 callbacks_p = &((*callbacks_p)->next);
855 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
856 (*callbacks_p)->callback = callback;
857 (*callbacks_p)->priv = priv;
858 (*callbacks_p)->next = NULL;
860 return ERROR_OK;
863 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
865 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
866 struct timeval now;
868 if (callback == NULL)
870 return ERROR_INVALID_ARGUMENTS;
873 if (*callbacks_p)
875 while ((*callbacks_p)->next)
876 callbacks_p = &((*callbacks_p)->next);
877 callbacks_p = &((*callbacks_p)->next);
880 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
881 (*callbacks_p)->callback = callback;
882 (*callbacks_p)->periodic = periodic;
883 (*callbacks_p)->time_ms = time_ms;
885 gettimeofday(&now, NULL);
886 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
887 time_ms -= (time_ms % 1000);
888 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
889 if ((*callbacks_p)->when.tv_usec > 1000000)
891 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
892 (*callbacks_p)->when.tv_sec += 1;
895 (*callbacks_p)->priv = priv;
896 (*callbacks_p)->next = NULL;
898 return ERROR_OK;
901 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
903 struct target_event_callback **p = &target_event_callbacks;
904 struct target_event_callback *c = target_event_callbacks;
906 if (callback == NULL)
908 return ERROR_INVALID_ARGUMENTS;
911 while (c)
913 struct target_event_callback *next = c->next;
914 if ((c->callback == callback) && (c->priv == priv))
916 *p = next;
917 free(c);
918 return ERROR_OK;
920 else
921 p = &(c->next);
922 c = next;
925 return ERROR_OK;
928 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
930 struct target_timer_callback **p = &target_timer_callbacks;
931 struct target_timer_callback *c = target_timer_callbacks;
933 if (callback == NULL)
935 return ERROR_INVALID_ARGUMENTS;
938 while (c)
940 struct target_timer_callback *next = c->next;
941 if ((c->callback == callback) && (c->priv == priv))
943 *p = next;
944 free(c);
945 return ERROR_OK;
947 else
948 p = &(c->next);
949 c = next;
952 return ERROR_OK;
955 int target_call_event_callbacks(struct target *target, enum target_event event)
957 struct target_event_callback *callback = target_event_callbacks;
958 struct target_event_callback *next_callback;
960 if (event == TARGET_EVENT_HALTED)
962 /* execute early halted first */
963 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
966 LOG_DEBUG("target event %i (%s)",
967 event,
968 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
970 target_handle_event(target, event);
972 while (callback)
974 next_callback = callback->next;
975 callback->callback(target, event, callback->priv);
976 callback = next_callback;
979 return ERROR_OK;
982 static int target_timer_callback_periodic_restart(
983 struct target_timer_callback *cb, struct timeval *now)
985 int time_ms = cb->time_ms;
986 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
987 time_ms -= (time_ms % 1000);
988 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
989 if (cb->when.tv_usec > 1000000)
991 cb->when.tv_usec = cb->when.tv_usec - 1000000;
992 cb->when.tv_sec += 1;
994 return ERROR_OK;
997 static int target_call_timer_callback(struct target_timer_callback *cb,
998 struct timeval *now)
1000 cb->callback(cb->priv);
1002 if (cb->periodic)
1003 return target_timer_callback_periodic_restart(cb, now);
1005 return target_unregister_timer_callback(cb->callback, cb->priv);
1008 static int target_call_timer_callbacks_check_time(int checktime)
1010 keep_alive();
1012 struct timeval now;
1013 gettimeofday(&now, NULL);
1015 struct target_timer_callback *callback = target_timer_callbacks;
1016 while (callback)
1018 // cleaning up may unregister and free this callback
1019 struct target_timer_callback *next_callback = callback->next;
1021 bool call_it = callback->callback &&
1022 ((!checktime && callback->periodic) ||
1023 now.tv_sec > callback->when.tv_sec ||
1024 (now.tv_sec == callback->when.tv_sec &&
1025 now.tv_usec >= callback->when.tv_usec));
1027 if (call_it)
1029 int retval = target_call_timer_callback(callback, &now);
1030 if (retval != ERROR_OK)
1031 return retval;
1034 callback = next_callback;
1037 return ERROR_OK;
1040 int target_call_timer_callbacks(void)
1042 return target_call_timer_callbacks_check_time(1);
1045 /* invoke periodic callbacks immediately */
1046 int target_call_timer_callbacks_now(void)
1048 return target_call_timer_callbacks_check_time(0);
1051 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1053 struct working_area *c = target->working_areas;
1054 struct working_area *new_wa = NULL;
1056 /* Reevaluate working area address based on MMU state*/
1057 if (target->working_areas == NULL)
1059 int retval;
1060 int enabled;
1062 retval = target->type->mmu(target, &enabled);
1063 if (retval != ERROR_OK)
1065 return retval;
1068 if (!enabled) {
1069 if (target->working_area_phys_spec) {
1070 LOG_DEBUG("MMU disabled, using physical "
1071 "address for working memory 0x%08x",
1072 (unsigned)target->working_area_phys);
1073 target->working_area = target->working_area_phys;
1074 } else {
1075 LOG_ERROR("No working memory available. "
1076 "Specify -work-area-phys to target.");
1077 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1079 } else {
1080 if (target->working_area_virt_spec) {
1081 LOG_DEBUG("MMU enabled, using virtual "
1082 "address for working memory 0x%08x",
1083 (unsigned)target->working_area_virt);
1084 target->working_area = target->working_area_virt;
1085 } else {
1086 LOG_ERROR("No working memory available. "
1087 "Specify -work-area-virt to target.");
1088 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1093 /* only allocate multiples of 4 byte */
1094 if (size % 4)
1096 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1097 size = (size + 3) & (~3);
1100 /* see if there's already a matching working area */
1101 while (c)
1103 if ((c->free) && (c->size == size))
1105 new_wa = c;
1106 break;
1108 c = c->next;
1111 /* if not, allocate a new one */
1112 if (!new_wa)
1114 struct working_area **p = &target->working_areas;
1115 uint32_t first_free = target->working_area;
1116 uint32_t free_size = target->working_area_size;
1118 c = target->working_areas;
1119 while (c)
1121 first_free += c->size;
1122 free_size -= c->size;
1123 p = &c->next;
1124 c = c->next;
1127 if (free_size < size)
1129 LOG_WARNING("not enough working area available(requested %u, free %u)",
1130 (unsigned)(size), (unsigned)(free_size));
1131 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1134 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1136 new_wa = malloc(sizeof(struct working_area));
1137 new_wa->next = NULL;
1138 new_wa->size = size;
1139 new_wa->address = first_free;
1141 if (target->backup_working_area)
1143 int retval;
1144 new_wa->backup = malloc(new_wa->size);
1145 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1147 free(new_wa->backup);
1148 free(new_wa);
1149 return retval;
1152 else
1154 new_wa->backup = NULL;
1157 /* put new entry in list */
1158 *p = new_wa;
1161 /* mark as used, and return the new (reused) area */
1162 new_wa->free = 0;
1163 *area = new_wa;
1165 /* user pointer */
1166 new_wa->user = area;
1168 return ERROR_OK;
1171 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1173 if (area->free)
1174 return ERROR_OK;
1176 if (restore && target->backup_working_area)
1178 int retval;
1179 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1180 return retval;
1183 area->free = 1;
1185 /* mark user pointer invalid */
1186 *area->user = NULL;
1187 area->user = NULL;
1189 return ERROR_OK;
1192 int target_free_working_area(struct target *target, struct working_area *area)
1194 return target_free_working_area_restore(target, area, 1);
1197 /* free resources and restore memory, if restoring memory fails,
1198 * free up resources anyway
1200 void target_free_all_working_areas_restore(struct target *target, int restore)
1202 struct working_area *c = target->working_areas;
1204 while (c)
1206 struct working_area *next = c->next;
1207 target_free_working_area_restore(target, c, restore);
1209 if (c->backup)
1210 free(c->backup);
1212 free(c);
1214 c = next;
1217 target->working_areas = NULL;
1220 void target_free_all_working_areas(struct target *target)
1222 target_free_all_working_areas_restore(target, 1);
1225 int target_arch_state(struct target *target)
1227 int retval;
1228 if (target == NULL)
1230 LOG_USER("No target has been configured");
1231 return ERROR_OK;
1234 LOG_USER("target state: %s", target_state_name( target ));
1236 if (target->state != TARGET_HALTED)
1237 return ERROR_OK;
1239 retval = target->type->arch_state(target);
1240 return retval;
1243 /* Single aligned words are guaranteed to use 16 or 32 bit access
1244 * mode respectively, otherwise data is handled as quickly as
1245 * possible
1247 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1249 int retval;
1250 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1251 (int)size, (unsigned)address);
1253 if (!target_was_examined(target))
1255 LOG_ERROR("Target not examined yet");
1256 return ERROR_FAIL;
1259 if (size == 0) {
1260 return ERROR_OK;
1263 if ((address + size - 1) < address)
1265 /* GDB can request this when e.g. PC is 0xfffffffc*/
1266 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1267 (unsigned)address,
1268 (unsigned)size);
1269 return ERROR_FAIL;
1272 if (((address % 2) == 0) && (size == 2))
1274 return target_write_memory(target, address, 2, 1, buffer);
1277 /* handle unaligned head bytes */
1278 if (address % 4)
1280 uint32_t unaligned = 4 - (address % 4);
1282 if (unaligned > size)
1283 unaligned = size;
1285 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1286 return retval;
1288 buffer += unaligned;
1289 address += unaligned;
1290 size -= unaligned;
1293 /* handle aligned words */
1294 if (size >= 4)
1296 int aligned = size - (size % 4);
1298 /* use bulk writes above a certain limit. This may have to be changed */
1299 if (aligned > 128)
1301 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1302 return retval;
1304 else
1306 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1307 return retval;
1310 buffer += aligned;
1311 address += aligned;
1312 size -= aligned;
1315 /* handle tail writes of less than 4 bytes */
1316 if (size > 0)
1318 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1319 return retval;
1322 return ERROR_OK;
1325 /* Single aligned words are guaranteed to use 16 or 32 bit access
1326 * mode respectively, otherwise data is handled as quickly as
1327 * possible
1329 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1331 int retval;
1332 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1333 (int)size, (unsigned)address);
1335 if (!target_was_examined(target))
1337 LOG_ERROR("Target not examined yet");
1338 return ERROR_FAIL;
1341 if (size == 0) {
1342 return ERROR_OK;
1345 if ((address + size - 1) < address)
1347 /* GDB can request this when e.g. PC is 0xfffffffc*/
1348 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1349 address,
1350 size);
1351 return ERROR_FAIL;
1354 if (((address % 2) == 0) && (size == 2))
1356 return target_read_memory(target, address, 2, 1, buffer);
1359 /* handle unaligned head bytes */
1360 if (address % 4)
1362 uint32_t unaligned = 4 - (address % 4);
1364 if (unaligned > size)
1365 unaligned = size;
1367 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1368 return retval;
1370 buffer += unaligned;
1371 address += unaligned;
1372 size -= unaligned;
1375 /* handle aligned words */
1376 if (size >= 4)
1378 int aligned = size - (size % 4);
1380 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1381 return retval;
1383 buffer += aligned;
1384 address += aligned;
1385 size -= aligned;
1388 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1389 if(size >=2)
1391 int aligned = size - (size%2);
1392 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1393 if (retval != ERROR_OK)
1394 return retval;
1396 buffer += aligned;
1397 address += aligned;
1398 size -= aligned;
1400 /* handle tail writes of less than 4 bytes */
1401 if (size > 0)
1403 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1404 return retval;
1407 return ERROR_OK;
1410 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1412 uint8_t *buffer;
1413 int retval;
1414 uint32_t i;
1415 uint32_t checksum = 0;
1416 if (!target_was_examined(target))
1418 LOG_ERROR("Target not examined yet");
1419 return ERROR_FAIL;
1422 if ((retval = target->type->checksum_memory(target, address,
1423 size, &checksum)) != ERROR_OK)
1425 buffer = malloc(size);
1426 if (buffer == NULL)
1428 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1429 return ERROR_INVALID_ARGUMENTS;
1431 retval = target_read_buffer(target, address, size, buffer);
1432 if (retval != ERROR_OK)
1434 free(buffer);
1435 return retval;
1438 /* convert to target endianess */
1439 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1441 uint32_t target_data;
