command context: fix errors when running certain commands on startup
[openocd/cortex.git] / src / target / target.c
blobd17bb7445fa119b579a28ee15e9bedfbb2f35a38
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm926ejs_target;
62 extern struct target_type fa526_target;
63 extern struct target_type feroceon_target;
64 extern struct target_type dragonite_target;
65 extern struct target_type xscale_target;
66 extern struct target_type cortexm3_target;
67 extern struct target_type cortexa8_target;
68 extern struct target_type arm11_target;
69 extern struct target_type mips_m4k_target;
70 extern struct target_type avr_target;
71 extern struct target_type dsp563xx_target;
72 extern struct target_type testee_target;
74 static struct target_type *target_types[] =
76 &arm7tdmi_target,
77 &arm9tdmi_target,
78 &arm920t_target,
79 &arm720t_target,
80 &arm966e_target,
81 &arm926ejs_target,
82 &fa526_target,
83 &feroceon_target,
84 &dragonite_target,
85 &xscale_target,
86 &cortexm3_target,
87 &cortexa8_target,
88 &arm11_target,
89 &mips_m4k_target,
90 &avr_target,
91 &dsp563xx_target,
92 &testee_target,
93 NULL,
96 struct target *all_targets = NULL;
97 static struct target_event_callback *target_event_callbacks = NULL;
98 static struct target_timer_callback *target_timer_callbacks = NULL;
100 static const Jim_Nvp nvp_assert[] = {
101 { .name = "assert", NVP_ASSERT },
102 { .name = "deassert", NVP_DEASSERT },
103 { .name = "T", NVP_ASSERT },
104 { .name = "F", NVP_DEASSERT },
105 { .name = "t", NVP_ASSERT },
106 { .name = "f", NVP_DEASSERT },
107 { .name = NULL, .value = -1 }
110 static const Jim_Nvp nvp_error_target[] = {
111 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
112 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
113 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
114 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
115 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
116 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
117 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
118 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
119 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
120 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
121 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
122 { .value = -1, .name = NULL }
125 static const char *target_strerror_safe(int err)
127 const Jim_Nvp *n;
129 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
130 if (n->name == NULL) {
131 return "unknown";
132 } else {
133 return n->name;
137 static const Jim_Nvp nvp_target_event[] = {
138 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
139 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
141 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
142 { .value = TARGET_EVENT_HALTED, .name = "halted" },
143 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
144 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
145 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
147 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
148 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
150 /* historical name */
152 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
154 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
155 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
156 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
157 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
158 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
159 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
160 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
161 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
162 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
163 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
164 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
166 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
167 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
169 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
170 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
172 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
173 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
175 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
176 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
178 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
179 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
181 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
182 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
183 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
185 { .name = NULL, .value = -1 }
188 static const Jim_Nvp nvp_target_state[] = {
189 { .name = "unknown", .value = TARGET_UNKNOWN },
190 { .name = "running", .value = TARGET_RUNNING },
191 { .name = "halted", .value = TARGET_HALTED },
192 { .name = "reset", .value = TARGET_RESET },
193 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
194 { .name = NULL, .value = -1 },
197 static const Jim_Nvp nvp_target_debug_reason [] = {
198 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
199 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
200 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
201 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
202 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
203 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
204 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
205 { .name = NULL, .value = -1 },
208 static const Jim_Nvp nvp_target_endian[] = {
209 { .name = "big", .value = TARGET_BIG_ENDIAN },
210 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
211 { .name = "be", .value = TARGET_BIG_ENDIAN },
212 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
213 { .name = NULL, .value = -1 },
216 static const Jim_Nvp nvp_reset_modes[] = {
217 { .name = "unknown", .value = RESET_UNKNOWN },
218 { .name = "run" , .value = RESET_RUN },
219 { .name = "halt" , .value = RESET_HALT },
220 { .name = "init" , .value = RESET_INIT },
221 { .name = NULL , .value = -1 },
224 const char *debug_reason_name(struct target *t)
226 const char *cp;
228 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
229 t->debug_reason)->name;
230 if (!cp) {
231 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
232 cp = "(*BUG*unknown*BUG*)";
234 return cp;
237 const char *
238 target_state_name( struct target *t )
240 const char *cp;
241 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
242 if( !cp ){
243 LOG_ERROR("Invalid target state: %d", (int)(t->state));
244 cp = "(*BUG*unknown*BUG*)";
246 return cp;
249 /* determine the number of the new target */
250 static int new_target_number(void)
252 struct target *t;
253 int x;
255 /* number is 0 based */
256 x = -1;
257 t = all_targets;
258 while (t) {
259 if (x < t->target_number) {
260 x = t->target_number;
262 t = t->next;
264 return x + 1;
267 /* read a uint32_t from a buffer in target memory endianness */
268 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
270 if (target->endianness == TARGET_LITTLE_ENDIAN)
271 return le_to_h_u32(buffer);
272 else
273 return be_to_h_u32(buffer);
276 /* read a uint16_t from a buffer in target memory endianness */
277 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
279 if (target->endianness == TARGET_LITTLE_ENDIAN)
280 return le_to_h_u16(buffer);
281 else
282 return be_to_h_u16(buffer);
285 /* read a uint8_t from a buffer in target memory endianness */
286 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
288 return *buffer & 0x0ff;
291 /* write a uint32_t to a buffer in target memory endianness */
292 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
294 if (target->endianness == TARGET_LITTLE_ENDIAN)
295 h_u32_to_le(buffer, value);
296 else
297 h_u32_to_be(buffer, value);
300 /* write a uint16_t to a buffer in target memory endianness */
301 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
303 if (target->endianness == TARGET_LITTLE_ENDIAN)
304 h_u16_to_le(buffer, value);
305 else
306 h_u16_to_be(buffer, value);
309 /* write a uint8_t to a buffer in target memory endianness */
310 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
312 *buffer = value;
315 /* return a pointer to a configured target; id is name or number */
316 struct target *get_target(const char *id)
318 struct target *target;
320 /* try as tcltarget name */
321 for (target = all_targets; target; target = target->next) {
322 if (target->cmd_name == NULL)
323 continue;
324 if (strcmp(id, target->cmd_name) == 0)
325 return target;
328 /* It's OK to remove this fallback sometime after August 2010 or so */
330 /* no match, try as number */
331 unsigned num;
332 if (parse_uint(id, &num) != ERROR_OK)
333 return NULL;
335 for (target = all_targets; target; target = target->next) {
336 if (target->target_number == (int)num) {
337 LOG_WARNING("use '%s' as target identifier, not '%u'",
338 target->cmd_name, num);
339 return target;
343 return NULL;
346 /* returns a pointer to the n-th configured target */
347 static struct target *get_target_by_num(int num)
349 struct target *target = all_targets;
351 while (target) {
352 if (target->target_number == num) {
353 return target;
355 target = target->next;
358 return NULL;
361 struct target* get_current_target(struct command_context *cmd_ctx)
363 struct target *target = get_target_by_num(cmd_ctx->current_target);
365 if (target == NULL)
367 LOG_ERROR("BUG: current_target out of bounds");
368 exit(-1);
371 return target;
374 int target_poll(struct target *target)
376 int retval;
378 /* We can't poll until after examine */
379 if (!target_was_examined(target))
381 /* Fail silently lest we pollute the log */
382 return ERROR_FAIL;
385 retval = target->type->poll(target);
386 if (retval != ERROR_OK)
387 return retval;
389 if (target->halt_issued)
391 if (target->state == TARGET_HALTED)
393 target->halt_issued = false;
394 } else
396 long long t = timeval_ms() - target->halt_issued_time;
397 if (t>1000)
399 target->halt_issued = false;
400 LOG_INFO("Halt timed out, wake up GDB.");
401 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
406 return ERROR_OK;
409 int target_halt(struct target *target)
411 int retval;
412 /* We can't poll until after examine */
413 if (!target_was_examined(target))
415 LOG_ERROR("Target not examined yet");
416 return ERROR_FAIL;
419 retval = target->type->halt(target);
420 if (retval != ERROR_OK)
421 return retval;
423 target->halt_issued = true;
424 target->halt_issued_time = timeval_ms();
426 return ERROR_OK;
430 * Make the target (re)start executing using its saved execution
431 * context (possibly with some modifications).
433 * @param target Which target should start executing.
434 * @param current True to use the target's saved program counter instead
435 * of the address parameter
436 * @param address Optionally used as the program counter.
437 * @param handle_breakpoints True iff breakpoints at the resumption PC
438 * should be skipped. (For example, maybe execution was stopped by
439 * such a breakpoint, in which case it would be counterprodutive to
440 * let it re-trigger.
441 * @param debug_execution False if all working areas allocated by OpenOCD
442 * should be released and/or restored to their original contents.
443 * (This would for example be true to run some downloaded "helper"
444 * algorithm code, which resides in one such working buffer and uses
445 * another for data storage.)
447 * @todo Resolve the ambiguity about what the "debug_execution" flag
448 * signifies. For example, Target implementations don't agree on how
449 * it relates to invalidation of the register cache, or to whether
450 * breakpoints and watchpoints should be enabled. (It would seem wrong
451 * to enable breakpoints when running downloaded "helper" algorithms
452 * (debug_execution true), since the breakpoints would be set to match
453 * target firmware being debugged, not the helper algorithm.... and
454 * enabling them could cause such helpers to malfunction (for example,
455 * by overwriting data with a breakpoint instruction. On the other
456 * hand the infrastructure for running such helpers might use this
457 * procedure but rely on hardware breakpoint to detect termination.)
459 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
461 int retval;
463 /* We can't poll until after examine */
464 if (!target_was_examined(target))
466 LOG_ERROR("Target not examined yet");
467 return ERROR_FAIL;
470 /* note that resume *must* be asynchronous. The CPU can halt before
471 * we poll. The CPU can even halt at the current PC as a result of
472 * a software breakpoint being inserted by (a bug?) the application.
474 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
475 return retval;
477 /* Invalidate any cached protect/erase/... flash status, since
478 * almost all targets will now be able modify the flash by
479 * themselves. We want flash drivers and infrastructure to
480 * be able to rely on (non-invalidated) cached state.
482 * For now we require that algorithms provided by OpenOCD are
483 * used only by code which properly maintains that cached state.
484 * state
486 * REVISIT do the same for NAND ; maybe other flash flavors too...
488 if (!target->running_alg)
489 nor_resume(target);
490 return retval;
493 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
495 char buf[100];
496 int retval;
497 Jim_Nvp *n;
498 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
499 if (n->name == NULL) {
500 LOG_ERROR("invalid reset mode");
501 return ERROR_FAIL;
504 /* disable polling during reset to make reset event scripts
505 * more predictable, i.e. dr/irscan & pathmove in events will
506 * not have JTAG operations injected into the middle of a sequence.
508 bool save_poll = jtag_poll_get_enabled();
510 jtag_poll_set_enabled(false);
512 sprintf(buf, "ocd_process_reset %s", n->name);
513 retval = Jim_Eval(cmd_ctx->interp, buf);
515 jtag_poll_set_enabled(save_poll);
517 if (retval != JIM_OK) {
518 Jim_PrintErrorMessage(cmd_ctx->interp);
519 return ERROR_FAIL;
522 /* We want any events to be processed before the prompt */
523 retval = target_call_timer_callbacks_now();
525 struct target *target;
526 for (target = all_targets; target; target = target->next) {
527 target->type->check_reset(target);
530 return retval;
533 static int identity_virt2phys(struct target *target,
534 uint32_t virtual, uint32_t *physical)
536 *physical = virtual;
537 return ERROR_OK;
540 static int no_mmu(struct target *target, int *enabled)
542 *enabled = 0;
543 return ERROR_OK;
546 static int default_examine(struct target *target)
548 target_set_examined(target);
549 return ERROR_OK;
552 /* no check by default */
553 static int default_check_reset(struct target *target)
555 return ERROR_OK;
558 int target_examine_one(struct target *target)
560 return target->type->examine(target);
563 static int jtag_enable_callback(enum jtag_event event, void *priv)
565 struct target *target = priv;
567 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
568 return ERROR_OK;
570 jtag_unregister_event_callback(jtag_enable_callback, target);
571 return target_examine_one(target);
575 /* Targets that correctly implement init + examine, i.e.
576 * no communication with target during init:
578 * XScale
580 int target_examine(void)
582 int retval = ERROR_OK;
583 struct target *target;
585 for (target = all_targets; target; target = target->next)
587 /* defer examination, but don't skip it */
588 if (!target->tap->enabled) {
589 jtag_register_event_callback(jtag_enable_callback,
590 target);
591 continue;
593 if ((retval = target_examine_one(target)) != ERROR_OK)
594 return retval;
596 return retval;
598 const char *target_type_name(struct target *target)
600 return target->type->name;
603 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
605 if (!target_was_examined(target))
607 LOG_ERROR("Target not examined yet");
608 return ERROR_FAIL;
610 return target->type->write_memory_imp(target, address, size, count, buffer);
613 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
615 if (!target_was_examined(target))
617 LOG_ERROR("Target not examined yet");
618 return ERROR_FAIL;
620 return target->type->read_memory_imp(target, address, size, count, buffer);
623 static int target_soft_reset_halt_imp(struct target *target)
625 if (!target_was_examined(target))
627 LOG_ERROR("Target not examined yet");
628 return ERROR_FAIL;
630 if (!target->type->soft_reset_halt_imp) {
631 LOG_ERROR("Target %s does not support soft_reset_halt",
632 target_name(target));
633 return ERROR_FAIL;
635 return target->type->soft_reset_halt_imp(target);
639 * Downloads a target-specific native code algorithm to the target,
640 * and executes it. * Note that some targets may need to set up, enable,
641 * and tear down a breakpoint (hard or * soft) to detect algorithm
642 * termination, while others may support lower overhead schemes where
643 * soft breakpoints embedded in the algorithm automatically terminate the
644 * algorithm.
646 * @param target used to run the algorithm
647 * @param arch_info target-specific description of the algorithm.