1442 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1443 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1446 retval = image_calculate_checksum(buffer, size, &checksum);
1447 free(buffer);
1450 *crc = checksum;
1452 return retval;
1455 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1457 int retval;
1458 if (!target_was_examined(target))
1460 LOG_ERROR("Target not examined yet");
1461 return ERROR_FAIL;
1464 if (target->type->blank_check_memory == 0)
1465 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1467 retval = target->type->blank_check_memory(target, address, size, blank);
1469 return retval;
1472 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1474 uint8_t value_buf[4];
1475 if (!target_was_examined(target))
1477 LOG_ERROR("Target not examined yet");
1478 return ERROR_FAIL;
1481 int retval = target_read_memory(target, address, 4, 1, value_buf);
1483 if (retval == ERROR_OK)
1485 *value = target_buffer_get_u32(target, value_buf);
1486 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1487 address,
1488 *value);
1490 else
1492 *value = 0x0;
1493 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1494 address);
1497 return retval;
1500 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1502 uint8_t value_buf[2];
1503 if (!target_was_examined(target))
1505 LOG_ERROR("Target not examined yet");
1506 return ERROR_FAIL;
1509 int retval = target_read_memory(target, address, 2, 1, value_buf);
1511 if (retval == ERROR_OK)
1513 *value = target_buffer_get_u16(target, value_buf);
1514 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1515 address,
1516 *value);
1518 else
1520 *value = 0x0;
1521 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1522 address);
1525 return retval;
1528 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1530 int retval = target_read_memory(target, address, 1, 1, value);
1531 if (!target_was_examined(target))
1533 LOG_ERROR("Target not examined yet");
1534 return ERROR_FAIL;
1537 if (retval == ERROR_OK)
1539 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1540 address,
1541 *value);
1543 else
1545 *value = 0x0;
1546 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1547 address);
1550 return retval;
1553 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1555 int retval;
1556 uint8_t value_buf[4];
1557 if (!target_was_examined(target))
1559 LOG_ERROR("Target not examined yet");
1560 return ERROR_FAIL;
1563 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1564 address,
1565 value);
1567 target_buffer_set_u32(target, value_buf, value);
1568 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1570 LOG_DEBUG("failed: %i", retval);
1573 return retval;
1576 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1578 int retval;
1579 uint8_t value_buf[2];
1580 if (!target_was_examined(target))
1582 LOG_ERROR("Target not examined yet");
1583 return ERROR_FAIL;
1586 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1587 address,
1588 value);
1590 target_buffer_set_u16(target, value_buf, value);
1591 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1593 LOG_DEBUG("failed: %i", retval);
1596 return retval;
1599 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1601 int retval;
1602 if (!target_was_examined(target))
1604 LOG_ERROR("Target not examined yet");
1605 return ERROR_FAIL;
1608 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1609 address, value);
1611 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1613 LOG_DEBUG("failed: %i", retval);
1616 return retval;
1619 COMMAND_HANDLER(handle_targets_command)
1621 struct target *target = all_targets;
1623 if (CMD_ARGC == 1)
1625 target = get_target(CMD_ARGV[0]);
1626 if (target == NULL) {
1627 command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1628 goto DumpTargets;
1630 if (!target->tap->enabled) {
1631 command_print(CMD_CTX,"Target: TAP %s is disabled, "
1632 "can't be the current target\n",
1633 target->tap->dotted_name);
1634 return ERROR_FAIL;
1637 CMD_CTX->current_target = target->target_number;
1638 return ERROR_OK;
1640 DumpTargets:
1642 target = all_targets;
1643 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1644 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1645 while (target)
1647 const char *state;
1648 char marker = ' ';
1650 if (target->tap->enabled)
1651 state = target_state_name( target );
1652 else
1653 state = "tap-disabled";
1655 if (CMD_CTX->current_target == target->target_number)
1656 marker = '*';
1658 /* keep columns lined up to match the headers above */
1659 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1660 target->target_number,
1661 marker,
1662 target_name(target),
1663 target_type_name(target),
1664 Jim_Nvp_value2name_simple(nvp_target_endian,
1665 target->endianness)->name,
1666 target->tap->dotted_name,
1667 state);
1668 target = target->next;
1671 return ERROR_OK;
1674 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1676 static int powerDropout;
1677 static int srstAsserted;
1679 static int runPowerRestore;
1680 static int runPowerDropout;
1681 static int runSrstAsserted;
1682 static int runSrstDeasserted;
1684 static int sense_handler(void)
1686 static int prevSrstAsserted = 0;
1687 static int prevPowerdropout = 0;
1689 int retval;
1690 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1691 return retval;
1693 int powerRestored;
1694 powerRestored = prevPowerdropout && !powerDropout;
1695 if (powerRestored)
1697 runPowerRestore = 1;
1700 long long current = timeval_ms();
1701 static long long lastPower = 0;
1702 int waitMore = lastPower + 2000 > current;
1703 if (powerDropout && !waitMore)
1705 runPowerDropout = 1;
1706 lastPower = current;
1709 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1710 return retval;
1712 int srstDeasserted;
1713 srstDeasserted = prevSrstAsserted && !srstAsserted;
1715 static long long lastSrst = 0;
1716 waitMore = lastSrst + 2000 > current;
1717 if (srstDeasserted && !waitMore)
1719 runSrstDeasserted = 1;
1720 lastSrst = current;
1723 if (!prevSrstAsserted && srstAsserted)
1725 runSrstAsserted = 1;
1728 prevSrstAsserted = srstAsserted;
1729 prevPowerdropout = powerDropout;
1731 if (srstDeasserted || powerRestored)
1733 /* Other than logging the event we can't do anything here.
1734 * Issuing a reset is a particularly bad idea as we might
1735 * be inside a reset already.
1739 return ERROR_OK;
1742 static void target_call_event_callbacks_all(enum target_event e) {
1743 struct target *target;
1744 target = all_targets;
1745 while (target) {
1746 target_call_event_callbacks(target, e);
1747 target = target->next;
1751 /* process target state changes */
1752 static int handle_target(void *priv)
1754 Jim_Interp *interp = (Jim_Interp *)priv;
1755 int retval = ERROR_OK;
1757 /* we do not want to recurse here... */
1758 static int recursive = 0;
1759 if (! recursive)
1761 recursive = 1;
1762 sense_handler();
1763 /* danger! running these procedures can trigger srst assertions and power dropouts.
1764 * We need to avoid an infinite loop/recursion here and we do that by
1765 * clearing the flags after running these events.
1767 int did_something = 0;
1768 if (runSrstAsserted)
1770 LOG_INFO("Waking up GDB, srst asserted detected.");
1771 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1772 Jim_Eval(interp, "srst_asserted");
1773 did_something = 1;
1775 if (runSrstDeasserted)
1777 Jim_Eval(interp, "srst_deasserted");
1778 did_something = 1;
1780 if (runPowerDropout)
1782 LOG_INFO("Waking up GDB, power dropout detected.");
1783 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1784 Jim_Eval(interp, "power_dropout");
1785 did_something = 1;
1787 if (runPowerRestore)
1789 Jim_Eval(interp, "power_restore");
1790 did_something = 1;
1793 if (did_something)
1795 /* clear detect flags */
1796 sense_handler();
1799 /* clear action flags */
1801 runSrstAsserted = 0;
1802 runSrstDeasserted = 0;
1803 runPowerRestore = 0;
1804 runPowerDropout = 0;
1806 recursive = 0;
1809 /* Poll targets for state changes unless that's globally disabled.
1810 * Skip targets that are currently disabled.
1812 for (struct target *target = all_targets;
1813 is_jtag_poll_safe() && target;
1814 target = target->next)
1816 if (!target->tap->enabled)
1817 continue;
1819 /* only poll target if we've got power and srst isn't asserted */
1820 if (!powerDropout && !srstAsserted)
1822 /* polling may fail silently until the target has been examined */
1823 if ((retval = target_poll(target)) != ERROR_OK)
1825 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1826 * *why* we are aborting GDB, then we'll spam telnet when the
1827 * poll is failing persistently.
1829 * If we could implement an event that detected the
1830 * target going from non-pollable to pollable, we could issue
1831 * an error only upon the transition.
1833 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1834 return retval;
1839 return retval;
1842 COMMAND_HANDLER(handle_reg_command)
1844 struct target *target;
1845 struct reg *reg = NULL;
1846 unsigned count = 0;
1847 char *value;
1849 LOG_DEBUG("-");
1851 target = get_current_target(CMD_CTX);
1853 /* list all available registers for the current target */
1854 if (CMD_ARGC == 0)
1856 struct reg_cache *cache = target->reg_cache;
1858 count = 0;
1859 while (cache)
1861 unsigned i;
1863 command_print(CMD_CTX, "===== %s", cache->name);
1865 for (i = 0, reg = cache->reg_list;
1866 i < cache->num_regs;
1867 i++, reg++, count++)
1869 /* only print cached values if they are valid */
1870 if (reg->valid) {
1871 value = buf_to_str(reg->value,
1872 reg->size, 16);
1873 command_print(CMD_CTX,
1874 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1875 count, reg->name,
1876 reg->size, value,
1877 reg->dirty
1878 ? " (dirty)"
1879 : "");
1880 free(value);
1881 } else {
1882 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1883 count, reg->name,
1884 reg->size) ;
1887 cache = cache->next;
1890 return ERROR_OK;
1893 /* access a single register by its ordinal number */
1894 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1896 unsigned num;
1897 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1899 struct reg_cache *cache = target->reg_cache;
1900 count = 0;
1901 while (cache)
1903 unsigned i;
1904 for (i = 0; i < cache->num_regs; i++)
1906 if (count++ == num)
1908 reg = &cache->reg_list[i];
1909 break;
1912 if (reg)
1913 break;
1914 cache = cache->next;
1917 if (!reg)
1919 command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1920 return ERROR_OK;
1922 } else /* access a single register by its name */
1924 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1926 if (!reg)
1928 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1929 return ERROR_OK;
1933 /* display a register */
1934 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1936 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1937 reg->valid = 0;
1939 if (reg->valid == 0)
1941 reg->type->get(reg);
1943 value = buf_to_str(reg->value, reg->size, 16);
1944 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1945 free(value);
1946 return ERROR_OK;
1949 /* set register value */
1950 if (CMD_ARGC == 2)
1952 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1953 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
1955 reg->type->set(reg, buf);
1957 value = buf_to_str(reg->value, reg->size, 16);
1958 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1959 free(value);
1961 free(buf);
1963 return ERROR_OK;
1966 command_print(CMD_CTX, "usage: reg <#|name> [value]");
1968 return ERROR_OK;
1971 COMMAND_HANDLER(handle_poll_command)
1973 int retval = ERROR_OK;
1974 struct target *target = get_current_target(CMD_CTX);
1976 if (CMD_ARGC == 0)
1978 command_print(CMD_CTX, "background polling: %s",
1979 jtag_poll_get_enabled() ? "on" : "off");
1980 command_print(CMD_CTX, "TAP: %s (%s)",
1981 target->tap->dotted_name,
1982 target->tap->enabled ? "enabled" : "disabled");
1983 if (!target->tap->enabled)
1984 return ERROR_OK;
1985 if ((retval = target_poll(target)) != ERROR_OK)
1986 return retval;
1987 if ((retval = target_arch_state(target)) != ERROR_OK)
1988 return retval;
1990 else if (CMD_ARGC == 1)
1992 bool enable;
1993 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
1994 jtag_poll_set_enabled(enable);
1996 else
1998 return ERROR_COMMAND_SYNTAX_ERROR;
2001 return retval;
2004 COMMAND_HANDLER(handle_wait_halt_command)
2006 if (CMD_ARGC > 1)
2007 return ERROR_COMMAND_SYNTAX_ERROR;
2009 unsigned ms = 5000;
2010 if (1 == CMD_ARGC)
2012 int retval = parse_uint(CMD_ARGV[0], &ms);
2013 if (ERROR_OK != retval)
2015 command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2016 return ERROR_COMMAND_SYNTAX_ERROR;
2018 // convert seconds (given) to milliseconds (needed)
2019 ms *= 1000;
2022 struct target *target = get_current_target(CMD_CTX);
2023 return target_wait_state(target, TARGET_HALTED, ms);
2026 /* wait for target state to change. The trick here is to have a low
2027 * latency for short waits and not to suck up all the CPU time
2028 * on longer waits.