649 int target_run_algorithm(struct target *target,
650 int num_mem_params, struct mem_param *mem_params,
651 int num_reg_params, struct reg_param *reg_param,
652 uint32_t entry_point, uint32_t exit_point,
653 int timeout_ms, void *arch_info)
655 int retval = ERROR_FAIL;
657 if (!target_was_examined(target))
659 LOG_ERROR("Target not examined yet");
660 goto done;
662 if (!target->type->run_algorithm) {
663 LOG_ERROR("Target type '%s' does not support %s",
664 target_type_name(target), __func__);
665 goto done;
668 target->running_alg = true;
669 retval = target->type->run_algorithm(target,
670 num_mem_params, mem_params,
671 num_reg_params, reg_param,
672 entry_point, exit_point, timeout_ms, arch_info);
673 target->running_alg = false;
675 done:
676 return retval;
680 int target_read_memory(struct target *target,
681 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
683 return target->type->read_memory(target, address, size, count, buffer);
686 static int target_read_phys_memory(struct target *target,
687 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
689 return target->type->read_phys_memory(target, address, size, count, buffer);
692 int target_write_memory(struct target *target,
693 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
695 return target->type->write_memory(target, address, size, count, buffer);
698 static int target_write_phys_memory(struct target *target,
699 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
701 return target->type->write_phys_memory(target, address, size, count, buffer);
704 int target_bulk_write_memory(struct target *target,
705 uint32_t address, uint32_t count, uint8_t *buffer)
707 return target->type->bulk_write_memory(target, address, count, buffer);
710 int target_add_breakpoint(struct target *target,
711 struct breakpoint *breakpoint)
713 if (target->state != TARGET_HALTED) {
714 LOG_WARNING("target %s is not halted", target->cmd_name);
715 return ERROR_TARGET_NOT_HALTED;
717 return target->type->add_breakpoint(target, breakpoint);
719 int target_remove_breakpoint(struct target *target,
720 struct breakpoint *breakpoint)
722 return target->type->remove_breakpoint(target, breakpoint);
725 int target_add_watchpoint(struct target *target,
726 struct watchpoint *watchpoint)
728 if (target->state != TARGET_HALTED) {
729 LOG_WARNING("target %s is not halted", target->cmd_name);
730 return ERROR_TARGET_NOT_HALTED;
732 return target->type->add_watchpoint(target, watchpoint);
734 int target_remove_watchpoint(struct target *target,
735 struct watchpoint *watchpoint)
737 return target->type->remove_watchpoint(target, watchpoint);
740 int target_get_gdb_reg_list(struct target *target,
741 struct reg **reg_list[], int *reg_list_size)
743 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
745 int target_step(struct target *target,
746 int current, uint32_t address, int handle_breakpoints)
748 return target->type->step(target, current, address, handle_breakpoints);
753 * Reset the @c examined flag for the given target.
754 * Pure paranoia -- targets are zeroed on allocation.
756 static void target_reset_examined(struct target *target)
758 target->examined = false;
761 static int
762 err_read_phys_memory(struct target *target, uint32_t address,
763 uint32_t size, uint32_t count, uint8_t *buffer)
765 LOG_ERROR("Not implemented: %s", __func__);
766 return ERROR_FAIL;
769 static int
770 err_write_phys_memory(struct target *target, uint32_t address,
771 uint32_t size, uint32_t count, uint8_t *buffer)
773 LOG_ERROR("Not implemented: %s", __func__);
774 return ERROR_FAIL;
777 static int handle_target(void *priv);
779 static int target_init_one(struct command_context *cmd_ctx,
780 struct target *target)
782 target_reset_examined(target);
784 struct target_type *type = target->type;
785 if (type->examine == NULL)
786 type->examine = default_examine;
788 if (type->check_reset== NULL)
789 type->check_reset = default_check_reset;
791 int retval = type->init_target(cmd_ctx, target);
792 if (ERROR_OK != retval)
794 LOG_ERROR("target '%s' init failed", target_name(target));
795 return retval;
799 * @todo get rid of those *memory_imp() methods, now that all
800 * callers are using target_*_memory() accessors ... and make
801 * sure the "physical" paths handle the same issues.
803 /* a non-invasive way(in terms of patches) to add some code that
804 * runs before the type->write/read_memory implementation
806 type->write_memory_imp = target->type->write_memory;
807 type->write_memory = target_write_memory_imp;
809 type->read_memory_imp = target->type->read_memory;
810 type->read_memory = target_read_memory_imp;
812 type->soft_reset_halt_imp = target->type->soft_reset_halt;
813 type->soft_reset_halt = target_soft_reset_halt_imp;
815 /* Sanity-check MMU support ... stub in what we must, to help
816 * implement it in stages, but warn if we need to do so.
818 if (type->mmu)
820 if (type->write_phys_memory == NULL)
822 LOG_ERROR("type '%s' is missing write_phys_memory",
823 type->name);
824 type->write_phys_memory = err_write_phys_memory;
826 if (type->read_phys_memory == NULL)
828 LOG_ERROR("type '%s' is missing read_phys_memory",
829 type->name);
830 type->read_phys_memory = err_read_phys_memory;
832 if (type->virt2phys == NULL)
834 LOG_ERROR("type '%s' is missing virt2phys", type->name);
835 type->virt2phys = identity_virt2phys;
838 else
840 /* Make sure no-MMU targets all behave the same: make no
841 * distinction between physical and virtual addresses, and
842 * ensure that virt2phys() is always an identity mapping.
844 if (type->write_phys_memory || type->read_phys_memory
845 || type->virt2phys)
847 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
850 type->mmu = no_mmu;
851 type->write_phys_memory = type->write_memory;
852 type->read_phys_memory = type->read_memory;
853 type->virt2phys = identity_virt2phys;
855 return ERROR_OK;
858 static int target_init(struct command_context *cmd_ctx)
860 struct target *target;
861 int retval;
863 for (target = all_targets; target; target = target->next)
865 retval = target_init_one(cmd_ctx, target);
866 if (ERROR_OK != retval)
867 return retval;
870 if (!all_targets)
871 return ERROR_OK;
873 retval = target_register_user_commands(cmd_ctx);
874 if (ERROR_OK != retval)
875 return retval;
877 retval = target_register_timer_callback(&handle_target,
878 100, 1, cmd_ctx->interp);
879 if (ERROR_OK != retval)
880 return retval;
882 return ERROR_OK;
885 COMMAND_HANDLER(handle_target_init_command)
887 if (CMD_ARGC != 0)
888 return ERROR_COMMAND_SYNTAX_ERROR;
890 static bool target_initialized = false;
891 if (target_initialized)
893 LOG_INFO("'target init' has already been called");
894 return ERROR_OK;
896 target_initialized = true;
898 LOG_DEBUG("Initializing targets...");
899 return target_init(CMD_CTX);
902 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
904 struct target_event_callback **callbacks_p = &target_event_callbacks;
906 if (callback == NULL)
908 return ERROR_INVALID_ARGUMENTS;
911 if (*callbacks_p)
913 while ((*callbacks_p)->next)
914 callbacks_p = &((*callbacks_p)->next);
915 callbacks_p = &((*callbacks_p)->next);
918 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
919 (*callbacks_p)->callback = callback;
920 (*callbacks_p)->priv = priv;
921 (*callbacks_p)->next = NULL;
923 return ERROR_OK;
926 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
928 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
929 struct timeval now;
931 if (callback == NULL)
933 return ERROR_INVALID_ARGUMENTS;
936 if (*callbacks_p)
938 while ((*callbacks_p)->next)
939 callbacks_p = &((*callbacks_p)->next);
940 callbacks_p = &((*callbacks_p)->next);
943 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
944 (*callbacks_p)->callback = callback;
945 (*callbacks_p)->periodic = periodic;
946 (*callbacks_p)->time_ms = time_ms;
948 gettimeofday(&now, NULL);
949 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
950 time_ms -= (time_ms % 1000);
951 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
952 if ((*callbacks_p)->when.tv_usec > 1000000)
954 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
955 (*callbacks_p)->when.tv_sec += 1;
958 (*callbacks_p)->priv = priv;
959 (*callbacks_p)->next = NULL;
961 return ERROR_OK;
964 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
966 struct target_event_callback **p = &target_event_callbacks;
967 struct target_event_callback *c = target_event_callbacks;
969 if (callback == NULL)
971 return ERROR_INVALID_ARGUMENTS;
974 while (c)
976 struct target_event_callback *next = c->next;
977 if ((c->callback == callback) && (c->priv == priv))
979 *p = next;
980 free(c);
981 return ERROR_OK;
983 else
984 p = &(c->next);
985 c = next;
988 return ERROR_OK;
991 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
993 struct target_timer_callback **p = &target_timer_callbacks;
994 struct target_timer_callback *c = target_timer_callbacks;
996 if (callback == NULL)
998 return ERROR_INVALID_ARGUMENTS;
1001 while (c)
1003 struct target_timer_callback *next = c->next;
1004 if ((c->callback == callback) && (c->priv == priv))
1006 *p = next;
1007 free(c);
1008 return ERROR_OK;
1010 else
1011 p = &(c->next);
1012 c = next;
1015 return ERROR_OK;
1018 int target_call_event_callbacks(struct target *target, enum target_event event)
1020 struct target_event_callback *callback = target_event_callbacks;
1021 struct target_event_callback *next_callback;
1023 if (event == TARGET_EVENT_HALTED)
1025 /* execute early halted first */
1026 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1029 LOG_DEBUG("target event %i (%s)",
1030 event,
1031 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1033 target_handle_event(target, event);
1035 while (callback)
1037 next_callback = callback->next;
1038 callback->callback(target, event, callback->priv);
1039 callback = next_callback;
1042 return ERROR_OK;
1045 static int target_timer_callback_periodic_restart(
1046 struct target_timer_callback *cb, struct timeval *now)
1048 int time_ms = cb->time_ms;
1049 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1050 time_ms -= (time_ms % 1000);
1051 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1052 if (cb->when.tv_usec > 1000000)
1054 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1055 cb->when.tv_sec += 1;
1057 return ERROR_OK;
1060 static int target_call_timer_callback(struct target_timer_callback *cb,
1061 struct timeval *now)
1063 cb->callback(cb->priv);
1065 if (cb->periodic)
1066 return target_timer_callback_periodic_restart(cb, now);
1068 return target_unregister_timer_callback(cb->callback, cb->priv);
1071 static int target_call_timer_callbacks_check_time(int checktime)
1073 keep_alive();
1075 struct timeval now;
1076 gettimeofday(&now, NULL);
1078 struct target_timer_callback *callback = target_timer_callbacks;
1079 while (callback)
1081 // cleaning up may unregister and free this callback
1082 struct target_timer_callback *next_callback = callback->next;
1084 bool call_it = callback->callback &&
1085 ((!checktime && callback->periodic) ||
1086 now.tv_sec > callback->when.tv_sec ||
1087 (now.tv_sec == callback->when.tv_sec &&
1088 now.tv_usec >= callback->when.tv_usec));
1090 if (call_it)
1092 int retval = target_call_timer_callback(callback, &now);
1093 if (retval != ERROR_OK)
1094 return retval;
1097 callback = next_callback;
1100 return ERROR_OK;
1103 int target_call_timer_callbacks(void)
1105 return target_call_timer_callbacks_check_time(1);
1108 /* invoke periodic callbacks immediately */
1109 int target_call_timer_callbacks_now(void)
1111 return target_call_timer_callbacks_check_time(0);
1114 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1116 struct working_area *c = target->working_areas;
1117 struct working_area *new_wa = NULL;
1119 /* Reevaluate working area address based on MMU state*/
1120 if (target->working_areas == NULL)
1122 int retval;
1123 int enabled;
1125 retval = target->type->mmu(target, &enabled);
1126 if (retval != ERROR_OK)
1128 return retval;
1131 if (!enabled) {
1132 if (target->working_area_phys_spec) {
1133 LOG_DEBUG("MMU disabled, using physical "
1134 "address for working memory 0x%08x",
1135 (unsigned)target->working_area_phys);
1136 target->working_area = target->working_area_phys;
1137 } else {
1138 LOG_ERROR("No working memory available. "
1139 "Specify -work-area-phys to target.");
1140 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1142 } else {
1143 if (target->working_area_virt_spec) {
1144 LOG_DEBUG("MMU enabled, using virtual "
1145 "address for working memory 0x%08x",
1146 (unsigned)target->working_area_virt);
1147 target->working_area = target->working_area_virt;
1148 } else {
1149 LOG_ERROR("No working memory available. "
1150 "Specify -work-area-virt to target.");
1151 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1156 /* only allocate multiples of 4 byte */
1157 if (size % 4)
1159 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1160 size = (size + 3) & (~3);
1163 /* see if there's already a matching working area */
1164 while (c)
1166 if ((c->free) && (c->size == size))
1168 new_wa = c;
1169 break;
1171 c = c->next;
1174 /* if not, allocate a new one */
1175 if (!new_wa)
1177 struct working_area **p = &target->working_areas;
1178 uint32_t first_free = target->working_area;
1179 uint32_t free_size = target->working_area_size;
1181 c = target->working_areas;
1182 while (c)
1184 first_free += c->size;
1185 free_size -= c->size;
1186 p = &c->next;
1187 c = c->next;
1190 if (free_size < size)
1192 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1195 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1197 new_wa = malloc(sizeof(struct working_area));
1198 new_wa->next = NULL;
1199 new_wa->size = size;
1200 new_wa->address = first_free;
1202 if (target->backup_working_area)
1204 int retval;
1205 new_wa->backup = malloc(new_wa->size);
1206 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1208 free(new_wa->backup);
1209 free(new_wa);
1210 return retval;
1213 else
1215 new_wa->backup = NULL;
1218 /* put new entry in list */
1219 *p = new_wa;
1222 /* mark as used, and return the new (reused) area */
1223 new_wa->free = 0;
1224 *area = new_wa;
1226 /* user pointer */
1227 new_wa->user = area;
1229 return ERROR_OK;
1232 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1234 int retval;
1236 retval = target_alloc_working_area_try(target, size, area);
1237 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1239 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1241 return retval;
1245 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1247 if (area->free)
1248 return ERROR_OK;
1250 if (restore && target->backup_working_area)
1252 int retval;
1253 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1254 return retval;
1257 area->free = 1;
1259 /* mark user pointer invalid */
1260 *area->user = NULL;
1261 area->user = NULL;
1263 return ERROR_OK;
1266 int target_free_working_area(struct target *target, struct working_area *area)
1268 return target_free_working_area_restore(target, area, 1);
1271 /* free resources and restore memory, if restoring memory fails,
1272 * free up resources anyway
1274 static void target_free_all_working_areas_restore(struct target *target, int restore)
1276 struct working_area *c = target->working_areas;
1278 while (c)
1280 struct working_area *next = c->next;
1281 target_free_working_area_restore(target, c, restore);
1283 if (c->backup)
1284 free(c->backup);
1286 free(c);
1288 c = next;
1291 target->working_areas = NULL;
1294 void target_free_all_working_areas(struct target *target)
1296 target_free_all_working_areas_restore(target, 1);
1299 int target_arch_state(struct target *target)
1301 int retval;
1302 if (target == NULL)
1304 LOG_USER("No target has been configured");
1305 return ERROR_OK;
1308 LOG_USER("target state: %s", target_state_name( target ));
1310 if (target->state != TARGET_HALTED)
1311 return ERROR_OK;
1313 retval = target->type->arch_state(target);
1314 return retval;
1317 /* Single aligned words are guaranteed to use 16 or 32 bit access
1318 * mode respectively, otherwise data is handled as quickly as
1319 * possible
1321 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1323 int retval;
1324 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1325 (int)size, (unsigned)address);
1327 if (!target_was_examined(target))
1329 LOG_ERROR("Target not examined yet");
1330 return ERROR_FAIL;
1333 if (size == 0) {
1334 return ERROR_OK;
1337 if ((address + size - 1) < address)
1339 /* GDB can request this when e.g. PC is 0xfffffffc*/
1340 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1341 (unsigned)address,
1342 (unsigned)size);
1343 return ERROR_FAIL;
1346 if (((address % 2) == 0) && (size == 2))
1348 return target_write_memory(target, address, 2, 1, buffer);
1351 /* handle unaligned head bytes */
1352 if (address % 4)
1354 uint32_t unaligned = 4 - (address % 4);
1356 if (unaligned > size)
1357 unaligned = size;
1359 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1360 return retval;
1362 buffer += unaligned;
1363 address += unaligned;
1364 size -= unaligned;
1367 /* handle aligned words */
1368 if (size >= 4)
1370 int aligned = size - (size % 4);
1372 /* use bulk writes above a certain limit. This may have to be changed */
1373 if (aligned > 128)
1375 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1376 return retval;
1378 else
1380 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1381 return retval;
1384 buffer += aligned;
1385 address += aligned;
1386 size -= aligned;
1389 /* handle tail writes of less than 4 bytes */
1390 if (size > 0)
1392 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1393 return retval;
1396 return ERROR_OK;
1399 /* Single aligned words are guaranteed to use 16 or 32 bit access
1400 * mode respectively, otherwise data is handled as quickly as
1401 * possible
1403 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1405 int retval;
1406 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1407 (int)size, (unsigned)address);
1409 if (!target_was_examined(target))
1411 LOG_ERROR("Target not examined yet");
1412 return ERROR_FAIL;
1415 if (size == 0) {
1416 return ERROR_OK;
1419 if ((address + size - 1) < address)
1421 /* GDB can request this when e.g. PC is 0xfffffffc*/
1422 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1423 address,
1424 size);
1425 return ERROR_FAIL;
1428 if (((address % 2) == 0) && (size == 2))
1430 return target_read_memory(target, address, 2, 1, buffer);
1433 /* handle unaligned head bytes */
1434 if (address % 4)
1436 uint32_t unaligned = 4 - (address % 4);
1438 if (unaligned > size)
1439 unaligned = size;
1441 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1442 return retval;
1444 buffer += unaligned;
1445 address += unaligned;
1446 size -= unaligned;
1449 /* handle aligned words */
1450 if (size >= 4)
1452 int aligned = size - (size % 4);
1454 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1455 return retval;
1457 buffer += aligned;
1458 address += aligned;
1459 size -= aligned;
1462 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1463 if(size >=2)
1465 int aligned = size - (size%2);
1466 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1467 if (retval != ERROR_OK)
1468 return retval;
1470 buffer += aligned;
1471 address += aligned;
1472 size -= aligned;
1474 /* handle tail writes of less than 4 bytes */
1475 if (size > 0)
1477 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1478 return retval;
1481 return ERROR_OK;
1484 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1486 uint8_t *buffer;
1487 int retval;
1488 uint32_t i;
1489 uint32_t checksum = 0;
1490 if (!target_was_examined(target))
1492 LOG_ERROR("Target not examined yet");
1493 return ERROR_FAIL;
1496 if ((retval = target->type->checksum_memory(target, address,
1497 size, &checksum)) != ERROR_OK)
1499 buffer = malloc(size);
1500 if (buffer == NULL)
1502 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1503 return ERROR_INVALID_ARGUMENTS;
1505 retval = target_read_buffer(target, address, size, buffer);
1506 if (retval != ERROR_OK)
1508 free(buffer);
1509 return retval;
1512 /* convert to target endianess */
1513 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1515 uint32_t target_data;
1516 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1517 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1520 retval = image_calculate_checksum(buffer, size, &checksum);
1521 free(buffer);
1524 *crc = checksum;
1526 return retval;
1529 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1531 int retval;
1532 if (!target_was_examined(target))
1534 LOG_ERROR("Target not examined yet");
1535 return ERROR_FAIL;
1538 if (target->type->blank_check_memory == 0)
1539 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1541 retval = target->type->blank_check_memory(target, address, size, blank);
1543 return retval;
1546 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1548 uint8_t value_buf[4];
1549 if (!target_was_examined(target))
1551 LOG_ERROR("Target not examined yet");
1552 return ERROR_FAIL;
1555 int retval = target_read_memory(target, address, 4, 1, value_buf);
1557 if (retval == ERROR_OK)
1559 *value = target_buffer_get_u32(target, value_buf);
1560 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1561 address,
1562 *value);
1564 else
1566 *value = 0x0;
1567 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1568 address);
1571 return retval;
1574 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1576 uint8_t value_buf[2];
1577 if (!target_was_examined(target))
1579 LOG_ERROR("Target not examined yet");
1580 return ERROR_FAIL;
1583 int retval = target_read_memory(target, address, 2, 1, value_buf);
1585 if (retval == ERROR_OK)
1587 *value = target_buffer_get_u16(target, value_buf);
1588 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1589 address,
1590 *value);
1592 else
1594 *value = 0x0;
1595 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1596 address);
1599 return retval;
1602 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1604 int retval = target_read_memory(target, address, 1, 1, value);
1605 if (!target_was_examined(target))
1607 LOG_ERROR("Target not examined yet");
1608 return ERROR_FAIL;
1611 if (retval == ERROR_OK)
1613 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1614 address,
1615 *value);
1617 else
1619 *value = 0x0;
1620 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1621 address);
1624 return retval;
1627 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1629 int retval;
1630 uint8_t value_buf[4];
1631 if (!target_was_examined(target))
1633 LOG_ERROR("Target not examined yet");
1634 return ERROR_FAIL;
1637 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1638 address,
1639 value);
1641 target_buffer_set_u32(target, value_buf, value);
1642 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1644 LOG_DEBUG("failed: %i", retval);
1647 return retval;
1650 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1652 int retval;
1653 uint8_t value_buf[2];
1654 if (!target_was_examined(target))
1656 LOG_ERROR("Target not examined yet");
1657 return ERROR_FAIL;
1660 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1661 address,
1662 value);
1664 target_buffer_set_u16(target, value_buf, value);
1665 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1667 LOG_DEBUG("failed: %i", retval);
1670 return retval;
1673 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1675 int retval;
1676 if (!target_was_examined(target))
1678 LOG_ERROR("Target not examined yet");
1679 return ERROR_FAIL;
1682 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1683 address, value);
1685 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1687 LOG_DEBUG("failed: %i", retval);
1690 return retval;
1693 COMMAND_HANDLER(handle_targets_command)
1695 struct target *target = all_targets;
1697 if (CMD_ARGC == 1)
1699 target = get_target(CMD_ARGV[0]);
1700 if (target == NULL) {
1701 command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1702 goto DumpTargets;
1704 if (!target->tap->enabled) {
1705 command_print(CMD_CTX,"Target: TAP %s is disabled, "
1706 "can't be the current target\n",
1707 target->tap->dotted_name);
1708 return ERROR_FAIL;
1711 CMD_CTX->current_target = target->target_number;
1712 return ERROR_OK;
1714 DumpTargets:
1716 target = all_targets;
1717 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1718 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1719 while (target)
1721 const char *state;
1722 char marker = ' ';
1724 if (target->tap->enabled)
1725 state = target_state_name( target );
1726 else
1727 state = "tap-disabled";
1729 if (CMD_CTX->current_target == target->target_number)
1730 marker = '*';
1732 /* keep columns lined up to match the headers above */
1733 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1734 target->target_number,
1735 marker,
1736 target_name(target),
1737 target_type_name(target),
1738 Jim_Nvp_value2name_simple(nvp_target_endian,
1739 target->endianness)->name,
1740 target->tap->dotted_name,
1741 state);
1742 target = target->next;
1745 return ERROR_OK;
1748 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1750 static int powerDropout;
1751 static int srstAsserted;
1753 static int runPowerRestore;
1754 static int runPowerDropout;
1755 static int runSrstAsserted;
1756 static int runSrstDeasserted;
1758 static int sense_handler(void)
1760 static int prevSrstAsserted = 0;
1761 static int prevPowerdropout = 0;
1763 int retval;
1764 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1765 return retval;
1767 int powerRestored;
1768 powerRestored = prevPowerdropout && !powerDropout;
1769 if (powerRestored)
1771 runPowerRestore = 1;
1774 long long current = timeval_ms();
1775 static long long lastPower = 0;
1776 int waitMore = lastPower + 2000 > current;
1777 if (powerDropout && !waitMore)
1779 runPowerDropout = 1;
1780 lastPower = current;
1783 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1784 return retval;
1786 int srstDeasserted;
1787 srstDeasserted = prevSrstAsserted && !srstAsserted;
1789 static long long lastSrst = 0;
1790 waitMore = lastSrst + 2000 > current;
1791 if (srstDeasserted && !waitMore)
1793 runSrstDeasserted = 1;
1794 lastSrst = current;
1797 if (!prevSrstAsserted && srstAsserted)
1799 runSrstAsserted = 1;
1802 prevSrstAsserted = srstAsserted;
1803 prevPowerdropout = powerDropout;
1805 if (srstDeasserted || powerRestored)
1807 /* Other than logging the event we can't do anything here.
1808 * Issuing a reset is a particularly bad idea as we might
1809 * be inside a reset already.
1813 return ERROR_OK;
1816 /* process target state changes */
1817 static int handle_target(void *priv)
1819 Jim_Interp *interp = (Jim_Interp *)priv;
1820 int retval = ERROR_OK;
1822 if (!is_jtag_poll_safe())
1824 /* polling is disabled currently */
1825 return ERROR_OK;
1828 /* we do not want to recurse here... */
1829 static int recursive = 0;
1830 if (! recursive)
1832 recursive = 1;
1833 sense_handler();
1834 /* danger! running these procedures can trigger srst assertions and power dropouts.
1835 * We need to avoid an infinite loop/recursion here and we do that by
1836 * clearing the flags after running these events.
1838 int did_something = 0;
1839 if (runSrstAsserted)
1841 LOG_INFO("srst asserted detected, running srst_asserted proc.");
1842 Jim_Eval(interp, "srst_asserted");
1843 did_something = 1;
1845 if (runSrstDeasserted)
1847 Jim_Eval(interp, "srst_deasserted");
1848 did_something = 1;
1850 if (runPowerDropout)
1852 LOG_INFO("Power dropout detected, running power_dropout proc.");
1853 Jim_Eval(interp, "power_dropout");
1854 did_something = 1;
1856 if (runPowerRestore)
1858 Jim_Eval(interp, "power_restore");
1859 did_something = 1;
1862 if (did_something)
1864 /* clear detect flags */
1865 sense_handler();
1868 /* clear action flags */
1870 runSrstAsserted = 0;
1871 runSrstDeasserted = 0;
1872 runPowerRestore = 0;
1873 runPowerDropout = 0;
1875 recursive = 0;
1878 /* Poll targets for state changes unless that's globally disabled.
1879 * Skip targets that are currently disabled.
1881 for (struct target *target = all_targets;
1882 is_jtag_poll_safe() && target;
1883 target = target->next)
1885 if (!target->tap->enabled)
1886 continue;
1888 /* only poll target if we've got power and srst isn't asserted */
1889 if (!powerDropout && !srstAsserted)
1891 /* polling may fail silently until the target has been examined */
1892 if ((retval = target_poll(target)) != ERROR_OK)
1894 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1895 * *why* we are aborting GDB, then we'll spam telnet when the
1896 * poll is failing persistently.
1898 * If we could implement an event that detected the
1899 * target going from non-pollable to pollable, we could issue
1900 * an error only upon the transition.
1902 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1903 return retval;
1908 return retval;
1911 COMMAND_HANDLER(handle_reg_command)
1913 struct target *target;
1914 struct reg *reg = NULL;
1915 unsigned count = 0;
1916 char *value;
1918 LOG_DEBUG("-");
1920 target = get_current_target(CMD_CTX);
1922 /* list all available registers for the current target */
1923 if (CMD_ARGC == 0)
1925 struct reg_cache *cache = target->reg_cache;
1927 count = 0;
1928 while (cache)
1930 unsigned i;
1932 command_print(CMD_CTX, "===== %s", cache->name);
1934 for (i = 0, reg = cache->reg_list;
1935 i < cache->num_regs;
1936 i++, reg++, count++)
1938 /* only print cached values if they are valid */
1939 if (reg->valid) {
1940 value = buf_to_str(reg->value,
1941 reg->size, 16);
1942 command_print(CMD_CTX,
1943 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1944 count, reg->name,
1945 reg->size, value,
1946 reg->dirty
1947 ? " (dirty)"
1948 : "");
1949 free(value);
1950 } else {
1951 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1952 count, reg->name,
1953 reg->size) ;
1956 cache = cache->next;
1959 return ERROR_OK;
1962 /* access a single register by its ordinal number */
1963 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1965 unsigned num;
1966 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1968 struct reg_cache *cache = target->reg_cache;
1969 count = 0;
1970 while (cache)
1972 unsigned i;
1973 for (i = 0; i < cache->num_regs; i++)
1975 if (count++ == num)
1977 reg = &cache->reg_list[i];
1978 break;
1981 if (reg)
1982 break;
1983 cache = cache->next;
1986 if (!reg)
1988 command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1989 return ERROR_OK;
1991 } else /* access a single register by its name */
1993 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1995 if (!reg)
1997 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1998 return ERROR_OK;
2002 /* display a register */
2003 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2005 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2006 reg->valid = 0;
2008 if (reg->valid == 0)
2010 reg->type->get(reg);
2012 value = buf_to_str(reg->value, reg->size, 16);
2013 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2014 free(value);
2015 return ERROR_OK;
2018 /* set register value */
2019 if (CMD_ARGC == 2)
2021 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2022 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2024 reg->type->set(reg, buf);
2026 value = buf_to_str(reg->value, reg->size, 16);
2027 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2028 free(value);
2030 free(buf);
2032 return ERROR_OK;
2035 command_print(CMD_CTX, "usage: reg <#|name> [value]");
2037 return ERROR_OK;
2040 COMMAND_HANDLER(handle_poll_command)
2042 int retval = ERROR_OK;
2043 struct target *target = get_current_target(CMD_CTX);
2045 if (CMD_ARGC == 0)
2047 command_print(CMD_CTX, "background polling: %s",
2048 jtag_poll_get_enabled() ? "on" : "off");
2049 command_print(CMD_CTX, "TAP: %s (%s)",
2050 target->tap->dotted_name,
2051 target->tap->enabled ? "enabled" : "disabled");
2052 if (!target->tap->enabled)
2053 return ERROR_OK;
2054 if ((retval = target_poll(target)) != ERROR_OK)
2055 return retval;
2056 if ((retval = target_arch_state(target)) != ERROR_OK)
2057 return retval;
2059 else if (CMD_ARGC == 1)
2061 bool enable;
2062 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2063 jtag_poll_set_enabled(enable);
2065 else
2067 return ERROR_COMMAND_SYNTAX_ERROR;
2070 return retval;
2073 COMMAND_HANDLER(handle_wait_halt_command)
2075 if (CMD_ARGC > 1)
2076 return ERROR_COMMAND_SYNTAX_ERROR;
2078 unsigned ms = 5000;
2079 if (1 == CMD_ARGC)
2081 int retval = parse_uint(CMD_ARGV[0], &ms);
2082 if (ERROR_OK != retval)
2084 command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2085 return ERROR_COMMAND_SYNTAX_ERROR;
2087 // convert seconds (given) to milliseconds (needed)
2088 ms *= 1000;
2091 struct target *target = get_current_target(CMD_CTX);
2092 return target_wait_state(target, TARGET_HALTED, ms);
2095 /* wait for target state to change. The trick here is to have a low
2096 * latency for short waits and not to suck up all the CPU time
2097 * on longer waits.