2030 * After 500ms, keep_alive() is invoked
2032 int target_wait_state(struct target *target, enum target_state state, int ms)
2034 int retval;
2035 long long then = 0, cur;
2036 int once = 1;
2038 for (;;)
2040 if ((retval = target_poll(target)) != ERROR_OK)
2041 return retval;
2042 if (target->state == state)
2044 break;
2046 cur = timeval_ms();
2047 if (once)
2049 once = 0;
2050 then = timeval_ms();
2051 LOG_DEBUG("waiting for target %s...",
2052 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2055 if (cur-then > 500)
2057 keep_alive();
2060 if ((cur-then) > ms)
2062 LOG_ERROR("timed out while waiting for target %s",
2063 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2064 return ERROR_FAIL;
2068 return ERROR_OK;
2071 COMMAND_HANDLER(handle_halt_command)
2073 LOG_DEBUG("-");
2075 struct target *target = get_current_target(CMD_CTX);
2076 int retval = target_halt(target);
2077 if (ERROR_OK != retval)
2078 return retval;
2080 if (CMD_ARGC == 1)
2082 unsigned wait;
2083 retval = parse_uint(CMD_ARGV[0], &wait);
2084 if (ERROR_OK != retval)
2085 return ERROR_COMMAND_SYNTAX_ERROR;
2086 if (!wait)
2087 return ERROR_OK;
2090 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2093 COMMAND_HANDLER(handle_soft_reset_halt_command)
2095 struct target *target = get_current_target(CMD_CTX);
2097 LOG_USER("requesting target halt and executing a soft reset");
2099 target->type->soft_reset_halt(target);
2101 return ERROR_OK;
2104 COMMAND_HANDLER(handle_reset_command)
2106 if (CMD_ARGC > 1)
2107 return ERROR_COMMAND_SYNTAX_ERROR;
2109 enum target_reset_mode reset_mode = RESET_RUN;
2110 if (CMD_ARGC == 1)
2112 const Jim_Nvp *n;
2113 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2114 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2115 return ERROR_COMMAND_SYNTAX_ERROR;
2117 reset_mode = n->value;
2120 /* reset *all* targets */
2121 return target_process_reset(CMD_CTX, reset_mode);
2125 COMMAND_HANDLER(handle_resume_command)
2127 int current = 1;
2128 if (CMD_ARGC > 1)
2129 return ERROR_COMMAND_SYNTAX_ERROR;
2131 struct target *target = get_current_target(CMD_CTX);
2132 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2134 /* with no CMD_ARGV, resume from current pc, addr = 0,
2135 * with one arguments, addr = CMD_ARGV[0],
2136 * handle breakpoints, not debugging */
2137 uint32_t addr = 0;
2138 if (CMD_ARGC == 1)
2140 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2141 current = 0;
2144 return target_resume(target, current, addr, 1, 0);
2147 COMMAND_HANDLER(handle_step_command)
2149 if (CMD_ARGC > 1)
2150 return ERROR_COMMAND_SYNTAX_ERROR;
2152 LOG_DEBUG("-");
2154 /* with no CMD_ARGV, step from current pc, addr = 0,
2155 * with one argument addr = CMD_ARGV[0],
2156 * handle breakpoints, debugging */
2157 uint32_t addr = 0;
2158 int current_pc = 1;
2159 if (CMD_ARGC == 1)
2161 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2162 current_pc = 0;
2165 struct target *target = get_current_target(CMD_CTX);
2167 return target->type->step(target, current_pc, addr, 1);
2170 static void handle_md_output(struct command_context *cmd_ctx,
2171 struct target *target, uint32_t address, unsigned size,
2172 unsigned count, const uint8_t *buffer)
2174 const unsigned line_bytecnt = 32;
2175 unsigned line_modulo = line_bytecnt / size;
2177 char output[line_bytecnt * 4 + 1];
2178 unsigned output_len = 0;
2180 const char *value_fmt;
2181 switch (size) {
2182 case 4: value_fmt = "%8.8x "; break;
2183 case 2: value_fmt = "%4.4x "; break;
2184 case 1: value_fmt = "%2.2x "; break;
2185 default:
2186 /* "can't happen", caller checked */
2187 LOG_ERROR("invalid memory read size: %u", size);
2188 return;
2191 for (unsigned i = 0; i < count; i++)
2193 if (i % line_modulo == 0)
2195 output_len += snprintf(output + output_len,
2196 sizeof(output) - output_len,
2197 "0x%8.8x: ",
2198 (unsigned)(address + (i*size)));
2201 uint32_t value = 0;
2202 const uint8_t *value_ptr = buffer + i * size;
2203 switch (size) {
2204 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2205 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2206 case 1: value = *value_ptr;
2208 output_len += snprintf(output + output_len,
2209 sizeof(output) - output_len,
2210 value_fmt, value);
2212 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2214 command_print(cmd_ctx, "%s", output);
2215 output_len = 0;
2220 COMMAND_HANDLER(handle_md_command)
2222 if (CMD_ARGC < 1)
2223 return ERROR_COMMAND_SYNTAX_ERROR;
2225 unsigned size = 0;
2226 switch (CMD_NAME[2]) {
2227 case 'w': size = 4; break;
2228 case 'h': size = 2; break;
2229 case 'b': size = 1; break;
2230 default: return ERROR_COMMAND_SYNTAX_ERROR;
2233 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2234 int (*fn)(struct target *target,
2235 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2236 if (physical)
2238 CMD_ARGC--;
2239 CMD_ARGV++;
2240 fn=target_read_phys_memory;
2241 } else
2243 fn=target_read_memory;
2245 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2247 return ERROR_COMMAND_SYNTAX_ERROR;
2250 uint32_t address;
2251 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2253 unsigned count = 1;
2254 if (CMD_ARGC == 2)
2255 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2257 uint8_t *buffer = calloc(count, size);
2259 struct target *target = get_current_target(CMD_CTX);
2260 int retval = fn(target, address, size, count, buffer);
2261 if (ERROR_OK == retval)
2262 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2264 free(buffer);
2266 return retval;
2269 COMMAND_HANDLER(handle_mw_command)
2271 if (CMD_ARGC < 2)
2273 return ERROR_COMMAND_SYNTAX_ERROR;
2275 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2276 int (*fn)(struct target *target,
2277 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2278 if (physical)
2280 CMD_ARGC--;
2281 CMD_ARGV++;
2282 fn=target_write_phys_memory;
2283 } else
2285 fn=target_write_memory;
2287 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2288 return ERROR_COMMAND_SYNTAX_ERROR;
2290 uint32_t address;
2291 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2293 uint32_t value;
2294 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2296 unsigned count = 1;
2297 if (CMD_ARGC == 3)
2298 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2300 struct target *target = get_current_target(CMD_CTX);
2301 unsigned wordsize;
2302 uint8_t value_buf[4];
2303 switch (CMD_NAME[2])
2305 case 'w':
2306 wordsize = 4;
2307 target_buffer_set_u32(target, value_buf, value);
2308 break;
2309 case 'h':
2310 wordsize = 2;
2311 target_buffer_set_u16(target, value_buf, value);
2312 break;
2313 case 'b':
2314 wordsize = 1;
2315 value_buf[0] = value;
2316 break;
2317 default:
2318 return ERROR_COMMAND_SYNTAX_ERROR;
2320 for (unsigned i = 0; i < count; i++)
2322 int retval = fn(target,
2323 address + i * wordsize, wordsize, 1, value_buf);
2324 if (ERROR_OK != retval)
2325 return retval;
2326 keep_alive();
2329 return ERROR_OK;
2333 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2334 uint32_t *min_address, uint32_t *max_address)
2336 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2337 return ERROR_COMMAND_SYNTAX_ERROR;
2339 /* a base address isn't always necessary,
2340 * default to 0x0 (i.e. don't relocate) */
2341 if (CMD_ARGC >= 2)
2343 uint32_t addr;
2344 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2345 image->base_address = addr;
2346 image->base_address_set = 1;
2348 else
2349 image->base_address_set = 0;
2351 image->start_address_set = 0;
2353 if (CMD_ARGC >= 4)
2355 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2357 if (CMD_ARGC == 5)
2359 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2360 // use size (given) to find max (required)
2361 *max_address += *min_address;
2364 if (*min_address > *max_address)
2365 return ERROR_COMMAND_SYNTAX_ERROR;
2367 return ERROR_OK;
2370 COMMAND_HANDLER(handle_load_image_command)
2372 uint8_t *buffer;
2373 size_t buf_cnt;
2374 uint32_t image_size;
2375 uint32_t min_address = 0;
2376 uint32_t max_address = 0xffffffff;
2377 int i;
2378 struct image image;
2380 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2381 &image, &min_address, &max_address);
2382 if (ERROR_OK != retval)
2383 return retval;
2385 struct target *target = get_current_target(CMD_CTX);
2387 struct duration bench;
2388 duration_start(&bench);
2390 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2392 return ERROR_OK;
2395 image_size = 0x0;
2396 retval = ERROR_OK;
2397 for (i = 0; i < image.num_sections; i++)
2399 buffer = malloc(image.sections[i].size);
2400 if (buffer == NULL)
2402 command_print(CMD_CTX,
2403 "error allocating buffer for section (%d bytes)",
2404 (int)(image.sections[i].size));
2405 break;
2408 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2410 free(buffer);
2411 break;
2414 uint32_t offset = 0;
2415 uint32_t length = buf_cnt;
2417 /* DANGER!!! beware of unsigned comparision here!!! */
2419 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2420 (image.sections[i].base_address < max_address))
2422 if (image.sections[i].base_address < min_address)
2424 /* clip addresses below */
2425 offset += min_address-image.sections[i].base_address;
2426 length -= offset;
2429 if (image.sections[i].base_address + buf_cnt > max_address)
2431 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2434 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2436 free(buffer);
2437 break;
2439 image_size += length;
2440 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2441 (unsigned int)length,
2442 image.sections[i].base_address + offset);
2445 free(buffer);
2448 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2450 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2451 "in %fs (%0.3f kb/s)", image_size,
2452 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2455 image_close(&image);
2457 return retval;
2461 COMMAND_HANDLER(handle_dump_image_command)
2463 struct fileio fileio;
2465 uint8_t buffer[560];
2466 int retvaltemp;
2469 struct target *target = get_current_target(CMD_CTX);
2471 if (CMD_ARGC != 3)
2473 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2474 return ERROR_OK;
2477 uint32_t address;
2478 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2479 uint32_t size;
2480 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2482 if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2484 return ERROR_OK;
2487 struct duration bench;
2488 duration_start(&bench);
2490 int retval = ERROR_OK;
2491 while (size > 0)
2493 size_t size_written;
2494 uint32_t this_run_size = (size > 560) ? 560 : size;
2495 retval = target_read_buffer(target, address, this_run_size, buffer);
2496 if (retval != ERROR_OK)
2498 break;
2501 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2502 if (retval != ERROR_OK)
2504 break;
2507 size -= this_run_size;
2508 address += this_run_size;
2511 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2512 return retvaltemp;
2514 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2516 command_print(CMD_CTX,
2517 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2518 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2521 return retval;
2524 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2526 uint8_t *buffer;
2527 size_t buf_cnt;
2528 uint32_t image_size;
2529 int i;
2530 int retval;
2531 uint32_t checksum = 0;
2532 uint32_t mem_checksum = 0;
2534 struct image image;
2536 struct target *target = get_current_target(CMD_CTX);
2538 if (CMD_ARGC < 1)
2540 return ERROR_COMMAND_SYNTAX_ERROR;
2543 if (!target)
2545 LOG_ERROR("no target selected");
2546 return ERROR_FAIL;
2549 struct duration bench;
2550 duration_start(&bench);
2552 if (CMD_ARGC >= 2)
2554 uint32_t addr;
2555 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2556 image.base_address = addr;
2557 image.base_address_set = 1;
2559 else
2561 image.base_address_set = 0;
2562 image.base_address = 0x0;
2565 image.start_address_set = 0;
2567 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2569 return retval;
2572 image_size = 0x0;
2573 retval = ERROR_OK;
2574 for (i = 0; i < image.num_sections; i++)
2576 buffer = malloc(image.sections[i].size);
2577 if (buffer == NULL)
2579 command_print(CMD_CTX,
2580 "error allocating buffer for section (%d bytes)",
2581 (int)(image.sections[i].size));
2582 break;
2584 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2586 free(buffer);
2587 break;
2590 if (verify)
2592 /* calculate checksum of image */
2593 image_calculate_checksum(buffer, buf_cnt, &checksum);
2595 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2596 if (retval != ERROR_OK)
2598 free(buffer);
2599 break;
2602 if (checksum != mem_checksum)
2604 /* failed crc checksum, fall back to a binary compare */
2605 uint8_t *data;
2607 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2609 data = (uint8_t*)malloc(buf_cnt);
2611 /* Can we use 32bit word accesses? */
2612 int size = 1;
2613 int count = buf_cnt;
2614 if ((count % 4) == 0)
2616 size *= 4;
2617 count /= 4;
2619 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2620 if (retval == ERROR_OK)
2622 uint32_t t;
2623 for (t = 0; t < buf_cnt; t++)
2625 if (data[t] != buffer[t])
2627 command_print(CMD_CTX,
2628 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2629 (unsigned)(t + image.sections[i].base_address),
2630 data[t],
2631 buffer[t]);
2632 free(data);
2633 free(buffer);
2634 retval = ERROR_FAIL;
2635 goto done;
2637 if ((t%16384) == 0)
2639 keep_alive();
2644 free(data);
2646 } else
2648 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2649 image.sections[i].base_address,
2650 buf_cnt);
2653 free(buffer);
2654 image_size += buf_cnt;
2656 done:
2657 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2659 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2660 "in %fs (%0.3f kb/s)", image_size,
2661 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2664 image_close(&image);
2666 return retval;
2669 COMMAND_HANDLER(handle_verify_image_command)
2671 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2674 COMMAND_HANDLER(handle_test_image_command)
2676 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2679 static int handle_bp_command_list(struct command_context *cmd_ctx)
2681 struct target *target = get_current_target(cmd_ctx);
2682 struct breakpoint *breakpoint = target->breakpoints;
2683 while (breakpoint)
2685 if (breakpoint->type == BKPT_SOFT)
2687 char* buf = buf_to_str(breakpoint->orig_instr,
2688 breakpoint->length, 16);
2689 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2690 breakpoint->address,
2691 breakpoint->length,
2692 breakpoint->set, buf);
2693 free(buf);
2695 else
2697 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2698 breakpoint->address,
2699 breakpoint->length, breakpoint->set);
2702 breakpoint = breakpoint->next;
2704 return ERROR_OK;
2707 static int handle_bp_command_set(struct command_context *cmd_ctx,
2708 uint32_t addr, uint32_t length, int hw)
2710 struct target *target = get_current_target(cmd_ctx);
2711 int retval = breakpoint_add(target, addr, length, hw);
2712 if (ERROR_OK == retval)
2713 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2714 else
2715 LOG_ERROR("Failure setting breakpoint");
2716 return retval;
2719 COMMAND_HANDLER(handle_bp_command)
2721 if (CMD_ARGC == 0)
2722 return handle_bp_command_list(CMD_CTX);
2724 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2726 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2727 return ERROR_COMMAND_SYNTAX_ERROR;
2730 uint32_t addr;
2731 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2732 uint32_t length;
2733 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2735 int hw = BKPT_SOFT;
2736 if (CMD_ARGC == 3)
2738 if (strcmp(CMD_ARGV[2], "hw") == 0)
2739 hw = BKPT_HARD;
2740 else
2741 return ERROR_COMMAND_SYNTAX_ERROR;
2744 return handle_bp_command_set(CMD_CTX, addr, length, hw);
2747 COMMAND_HANDLER(handle_rbp_command)
2749 if (CMD_ARGC != 1)
2750 return ERROR_COMMAND_SYNTAX_ERROR;
2752 uint32_t addr;
2753 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2755 struct target *target = get_current_target(CMD_CTX);
2756 breakpoint_remove(target, addr);
2758 return ERROR_OK;
2761 COMMAND_HANDLER(handle_wp_command)
2763 struct target *target = get_current_target(CMD_CTX);
2765 if (CMD_ARGC == 0)
2767 struct watchpoint *watchpoint = target->watchpoints;
2769 while (watchpoint)
2771 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2772 ", len: 0x%8.8" PRIx32
2773 ", r/w/a: %i, value: 0x%8.8" PRIx32
2774 ", mask: 0x%8.8" PRIx32,
2775 watchpoint->address,
2776 watchpoint->length,
2777 (int)watchpoint->rw,
2778 watchpoint->value,
2779 watchpoint->mask);
2780 watchpoint = watchpoint->next;
2782 return ERROR_OK;
2785 enum watchpoint_rw type = WPT_ACCESS;
2786 uint32_t addr = 0;
2787 uint32_t length = 0;
2788 uint32_t data_value = 0x0;
2789 uint32_t data_mask = 0xffffffff;
2791 switch (CMD_ARGC)
2793 case 5:
2794 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2795 // fall through
2796 case 4:
2797 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2798 // fall through
2799 case 3:
2800 switch (CMD_ARGV[2][0])
2802 case 'r':
2803 type = WPT_READ;
2804 break;
2805 case 'w':
2806 type = WPT_WRITE;
2807 break;
2808 case 'a':
2809 type = WPT_ACCESS;
2810 break;
2811 default:
2812 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2813 return ERROR_COMMAND_SYNTAX_ERROR;
2815 // fall through
2816 case 2:
2817 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2818 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2819 break;
2821 default:
2822 command_print(CMD_CTX, "usage: wp [address length "
2823 "[(r|w|a) [value [mask]]]]");
2824 return ERROR_COMMAND_SYNTAX_ERROR;
2827 int retval = watchpoint_add(target, addr, length, type,
2828 data_value, data_mask);
2829 if (ERROR_OK != retval)
2830 LOG_ERROR("Failure setting watchpoints");
2832 return retval;
2835 COMMAND_HANDLER(handle_rwp_command)
2837 if (CMD_ARGC != 1)
2838 return ERROR_COMMAND_SYNTAX_ERROR;
2840 uint32_t addr;
2841 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2843 struct target *target = get_current_target(CMD_CTX);
2844 watchpoint_remove(target, addr);
2846 return ERROR_OK;
2851 * Translate a virtual address to a physical address.
2853 * The low-level target implementation must have logged a detailed error
2854 * which is forwarded to telnet/GDB session.
2856 COMMAND_HANDLER(handle_virt2phys_command)
2858 if (CMD_ARGC != 1)
2859 return ERROR_COMMAND_SYNTAX_ERROR;
2861 uint32_t va;
2862 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2863 uint32_t pa;
2865 struct target *target = get_current_target(CMD_CTX);
2866 int retval = target->type->virt2phys(target, va, &pa);
2867 if (retval == ERROR_OK)
2868 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2870 return retval;
2873 static void writeData(FILE *f, const void *data, size_t len)
2875 size_t written = fwrite(data, 1, len, f);
2876 if (written != len)
2877 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2880 static void writeLong(FILE *f, int l)
2882 int i;
2883 for (i = 0; i < 4; i++)
2885 char c = (l >> (i*8))&0xff;
2886 writeData(f, &c, 1);
2891 static void writeString(FILE *f, char *s)
2893 writeData(f, s, strlen(s));
2896 /* Dump a gmon.out histogram file. */
2897 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2899 uint32_t i;
2900 FILE *f = fopen(filename, "w");
2901 if (f == NULL)
2902 return;
2903 writeString(f, "gmon");
2904 writeLong(f, 0x00000001); /* Version */
2905 writeLong(f, 0); /* padding */
2906 writeLong(f, 0); /* padding */
2907 writeLong(f, 0); /* padding */
2909 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
2910 writeData(f, &zero, 1);
2912 /* figure out bucket size */
2913 uint32_t min = samples[0];
2914 uint32_t max = samples[0];
2915 for (i = 0; i < sampleNum; i++)
2917 if (min > samples[i])
2919 min = samples[i];
2921 if (max < samples[i])
2923 max = samples[i];
2927 int addressSpace = (max-min + 1);
2929 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2930 uint32_t length = addressSpace;
2931 if (length > maxBuckets)
2933 length = maxBuckets;
2935 int *buckets = malloc(sizeof(int)*length);
2936 if (buckets == NULL)
2938 fclose(f);
2939 return;
2941 memset(buckets, 0, sizeof(int)*length);
2942 for (i = 0; i < sampleNum;i++)
2944 uint32_t address = samples[i];
2945 long long a = address-min;
2946 long long b = length-1;
2947 long long c = addressSpace-1;
2948 int index = (a*b)/c; /* danger!!!! int32 overflows */
2949 buckets[index]++;
2952 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2953 writeLong(f, min); /* low_pc */
2954 writeLong(f, max); /* high_pc */
2955 writeLong(f, length); /* # of samples */
2956 writeLong(f, 64000000); /* 64MHz */
2957 writeString(f, "seconds");
2958 for (i = 0; i < (15-strlen("seconds")); i++)
2959 writeData(f, &zero, 1);
2960 writeString(f, "s");
2962 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2964 char *data = malloc(2*length);
2965 if (data != NULL)
2967 for (i = 0; i < length;i++)
2969 int val;
2970 val = buckets[i];
2971 if (val > 65535)
2973 val = 65535;
2975 data[i*2]=val&0xff;
2976 data[i*2 + 1]=(val >> 8)&0xff;
2978 free(buckets);
2979 writeData(f, data, length * 2);
2980 free(data);
2981 } else
2983 free(buckets);
2986 fclose(f);
2989 /* profiling samples the CPU PC as quickly as OpenOCD is able,
2990 * which will be used as a random sampling of PC */
2991 COMMAND_HANDLER(handle_profile_command)
2993 struct target *target = get_current_target(CMD_CTX);
2994 struct timeval timeout, now;
2996 gettimeofday(&timeout, NULL);
2997 if (CMD_ARGC != 2)
2999 return ERROR_COMMAND_SYNTAX_ERROR;
3001 unsigned offset;
3002 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3004 timeval_add_time(&timeout, offset, 0);
3007 * @todo: Some cores let us sample the PC without the
3008 * annoying halt/resume step; for example, ARMv7 PCSR.
3009 * Provide a way to use that more efficient mechanism.