2099 * After 500ms, keep_alive() is invoked
2101 int target_wait_state(struct target *target, enum target_state state, int ms)
2103 int retval;
2104 long long then = 0, cur;
2105 int once = 1;
2107 for (;;)
2109 if ((retval = target_poll(target)) != ERROR_OK)
2110 return retval;
2111 if (target->state == state)
2113 break;
2115 cur = timeval_ms();
2116 if (once)
2118 once = 0;
2119 then = timeval_ms();
2120 LOG_DEBUG("waiting for target %s...",
2121 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2124 if (cur-then > 500)
2126 keep_alive();
2129 if ((cur-then) > ms)
2131 LOG_ERROR("timed out while waiting for target %s",
2132 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2133 return ERROR_FAIL;
2137 return ERROR_OK;
2140 COMMAND_HANDLER(handle_halt_command)
2142 LOG_DEBUG("-");
2144 struct target *target = get_current_target(CMD_CTX);
2145 int retval = target_halt(target);
2146 if (ERROR_OK != retval)
2147 return retval;
2149 if (CMD_ARGC == 1)
2151 unsigned wait;
2152 retval = parse_uint(CMD_ARGV[0], &wait);
2153 if (ERROR_OK != retval)
2154 return ERROR_COMMAND_SYNTAX_ERROR;
2155 if (!wait)
2156 return ERROR_OK;
2159 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2162 COMMAND_HANDLER(handle_soft_reset_halt_command)
2164 struct target *target = get_current_target(CMD_CTX);
2166 LOG_USER("requesting target halt and executing a soft reset");
2168 target->type->soft_reset_halt(target);
2170 return ERROR_OK;
2173 COMMAND_HANDLER(handle_reset_command)
2175 if (CMD_ARGC > 1)
2176 return ERROR_COMMAND_SYNTAX_ERROR;
2178 enum target_reset_mode reset_mode = RESET_RUN;
2179 if (CMD_ARGC == 1)
2181 const Jim_Nvp *n;
2182 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2183 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2184 return ERROR_COMMAND_SYNTAX_ERROR;
2186 reset_mode = n->value;
2189 /* reset *all* targets */
2190 return target_process_reset(CMD_CTX, reset_mode);
2194 COMMAND_HANDLER(handle_resume_command)
2196 int current = 1;
2197 if (CMD_ARGC > 1)
2198 return ERROR_COMMAND_SYNTAX_ERROR;
2200 struct target *target = get_current_target(CMD_CTX);
2201 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2203 /* with no CMD_ARGV, resume from current pc, addr = 0,
2204 * with one arguments, addr = CMD_ARGV[0],
2205 * handle breakpoints, not debugging */
2206 uint32_t addr = 0;
2207 if (CMD_ARGC == 1)
2209 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2210 current = 0;
2213 return target_resume(target, current, addr, 1, 0);
2216 COMMAND_HANDLER(handle_step_command)
2218 if (CMD_ARGC > 1)
2219 return ERROR_COMMAND_SYNTAX_ERROR;
2221 LOG_DEBUG("-");
2223 /* with no CMD_ARGV, step from current pc, addr = 0,
2224 * with one argument addr = CMD_ARGV[0],
2225 * handle breakpoints, debugging */
2226 uint32_t addr = 0;
2227 int current_pc = 1;
2228 if (CMD_ARGC == 1)
2230 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2231 current_pc = 0;
2234 struct target *target = get_current_target(CMD_CTX);
2236 return target->type->step(target, current_pc, addr, 1);
2239 static void handle_md_output(struct command_context *cmd_ctx,
2240 struct target *target, uint32_t address, unsigned size,
2241 unsigned count, const uint8_t *buffer)
2243 const unsigned line_bytecnt = 32;
2244 unsigned line_modulo = line_bytecnt / size;
2246 char output[line_bytecnt * 4 + 1];
2247 unsigned output_len = 0;
2249 const char *value_fmt;
2250 switch (size) {
2251 case 4: value_fmt = "%8.8x "; break;
2252 case 2: value_fmt = "%4.4x "; break;
2253 case 1: value_fmt = "%2.2x "; break;
2254 default:
2255 /* "can't happen", caller checked */
2256 LOG_ERROR("invalid memory read size: %u", size);
2257 return;
2260 for (unsigned i = 0; i < count; i++)
2262 if (i % line_modulo == 0)
2264 output_len += snprintf(output + output_len,
2265 sizeof(output) - output_len,
2266 "0x%8.8x: ",
2267 (unsigned)(address + (i*size)));
2270 uint32_t value = 0;
2271 const uint8_t *value_ptr = buffer + i * size;
2272 switch (size) {
2273 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2274 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2275 case 1: value = *value_ptr;
2277 output_len += snprintf(output + output_len,
2278 sizeof(output) - output_len,
2279 value_fmt, value);
2281 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2283 command_print(cmd_ctx, "%s", output);
2284 output_len = 0;
2289 COMMAND_HANDLER(handle_md_command)
2291 if (CMD_ARGC < 1)
2292 return ERROR_COMMAND_SYNTAX_ERROR;
2294 unsigned size = 0;
2295 switch (CMD_NAME[2]) {
2296 case 'w': size = 4; break;
2297 case 'h': size = 2; break;
2298 case 'b': size = 1; break;
2299 default: return ERROR_COMMAND_SYNTAX_ERROR;
2302 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2303 int (*fn)(struct target *target,
2304 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2305 if (physical)
2307 CMD_ARGC--;
2308 CMD_ARGV++;
2309 fn=target_read_phys_memory;
2310 } else
2312 fn=target_read_memory;
2314 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2316 return ERROR_COMMAND_SYNTAX_ERROR;
2319 uint32_t address;
2320 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2322 unsigned count = 1;
2323 if (CMD_ARGC == 2)
2324 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2326 uint8_t *buffer = calloc(count, size);
2328 struct target *target = get_current_target(CMD_CTX);
2329 int retval = fn(target, address, size, count, buffer);
2330 if (ERROR_OK == retval)
2331 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2333 free(buffer);
2335 return retval;
2338 typedef int (*target_write_fn)(struct target *target,
2339 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2341 static int target_write_memory_fast(struct target *target,
2342 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2344 return target_write_buffer(target, address, size * count, buffer);
2347 static int target_fill_mem(struct target *target,
2348 uint32_t address,
2349 target_write_fn fn,
2350 unsigned data_size,
2351 /* value */
2352 uint32_t b,
2353 /* count */
2354 unsigned c)
2356 /* We have to write in reasonably large chunks to be able
2357 * to fill large memory areas with any sane speed */
2358 const unsigned chunk_size = 16384;
2359 uint8_t *target_buf = malloc(chunk_size * data_size);
2360 if (target_buf == NULL)
2362 LOG_ERROR("Out of memory");
2363 return ERROR_FAIL;
2366 for (unsigned i = 0; i < chunk_size; i ++)
2368 switch (data_size)
2370 case 4:
2371 target_buffer_set_u32(target, target_buf + i*data_size, b);
2372 break;
2373 case 2:
2374 target_buffer_set_u16(target, target_buf + i*data_size, b);
2375 break;
2376 case 1:
2377 target_buffer_set_u8(target, target_buf + i*data_size, b);
2378 break;
2379 default:
2380 exit(-1);
2384 int retval = ERROR_OK;
2386 for (unsigned x = 0; x < c; x += chunk_size)
2388 unsigned current;
2389 current = c - x;
2390 if (current > chunk_size)
2392 current = chunk_size;
2394 int retval = fn(target, address + x * data_size, data_size, current, target_buf);
2395 if (retval != ERROR_OK)
2397 break;
2399 /* avoid GDB timeouts */
2400 keep_alive();
2402 free(target_buf);
2404 return retval;
2408 COMMAND_HANDLER(handle_mw_command)
2410 if (CMD_ARGC < 2)
2412 return ERROR_COMMAND_SYNTAX_ERROR;
2414 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2415 target_write_fn fn;
2416 if (physical)
2418 CMD_ARGC--;
2419 CMD_ARGV++;
2420 fn=target_write_phys_memory;
2421 } else
2423 fn = target_write_memory_fast;
2425 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2426 return ERROR_COMMAND_SYNTAX_ERROR;
2428 uint32_t address;
2429 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2431 uint32_t value;
2432 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2434 unsigned count = 1;
2435 if (CMD_ARGC == 3)
2436 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2438 struct target *target = get_current_target(CMD_CTX);
2439 unsigned wordsize;
2440 switch (CMD_NAME[2])
2442 case 'w':
2443 wordsize = 4;
2444 break;
2445 case 'h':
2446 wordsize = 2;
2447 break;
2448 case 'b':
2449 wordsize = 1;
2450 break;
2451 default:
2452 return ERROR_COMMAND_SYNTAX_ERROR;
2455 return target_fill_mem(target, address, fn, wordsize, value, count);
2458 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2459 uint32_t *min_address, uint32_t *max_address)
2461 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2462 return ERROR_COMMAND_SYNTAX_ERROR;
2464 /* a base address isn't always necessary,
2465 * default to 0x0 (i.e. don't relocate) */
2466 if (CMD_ARGC >= 2)
2468 uint32_t addr;
2469 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2470 image->base_address = addr;
2471 image->base_address_set = 1;
2473 else
2474 image->base_address_set = 0;
2476 image->start_address_set = 0;
2478 if (CMD_ARGC >= 4)
2480 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2482 if (CMD_ARGC == 5)
2484 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2485 // use size (given) to find max (required)
2486 *max_address += *min_address;
2489 if (*min_address > *max_address)
2490 return ERROR_COMMAND_SYNTAX_ERROR;
2492 return ERROR_OK;
2495 COMMAND_HANDLER(handle_load_image_command)
2497 uint8_t *buffer;
2498 size_t buf_cnt;
2499 uint32_t image_size;
2500 uint32_t min_address = 0;
2501 uint32_t max_address = 0xffffffff;
2502 int i;
2503 struct image image;
2505 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2506 &image, &min_address, &max_address);
2507 if (ERROR_OK != retval)
2508 return retval;
2510 struct target *target = get_current_target(CMD_CTX);
2512 struct duration bench;
2513 duration_start(&bench);
2515 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2517 return ERROR_OK;
2520 image_size = 0x0;
2521 retval = ERROR_OK;
2522 for (i = 0; i < image.num_sections; i++)
2524 buffer = malloc(image.sections[i].size);
2525 if (buffer == NULL)
2527 command_print(CMD_CTX,
2528 "error allocating buffer for section (%d bytes)",
2529 (int)(image.sections[i].size));
2530 break;
2533 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2535 free(buffer);
2536 break;
2539 uint32_t offset = 0;
2540 uint32_t length = buf_cnt;
2542 /* DANGER!!! beware of unsigned comparision here!!! */
2544 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2545 (image.sections[i].base_address < max_address))
2547 if (image.sections[i].base_address < min_address)
2549 /* clip addresses below */
2550 offset += min_address-image.sections[i].base_address;
2551 length -= offset;
2554 if (image.sections[i].base_address + buf_cnt > max_address)
2556 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2559 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2561 free(buffer);
2562 break;
2564 image_size += length;
2565 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2566 (unsigned int)length,
2567 image.sections[i].base_address + offset);
2570 free(buffer);
2573 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2575 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2576 "in %fs (%0.3f kb/s)", image_size,
2577 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2580 image_close(&image);
2582 return retval;
2586 COMMAND_HANDLER(handle_dump_image_command)
2588 struct fileio fileio;
2590 uint8_t buffer[560];
2591 int retvaltemp;
2594 struct target *target = get_current_target(CMD_CTX);
2596 if (CMD_ARGC != 3)
2598 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2599 return ERROR_OK;
2602 uint32_t address;
2603 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2604 uint32_t size;
2605 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2607 if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2609 return ERROR_OK;
2612 struct duration bench;
2613 duration_start(&bench);
2615 int retval = ERROR_OK;
2616 while (size > 0)
2618 size_t size_written;
2619 uint32_t this_run_size = (size > 560) ? 560 : size;
2620 retval = target_read_buffer(target, address, this_run_size, buffer);
2621 if (retval != ERROR_OK)
2623 break;
2626 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2627 if (retval != ERROR_OK)
2629 break;
2632 size -= this_run_size;
2633 address += this_run_size;
2636 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2637 return retvaltemp;
2639 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2641 command_print(CMD_CTX,
2642 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2643 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2646 return retval;
2649 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2651 uint8_t *buffer;
2652 size_t buf_cnt;
2653 uint32_t image_size;
2654 int i;
2655 int retval;
2656 uint32_t checksum = 0;
2657 uint32_t mem_checksum = 0;
2659 struct image image;
2661 struct target *target = get_current_target(CMD_CTX);
2663 if (CMD_ARGC < 1)
2665 return ERROR_COMMAND_SYNTAX_ERROR;
2668 if (!target)
2670 LOG_ERROR("no target selected");
2671 return ERROR_FAIL;
2674 struct duration bench;
2675 duration_start(&bench);
2677 if (CMD_ARGC >= 2)
2679 uint32_t addr;
2680 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2681 image.base_address = addr;
2682 image.base_address_set = 1;
2684 else
2686 image.base_address_set = 0;
2687 image.base_address = 0x0;
2690 image.start_address_set = 0;
2692 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2694 return retval;
2697 image_size = 0x0;
2698 retval = ERROR_OK;
2699 for (i = 0; i < image.num_sections; i++)
2701 buffer = malloc(image.sections[i].size);
2702 if (buffer == NULL)
2704 command_print(CMD_CTX,
2705 "error allocating buffer for section (%d bytes)",
2706 (int)(image.sections[i].size));
2707 break;
2709 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2711 free(buffer);
2712 break;
2715 if (verify)
2717 /* calculate checksum of image */
2718 image_calculate_checksum(buffer, buf_cnt, &checksum);
2720 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2721 if (retval != ERROR_OK)
2723 free(buffer);
2724 break;
2727 if (checksum != mem_checksum)
2729 /* failed crc checksum, fall back to a binary compare */
2730 uint8_t *data;
2732 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2734 data = (uint8_t*)malloc(buf_cnt);
2736 /* Can we use 32bit word accesses? */
2737 int size = 1;
2738 int count = buf_cnt;
2739 if ((count % 4) == 0)
2741 size *= 4;
2742 count /= 4;
2744 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2745 if (retval == ERROR_OK)
2747 uint32_t t;
2748 for (t = 0; t < buf_cnt; t++)
2750 if (data[t] != buffer[t])
2752 command_print(CMD_CTX,
2753 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2754 (unsigned)(t + image.sections[i].base_address),
2755 data[t],
2756 buffer[t]);
2757 free(data);
2758 free(buffer);
2759 retval = ERROR_FAIL;
2760 goto done;
2762 if ((t%16384) == 0)
2764 keep_alive();
2769 free(data);
2771 } else
2773 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2774 image.sections[i].base_address,
2775 buf_cnt);
2778 free(buffer);
2779 image_size += buf_cnt;
2781 done:
2782 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2784 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2785 "in %fs (%0.3f kb/s)", image_size,
2786 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2789 image_close(&image);
2791 return retval;
2794 COMMAND_HANDLER(handle_verify_image_command)
2796 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2799 COMMAND_HANDLER(handle_test_image_command)
2801 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2804 static int handle_bp_command_list(struct command_context *cmd_ctx)
2806 struct target *target = get_current_target(cmd_ctx);
2807 struct breakpoint *breakpoint = target->breakpoints;
2808 while (breakpoint)
2810 if (breakpoint->type == BKPT_SOFT)
2812 char* buf = buf_to_str(breakpoint->orig_instr,
2813 breakpoint->length, 16);
2814 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2815 breakpoint->address,
2816 breakpoint->length,
2817 breakpoint->set, buf);
2818 free(buf);
2820 else
2822 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2823 breakpoint->address,
2824 breakpoint->length, breakpoint->set);
2827 breakpoint = breakpoint->next;
2829 return ERROR_OK;
2832 static int handle_bp_command_set(struct command_context *cmd_ctx,
2833 uint32_t addr, uint32_t length, int hw)
2835 struct target *target = get_current_target(cmd_ctx);
2836 int retval = breakpoint_add(target, addr, length, hw);
2837 if (ERROR_OK == retval)
2838 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2839 else
2840 LOG_ERROR("Failure setting breakpoint");
2841 return retval;
2844 COMMAND_HANDLER(handle_bp_command)
2846 if (CMD_ARGC == 0)
2847 return handle_bp_command_list(CMD_CTX);
2849 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2851 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2852 return ERROR_COMMAND_SYNTAX_ERROR;
2855 uint32_t addr;
2856 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2857 uint32_t length;
2858 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2860 int hw = BKPT_SOFT;
2861 if (CMD_ARGC == 3)
2863 if (strcmp(CMD_ARGV[2], "hw") == 0)
2864 hw = BKPT_HARD;
2865 else
2866 return ERROR_COMMAND_SYNTAX_ERROR;
2869 return handle_bp_command_set(CMD_CTX, addr, length, hw);
2872 COMMAND_HANDLER(handle_rbp_command)
2874 if (CMD_ARGC != 1)
2875 return ERROR_COMMAND_SYNTAX_ERROR;
2877 uint32_t addr;
2878 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2880 struct target *target = get_current_target(CMD_CTX);
2881 breakpoint_remove(target, addr);
2883 return ERROR_OK;
2886 COMMAND_HANDLER(handle_wp_command)
2888 struct target *target = get_current_target(CMD_CTX);
2890 if (CMD_ARGC == 0)
2892 struct watchpoint *watchpoint = target->watchpoints;
2894 while (watchpoint)
2896 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2897 ", len: 0x%8.8" PRIx32
2898 ", r/w/a: %i, value: 0x%8.8" PRIx32
2899 ", mask: 0x%8.8" PRIx32,
2900 watchpoint->address,
2901 watchpoint->length,
2902 (int)watchpoint->rw,
2903 watchpoint->value,
2904 watchpoint->mask);
2905 watchpoint = watchpoint->next;
2907 return ERROR_OK;
2910 enum watchpoint_rw type = WPT_ACCESS;
2911 uint32_t addr = 0;
2912 uint32_t length = 0;
2913 uint32_t data_value = 0x0;
2914 uint32_t data_mask = 0xffffffff;
2916 switch (CMD_ARGC)
2918 case 5:
2919 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2920 // fall through
2921 case 4:
2922 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2923 // fall through
2924 case 3:
2925 switch (CMD_ARGV[2][0])
2927 case 'r':
2928 type = WPT_READ;
2929 break;
2930 case 'w':
2931 type = WPT_WRITE;
2932 break;
2933 case 'a':
2934 type = WPT_ACCESS;
2935 break;
2936 default:
2937 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2938 return ERROR_COMMAND_SYNTAX_ERROR;
2940 // fall through
2941 case 2:
2942 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2943 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2944 break;
2946 default:
2947 command_print(CMD_CTX, "usage: wp [address length "
2948 "[(r|w|a) [value [mask]]]]");
2949 return ERROR_COMMAND_SYNTAX_ERROR;
2952 int retval = watchpoint_add(target, addr, length, type,
2953 data_value, data_mask);
2954 if (ERROR_OK != retval)
2955 LOG_ERROR("Failure setting watchpoints");
2957 return retval;
2960 COMMAND_HANDLER(handle_rwp_command)
2962 if (CMD_ARGC != 1)
2963 return ERROR_COMMAND_SYNTAX_ERROR;
2965 uint32_t addr;
2966 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2968 struct target *target = get_current_target(CMD_CTX);
2969 watchpoint_remove(target, addr);
2971 return ERROR_OK;
2976 * Translate a virtual address to a physical address.