3012 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3014 static const int maxSample = 10000;
3015 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3016 if (samples == NULL)
3017 return ERROR_OK;
3019 int numSamples = 0;
3020 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3021 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3023 for (;;)
3025 int retval;
3026 target_poll(target);
3027 if (target->state == TARGET_HALTED)
3029 uint32_t t=*((uint32_t *)reg->value);
3030 samples[numSamples++]=t;
3031 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3032 target_poll(target);
3033 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3034 } else if (target->state == TARGET_RUNNING)
3036 /* We want to quickly sample the PC. */
3037 if ((retval = target_halt(target)) != ERROR_OK)
3039 free(samples);
3040 return retval;
3042 } else
3044 command_print(CMD_CTX, "Target not halted or running");
3045 retval = ERROR_OK;
3046 break;
3048 if (retval != ERROR_OK)
3050 break;
3053 gettimeofday(&now, NULL);
3054 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3056 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3057 if ((retval = target_poll(target)) != ERROR_OK)
3059 free(samples);
3060 return retval;
3062 if (target->state == TARGET_HALTED)
3064 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3066 if ((retval = target_poll(target)) != ERROR_OK)
3068 free(samples);
3069 return retval;
3071 writeGmon(samples, numSamples, CMD_ARGV[1]);
3072 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3073 break;
3076 free(samples);
3078 return ERROR_OK;
3081 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3083 char *namebuf;
3084 Jim_Obj *nameObjPtr, *valObjPtr;
3085 int result;
3087 namebuf = alloc_printf("%s(%d)", varname, idx);
3088 if (!namebuf)
3089 return JIM_ERR;
3091 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3092 valObjPtr = Jim_NewIntObj(interp, val);
3093 if (!nameObjPtr || !valObjPtr)
3095 free(namebuf);
3096 return JIM_ERR;
3099 Jim_IncrRefCount(nameObjPtr);
3100 Jim_IncrRefCount(valObjPtr);
3101 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3102 Jim_DecrRefCount(interp, nameObjPtr);
3103 Jim_DecrRefCount(interp, valObjPtr);
3104 free(namebuf);
3105 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3106 return result;
3109 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3111 struct command_context *context;
3112 struct target *target;
3114 context = Jim_GetAssocData(interp, "context");
3115 if (context == NULL)
3117 LOG_ERROR("mem2array: no command context");
3118 return JIM_ERR;
3120 target = get_current_target(context);
3121 if (target == NULL)
3123 LOG_ERROR("mem2array: no current target");
3124 return JIM_ERR;
3127 return target_mem2array(interp, target, argc-1, argv + 1);
3130 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3132 long l;
3133 uint32_t width;
3134 int len;
3135 uint32_t addr;
3136 uint32_t count;
3137 uint32_t v;
3138 const char *varname;
3139 int n, e, retval;
3140 uint32_t i;
3142 /* argv[1] = name of array to receive the data
3143 * argv[2] = desired width
3144 * argv[3] = memory address
3145 * argv[4] = count of times to read
3147 if (argc != 4) {
3148 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3149 return JIM_ERR;
3151 varname = Jim_GetString(argv[0], &len);
3152 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3154 e = Jim_GetLong(interp, argv[1], &l);
3155 width = l;
3156 if (e != JIM_OK) {
3157 return e;
3160 e = Jim_GetLong(interp, argv[2], &l);
3161 addr = l;
3162 if (e != JIM_OK) {
3163 return e;
3165 e = Jim_GetLong(interp, argv[3], &l);
3166 len = l;
3167 if (e != JIM_OK) {
3168 return e;
3170 switch (width) {
3171 case 8:
3172 width = 1;
3173 break;
3174 case 16:
3175 width = 2;
3176 break;
3177 case 32:
3178 width = 4;
3179 break;
3180 default:
3181 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3182 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3183 return JIM_ERR;
3185 if (len == 0) {
3186 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3187 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3188 return JIM_ERR;
3190 if ((addr + (len * width)) < addr) {
3191 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3192 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3193 return JIM_ERR;
3195 /* absurd transfer size? */
3196 if (len > 65536) {
3197 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3198 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3199 return JIM_ERR;
3202 if ((width == 1) ||
3203 ((width == 2) && ((addr & 1) == 0)) ||
3204 ((width == 4) && ((addr & 3) == 0))) {
3205 /* all is well */
3206 } else {
3207 char buf[100];
3208 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3209 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3210 addr,
3211 width);
3212 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3213 return JIM_ERR;
3216 /* Transfer loop */
3218 /* index counter */
3219 n = 0;
3221 size_t buffersize = 4096;
3222 uint8_t *buffer = malloc(buffersize);
3223 if (buffer == NULL)
3224 return JIM_ERR;
3226 /* assume ok */
3227 e = JIM_OK;
3228 while (len) {
3229 /* Slurp... in buffer size chunks */
3231 count = len; /* in objects.. */
3232 if (count > (buffersize/width)) {
3233 count = (buffersize/width);
3236 retval = target_read_memory(target, addr, width, count, buffer);
3237 if (retval != ERROR_OK) {
3238 /* BOO !*/
3239 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3240 (unsigned int)addr,
3241 (int)width,
3242 (int)count);
3243 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3244 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3245 e = JIM_ERR;
3246 len = 0;
3247 } else {
3248 v = 0; /* shut up gcc */
3249 for (i = 0 ;i < count ;i++, n++) {
3250 switch (width) {
3251 case 4:
3252 v = target_buffer_get_u32(target, &buffer[i*width]);
3253 break;
3254 case 2:
3255 v = target_buffer_get_u16(target, &buffer[i*width]);
3256 break;
3257 case 1:
3258 v = buffer[i] & 0x0ff;
3259 break;
3261 new_int_array_element(interp, varname, n, v);
3263 len -= count;
3267 free(buffer);
3269 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3271 return JIM_OK;
3274 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3276 char *namebuf;
3277 Jim_Obj *nameObjPtr, *valObjPtr;
3278 int result;
3279 long l;
3281 namebuf = alloc_printf("%s(%d)", varname, idx);
3282 if (!namebuf)
3283 return JIM_ERR;
3285 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3286 if (!nameObjPtr)
3288 free(namebuf);
3289 return JIM_ERR;
3292 Jim_IncrRefCount(nameObjPtr);
3293 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3294 Jim_DecrRefCount(interp, nameObjPtr);
3295 free(namebuf);
3296 if (valObjPtr == NULL)
3297 return JIM_ERR;
3299 result = Jim_GetLong(interp, valObjPtr, &l);
3300 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3301 *val = l;
3302 return result;
3305 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3307 struct command_context *context;
3308 struct target *target;
3310 context = Jim_GetAssocData(interp, "context");
3311 if (context == NULL) {
3312 LOG_ERROR("array2mem: no command context");
3313 return JIM_ERR;
3315 target = get_current_target(context);
3316 if (target == NULL) {
3317 LOG_ERROR("array2mem: no current target");
3318 return JIM_ERR;
3321 return target_array2mem(interp,target, argc-1, argv + 1);
3324 static int target_array2mem(Jim_Interp *interp, struct target *target,
3325 int argc, Jim_Obj *const *argv)
3327 long l;
3328 uint32_t width;
3329 int len;
3330 uint32_t addr;
3331 uint32_t count;
3332 uint32_t v;
3333 const char *varname;
3334 int n, e, retval;
3335 uint32_t i;
3337 /* argv[1] = name of array to get the data
3338 * argv[2] = desired width
3339 * argv[3] = memory address
3340 * argv[4] = count to write
3342 if (argc != 4) {
3343 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3344 return JIM_ERR;
3346 varname = Jim_GetString(argv[0], &len);
3347 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3349 e = Jim_GetLong(interp, argv[1], &l);
3350 width = l;
3351 if (e != JIM_OK) {
3352 return e;
3355 e = Jim_GetLong(interp, argv[2], &l);
3356 addr = l;
3357 if (e != JIM_OK) {
3358 return e;
3360 e = Jim_GetLong(interp, argv[3], &l);
3361 len = l;
3362 if (e != JIM_OK) {
3363 return e;
3365 switch (width) {
3366 case 8:
3367 width = 1;
3368 break;
3369 case 16:
3370 width = 2;
3371 break;
3372 case 32:
3373 width = 4;
3374 break;
3375 default:
3376 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3377 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3378 return JIM_ERR;
3380 if (len == 0) {
3381 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3382 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3383 return JIM_ERR;
3385 if ((addr + (len * width)) < addr) {
3386 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3387 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3388 return JIM_ERR;
3390 /* absurd transfer size? */
3391 if (len > 65536) {
3392 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3393 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3394 return JIM_ERR;
3397 if ((width == 1) ||
3398 ((width == 2) && ((addr & 1) == 0)) ||
3399 ((width == 4) && ((addr & 3) == 0))) {
3400 /* all is well */
3401 } else {
3402 char buf[100];
3403 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3404 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3405 (unsigned int)addr,
3406 (int)width);
3407 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3408 return JIM_ERR;
3411 /* Transfer loop */
3413 /* index counter */
3414 n = 0;
3415 /* assume ok */
3416 e = JIM_OK;
3418 size_t buffersize = 4096;
3419 uint8_t *buffer = malloc(buffersize);
3420 if (buffer == NULL)
3421 return JIM_ERR;
3423 while (len) {
3424 /* Slurp... in buffer size chunks */
3426 count = len; /* in objects.. */
3427 if (count > (buffersize/width)) {
3428 count = (buffersize/width);
3431 v = 0; /* shut up gcc */
3432 for (i = 0 ;i < count ;i++, n++) {
3433 get_int_array_element(interp, varname, n, &v);
3434 switch (width) {
3435 case 4:
3436 target_buffer_set_u32(target, &buffer[i*width], v);
3437 break;
3438 case 2:
3439 target_buffer_set_u16(target, &buffer[i*width], v);
3440 break;
3441 case 1:
3442 buffer[i] = v & 0x0ff;
3443 break;
3446 len -= count;
3448 retval = target_write_memory(target, addr, width, count, buffer);
3449 if (retval != ERROR_OK) {
3450 /* BOO !*/
3451 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3452 (unsigned int)addr,
3453 (int)width,
3454 (int)count);
3455 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3456 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3457 e = JIM_ERR;
3458 len = 0;
3462 free(buffer);
3464 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3466 return JIM_OK;
3469 void target_all_handle_event(enum target_event e)
3471 struct target *target;
3473 LOG_DEBUG("**all*targets: event: %d, %s",
3474 (int)e,
3475 Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3477 target = all_targets;
3478 while (target) {
3479 target_handle_event(target, e);
3480 target = target->next;
3485 /* FIX? should we propagate errors here rather than printing them
3486 * and continuing?
3488 void target_handle_event(struct target *target, enum target_event e)
3490 struct target_event_action *teap;
3492 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3493 if (teap->event == e) {
3494 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3495 target->target_number,
3496 target_name(target),
3497 target_type_name(target),
3499 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3500 Jim_GetString(teap->body, NULL));
3501 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3503 Jim_PrintErrorMessage(teap->interp);
3510 * Returns true only if the target has a handler for the specified event.
3512 bool target_has_event_action(struct target *target, enum target_event event)
3514 struct target_event_action *teap;
3516 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3517 if (teap->event == event)
3518 return true;
3520 return false;
3523 enum target_cfg_param {
3524 TCFG_TYPE,
3525 TCFG_EVENT,
3526 TCFG_WORK_AREA_VIRT,
3527 TCFG_WORK_AREA_PHYS,
3528 TCFG_WORK_AREA_SIZE,
3529 TCFG_WORK_AREA_BACKUP,
3530 TCFG_ENDIAN,
3531 TCFG_VARIANT,
3532 TCFG_CHAIN_POSITION,
3535 static Jim_Nvp nvp_config_opts[] = {
3536 { .name = "-type", .value = TCFG_TYPE },
3537 { .name = "-event", .value = TCFG_EVENT },
3538 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3539 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3540 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3541 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3542 { .name = "-endian" , .value = TCFG_ENDIAN },
3543 { .name = "-variant", .value = TCFG_VARIANT },
3544 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3546 { .name = NULL, .value = -1 }
3549 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3551 Jim_Nvp *n;
3552 Jim_Obj *o;
3553 jim_wide w;
3554 char *cp;
3555 int e;
3557 /* parse config or cget options ... */
3558 while (goi->argc > 0) {
3559 Jim_SetEmptyResult(goi->interp);
3560 /* Jim_GetOpt_Debug(goi); */
3562 if (target->type->target_jim_configure) {
3563 /* target defines a configure function */
3564 /* target gets first dibs on parameters */
3565 e = (*(target->type->target_jim_configure))(target, goi);
3566 if (e == JIM_OK) {
3567 /* more? */
3568 continue;
3570 if (e == JIM_ERR) {
3571 /* An error */
3572 return e;
3574 /* otherwise we 'continue' below */
3576 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3577 if (e != JIM_OK) {
3578 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3579 return e;
3581 switch (n->value) {
3582 case TCFG_TYPE:
3583 /* not setable */
3584 if (goi->isconfigure) {
3585 Jim_SetResult_sprintf(goi->interp,
3586 "not settable: %s", n->name);
3587 return JIM_ERR;
3588 } else {
3589 no_params:
3590 if (goi->argc != 0) {
3591 Jim_WrongNumArgs(goi->interp,
3592 goi->argc, goi->argv,
3593 "NO PARAMS");
3594 return JIM_ERR;
3597 Jim_SetResultString(goi->interp,
3598 target_type_name(target), -1);
3599 /* loop for more */
3600 break;
3601 case TCFG_EVENT:
3602 if (goi->argc == 0) {
3603 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3604 return JIM_ERR;
3607 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3608 if (e != JIM_OK) {
3609 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3610 return e;
3613 if (goi->isconfigure) {
3614 if (goi->argc != 1) {
3615 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3616 return JIM_ERR;
3618 } else {
3619 if (goi->argc != 0) {
3620 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3621 return JIM_ERR;
3626 struct target_event_action *teap;
3628 teap = target->event_action;
3629 /* replace existing? */
3630 while (teap) {
3631 if (teap->event == (enum target_event)n->value) {
3632 break;
3634 teap = teap->next;
3637 if (goi->isconfigure) {
3638 bool replace = true;
3639 if (teap == NULL) {
3640 /* create new */
3641 teap = calloc(1, sizeof(*teap));
3642 replace = false;
3644 teap->event = n->value;
3645 teap->interp = goi->interp;
3646 Jim_GetOpt_Obj(goi, &o);
3647 if (teap->body) {
3648 Jim_DecrRefCount(teap->interp, teap->body);
3650 teap->body = Jim_DuplicateObj(goi->interp, o);
3652 * FIXME:
3653 * Tcl/TK - "tk events" have a nice feature.
3654 * See the "BIND" command.
3655 * We should support that here.
3656 * You can specify %X and %Y in the event code.
3657 * The idea is: %T - target name.
3658 * The idea is: %N - target number
3659 * The idea is: %E - event name.
3661 Jim_IncrRefCount(teap->body);
3663 if (!replace)
3665 /* add to head of event list */
3666 teap->next = target->event_action;
3667 target->event_action = teap;
3669 Jim_SetEmptyResult(goi->interp);
3670 } else {
3671 /* get */
3672 if (teap == NULL) {
3673 Jim_SetEmptyResult(goi->interp);
3674 } else {
3675 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3679 /* loop for more */
3680 break;
3682 case TCFG_WORK_AREA_VIRT:
3683 if (goi->isconfigure) {
3684 target_free_all_working_areas(target);
3685 e = Jim_GetOpt_Wide(goi, &w);
3686 if (e != JIM_OK) {
3687 return e;
3689 target->working_area_virt = w;
3690 target->working_area_virt_spec = true;
3691 } else {
3692 if (goi->argc != 0) {
3693 goto no_params;
3696 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3697 /* loop for more */
3698 break;
3700 case TCFG_WORK_AREA_PHYS:
3701 if (goi->isconfigure) {
3702 target_free_all_working_areas(target);
3703 e = Jim_GetOpt_Wide(goi, &w);
3704 if (e != JIM_OK) {
3705 return e;
3707 target->working_area_phys = w;
3708 target->working_area_phys_spec = true;
3709 } else {
3710 if (goi->argc != 0) {
3711 goto no_params;
3714 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3715 /* loop for more */
3716 break;
3718 case TCFG_WORK_AREA_SIZE:
3719 if (goi->isconfigure) {
3720 target_free_all_working_areas(target);
3721 e = Jim_GetOpt_Wide(goi, &w);
3722 if (e != JIM_OK) {
3723 return e;
3725 target->working_area_size = w;
3726 } else {
3727 if (goi->argc != 0) {
3728 goto no_params;
3731 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3732 /* loop for more */
3733 break;
3735 case TCFG_WORK_AREA_BACKUP:
3736 if (goi->isconfigure) {
3737 target_free_all_working_areas(target);
3738 e = Jim_GetOpt_Wide(goi, &w);
3739 if (e != JIM_OK) {
3740 return e;
3742 /* make this exactly 1 or 0 */
3743 target->backup_working_area = (!!w);
3744 } else {
3745 if (goi->argc != 0) {
3746 goto no_params;
3749 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3750 /* loop for more e*/
3751 break;
3753 case TCFG_ENDIAN:
3754 if (goi->isconfigure) {
3755 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3756 if (e != JIM_OK) {
3757 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3758 return e;
3760 target->endianness = n->value;
3761 } else {
3762 if (goi->argc != 0) {
3763 goto no_params;
3766 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3767 if (n->name == NULL) {
3768 target->endianness = TARGET_LITTLE_ENDIAN;
3769 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3771 Jim_SetResultString(goi->interp, n->name, -1);
3772 /* loop for more */
3773 break;
3775 case TCFG_VARIANT:
3776 if (goi->isconfigure) {
3777 if (goi->argc < 1) {
3778 Jim_SetResult_sprintf(goi->interp,
3779 "%s ?STRING?",
3780 n->name);
3781 return JIM_ERR;
3783 if (target->variant) {
3784 free((void *)(target->variant));
3786 e = Jim_GetOpt_String(goi, &cp, NULL);
3787 target->variant = strdup(cp);
3788 } else {
3789 if (goi->argc != 0) {
3790 goto no_params;
3793 Jim_SetResultString(goi->interp, target->variant,-1);
3794 /* loop for more */
3795 break;
3796 case TCFG_CHAIN_POSITION:
3797 if (goi->isconfigure) {
3798 Jim_Obj *o;
3799 struct jtag_tap *tap;
3800 target_free_all_working_areas(target);
3801 e = Jim_GetOpt_Obj(goi, &o);
3802 if (e != JIM_OK) {
3803 return e;
3805 tap = jtag_tap_by_jim_obj(goi->interp, o);
3806 if (tap == NULL) {
3807 return JIM_ERR;
3809 /* make this exactly 1 or 0 */
3810 target->tap = tap;
3811 } else {
3812 if (goi->argc != 0) {
3813 goto no_params;
3816 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3817 /* loop for more e*/
3818 break;
3820 } /* while (goi->argc) */
3823 /* done - we return */
3824 return JIM_OK;
3827 static int
3828 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3830 Jim_GetOptInfo goi;
3832 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3833 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3834 int need_args = 1 + goi.isconfigure;
3835 if (goi.argc < need_args)
3837 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3838 goi.isconfigure
3839 ? "missing: -option VALUE ..."
3840 : "missing: -option ...");
3841 return JIM_ERR;
3843 struct target *target = Jim_CmdPrivData(goi.interp);
3844 return target_configure(&goi, target);
3847 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3849 const char *cmd_name = Jim_GetString(argv[0], NULL);
3851 Jim_GetOptInfo goi;
3852 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3854 if (goi.argc != 2 && goi.argc != 3)
3856 Jim_SetResult_sprintf(goi.interp,
3857 "usage: %s <address> <data> [<count>]", cmd_name);
3858 return JIM_ERR;
3861 jim_wide a;
3862 int e = Jim_GetOpt_Wide(&goi, &a);
3863 if (e != JIM_OK)
3864 return e;
3866 jim_wide b;
3867 e = Jim_GetOpt_Wide(&goi, &b);
3868 if (e != JIM_OK)
3869 return e;
3871 jim_wide c = 1;
3872 if (goi.argc == 3)
3874 e = Jim_GetOpt_Wide(&goi, &c);
3875 if (e != JIM_OK)
3876 return e;
3879 struct target *target = Jim_CmdPrivData(goi.interp);
3880 uint8_t target_buf[32];
3881 if (strcasecmp(cmd_name, "mww") == 0) {
3882 target_buffer_set_u32(target, target_buf, b);
3883 b = 4;
3885 else if (strcasecmp(cmd_name, "mwh") == 0) {
3886 target_buffer_set_u16(target, target_buf, b);
3887 b = 2;
3889 else if (strcasecmp(cmd_name, "mwb") == 0) {
3890 target_buffer_set_u8(target, target_buf, b);
3891 b = 1;
3892 } else {
3893 LOG_ERROR("command '%s' unknown: ", cmd_name);
3894 return JIM_ERR;
3897 for (jim_wide x = 0; x < c; x++)
3899 e = target_write_memory(target, a, b, 1, target_buf);
3900 if (e != ERROR_OK)
3902 Jim_SetResult_sprintf(interp,
3903 "Error writing @ 0x%08x: %d\n", (int)(a), e);
3904 return JIM_ERR;
3906 /* b = width */
3907 a = a + b;
3909 return JIM_OK;
3912 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3914 const char *cmd_name = Jim_GetString(argv[0], NULL);
3916 Jim_GetOptInfo goi;
3917 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3919 if ((goi.argc == 2) || (goi.argc == 3))
3921 Jim_SetResult_sprintf(goi.interp,
3922 "usage: %s <address> [<count>]", cmd_name);
3923 return JIM_ERR;
3926 jim_wide a;
3927 int e = Jim_GetOpt_Wide(&goi, &a);
3928 if (e != JIM_OK) {
3929 return JIM_ERR;
3931 jim_wide c;
3932 if (goi.argc) {
3933 e = Jim_GetOpt_Wide(&goi, &c);
3934 if (e != JIM_OK) {
3935 return JIM_ERR;
3937 } else {
3938 c = 1;
3940 jim_wide b = 1; /* shut up gcc */
3941 if (strcasecmp(cmd_name, "mdw") == 0)
3942 b = 4;
3943 else if (strcasecmp(cmd_name, "mdh") == 0)
3944 b = 2;
3945 else if (strcasecmp(cmd_name, "mdb") == 0)
3946 b = 1;
3947 else {
3948 LOG_ERROR("command '%s' unknown: ", cmd_name);
3949 return JIM_ERR;
3952 /* convert count to "bytes" */
3953 c = c * b;
3955 struct target *target = Jim_CmdPrivData(goi.interp);
3956 uint8_t target_buf[32];
3957 jim_wide x, y, z;
3958 while (c > 0) {
3959 y = c;
3960 if (y > 16) {
3961 y = 16;
3963 e = target_read_memory(target, a, b, y / b, target_buf);
3964 if (e != ERROR_OK) {
3965 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
3966 return JIM_ERR;
3969 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
3970 switch (b) {
3971 case 4:
3972 for (x = 0; x < 16 && x < y; x += 4)
3974 z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
3975 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
3977 for (; (x < 16) ; x += 4) {
3978 Jim_fprintf(interp, interp->cookie_stdout, " ");
3980 break;
3981 case 2:
3982 for (x = 0; x < 16 && x < y; x += 2)
3984 z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
3985 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
3987 for (; (x < 16) ; x += 2) {
3988 Jim_fprintf(interp, interp->cookie_stdout, " ");
3990 break;
3991 case 1:
3992 default:
3993 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
3994 z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
3995 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
3997 for (; (x < 16) ; x += 1) {
3998 Jim_fprintf(interp, interp->cookie_stdout, " ");
4000 break;
4002 /* ascii-ify the bytes */
4003 for (x = 0 ; x < y ; x++) {
4004 if ((target_buf[x] >= 0x20) &&
4005 (target_buf[x] <= 0x7e)) {
4006 /* good */
4007 } else {
4008 /* smack it */
4009 target_buf[x] = '.';
4012 /* space pad */
4013 while (x < 16) {
4014 target_buf[x] = ' ';
4015 x++;
4017 /* terminate */
4018 target_buf[16] = 0;
4019 /* print - with a newline */
4020 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4021 /* NEXT... */
4022 c -= 16;
4023 a += 16;
4025 return JIM_OK;
4028 static int jim_target_mem2array(Jim_Interp *interp,
4029 int argc, Jim_Obj *const *argv)
4031 struct target *target = Jim_CmdPrivData(interp);
4032 return target_mem2array(interp, target, argc - 1, argv + 1);
4035 static int jim_target_array2mem(Jim_Interp *interp,
4036 int argc, Jim_Obj *const *argv)
4038 struct target *target = Jim_CmdPrivData(interp);
4039 return target_array2mem(interp, target, argc - 1, argv + 1);
4042 static int jim_target_tap_disabled(Jim_Interp *interp)
4044 Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4045 return JIM_ERR;
4048 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4050 if (argc != 1)
4052 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4053 return JIM_ERR;
4055 struct target *target = Jim_CmdPrivData(interp);
4056 if (!target->tap->enabled)
4057 return jim_target_tap_disabled(interp);
4059 int e = target->type->examine(target);
4060 if (e != ERROR_OK)
4062 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4063 return JIM_ERR;
4065 return JIM_OK;
4068 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4070 if (argc != 1)
4072 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4073 return JIM_ERR;
4075 struct target *target = Jim_CmdPrivData(interp);
4076 if (!target->tap->enabled)
4077 return jim_target_tap_disabled(interp);
4079 int e;
4080 if (!(target_was_examined(target))) {
4081 e = ERROR_TARGET_NOT_EXAMINED;
4082 } else {
4083 e = target->type->poll(target);
4085 if (e != ERROR_OK)
4087 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4088 return JIM_ERR;
4090 return JIM_OK;
4093 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4095 Jim_GetOptInfo goi;
4096 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4098 if (goi.argc != 2)
4100 Jim_WrongNumArgs(interp, 0, argv,
4101 "([tT]|[fF]|assert|deassert) BOOL");
4102 return JIM_ERR;
4105 Jim_Nvp *n;
4106 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4107 if (e != JIM_OK)
4109 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4110 return e;
4112 /* the halt or not param */
4113 jim_wide a;
4114 e = Jim_GetOpt_Wide(&goi, &a);
4115 if (e != JIM_OK)
4116 return e;
4118 struct target *target = Jim_CmdPrivData(goi.interp);
4119 if (!target->tap->enabled)
4120 return jim_target_tap_disabled(interp);
4121 if (!(target_was_examined(target)))
4123 LOG_ERROR("Target not examined yet");
4124 return ERROR_TARGET_NOT_EXAMINED;
4126 if (!target->type->assert_reset || !target->type->deassert_reset)
4128 Jim_SetResult_sprintf(interp,
4129 "No target-specific reset for %s",
4130 target_name(target));
4131 return JIM_ERR;
4133 /* determine if we should halt or not. */
4134 target->reset_halt = !!a;
4135 /* When this happens - all workareas are invalid. */
4136 target_free_all_working_areas_restore(target, 0);
4138 /* do the assert */
4139 if (n->value == NVP_ASSERT) {
4140 e = target->type->assert_reset(target);
4141 } else {
4142 e = target->type->deassert_reset(target);
4144 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4147 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4149 if (argc != 1) {
4150 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4151 return JIM_ERR;
4153 struct target *target = Jim_CmdPrivData(interp);
4154 if (!target->tap->enabled)
4155 return jim_target_tap_disabled(interp);
4156 int e = target->type->halt(target);
4157 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4160 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4162 Jim_GetOptInfo goi;
4163 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4165 /* params: <name> statename timeoutmsecs */
4166 if (goi.argc != 2)
4168 const char *cmd_name = Jim_GetString(argv[0], NULL);
4169 Jim_SetResult_sprintf(goi.interp,
4170 "%s <state_name> <timeout_in_msec>", cmd_name);
4171 return JIM_ERR;
4174 Jim_Nvp *n;
4175 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4176 if (e != JIM_OK) {
4177 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4178 return e;
4180 jim_wide a;
4181 e = Jim_GetOpt_Wide(&goi, &a);
4182 if (e != JIM_OK) {
4183 return e;
4185 struct target *target = Jim_CmdPrivData(interp);
4186 if (!target->tap->enabled)
4187 return jim_target_tap_disabled(interp);
4189 e = target_wait_state(target, n->value, a);
4190 if (e != ERROR_OK)
4192 Jim_SetResult_sprintf(goi.interp,
4193 "target: %s wait %s fails (%d) %s",
4194 target_name(target), n->name,
4195 e, target_strerror_safe(e));
4196 return JIM_ERR;
4198 return JIM_OK;
4200 /* List for human, Events defined for this target.