2978 * The low-level target implementation must have logged a detailed error
2979 * which is forwarded to telnet/GDB session.
2981 COMMAND_HANDLER(handle_virt2phys_command)
2983 if (CMD_ARGC != 1)
2984 return ERROR_COMMAND_SYNTAX_ERROR;
2986 uint32_t va;
2987 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2988 uint32_t pa;
2990 struct target *target = get_current_target(CMD_CTX);
2991 int retval = target->type->virt2phys(target, va, &pa);
2992 if (retval == ERROR_OK)
2993 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2995 return retval;
2998 static void writeData(FILE *f, const void *data, size_t len)
3000 size_t written = fwrite(data, 1, len, f);
3001 if (written != len)
3002 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3005 static void writeLong(FILE *f, int l)
3007 int i;
3008 for (i = 0; i < 4; i++)
3010 char c = (l >> (i*8))&0xff;
3011 writeData(f, &c, 1);
3016 static void writeString(FILE *f, char *s)
3018 writeData(f, s, strlen(s));
3021 /* Dump a gmon.out histogram file. */
3022 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3024 uint32_t i;
3025 FILE *f = fopen(filename, "w");
3026 if (f == NULL)
3027 return;
3028 writeString(f, "gmon");
3029 writeLong(f, 0x00000001); /* Version */
3030 writeLong(f, 0); /* padding */
3031 writeLong(f, 0); /* padding */
3032 writeLong(f, 0); /* padding */
3034 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3035 writeData(f, &zero, 1);
3037 /* figure out bucket size */
3038 uint32_t min = samples[0];
3039 uint32_t max = samples[0];
3040 for (i = 0; i < sampleNum; i++)
3042 if (min > samples[i])
3044 min = samples[i];
3046 if (max < samples[i])
3048 max = samples[i];
3052 int addressSpace = (max-min + 1);
3054 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3055 uint32_t length = addressSpace;
3056 if (length > maxBuckets)
3058 length = maxBuckets;
3060 int *buckets = malloc(sizeof(int)*length);
3061 if (buckets == NULL)
3063 fclose(f);
3064 return;
3066 memset(buckets, 0, sizeof(int)*length);
3067 for (i = 0; i < sampleNum;i++)
3069 uint32_t address = samples[i];
3070 long long a = address-min;
3071 long long b = length-1;
3072 long long c = addressSpace-1;
3073 int index = (a*b)/c; /* danger!!!! int32 overflows */
3074 buckets[index]++;
3077 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3078 writeLong(f, min); /* low_pc */
3079 writeLong(f, max); /* high_pc */
3080 writeLong(f, length); /* # of samples */
3081 writeLong(f, 64000000); /* 64MHz */
3082 writeString(f, "seconds");
3083 for (i = 0; i < (15-strlen("seconds")); i++)
3084 writeData(f, &zero, 1);
3085 writeString(f, "s");
3087 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3089 char *data = malloc(2*length);
3090 if (data != NULL)
3092 for (i = 0; i < length;i++)
3094 int val;
3095 val = buckets[i];
3096 if (val > 65535)
3098 val = 65535;
3100 data[i*2]=val&0xff;
3101 data[i*2 + 1]=(val >> 8)&0xff;
3103 free(buckets);
3104 writeData(f, data, length * 2);
3105 free(data);
3106 } else
3108 free(buckets);
3111 fclose(f);
3114 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3115 * which will be used as a random sampling of PC */
3116 COMMAND_HANDLER(handle_profile_command)
3118 struct target *target = get_current_target(CMD_CTX);
3119 struct timeval timeout, now;
3121 gettimeofday(&timeout, NULL);
3122 if (CMD_ARGC != 2)
3124 return ERROR_COMMAND_SYNTAX_ERROR;
3126 unsigned offset;
3127 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3129 timeval_add_time(&timeout, offset, 0);
3132 * @todo: Some cores let us sample the PC without the
3133 * annoying halt/resume step; for example, ARMv7 PCSR.
3134 * Provide a way to use that more efficient mechanism.
3137 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3139 static const int maxSample = 10000;
3140 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3141 if (samples == NULL)
3142 return ERROR_OK;
3144 int numSamples = 0;
3145 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3146 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3148 for (;;)
3150 int retval;
3151 target_poll(target);
3152 if (target->state == TARGET_HALTED)
3154 uint32_t t=*((uint32_t *)reg->value);
3155 samples[numSamples++]=t;
3156 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3157 target_poll(target);
3158 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3159 } else if (target->state == TARGET_RUNNING)
3161 /* We want to quickly sample the PC. */
3162 if ((retval = target_halt(target)) != ERROR_OK)
3164 free(samples);
3165 return retval;
3167 } else
3169 command_print(CMD_CTX, "Target not halted or running");
3170 retval = ERROR_OK;
3171 break;
3173 if (retval != ERROR_OK)
3175 break;
3178 gettimeofday(&now, NULL);
3179 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3181 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3182 if ((retval = target_poll(target)) != ERROR_OK)
3184 free(samples);
3185 return retval;
3187 if (target->state == TARGET_HALTED)
3189 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3191 if ((retval = target_poll(target)) != ERROR_OK)
3193 free(samples);
3194 return retval;
3196 writeGmon(samples, numSamples, CMD_ARGV[1]);
3197 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3198 break;
3201 free(samples);
3203 return ERROR_OK;
3206 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3208 char *namebuf;
3209 Jim_Obj *nameObjPtr, *valObjPtr;
3210 int result;
3212 namebuf = alloc_printf("%s(%d)", varname, idx);
3213 if (!namebuf)
3214 return JIM_ERR;
3216 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3217 valObjPtr = Jim_NewIntObj(interp, val);
3218 if (!nameObjPtr || !valObjPtr)
3220 free(namebuf);
3221 return JIM_ERR;
3224 Jim_IncrRefCount(nameObjPtr);
3225 Jim_IncrRefCount(valObjPtr);
3226 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3227 Jim_DecrRefCount(interp, nameObjPtr);
3228 Jim_DecrRefCount(interp, valObjPtr);
3229 free(namebuf);
3230 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3231 return result;
3234 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3236 struct command_context *context;
3237 struct target *target;
3239 context = current_command_context(interp);
3240 assert (context != NULL);
3242 target = get_current_target(context);
3243 if (target == NULL)
3245 LOG_ERROR("mem2array: no current target");
3246 return JIM_ERR;
3249 return target_mem2array(interp, target, argc-1, argv + 1);
3252 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3254 long l;
3255 uint32_t width;
3256 int len;
3257 uint32_t addr;
3258 uint32_t count;
3259 uint32_t v;
3260 const char *varname;
3261 int n, e, retval;
3262 uint32_t i;
3264 /* argv[1] = name of array to receive the data
3265 * argv[2] = desired width
3266 * argv[3] = memory address
3267 * argv[4] = count of times to read
3269 if (argc != 4) {
3270 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3271 return JIM_ERR;
3273 varname = Jim_GetString(argv[0], &len);
3274 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3276 e = Jim_GetLong(interp, argv[1], &l);
3277 width = l;
3278 if (e != JIM_OK) {
3279 return e;
3282 e = Jim_GetLong(interp, argv[2], &l);
3283 addr = l;
3284 if (e != JIM_OK) {
3285 return e;
3287 e = Jim_GetLong(interp, argv[3], &l);
3288 len = l;
3289 if (e != JIM_OK) {
3290 return e;
3292 switch (width) {
3293 case 8:
3294 width = 1;
3295 break;
3296 case 16:
3297 width = 2;
3298 break;
3299 case 32:
3300 width = 4;
3301 break;
3302 default:
3303 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3304 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3305 return JIM_ERR;
3307 if (len == 0) {
3308 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3309 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3310 return JIM_ERR;
3312 if ((addr + (len * width)) < addr) {
3313 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3314 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3315 return JIM_ERR;
3317 /* absurd transfer size? */
3318 if (len > 65536) {
3319 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3320 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3321 return JIM_ERR;
3324 if ((width == 1) ||
3325 ((width == 2) && ((addr & 1) == 0)) ||
3326 ((width == 4) && ((addr & 3) == 0))) {
3327 /* all is well */
3328 } else {
3329 char buf[100];
3330 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3331 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3332 addr,
3333 width);
3334 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3335 return JIM_ERR;
3338 /* Transfer loop */
3340 /* index counter */
3341 n = 0;
3343 size_t buffersize = 4096;
3344 uint8_t *buffer = malloc(buffersize);
3345 if (buffer == NULL)
3346 return JIM_ERR;
3348 /* assume ok */
3349 e = JIM_OK;
3350 while (len) {
3351 /* Slurp... in buffer size chunks */
3353 count = len; /* in objects.. */
3354 if (count > (buffersize/width)) {
3355 count = (buffersize/width);
3358 retval = target_read_memory(target, addr, width, count, buffer);
3359 if (retval != ERROR_OK) {
3360 /* BOO !*/
3361 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3362 (unsigned int)addr,
3363 (int)width,
3364 (int)count);
3365 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3366 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3367 e = JIM_ERR;
3368 len = 0;
3369 } else {
3370 v = 0; /* shut up gcc */
3371 for (i = 0 ;i < count ;i++, n++) {
3372 switch (width) {
3373 case 4:
3374 v = target_buffer_get_u32(target, &buffer[i*width]);
3375 break;
3376 case 2:
3377 v = target_buffer_get_u16(target, &buffer[i*width]);
3378 break;
3379 case 1:
3380 v = buffer[i] & 0x0ff;
3381 break;
3383 new_int_array_element(interp, varname, n, v);
3385 len -= count;
3389 free(buffer);
3391 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3393 return JIM_OK;
3396 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3398 char *namebuf;
3399 Jim_Obj *nameObjPtr, *valObjPtr;
3400 int result;
3401 long l;
3403 namebuf = alloc_printf("%s(%d)", varname, idx);
3404 if (!namebuf)
3405 return JIM_ERR;
3407 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3408 if (!nameObjPtr)
3410 free(namebuf);
3411 return JIM_ERR;
3414 Jim_IncrRefCount(nameObjPtr);
3415 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3416 Jim_DecrRefCount(interp, nameObjPtr);
3417 free(namebuf);
3418 if (valObjPtr == NULL)
3419 return JIM_ERR;
3421 result = Jim_GetLong(interp, valObjPtr, &l);
3422 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3423 *val = l;
3424 return result;
3427 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3429 struct command_context *context;
3430 struct target *target;
3432 context = current_command_context(interp);
3433 assert (context != NULL);
3435 target = get_current_target(context);
3436 if (target == NULL) {
3437 LOG_ERROR("array2mem: no current target");
3438 return JIM_ERR;
3441 return target_array2mem(interp,target, argc-1, argv + 1);
3444 static int target_array2mem(Jim_Interp *interp, struct target *target,
3445 int argc, Jim_Obj *const *argv)
3447 long l;
3448 uint32_t width;
3449 int len;
3450 uint32_t addr;
3451 uint32_t count;
3452 uint32_t v;
3453 const char *varname;
3454 int n, e, retval;
3455 uint32_t i;
3457 /* argv[1] = name of array to get the data
3458 * argv[2] = desired width
3459 * argv[3] = memory address
3460 * argv[4] = count to write
3462 if (argc != 4) {
3463 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3464 return JIM_ERR;
3466 varname = Jim_GetString(argv[0], &len);
3467 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3469 e = Jim_GetLong(interp, argv[1], &l);
3470 width = l;
3471 if (e != JIM_OK) {
3472 return e;
3475 e = Jim_GetLong(interp, argv[2], &l);
3476 addr = l;
3477 if (e != JIM_OK) {
3478 return e;
3480 e = Jim_GetLong(interp, argv[3], &l);
3481 len = l;
3482 if (e != JIM_OK) {
3483 return e;
3485 switch (width) {
3486 case 8:
3487 width = 1;
3488 break;
3489 case 16:
3490 width = 2;
3491 break;
3492 case 32:
3493 width = 4;
3494 break;
3495 default:
3496 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3497 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3498 return JIM_ERR;
3500 if (len == 0) {
3501 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3502 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3503 return JIM_ERR;
3505 if ((addr + (len * width)) < addr) {
3506 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3507 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3508 return JIM_ERR;
3510 /* absurd transfer size? */
3511 if (len > 65536) {
3512 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3513 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3514 return JIM_ERR;
3517 if ((width == 1) ||
3518 ((width == 2) && ((addr & 1) == 0)) ||
3519 ((width == 4) && ((addr & 3) == 0))) {
3520 /* all is well */
3521 } else {
3522 char buf[100];
3523 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3524 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3525 (unsigned int)addr,
3526 (int)width);
3527 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3528 return JIM_ERR;
3531 /* Transfer loop */
3533 /* index counter */
3534 n = 0;
3535 /* assume ok */
3536 e = JIM_OK;
3538 size_t buffersize = 4096;
3539 uint8_t *buffer = malloc(buffersize);
3540 if (buffer == NULL)
3541 return JIM_ERR;
3543 while (len) {
3544 /* Slurp... in buffer size chunks */
3546 count = len; /* in objects.. */
3547 if (count > (buffersize/width)) {
3548 count = (buffersize/width);
3551 v = 0; /* shut up gcc */
3552 for (i = 0 ;i < count ;i++, n++) {
3553 get_int_array_element(interp, varname, n, &v);
3554 switch (width) {
3555 case 4:
3556 target_buffer_set_u32(target, &buffer[i*width], v);
3557 break;
3558 case 2:
3559 target_buffer_set_u16(target, &buffer[i*width], v);
3560 break;
3561 case 1:
3562 buffer[i] = v & 0x0ff;
3563 break;
3566 len -= count;
3568 retval = target_write_memory(target, addr, width, count, buffer);
3569 if (retval != ERROR_OK) {
3570 /* BOO !*/
3571 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3572 (unsigned int)addr,
3573 (int)width,
3574 (int)count);
3575 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3576 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3577 e = JIM_ERR;
3578 len = 0;
3582 free(buffer);
3584 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3586 return JIM_OK;
3589 /* FIX? should we propagate errors here rather than printing them
3590 * and continuing?
3592 void target_handle_event(struct target *target, enum target_event e)
3594 struct target_event_action *teap;
3596 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3597 if (teap->event == e) {
3598 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3599 target->target_number,
3600 target_name(target),
3601 target_type_name(target),
3603 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3604 Jim_GetString(teap->body, NULL));
3605 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3607 Jim_PrintErrorMessage(teap->interp);
3614 * Returns true only if the target has a handler for the specified event.
3616 bool target_has_event_action(struct target *target, enum target_event event)
3618 struct target_event_action *teap;
3620 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3621 if (teap->event == event)
3622 return true;
3624 return false;
3627 enum target_cfg_param {
3628 TCFG_TYPE,
3629 TCFG_EVENT,
3630 TCFG_WORK_AREA_VIRT,
3631 TCFG_WORK_AREA_PHYS,
3632 TCFG_WORK_AREA_SIZE,
3633 TCFG_WORK_AREA_BACKUP,
3634 TCFG_ENDIAN,
3635 TCFG_VARIANT,
3636 TCFG_CHAIN_POSITION,
3639 static Jim_Nvp nvp_config_opts[] = {
3640 { .name = "-type", .value = TCFG_TYPE },
3641 { .name = "-event", .value = TCFG_EVENT },
3642 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3643 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3644 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3645 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3646 { .name = "-endian" , .value = TCFG_ENDIAN },
3647 { .name = "-variant", .value = TCFG_VARIANT },
3648 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3650 { .name = NULL, .value = -1 }
3653 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3655 Jim_Nvp *n;
3656 Jim_Obj *o;
3657 jim_wide w;
3658 char *cp;
3659 int e;
3661 /* parse config or cget options ... */
3662 while (goi->argc > 0) {
3663 Jim_SetEmptyResult(goi->interp);
3664 /* Jim_GetOpt_Debug(goi); */
3666 if (target->type->target_jim_configure) {
3667 /* target defines a configure function */
3668 /* target gets first dibs on parameters */
3669 e = (*(target->type->target_jim_configure))(target, goi);
3670 if (e == JIM_OK) {
3671 /* more? */
3672 continue;
3674 if (e == JIM_ERR) {
3675 /* An error */
3676 return e;
3678 /* otherwise we 'continue' below */
3680 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3681 if (e != JIM_OK) {
3682 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3683 return e;
3685 switch (n->value) {
3686 case TCFG_TYPE:
3687 /* not setable */
3688 if (goi->isconfigure) {
3689 Jim_SetResult_sprintf(goi->interp,
3690 "not settable: %s", n->name);
3691 return JIM_ERR;
3692 } else {
3693 no_params:
3694 if (goi->argc != 0) {
3695 Jim_WrongNumArgs(goi->interp,
3696 goi->argc, goi->argv,
3697 "NO PARAMS");
3698 return JIM_ERR;
3701 Jim_SetResultString(goi->interp,
3702 target_type_name(target), -1);
3703 /* loop for more */
3704 break;
3705 case TCFG_EVENT:
3706 if (goi->argc == 0) {
3707 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3708 return JIM_ERR;
3711 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3712 if (e != JIM_OK) {
3713 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3714 return e;
3717 if (goi->isconfigure) {
3718 if (goi->argc != 1) {
3719 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3720 return JIM_ERR;
3722 } else {
3723 if (goi->argc != 0) {
3724 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3725 return JIM_ERR;
3730 struct target_event_action *teap;
3732 teap = target->event_action;
3733 /* replace existing? */
3734 while (teap) {
3735 if (teap->event == (enum target_event)n->value) {
3736 break;
3738 teap = teap->next;
3741 if (goi->isconfigure) {
3742 bool replace = true;
3743 if (teap == NULL) {
3744 /* create new */
3745 teap = calloc(1, sizeof(*teap));
3746 replace = false;
3748 teap->event = n->value;
3749 teap->interp = goi->interp;
3750 Jim_GetOpt_Obj(goi, &o);
3751 if (teap->body) {
3752 Jim_DecrRefCount(teap->interp, teap->body);
3754 teap->body = Jim_DuplicateObj(goi->interp, o);
3756 * FIXME:
3757 * Tcl/TK - "tk events" have a nice feature.
3758 * See the "BIND" command.
3759 * We should support that here.
3760 * You can specify %X and %Y in the event code.
3761 * The idea is: %T - target name.
3762 * The idea is: %N - target number
3763 * The idea is: %E - event name.
3765 Jim_IncrRefCount(teap->body);
3767 if (!replace)
3769 /* add to head of event list */
3770 teap->next = target->event_action;
3771 target->event_action = teap;
3773 Jim_SetEmptyResult(goi->interp);
3774 } else {
3775 /* get */
3776 if (teap == NULL) {
3777 Jim_SetEmptyResult(goi->interp);
3778 } else {
3779 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3783 /* loop for more */
3784 break;
3786 case TCFG_WORK_AREA_VIRT:
3787 if (goi->isconfigure) {
3788 target_free_all_working_areas(target);
3789 e = Jim_GetOpt_Wide(goi, &w);
3790 if (e != JIM_OK) {
3791 return e;
3793 target->working_area_virt = w;
3794 target->working_area_virt_spec = true;
3795 } else {
3796 if (goi->argc != 0) {
3797 goto no_params;
3800 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3801 /* loop for more */
3802 break;
3804 case TCFG_WORK_AREA_PHYS:
3805 if (goi->isconfigure) {
3806 target_free_all_working_areas(target);
3807 e = Jim_GetOpt_Wide(goi, &w);
3808 if (e != JIM_OK) {
3809 return e;
3811 target->working_area_phys = w;
3812 target->working_area_phys_spec = true;
3813 } else {
3814 if (goi->argc != 0) {
3815 goto no_params;
3818 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3819 /* loop for more */
3820 break;
3822 case TCFG_WORK_AREA_SIZE:
3823 if (goi->isconfigure) {
3824 target_free_all_working_areas(target);
3825 e = Jim_GetOpt_Wide(goi, &w);
3826 if (e != JIM_OK) {
3827 return e;
3829 target->working_area_size = w;
3830 } else {
3831 if (goi->argc != 0) {
3832 goto no_params;
3835 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3836 /* loop for more */
3837 break;
3839 case TCFG_WORK_AREA_BACKUP:
3840 if (goi->isconfigure) {
3841 target_free_all_working_areas(target);
3842 e = Jim_GetOpt_Wide(goi, &w);
3843 if (e != JIM_OK) {
3844 return e;
3846 /* make this exactly 1 or 0 */
3847 target->backup_working_area = (!!w);
3848 } else {
3849 if (goi->argc != 0) {
3850 goto no_params;
3853 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3854 /* loop for more e*/
3855 break;
3857 case TCFG_ENDIAN:
3858 if (goi->isconfigure) {
3859 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3860 if (e != JIM_OK) {
3861 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3862 return e;
3864 target->endianness = n->value;
3865 } else {
3866 if (goi->argc != 0) {
3867 goto no_params;
3870 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3871 if (n->name == NULL) {
3872 target->endianness = TARGET_LITTLE_ENDIAN;
3873 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3875 Jim_SetResultString(goi->interp, n->name, -1);
3876 /* loop for more */
3877 break;
3879 case TCFG_VARIANT:
3880 if (goi->isconfigure) {
3881 if (goi->argc < 1) {
3882 Jim_SetResult_sprintf(goi->interp,
3883 "%s ?STRING?",
3884 n->name);
3885 return JIM_ERR;
3887 if (target->variant) {
3888 free((void *)(target->variant));
3890 e = Jim_GetOpt_String(goi, &cp, NULL);
3891 target->variant = strdup(cp);
3892 } else {
3893 if (goi->argc != 0) {
3894 goto no_params;
3897 Jim_SetResultString(goi->interp, target->variant,-1);
3898 /* loop for more */
3899 break;
3900 case TCFG_CHAIN_POSITION:
3901 if (goi->isconfigure) {
3902 Jim_Obj *o;
3903 struct jtag_tap *tap;
3904 target_free_all_working_areas(target);
3905 e = Jim_GetOpt_Obj(goi, &o);
3906 if (e != JIM_OK) {
3907 return e;
3909 tap = jtag_tap_by_jim_obj(goi->interp, o);
3910 if (tap == NULL) {
3911 return JIM_ERR;
3913 /* make this exactly 1 or 0 */
3914 target->tap = tap;
3915 } else {
3916 if (goi->argc != 0) {
3917 goto no_params;
3920 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3921 /* loop for more e*/
3922 break;
3924 } /* while (goi->argc) */
3927 /* done - we return */
3928 return JIM_OK;
3931 static int
3932 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3934 Jim_GetOptInfo goi;
3936 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3937 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3938 int need_args = 1 + goi.isconfigure;
3939 if (goi.argc < need_args)
3941 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3942 goi.isconfigure
3943 ? "missing: -option VALUE ..."