4201 * scripts/programs should use 'name cget -event NAME'
4203 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4205 struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4206 struct target *target = Jim_CmdPrivData(interp);
4207 struct target_event_action *teap = target->event_action;
4208 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4209 target->target_number,
4210 target_name(target));
4211 command_print(cmd_ctx, "%-25s | Body", "Event");
4212 command_print(cmd_ctx, "------------------------- | "
4213 "----------------------------------------");
4214 while (teap)
4216 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4217 command_print(cmd_ctx, "%-25s | %s",
4218 opt->name, Jim_GetString(teap->body, NULL));
4219 teap = teap->next;
4221 command_print(cmd_ctx, "***END***");
4222 return JIM_OK;
4224 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4226 if (argc != 1)
4228 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4229 return JIM_ERR;
4231 struct target *target = Jim_CmdPrivData(interp);
4232 Jim_SetResultString(interp, target_state_name(target), -1);
4233 return JIM_OK;
4235 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4237 Jim_GetOptInfo goi;
4238 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4239 if (goi.argc != 1)
4241 const char *cmd_name = Jim_GetString(argv[0], NULL);
4242 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4243 return JIM_ERR;
4245 Jim_Nvp *n;
4246 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4247 if (e != JIM_OK)
4249 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4250 return e;
4252 struct target *target = Jim_CmdPrivData(interp);
4253 target_handle_event(target, n->value);
4254 return JIM_OK;
4257 static const struct command_registration target_instance_command_handlers[] = {
4259 .name = "configure",
4260 .mode = COMMAND_CONFIG,
4261 .jim_handler = jim_target_configure,
4262 .help = "configure a new target for use",
4263 .usage = "[target_attribute ...]",
4266 .name = "cget",
4267 .mode = COMMAND_ANY,
4268 .jim_handler = jim_target_configure,
4269 .help = "returns the specified target attribute",
4270 .usage = "target_attribute",
4273 .name = "mww",
4274 .mode = COMMAND_EXEC,
4275 .jim_handler = jim_target_mw,
4276 .help = "Write 32-bit word(s) to target memory",
4277 .usage = "address data [count]",
4280 .name = "mwh",
4281 .mode = COMMAND_EXEC,
4282 .jim_handler = jim_target_mw,
4283 .help = "Write 16-bit half-word(s) to target memory",
4284 .usage = "address data [count]",
4287 .name = "mwb",
4288 .mode = COMMAND_EXEC,
4289 .jim_handler = jim_target_mw,
4290 .help = "Write byte(s) to target memory",
4291 .usage = "address data [count]",
4294 .name = "mdw",
4295 .mode = COMMAND_EXEC,
4296 .jim_handler = jim_target_md,
4297 .help = "Display target memory as 32-bit words",
4298 .usage = "address [count]",
4301 .name = "mdh",
4302 .mode = COMMAND_EXEC,
4303 .jim_handler = jim_target_md,
4304 .help = "Display target memory as 16-bit half-words",
4305 .usage = "address [count]",
4308 .name = "mdb",
4309 .mode = COMMAND_EXEC,
4310 .jim_handler = jim_target_md,
4311 .help = "Display target memory as 8-bit bytes",
4312 .usage = "address [count]",
4315 .name = "array2mem",
4316 .mode = COMMAND_EXEC,
4317 .jim_handler = jim_target_array2mem,
4318 .help = "Writes Tcl array of 8/16/32 bit numbers "
4319 "to target memory",
4320 .usage = "arrayname bitwidth address count",
4323 .name = "mem2array",
4324 .mode = COMMAND_EXEC,
4325 .jim_handler = jim_target_mem2array,
4326 .help = "Loads Tcl array of 8/16/32 bit numbers "
4327 "from target memory",
4328 .usage = "arrayname bitwidth address count",
4331 .name = "eventlist",
4332 .mode = COMMAND_EXEC,
4333 .jim_handler = jim_target_event_list,
4334 .help = "displays a table of events defined for this target",
4337 .name = "curstate",
4338 .mode = COMMAND_EXEC,
4339 .jim_handler = jim_target_current_state,
4340 .help = "displays the current state of this target",
4343 .name = "arp_examine",
4344 .mode = COMMAND_EXEC,
4345 .jim_handler = jim_target_examine,
4346 .help = "used internally for reset processing",
4349 .name = "arp_poll",
4350 .mode = COMMAND_EXEC,
4351 .jim_handler = jim_target_poll,
4352 .help = "used internally for reset processing",
4355 .name = "arp_reset",
4356 .mode = COMMAND_EXEC,
4357 .jim_handler = jim_target_reset,
4358 .help = "used internally for reset processing",
4361 .name = "arp_halt",
4362 .mode = COMMAND_EXEC,
4363 .jim_handler = jim_target_halt,
4364 .help = "used internally for reset processing",
4367 .name = "arp_waitstate",
4368 .mode = COMMAND_EXEC,
4369 .jim_handler = jim_target_wait_state,
4370 .help = "used internally for reset processing",
4373 .name = "invoke-event",
4374 .mode = COMMAND_EXEC,
4375 .jim_handler = jim_target_invoke_event,
4376 .help = "invoke handler for specified event",
4377 .usage = "event_name",
4379 COMMAND_REGISTRATION_DONE
4382 static int target_create(Jim_GetOptInfo *goi)
4384 Jim_Obj *new_cmd;
4385 Jim_Cmd *cmd;
4386 const char *cp;
4387 char *cp2;
4388 int e;
4389 int x;
4390 struct target *target;
4391 struct command_context *cmd_ctx;
4393 cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4394 if (goi->argc < 3) {
4395 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4396 return JIM_ERR;
4399 /* COMMAND */
4400 Jim_GetOpt_Obj(goi, &new_cmd);
4401 /* does this command exist? */
4402 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4403 if (cmd) {
4404 cp = Jim_GetString(new_cmd, NULL);
4405 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4406 return JIM_ERR;
4409 /* TYPE */
4410 e = Jim_GetOpt_String(goi, &cp2, NULL);
4411 cp = cp2;
4412 /* now does target type exist */
4413 for (x = 0 ; target_types[x] ; x++) {
4414 if (0 == strcmp(cp, target_types[x]->name)) {
4415 /* found */
4416 break;
4419 if (target_types[x] == NULL) {
4420 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4421 for (x = 0 ; target_types[x] ; x++) {
4422 if (target_types[x + 1]) {
4423 Jim_AppendStrings(goi->interp,
4424 Jim_GetResult(goi->interp),
4425 target_types[x]->name,
4426 ", ", NULL);
4427 } else {
4428 Jim_AppendStrings(goi->interp,
4429 Jim_GetResult(goi->interp),
4430 " or ",
4431 target_types[x]->name,NULL);
4434 return JIM_ERR;
4437 /* Create it */
4438 target = calloc(1,sizeof(struct target));
4439 /* set target number */
4440 target->target_number = new_target_number();
4442 /* allocate memory for each unique target type */
4443 target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4445 memcpy(target->type, target_types[x], sizeof(struct target_type));
4447 /* will be set by "-endian" */
4448 target->endianness = TARGET_ENDIAN_UNKNOWN;
4450 target->working_area = 0x0;
4451 target->working_area_size = 0x0;
4452 target->working_areas = NULL;
4453 target->backup_working_area = 0;
4455 target->state = TARGET_UNKNOWN;
4456 target->debug_reason = DBG_REASON_UNDEFINED;
4457 target->reg_cache = NULL;
4458 target->breakpoints = NULL;
4459 target->watchpoints = NULL;
4460 target->next = NULL;
4461 target->arch_info = NULL;
4463 target->display = 1;
4465 target->halt_issued = false;
4467 /* initialize trace information */
4468 target->trace_info = malloc(sizeof(struct trace));
4469 target->trace_info->num_trace_points = 0;
4470 target->trace_info->trace_points_size = 0;
4471 target->trace_info->trace_points = NULL;
4472 target->trace_info->trace_history_size = 0;
4473 target->trace_info->trace_history = NULL;
4474 target->trace_info->trace_history_pos = 0;
4475 target->trace_info->trace_history_overflowed = 0;
4477 target->dbgmsg = NULL;
4478 target->dbg_msg_enabled = 0;
4480 target->endianness = TARGET_ENDIAN_UNKNOWN;
4482 /* Do the rest as "configure" options */
4483 goi->isconfigure = 1;
4484 e = target_configure(goi, target);
4486 if (target->tap == NULL)
4488 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4489 e = JIM_ERR;
4492 if (e != JIM_OK) {
4493 free(target->type);
4494 free(target);
4495 return e;
4498 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4499 /* default endian to little if not specified */
4500 target->endianness = TARGET_LITTLE_ENDIAN;
4503 /* incase variant is not set */
4504 if (!target->variant)
4505 target->variant = strdup("");
4507 cp = Jim_GetString(new_cmd, NULL);
4508 target->cmd_name = strdup(cp);
4510 /* create the target specific commands */
4511 if (target->type->commands) {
4512 e = register_commands(cmd_ctx, NULL, target->type->commands);
4513 if (ERROR_OK != e)
4514 LOG_ERROR("unable to register '%s' commands", cp);
4516 if (target->type->target_create) {
4517 (*(target->type->target_create))(target, goi->interp);
4520 /* append to end of list */
4522 struct target **tpp;
4523 tpp = &(all_targets);
4524 while (*tpp) {
4525 tpp = &((*tpp)->next);
4527 *tpp = target;
4530 /* now - create the new target name command */
4531 const const struct command_registration target_subcommands[] = {
4533 .chain = target_instance_command_handlers,
4536 .chain = target->type->commands,
4538 COMMAND_REGISTRATION_DONE
4540 const const struct command_registration target_commands[] = {
4542 .name = cp,
4543 .mode = COMMAND_ANY,
4544 .help = "target command group",
4545 .chain = target_subcommands,
4547 COMMAND_REGISTRATION_DONE
4549 e = register_commands(cmd_ctx, NULL, target_commands);
4550 if (ERROR_OK != e)
4551 return JIM_ERR;
4553 struct command *c = command_find_in_context(cmd_ctx, cp);
4554 assert(c);
4555 command_set_handler_data(c, target);
4557 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4560 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4562 if (argc != 1)
4564 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4565 return JIM_ERR;
4567 struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4568 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4569 return JIM_OK;
4572 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4574 if (argc != 1)
4576 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4577 return JIM_ERR;
4579 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4580 for (unsigned x = 0; NULL != target_types[x]; x++)
4582 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4583 Jim_NewStringObj(interp, target_types[x]->name, -1));
4585 return JIM_OK;
4588 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4590 if (argc != 1)
4592 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4593 return JIM_ERR;
4595 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4596 struct target *target = all_targets;
4597 while (target)
4599 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4600 Jim_NewStringObj(interp, target_name(target), -1));
4601 target = target->next;
4603 return JIM_OK;
4606 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4608 Jim_GetOptInfo goi;
4609 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4610 if (goi.argc < 3)
4612 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4613 "<name> <target_type> [<target_options> ...]");
4614 return JIM_ERR;
4616 return target_create(&goi);
4619 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4621 Jim_GetOptInfo goi;
4622 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4624 /* It's OK to remove this mechanism sometime after August 2010 or so */
4625 LOG_WARNING("don't use numbers as target identifiers; use names");
4626 if (goi.argc != 1)
4628 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4629 return JIM_ERR;
4631 jim_wide w;
4632 int e = Jim_GetOpt_Wide(&goi, &w);
4633 if (e != JIM_OK)
4634 return JIM_ERR;
4636 struct target *target;
4637 for (target = all_targets; NULL != target; target = target->next)
4639 if (target->target_number != w)
4640 continue;
4642 Jim_SetResultString(goi.interp, target_name(target), -1);
4643 return JIM_OK;
4645 Jim_SetResult_sprintf(goi.interp,
4646 "Target: number %d does not exist", (int)(w));
4647 return JIM_ERR;
4650 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4652 if (argc != 1)
4654 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4655 return JIM_ERR;
4657 unsigned count = 0;
4658 struct target *target = all_targets;