3944 : "missing: -option ...");
3945 return JIM_ERR;
3947 struct target *target = Jim_CmdPrivData(goi.interp);
3948 return target_configure(&goi, target);
3951 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3953 const char *cmd_name = Jim_GetString(argv[0], NULL);
3955 Jim_GetOptInfo goi;
3956 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3958 /* danger! goi.argc will be modified below! */
3959 argc = goi.argc;
3961 if (argc != 2 && argc != 3)
3963 Jim_SetResult_sprintf(goi.interp,
3964 "usage: %s <address> <data> [<count>]", cmd_name);
3965 return JIM_ERR;
3969 jim_wide a;
3970 int e = Jim_GetOpt_Wide(&goi, &a);
3971 if (e != JIM_OK)
3972 return e;
3974 jim_wide b;
3975 e = Jim_GetOpt_Wide(&goi, &b);
3976 if (e != JIM_OK)
3977 return e;
3979 jim_wide c = 1;
3980 if (argc == 3)
3982 e = Jim_GetOpt_Wide(&goi, &c);
3983 if (e != JIM_OK)
3984 return e;
3987 struct target *target = Jim_CmdPrivData(goi.interp);
3988 unsigned data_size;
3989 if (strcasecmp(cmd_name, "mww") == 0) {
3990 data_size = 4;
3992 else if (strcasecmp(cmd_name, "mwh") == 0) {
3993 data_size = 2;
3995 else if (strcasecmp(cmd_name, "mwb") == 0) {
3996 data_size = 1;
3997 } else {
3998 LOG_ERROR("command '%s' unknown: ", cmd_name);
3999 return JIM_ERR;
4002 return (target_fill_mem(target, a, target_write_memory_fast, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4005 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4007 const char *cmd_name = Jim_GetString(argv[0], NULL);
4009 Jim_GetOptInfo goi;
4010 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4012 /* danger! goi.argc will be modified below! */
4013 argc = goi.argc;
4015 if ((argc != 1) && (argc != 2))
4017 Jim_SetResult_sprintf(goi.interp,
4018 "usage: %s <address> [<count>]", cmd_name);
4019 return JIM_ERR;
4022 jim_wide a;
4023 int e = Jim_GetOpt_Wide(&goi, &a);
4024 if (e != JIM_OK) {
4025 return JIM_ERR;
4027 jim_wide c;
4028 if (argc == 2) {
4029 e = Jim_GetOpt_Wide(&goi, &c);
4030 if (e != JIM_OK) {
4031 return JIM_ERR;
4033 } else {
4034 c = 1;
4036 jim_wide b = 1; /* shut up gcc */
4037 if (strcasecmp(cmd_name, "mdw") == 0)
4038 b = 4;
4039 else if (strcasecmp(cmd_name, "mdh") == 0)
4040 b = 2;
4041 else if (strcasecmp(cmd_name, "mdb") == 0)
4042 b = 1;
4043 else {
4044 LOG_ERROR("command '%s' unknown: ", cmd_name);
4045 return JIM_ERR;
4048 /* convert count to "bytes" */
4049 c = c * b;
4051 struct target *target = Jim_CmdPrivData(goi.interp);
4052 uint8_t target_buf[32];
4053 jim_wide x, y, z;
4054 while (c > 0) {
4055 y = c;
4056 if (y > 16) {
4057 y = 16;
4059 e = target_read_memory(target, a, b, y / b, target_buf);
4060 if (e != ERROR_OK) {
4061 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4062 return JIM_ERR;
4065 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4066 switch (b) {
4067 case 4:
4068 for (x = 0; x < 16 && x < y; x += 4)
4070 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4071 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4073 for (; (x < 16) ; x += 4) {
4074 Jim_fprintf(interp, interp->cookie_stdout, " ");
4076 break;
4077 case 2:
4078 for (x = 0; x < 16 && x < y; x += 2)
4080 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4081 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4083 for (; (x < 16) ; x += 2) {
4084 Jim_fprintf(interp, interp->cookie_stdout, " ");
4086 break;
4087 case 1:
4088 default:
4089 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4090 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4091 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4093 for (; (x < 16) ; x += 1) {
4094 Jim_fprintf(interp, interp->cookie_stdout, " ");
4096 break;
4098 /* ascii-ify the bytes */
4099 for (x = 0 ; x < y ; x++) {
4100 if ((target_buf[x] >= 0x20) &&
4101 (target_buf[x] <= 0x7e)) {
4102 /* good */
4103 } else {
4104 /* smack it */
4105 target_buf[x] = '.';
4108 /* space pad */
4109 while (x < 16) {
4110 target_buf[x] = ' ';
4111 x++;
4113 /* terminate */
4114 target_buf[16] = 0;
4115 /* print - with a newline */
4116 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4117 /* NEXT... */
4118 c -= 16;
4119 a += 16;
4121 return JIM_OK;
4124 static int jim_target_mem2array(Jim_Interp *interp,
4125 int argc, Jim_Obj *const *argv)
4127 struct target *target = Jim_CmdPrivData(interp);
4128 return target_mem2array(interp, target, argc - 1, argv + 1);
4131 static int jim_target_array2mem(Jim_Interp *interp,
4132 int argc, Jim_Obj *const *argv)
4134 struct target *target = Jim_CmdPrivData(interp);
4135 return target_array2mem(interp, target, argc - 1, argv + 1);
4138 static int jim_target_tap_disabled(Jim_Interp *interp)
4140 Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4141 return JIM_ERR;
4144 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4146 if (argc != 1)
4148 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4149 return JIM_ERR;
4151 struct target *target = Jim_CmdPrivData(interp);
4152 if (!target->tap->enabled)
4153 return jim_target_tap_disabled(interp);
4155 int e = target->type->examine(target);
4156 if (e != ERROR_OK)
4158 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4159 return JIM_ERR;
4161 return JIM_OK;
4164 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4166 if (argc != 1)
4168 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4169 return JIM_ERR;
4171 struct target *target = Jim_CmdPrivData(interp);
4173 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4174 return JIM_ERR;
4176 return JIM_OK;
4179 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4181 if (argc != 1)
4183 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4184 return JIM_ERR;
4186 struct target *target = Jim_CmdPrivData(interp);
4187 if (!target->tap->enabled)
4188 return jim_target_tap_disabled(interp);
4190 int e;
4191 if (!(target_was_examined(target))) {
4192 e = ERROR_TARGET_NOT_EXAMINED;
4193 } else {
4194 e = target->type->poll(target);
4196 if (e != ERROR_OK)
4198 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4199 return JIM_ERR;
4201 return JIM_OK;
4204 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4206 Jim_GetOptInfo goi;
4207 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4209 if (goi.argc != 2)
4211 Jim_WrongNumArgs(interp, 0, argv,
4212 "([tT]|[fF]|assert|deassert) BOOL");
4213 return JIM_ERR;
4216 Jim_Nvp *n;
4217 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4218 if (e != JIM_OK)
4220 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4221 return e;
4223 /* the halt or not param */
4224 jim_wide a;
4225 e = Jim_GetOpt_Wide(&goi, &a);
4226 if (e != JIM_OK)
4227 return e;
4229 struct target *target = Jim_CmdPrivData(goi.interp);
4230 if (!target->tap->enabled)
4231 return jim_target_tap_disabled(interp);
4232 if (!(target_was_examined(target)))
4234 LOG_ERROR("Target not examined yet");
4235 return ERROR_TARGET_NOT_EXAMINED;
4237 if (!target->type->assert_reset || !target->type->deassert_reset)
4239 Jim_SetResult_sprintf(interp,
4240 "No target-specific reset for %s",
4241 target_name(target));
4242 return JIM_ERR;
4244 /* determine if we should halt or not. */
4245 target->reset_halt = !!a;
4246 /* When this happens - all workareas are invalid. */
4247 target_free_all_working_areas_restore(target, 0);
4249 /* do the assert */
4250 if (n->value == NVP_ASSERT) {
4251 e = target->type->assert_reset(target);
4252 } else {
4253 e = target->type->deassert_reset(target);
4255 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4258 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4260 if (argc != 1) {
4261 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4262 return JIM_ERR;
4264 struct target *target = Jim_CmdPrivData(interp);
4265 if (!target->tap->enabled)
4266 return jim_target_tap_disabled(interp);
4267 int e = target->type->halt(target);
4268 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4271 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4273 Jim_GetOptInfo goi;
4274 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4276 /* params: <name> statename timeoutmsecs */
4277 if (goi.argc != 2)
4279 const char *cmd_name = Jim_GetString(argv[0], NULL);
4280 Jim_SetResult_sprintf(goi.interp,
4281 "%s <state_name> <timeout_in_msec>", cmd_name);
4282 return JIM_ERR;
4285 Jim_Nvp *n;
4286 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4287 if (e != JIM_OK) {
4288 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4289 return e;
4291 jim_wide a;
4292 e = Jim_GetOpt_Wide(&goi, &a);
4293 if (e != JIM_OK) {
4294 return e;
4296 struct target *target = Jim_CmdPrivData(interp);
4297 if (!target->tap->enabled)
4298 return jim_target_tap_disabled(interp);
4300 e = target_wait_state(target, n->value, a);
4301 if (e != ERROR_OK)
4303 Jim_SetResult_sprintf(goi.interp,
4304 "target: %s wait %s fails (%d) %s",
4305 target_name(target), n->name,
4306 e, target_strerror_safe(e));
4307 return JIM_ERR;
4309 return JIM_OK;
4311 /* List for human, Events defined for this target.
4312 * scripts/programs should use 'name cget -event NAME'
4314 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4316 struct command_context *cmd_ctx = current_command_context(interp);
4317 assert (cmd_ctx != NULL);
4319 struct target *target = Jim_CmdPrivData(interp);
4320 struct target_event_action *teap = target->event_action;
4321 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4322 target->target_number,
4323 target_name(target));
4324 command_print(cmd_ctx, "%-25s | Body", "Event");
4325 command_print(cmd_ctx, "------------------------- | "
4326 "----------------------------------------");
4327 while (teap)
4329 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4330 command_print(cmd_ctx, "%-25s | %s",
4331 opt->name, Jim_GetString(teap->body, NULL));
4332 teap = teap->next;
4334 command_print(cmd_ctx, "***END***");
4335 return JIM_OK;
4337 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4339 if (argc != 1)
4341 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4342 return JIM_ERR;
4344 struct target *target = Jim_CmdPrivData(interp);
4345 Jim_SetResultString(interp, target_state_name(target), -1);
4346 return JIM_OK;
4348 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4350 Jim_GetOptInfo goi;
4351 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4352 if (goi.argc != 1)
4354 const char *cmd_name = Jim_GetString(argv[0], NULL);
4355 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4356 return JIM_ERR;
4358 Jim_Nvp *n;
4359 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4360 if (e != JIM_OK)
4362 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4363 return e;
4365 struct target *target = Jim_CmdPrivData(interp);
4366 target_handle_event(target, n->value);
4367 return JIM_OK;
4370 static const struct command_registration target_instance_command_handlers[] = {
4372 .name = "configure",
4373 .mode = COMMAND_CONFIG,
4374 .jim_handler = jim_target_configure,
4375 .help = "configure a new target for use",
4376 .usage = "[target_attribute ...]",
4379 .name = "cget",
4380 .mode = COMMAND_ANY,
4381 .jim_handler = jim_target_configure,
4382 .help = "returns the specified target attribute",
4383 .usage = "target_attribute",
4386 .name = "mww",
4387 .mode = COMMAND_EXEC,
4388 .jim_handler = jim_target_mw,
4389 .help = "Write 32-bit word(s) to target memory",
4390 .usage = "address data [count]",
4393 .name = "mwh",
4394 .mode = COMMAND_EXEC,
4395 .jim_handler = jim_target_mw,
4396 .help = "Write 16-bit half-word(s) to target memory",
4397 .usage = "address data [count]",
4400 .name = "mwb",
4401 .mode = COMMAND_EXEC,
4402 .jim_handler = jim_target_mw,
4403 .help = "Write byte(s) to target memory",
4404 .usage = "address data [count]",
4407 .name = "mdw",
4408 .mode = COMMAND_EXEC,
4409 .jim_handler = jim_target_md,
4410 .help = "Display target memory as 32-bit words",
4411 .usage = "address [count]",
4414 .name = "mdh",
4415 .mode = COMMAND_EXEC,
4416 .jim_handler = jim_target_md,
4417 .help = "Display target memory as 16-bit half-words",
4418 .usage = "address [count]",
4421 .name = "mdb",
4422 .mode = COMMAND_EXEC,
4423 .jim_handler = jim_target_md,
4424 .help = "Display target memory as 8-bit bytes",
4425 .usage = "address [count]",
4428 .name = "array2mem",
4429 .mode = COMMAND_EXEC,
4430 .jim_handler = jim_target_array2mem,
4431 .help = "Writes Tcl array of 8/16/32 bit numbers "
4432 "to target memory",
4433 .usage = "arrayname bitwidth address count",
4436 .name = "mem2array",
4437 .mode = COMMAND_EXEC,
4438 .jim_handler = jim_target_mem2array,
4439 .help = "Loads Tcl array of 8/16/32 bit numbers "
4440 "from target memory",
4441 .usage = "arrayname bitwidth address count",
4444 .name = "eventlist",
4445 .mode = COMMAND_EXEC,
4446 .jim_handler = jim_target_event_list,
4447 .help = "displays a table of events defined for this target",
4450 .name = "curstate",
4451 .mode = COMMAND_EXEC,
4452 .jim_handler = jim_target_current_state,
4453 .help = "displays the current state of this target",
4456 .name = "arp_examine",
4457 .mode = COMMAND_EXEC,
4458 .jim_handler = jim_target_examine,
4459 .help = "used internally for reset processing",
4462 .name = "arp_halt_gdb",
4463 .mode = COMMAND_EXEC,
4464 .jim_handler = jim_target_halt_gdb,
4465 .help = "used internally for reset processing to halt GDB",
4468 .name = "arp_poll",
4469 .mode = COMMAND_EXEC,
4470 .jim_handler = jim_target_poll,
4471 .help = "used internally for reset processing",
4474 .name = "arp_reset",
4475 .mode = COMMAND_EXEC,
4476 .jim_handler = jim_target_reset,
4477 .help = "used internally for reset processing",
4480 .name = "arp_halt",
4481 .mode = COMMAND_EXEC,
4482 .jim_handler = jim_target_halt,
4483 .help = "used internally for reset processing",
4486 .name = "arp_waitstate",
4487 .mode = COMMAND_EXEC,
4488 .jim_handler = jim_target_wait_state,
4489 .help = "used internally for reset processing",
4492 .name = "invoke-event",
4493 .mode = COMMAND_EXEC,
4494 .jim_handler = jim_target_invoke_event,
4495 .help = "invoke handler for specified event",
4496 .usage = "event_name",
4498 COMMAND_REGISTRATION_DONE
4501 static int target_create(Jim_GetOptInfo *goi)
4503 Jim_Obj *new_cmd;
4504 Jim_Cmd *cmd;
4505 const char *cp;
4506 char *cp2;
4507 int e;
4508 int x;
4509 struct target *target;
4510 struct command_context *cmd_ctx;
4512 cmd_ctx = current_command_context(goi->interp);
4513 assert (cmd_ctx != NULL);
4515 if (goi->argc < 3) {
4516 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4517 return JIM_ERR;
4520 /* COMMAND */
4521 Jim_GetOpt_Obj(goi, &new_cmd);
4522 /* does this command exist? */
4523 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4524 if (cmd) {
4525 cp = Jim_GetString(new_cmd, NULL);
4526 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4527 return JIM_ERR;
4530 /* TYPE */
4531 e = Jim_GetOpt_String(goi, &cp2, NULL);
4532 cp = cp2;
4533 /* now does target type exist */
4534 for (x = 0 ; target_types[x] ; x++) {
4535 if (0 == strcmp(cp, target_types[x]->name)) {
4536 /* found */
4537 break;
4540 if (target_types[x] == NULL) {
4541 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4542 for (x = 0 ; target_types[x] ; x++) {
4543 if (target_types[x + 1]) {
4544 Jim_AppendStrings(goi->interp,
4545 Jim_GetResult(goi->interp),
4546 target_types[x]->name,
4547 ", ", NULL);
4548 } else {
4549 Jim_AppendStrings(goi->interp,
4550 Jim_GetResult(goi->interp),
4551 " or ",
4552 target_types[x]->name,NULL);
4555 return JIM_ERR;
4558 /* Create it */
4559 target = calloc(1,sizeof(struct target));
4560 /* set target number */
4561 target->target_number = new_target_number();
4563 /* allocate memory for each unique target type */
4564 target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4566 memcpy(target->type, target_types[x], sizeof(struct target_type));
4568 /* will be set by "-endian" */
4569 target->endianness = TARGET_ENDIAN_UNKNOWN;
4571 target->working_area = 0x0;
4572 target->working_area_size = 0x0;
4573 target->working_areas = NULL;
4574 target->backup_working_area = 0;
4576 target->state = TARGET_UNKNOWN;
4577 target->debug_reason = DBG_REASON_UNDEFINED;
4578 target->reg_cache = NULL;
4579 target->breakpoints = NULL;
4580 target->watchpoints = NULL;
4581 target->next = NULL;
4582 target->arch_info = NULL;
4584 target->display = 1;
4586 target->halt_issued = false;
4588 /* initialize trace information */
4589 target->trace_info = malloc(sizeof(struct trace));
4590 target->trace_info->num_trace_points = 0;
4591 target->trace_info->trace_points_size = 0;
4592 target->trace_info->trace_points = NULL;
4593 target->trace_info->trace_history_size = 0;
4594 target->trace_info->trace_history = NULL;
4595 target->trace_info->trace_history_pos = 0;
4596 target->trace_info->trace_history_overflowed = 0;
4598 target->dbgmsg = NULL;
4599 target->dbg_msg_enabled = 0;
4601 target->endianness = TARGET_ENDIAN_UNKNOWN;
4603 /* Do the rest as "configure" options */
4604 goi->isconfigure = 1;
4605 e = target_configure(goi, target);
4607 if (target->tap == NULL)
4609 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4610 e = JIM_ERR;
4613 if (e != JIM_OK) {
4614 free(target->type);
4615 free(target);
4616 return e;
4619 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4620 /* default endian to little if not specified */
4621 target->endianness = TARGET_LITTLE_ENDIAN;
4624 /* incase variant is not set */
4625 if (!target->variant)
4626 target->variant = strdup("");
4628 cp = Jim_GetString(new_cmd, NULL);
4629 target->cmd_name = strdup(cp);
4631 /* create the target specific commands */
4632 if (target->type->commands) {
4633 e = register_commands(cmd_ctx, NULL, target->type->commands);
4634 if (ERROR_OK != e)
4635 LOG_ERROR("unable to register '%s' commands", cp);
4637 if (target->type->target_create) {
4638 (*(target->type->target_create))(target, goi->interp);
4641 /* append to end of list */
4643 struct target **tpp;
4644 tpp = &(all_targets);
4645 while (*tpp) {
4646 tpp = &((*tpp)->next);
4648 *tpp = target;
4651 /* now - create the new target name command */
4652 const const struct command_registration target_subcommands[] = {
4654 .chain = target_instance_command_handlers,
4657 .chain = target->type->commands,
4659 COMMAND_REGISTRATION_DONE
4661 const const struct command_registration target_commands[] = {
4663 .name = cp,
4664 .mode = COMMAND_ANY,
4665 .help = "target command group",
4666 .chain = target_subcommands,
4668 COMMAND_REGISTRATION_DONE
4670 e = register_commands(cmd_ctx, NULL, target_commands);
4671 if (ERROR_OK != e)
4672 return JIM_ERR;
4674 struct command *c = command_find_in_context(cmd_ctx, cp);
4675 assert(c);
4676 command_set_handler_data(c, target);
4678 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4681 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4683 if (argc != 1)
4685 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4686 return JIM_ERR;
4688 struct command_context *cmd_ctx = current_command_context(interp);
4689 assert (cmd_ctx != NULL);
4691 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4692 return JIM_OK;
4695 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4697 if (argc != 1)
4699 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4700 return JIM_ERR;
4702 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4703 for (unsigned x = 0; NULL != target_types[x]; x++)
4705 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4706 Jim_NewStringObj(interp, target_types[x]->name, -1));
4708 return JIM_OK;
4711 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4713 if (argc != 1)
4715 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4716 return JIM_ERR;
4718 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4719 struct target *target = all_targets;
4720 while (target)
4722 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4723 Jim_NewStringObj(interp, target_name(target), -1));
4724 target = target->next;
4726 return JIM_OK;
4729 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4731 Jim_GetOptInfo goi;
4732 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4733 if (goi.argc < 3)
4735 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4736 "<name> <target_type> [<target_options> ...]");
4737 return JIM_ERR;
4739 return target_create(&goi);
4742 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4744 Jim_GetOptInfo goi;
4745 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4747 /* It's OK to remove this mechanism sometime after August 2010 or so */
4748 LOG_WARNING("don't use numbers as target identifiers; use names");
4749 if (goi.argc != 1)
4751 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4752 return JIM_ERR;
4754 jim_wide w;
4755 int e = Jim_GetOpt_Wide(&goi, &w);
4756 if (e != JIM_OK)
4757 return JIM_ERR;
4759 struct target *target;
4760 for (target = all_targets; NULL != target; target = target->next)
4762 if (target->target_number != w)
4763 continue;
4765 Jim_SetResultString(goi.interp, target_name(target), -1);
4766 return JIM_OK;
4768 Jim_SetResult_sprintf(goi.interp,
4769 "Target: number %d does not exist", (int)(w));
4770 return JIM_ERR;
4773 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4775 if (argc != 1)
4777 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4778 return JIM_ERR;
4780 unsigned count = 0;
4781 struct target *target = all_targets;
4782 while (NULL != target)
4784 target = target->next;
4785 count++;
4787 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4788 return JIM_OK;
4791 static const struct command_registration target_subcommand_handlers[] = {
4793 .name = "init",
4794 .mode = COMMAND_CONFIG,
4795 .handler = handle_target_init_command,
4796 .help = "initialize targets",
4799 .name = "create",
4800 /* REVISIT this should be COMMAND_CONFIG ... */
4801 .mode = COMMAND_ANY,
4802 .jim_handler = jim_target_create,
4803 .usage = "name type '-chain-position' name [options ...]",
4804 .help = "Creates and selects a new target",
4807 .name = "current",
4808 .mode = COMMAND_ANY,
4809 .jim_handler = jim_target_current,
4810 .help = "Returns the currently selected target",
4813 .name = "types",
4814 .mode = COMMAND_ANY,
4815 .jim_handler = jim_target_types,
4816 .help = "Returns the available target types as "
4817 "a list of strings",
4820 .name = "names",
4821 .mode = COMMAND_ANY,
4822 .jim_handler = jim_target_names,
4823 .help = "Returns the names of all targets as a list of strings",
4826 .name = "number",
4827 .mode = COMMAND_ANY,
4828 .jim_handler = jim_target_number,
4829 .usage = "number",
4830 .help = "Returns the name of the numbered target "
4831 "(DEPRECATED)",
4834 .name = "count",
4835 .mode = COMMAND_ANY,
4836 .jim_handler = jim_target_count,
4837 .help = "Returns the number of targets as an integer "
4838 "(DEPRECATED)",
4840 COMMAND_REGISTRATION_DONE
4843 struct FastLoad
4845 uint32_t address;
4846 uint8_t *data;
4847 int length;
4851 static int fastload_num;
4852 static struct FastLoad *fastload;
4854 static void free_fastload(void)
4856 if (fastload != NULL)
4858 int i;
4859 for (i = 0; i < fastload_num; i++)
4861 if (fastload[i].data)
4862 free(fastload[i].data);
4864 free(fastload);
4865 fastload = NULL;
4872 COMMAND_HANDLER(handle_fast_load_image_command)
4874 uint8_t *buffer;
4875 size_t buf_cnt;
4876 uint32_t image_size;
4877 uint32_t min_address = 0;
4878 uint32_t max_address = 0xffffffff;
4879 int i;
4881 struct image image;
4883 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4884 &image, &min_address, &max_address);
4885 if (ERROR_OK != retval)
4886 return retval;
4888 struct duration bench;
4889 duration_start(&bench);
4891 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4893 return ERROR_OK;
4896 image_size = 0x0;
4897 retval = ERROR_OK;
4898 fastload_num = image.num_sections;
4899 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4900 if (fastload == NULL)
4902 image_close(&image);
4903 return ERROR_FAIL;
4905 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4906 for (i = 0; i < image.num_sections; i++)
4908 buffer = malloc(image.sections[i].size);
4909 if (buffer == NULL)
4911 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4912 (int)(image.sections[i].size));
4913 break;
4916 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4918 free(buffer);
4919 break;
4922 uint32_t offset = 0;
4923 uint32_t length = buf_cnt;
4926 /* DANGER!!! beware of unsigned comparision here!!! */
4928 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4929 (image.sections[i].base_address < max_address))
4931 if (image.sections[i].base_address < min_address)
4933 /* clip addresses below */
4934 offset += min_address-image.sections[i].base_address;
4935 length -= offset;
4938 if (image.sections[i].base_address + buf_cnt > max_address)
4940 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4943 fastload[i].address = image.sections[i].base_address + offset;
4944 fastload[i].data = malloc(length);
4945 if (fastload[i].data == NULL)
4947 free(buffer);
4948 break;
4950 memcpy(fastload[i].data, buffer + offset, length);
4951 fastload[i].length = length;
4953 image_size += length;
4954 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4955 (unsigned int)length,
4956 ((unsigned int)(image.sections[i].base_address + offset)));
4959 free(buffer);
4962 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4964 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4965 "in %fs (%0.3f kb/s)", image_size,
4966 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4968 command_print(CMD_CTX,
4969 "WARNING: image has not been loaded to target!"
4970 "You can issue a 'fast_load' to finish loading.");
4973 image_close(&image);
4975 if (retval != ERROR_OK)
4977 free_fastload();
4980 return retval;
4983 COMMAND_HANDLER(handle_fast_load_command)
4985 if (CMD_ARGC > 0)
4986 return ERROR_COMMAND_SYNTAX_ERROR;
4987 if (fastload == NULL)
4989 LOG_ERROR("No image in memory");
4990 return ERROR_FAIL;
4992 int i;
4993 int ms = timeval_ms();
4994 int size = 0;
4995 int retval = ERROR_OK;
4996 for (i = 0; i < fastload_num;i++)
4998 struct target *target = get_current_target(CMD_CTX);
4999 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5000 (unsigned int)(fastload[i].address),
5001 (unsigned int)(fastload[i].length));
5002 if (retval == ERROR_OK)
5004 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5006 size += fastload[i].length;
5008 int after = timeval_ms();
5009 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5010 return retval;
5013 static const struct command_registration target_command_handlers[] = {
5015 .name = "targets",
5016 .handler = handle_targets_command,
5017 .mode = COMMAND_ANY,
5018 .help = "change current default target (one parameter) "
5019 "or prints table of all targets (no parameters)",
5020 .usage = "[target]",
5023 .name = "target",
5024 .mode = COMMAND_CONFIG,
5025 .help = "configure target",
5027 .chain = target_subcommand_handlers,
5029 COMMAND_REGISTRATION_DONE
5032 int target_register_commands(struct command_context *cmd_ctx)
5034 return register_commands(cmd_ctx, NULL, target_command_handlers);
5037 static bool target_reset_nag = true;
5039 bool get_target_reset_nag(void)
5041 return target_reset_nag;
5044 COMMAND_HANDLER(handle_target_reset_nag)
5046 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5047 &target_reset_nag, "Nag after each reset about options to improve "
5048 "performance");
5051 static const struct command_registration target_exec_command_handlers[] = {
5053 .name = "fast_load_image",
5054 .handler = handle_fast_load_image_command,
5055 .mode = COMMAND_ANY,
5056 .help = "Load image into server memory for later use by "
5057 "fast_load; primarily for profiling",
5058 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5059 "[min_address [max_length]]",
5062 .name = "fast_load",
5063 .handler = handle_fast_load_command,
5064 .mode = COMMAND_EXEC,
5065 .help = "loads active fast load image to current target "
5066 "- mainly for profiling purposes",
5069 .name = "profile",
5070 .handler = handle_profile_command,
5071 .mode = COMMAND_EXEC,
5072 .help = "profiling samples the CPU PC",
5074 /** @todo don't register virt2phys() unless target supports it */
5076 .name = "virt2phys",
5077 .handler = handle_virt2phys_command,
5078 .mode = COMMAND_ANY,
5079 .help = "translate a virtual address into a physical address",
5080 .usage = "virtual_address",
5083 .name = "reg",
5084 .handler = handle_reg_command,
5085 .mode = COMMAND_EXEC,
5086 .help = "display or set a register; with no arguments, "
5087 "displays all registers and their values",
5088 .usage = "[(register_name|register_number) [value]]",
5091 .name = "poll",
5092 .handler = handle_poll_command,
5093 .mode = COMMAND_EXEC,
5094 .help = "poll target state; or reconfigure background polling",
5095 .usage = "['on'|'off']",
5098 .name = "wait_halt",
5099 .handler = handle_wait_halt_command,
5100 .mode = COMMAND_EXEC,
5101 .help = "wait up to the specified number of milliseconds "
5102 "(default 5) for a previously requested halt",
5103 .usage = "[milliseconds]",
5106 .name = "halt",
5107 .handler = handle_halt_command,
5108 .mode = COMMAND_EXEC,
5109 .help = "request target to halt, then wait up to the specified"
5110 "number of milliseconds (default 5) for it to complete",
5111 .usage = "[milliseconds]",
5114 .name = "resume",
5115 .handler = handle_resume_command,
5116 .mode = COMMAND_EXEC,
5117 .help = "resume target execution from current PC or address",
5118 .usage = "[address]",
5121 .name = "reset",
5122 .handler = handle_reset_command,
5123 .mode = COMMAND_EXEC,
5124 .usage = "[run|halt|init]",
5125 .help = "Reset all targets into the specified mode."
5126 "Default reset mode is run, if not given.",
5129 .name = "soft_reset_halt",
5130 .handler = handle_soft_reset_halt_command,
5131 .mode = COMMAND_EXEC,
5132 .help = "halt the target and do a soft reset",
5135 .name = "step",
5136 .handler = handle_step_command,
5137 .mode = COMMAND_EXEC,
5138 .help = "step one instruction from current PC or address",
5139 .usage = "[address]",
5142 .name = "mdw",
5143 .handler = handle_md_command,
5144 .mode = COMMAND_EXEC,
5145 .help = "display memory words",
5146 .usage = "['phys'] address [count]",
5149 .name = "mdh",
5150 .handler = handle_md_command,
5151 .mode = COMMAND_EXEC,
5152 .help = "display memory half-words",
5153 .usage = "['phys'] address [count]",
5156 .name = "mdb",
5157 .handler = handle_md_command,
5158 .mode = COMMAND_EXEC,
5159 .help = "display memory bytes",
5160 .usage = "['phys'] address [count]",
5163 .name = "mww",
5164 .handler = handle_mw_command,
5165 .mode = COMMAND_EXEC,
5166 .help = "write memory word",
5167 .usage = "['phys'] address value [count]",
5170 .name = "mwh",
5171 .handler = handle_mw_command,
5172 .mode = COMMAND_EXEC,
5173 .help = "write memory half-word",
5174 .usage = "['phys'] address value [count]",
5177 .name = "mwb",
5178 .handler = handle_mw_command,
5179 .mode = COMMAND_EXEC,
5180 .help = "write memory byte",
5181 .usage = "['phys'] address value [count]",
5184 .name = "bp",
5185 .handler = handle_bp_command,
5186 .mode = COMMAND_EXEC,
5187 .help = "list or set hardware or software breakpoint",
5188 .usage = "[address length ['hw']]",
5191 .name = "rbp",
5192 .handler = handle_rbp_command,
5193 .mode = COMMAND_EXEC,
5194 .help = "remove breakpoint",
5195 .usage = "address",
5198 .name = "wp",
5199 .handler = handle_wp_command,
5200 .mode = COMMAND_EXEC,
5201 .help = "list (no params) or create watchpoints",
5202 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5205 .name = "rwp",
5206 .handler = handle_rwp_command,
5207 .mode = COMMAND_EXEC,
5208 .help = "remove watchpoint",
5209 .usage = "address",
5212 .name = "load_image",
5213 .handler = handle_load_image_command,
5214 .mode = COMMAND_EXEC,
5215 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5216 "[min_address] [max_length]",
5219 .name = "dump_image",
5220 .handler = handle_dump_image_command,
5221 .mode = COMMAND_EXEC,
5222 .usage = "filename address size",
5225 .name = "verify_image",
5226 .handler = handle_verify_image_command,
5227 .mode = COMMAND_EXEC,
5228 .usage = "filename [offset [type]]",
5231 .name = "test_image",
5232 .handler = handle_test_image_command,
5233 .mode = COMMAND_EXEC,
5234 .usage = "filename [offset [type]]",
5237 .name = "ocd_mem2array",
5238 .mode = COMMAND_EXEC,
5239 .jim_handler = jim_mem2array,
5240 .help = "read 8/16/32 bit memory and return as a TCL array "
5241 "for script processing",
5242 .usage = "arrayname bitwidth address count",
5245 .name = "ocd_array2mem",
5246 .mode = COMMAND_EXEC,
5247 .jim_handler = jim_array2mem,
5248 .help = "convert a TCL array to memory locations "
5249 "and write the 8/16/32 bit values",
5250 .usage = "arrayname bitwidth address count",
5253 .name = "reset_nag",
5254 .handler = handle_target_reset_nag,
5255 .mode = COMMAND_ANY,
5256 .help = "Nag after each reset about options that could have been "
5257 "enabled to improve performance. ",
5258 .usage = "['enable'|'disable']",
5260 COMMAND_REGISTRATION_DONE
5262 static int target_register_user_commands(struct command_context *cmd_ctx)
5264 int retval = ERROR_OK;
5265 if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5266 return retval;
5268 if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5269 return retval;
5272 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);