4659 while (NULL != target)
4661 target = target->next;
4662 count++;
4664 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4665 return JIM_OK;
4668 static const struct command_registration target_subcommand_handlers[] = {
4670 .name = "init",
4671 .mode = COMMAND_CONFIG,
4672 .handler = handle_target_init_command,
4673 .help = "initialize targets",
4676 .name = "create",
4677 /* REVISIT this should be COMMAND_CONFIG ... */
4678 .mode = COMMAND_ANY,
4679 .jim_handler = jim_target_create,
4680 .usage = "name type '-chain-position' name [options ...]",
4681 .help = "Creates and selects a new target",
4684 .name = "current",
4685 .mode = COMMAND_ANY,
4686 .jim_handler = jim_target_current,
4687 .help = "Returns the currently selected target",
4690 .name = "types",
4691 .mode = COMMAND_ANY,
4692 .jim_handler = jim_target_types,
4693 .help = "Returns the available target types as "
4694 "a list of strings",
4697 .name = "names",
4698 .mode = COMMAND_ANY,
4699 .jim_handler = jim_target_names,
4700 .help = "Returns the names of all targets as a list of strings",
4703 .name = "number",
4704 .mode = COMMAND_ANY,
4705 .jim_handler = jim_target_number,
4706 .usage = "number",
4707 .help = "Returns the name of the numbered target "
4708 "(DEPRECATED)",
4711 .name = "count",
4712 .mode = COMMAND_ANY,
4713 .jim_handler = jim_target_count,
4714 .help = "Returns the number of targets as an integer "
4715 "(DEPRECATED)",
4717 COMMAND_REGISTRATION_DONE
4720 struct FastLoad
4722 uint32_t address;
4723 uint8_t *data;
4724 int length;
4728 static int fastload_num;
4729 static struct FastLoad *fastload;
4731 static void free_fastload(void)
4733 if (fastload != NULL)
4735 int i;
4736 for (i = 0; i < fastload_num; i++)
4738 if (fastload[i].data)
4739 free(fastload[i].data);
4741 free(fastload);
4742 fastload = NULL;
4749 COMMAND_HANDLER(handle_fast_load_image_command)
4751 uint8_t *buffer;
4752 size_t buf_cnt;
4753 uint32_t image_size;
4754 uint32_t min_address = 0;
4755 uint32_t max_address = 0xffffffff;
4756 int i;
4758 struct image image;
4760 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4761 &image, &min_address, &max_address);
4762 if (ERROR_OK != retval)
4763 return retval;
4765 struct duration bench;
4766 duration_start(&bench);
4768 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4770 return ERROR_OK;
4773 image_size = 0x0;
4774 retval = ERROR_OK;
4775 fastload_num = image.num_sections;
4776 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4777 if (fastload == NULL)
4779 image_close(&image);
4780 return ERROR_FAIL;
4782 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4783 for (i = 0; i < image.num_sections; i++)
4785 buffer = malloc(image.sections[i].size);
4786 if (buffer == NULL)
4788 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4789 (int)(image.sections[i].size));
4790 break;
4793 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4795 free(buffer);
4796 break;
4799 uint32_t offset = 0;
4800 uint32_t length = buf_cnt;
4803 /* DANGER!!! beware of unsigned comparision here!!! */
4805 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4806 (image.sections[i].base_address < max_address))
4808 if (image.sections[i].base_address < min_address)
4810 /* clip addresses below */
4811 offset += min_address-image.sections[i].base_address;
4812 length -= offset;
4815 if (image.sections[i].base_address + buf_cnt > max_address)
4817 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4820 fastload[i].address = image.sections[i].base_address + offset;
4821 fastload[i].data = malloc(length);
4822 if (fastload[i].data == NULL)
4824 free(buffer);
4825 break;
4827 memcpy(fastload[i].data, buffer + offset, length);
4828 fastload[i].length = length;
4830 image_size += length;
4831 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4832 (unsigned int)length,
4833 ((unsigned int)(image.sections[i].base_address + offset)));
4836 free(buffer);
4839 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4841 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4842 "in %fs (%0.3f kb/s)", image_size,
4843 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4845 command_print(CMD_CTX,
4846 "WARNING: image has not been loaded to target!"
4847 "You can issue a 'fast_load' to finish loading.");
4850 image_close(&image);
4852 if (retval != ERROR_OK)
4854 free_fastload();
4857 return retval;
4860 COMMAND_HANDLER(handle_fast_load_command)
4862 if (CMD_ARGC > 0)
4863 return ERROR_COMMAND_SYNTAX_ERROR;
4864 if (fastload == NULL)
4866 LOG_ERROR("No image in memory");
4867 return ERROR_FAIL;
4869 int i;
4870 int ms = timeval_ms();
4871 int size = 0;
4872 int retval = ERROR_OK;
4873 for (i = 0; i < fastload_num;i++)
4875 struct target *target = get_current_target(CMD_CTX);
4876 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4877 (unsigned int)(fastload[i].address),
4878 (unsigned int)(fastload[i].length));
4879 if (retval == ERROR_OK)
4881 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4883 size += fastload[i].length;
4885 int after = timeval_ms();
4886 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4887 return retval;
4890 static const struct command_registration target_command_handlers[] = {
4892 .name = "targets",
4893 .handler = handle_targets_command,
4894 .mode = COMMAND_ANY,
4895 .help = "change current default target (one parameter) "
4896 "or prints table of all targets (no parameters)",
4897 .usage = "[target]",
4900 .name = "target",
4901 .mode = COMMAND_CONFIG,
4902 .help = "configure target",
4904 .chain = target_subcommand_handlers,
4906 COMMAND_REGISTRATION_DONE
4909 int target_register_commands(struct command_context *cmd_ctx)
4911 return register_commands(cmd_ctx, NULL, target_command_handlers);
4914 static bool target_reset_nag = true;
4916 bool get_target_reset_nag(void)
4918 return target_reset_nag;
4921 COMMAND_HANDLER(handle_target_reset_nag)
4923 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
4924 &target_reset_nag, "Nag after each reset about options to improve "
4925 "performance");
4928 static const struct command_registration target_exec_command_handlers[] = {
4930 .name = "fast_load_image",
4931 .handler = handle_fast_load_image_command,
4932 .mode = COMMAND_ANY,
4933 .help = "Load image into server memory for later use by "
4934 "fast_load; primarily for profiling",
4935 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
4936 "[min_address [max_length]]",
4939 .name = "fast_load",
4940 .handler = handle_fast_load_command,
4941 .mode = COMMAND_EXEC,
4942 .help = "loads active fast load image to current target "
4943 "- mainly for profiling purposes",
4946 .name = "profile",
4947 .handler = handle_profile_command,
4948 .mode = COMMAND_EXEC,
4949 .help = "profiling samples the CPU PC",
4951 /** @todo don't register virt2phys() unless target supports it */
4953 .name = "virt2phys",
4954 .handler = handle_virt2phys_command,
4955 .mode = COMMAND_ANY,
4956 .help = "translate a virtual address into a physical address",
4957 .usage = "virtual_address",
4960 .name = "reg",
4961 .handler = handle_reg_command,
4962 .mode = COMMAND_EXEC,
4963 .help = "display or set a register; with no arguments, "
4964 "displays all registers and their values",
4965 .usage = "[(register_name|register_number) [value]]",
4968 .name = "poll",
4969 .handler = handle_poll_command,
4970 .mode = COMMAND_EXEC,
4971 .help = "poll target state; or reconfigure background polling",
4972 .usage = "['on'|'off']",
4975 .name = "wait_halt",
4976 .handler = handle_wait_halt_command,
4977 .mode = COMMAND_EXEC,
4978 .help = "wait up to the specified number of milliseconds "
4979 "(default 5) for a previously requested halt",
4980 .usage = "[milliseconds]",
4983 .name = "halt",
4984 .handler = handle_halt_command,
4985 .mode = COMMAND_EXEC,
4986 .help = "request target to halt, then wait up to the specified"
4987 "number of milliseconds (default 5) for it to complete",
4988 .usage = "[milliseconds]",
4991 .name = "resume",
4992 .handler = handle_resume_command,
4993 .mode = COMMAND_EXEC,
4994 .help = "resume target execution from current PC or address",
4995 .usage = "[address]",
4998 .name = "reset",
4999 .handler = handle_reset_command,
5000 .mode = COMMAND_EXEC,
5001 .usage = "[run|halt|init]",
5002 .help = "Reset all targets into the specified mode."
5003 "Default reset mode is run, if not given.",
5006 .name = "soft_reset_halt",
5007 .handler = handle_soft_reset_halt_command,
5008 .mode = COMMAND_EXEC,
5009 .help = "halt the target and do a soft reset",
5012 .name = "step",
5013 .handler = handle_step_command,
5014 .mode = COMMAND_EXEC,
5015 .help = "step one instruction from current PC or address",
5016 .usage = "[address]",
5019 .name = "mdw",
5020 .handler = handle_md_command,
5021 .mode = COMMAND_EXEC,
5022 .help = "display memory words",
5023 .usage = "['phys'] address [count]",
5026 .name = "mdh",
5027 .handler = handle_md_command,
5028 .mode = COMMAND_EXEC,
5029 .help = "display memory half-words",
5030 .usage = "['phys'] address [count]",
5033 .name = "mdb",
5034 .handler = handle_md_command,
5035 .mode = COMMAND_EXEC,
5036 .help = "display memory bytes",
5037 .usage = "['phys'] address [count]",
5040 .name = "mww",
5041 .handler = handle_mw_command,
5042 .mode = COMMAND_EXEC,
5043 .help = "write memory word",
5044 .usage = "['phys'] address value [count]",
5047 .name = "mwh",
5048 .handler = handle_mw_command,
5049 .mode = COMMAND_EXEC,
5050 .help = "write memory half-word",
5051 .usage = "['phys'] address value [count]",
5054 .name = "mwb",
5055 .handler = handle_mw_command,
5056 .mode = COMMAND_EXEC,
5057 .help = "write memory byte",
5058 .usage = "['phys'] address value [count]",
5061 .name = "bp",
5062 .handler = handle_bp_command,
5063 .mode = COMMAND_EXEC,
5064 .help = "list or set hardware or software breakpoint",
5065 .usage = "[address length ['hw']]",
5068 .name = "rbp",
5069 .handler = handle_rbp_command,
5070 .mode = COMMAND_EXEC,
5071 .help = "remove breakpoint",
5072 .usage = "address",
5075 .name = "wp",
5076 .handler = handle_wp_command,
5077 .mode = COMMAND_EXEC,
5078 .help = "list (no params) or create watchpoints",
5079 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5082 .name = "rwp",
5083 .handler = handle_rwp_command,
5084 .mode = COMMAND_EXEC,
5085 .help = "remove watchpoint",
5086 .usage = "address",
5089 .name = "load_image",
5090 .handler = handle_load_image_command,
5091 .mode = COMMAND_EXEC,
5092 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5093 "[min_address] [max_length]",
5096 .name = "dump_image",
5097 .handler = handle_dump_image_command,
5098 .mode = COMMAND_EXEC,
5099 .usage = "filename address size",
5102 .name = "verify_image",
5103 .handler = handle_verify_image_command,
5104 .mode = COMMAND_EXEC,
5105 .usage = "filename [offset [type]]",
5108 .name = "test_image",
5109 .handler = handle_test_image_command,
5110 .mode = COMMAND_EXEC,
5111 .usage = "filename [offset [type]]",
5114 .name = "ocd_mem2array",
5115 .mode = COMMAND_EXEC,
5116 .jim_handler = jim_mem2array,
5117 .help = "read 8/16/32 bit memory and return as a TCL array "
5118 "for script processing",
5119 .usage = "arrayname bitwidth address count",
5122 .name = "ocd_array2mem",
5123 .mode = COMMAND_EXEC,
5124 .jim_handler = jim_array2mem,
5125 .help = "convert a TCL array to memory locations "
5126 "and write the 8/16/32 bit values",
5127 .usage = "arrayname bitwidth address count",
5130 .name = "reset_nag",
5131 .handler = handle_target_reset_nag,
5132 .mode = COMMAND_ANY,
5133 .help = "Nag after each reset about options that could have been "
5134 "enabled to improve performance. ",
5135 .usage = "['enable'|'disable']",
5137 COMMAND_REGISTRATION_DONE
5139 int target_register_user_commands(struct command_context *cmd_ctx)
5141 int retval = ERROR_OK;
5142 if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5143 return retval;
5145 if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5146 return retval;
5149 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);