1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
8 * Copyright (C) 2009 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
11 * Copyright (C) 2009-2010 by David Brownell *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 * Relevant specifications from ARM include:
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block
, uint32_t address
)
85 return (tar_autoincr_block
- ((tar_autoincr_block
- 1) & address
)) >> 2;
88 /***************************************************************************
90 * DP and MEM-AP register access through APACC and DPACC *
92 ***************************************************************************/
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
103 void dap_ap_select(struct adiv5_dap
*dap
,uint8_t apsel
)
105 uint32_t select
= (apsel
<< 24) & 0xFF000000;
107 if (select
!= dap
->apsel
)
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
113 dap
->ap_bank_value
= -1;
114 dap
->ap_csw_value
= -1;
115 dap
->ap_tar_value
= -1;
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
128 * @todo Rename to reflect it being specifically a MEM-AP function.
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
138 int dap_setup_accessport(struct adiv5_dap
*dap
, uint32_t csw
, uint32_t tar
)
142 csw
= csw
| CSW_DBGSWENABLE
| CSW_MASTER_DEBUG
| CSW_HPROT
;
143 if (csw
!= dap
->ap_csw_value
)
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval
= dap_queue_ap_write(dap
, AP_REG_CSW
, csw
);
147 if (retval
!= ERROR_OK
)
149 dap
->ap_csw_value
= csw
;
151 if (tar
!= dap
->ap_tar_value
)
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval
= dap_queue_ap_write(dap
, AP_REG_TAR
, tar
);
155 if (retval
!= ERROR_OK
)
157 dap
->ap_tar_value
= tar
;
159 /* Disable TAR cache when autoincrementing */
160 if (csw
& CSW_ADDRINC_MASK
)
161 dap
->ap_tar_value
= -1;
166 * Asynchronous (queued) read of a word from memory or a system register.
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
174 * @return ERROR_OK for success. Otherwise a fault code.
176 int mem_ap_read_u32(struct adiv5_dap
*dap
, uint32_t address
,
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
184 retval
= dap_setup_accessport(dap
, CSW_32BIT
| CSW_ADDRINC_OFF
,
185 address
& 0xFFFFFFF0);
186 if (retval
!= ERROR_OK
)
189 return dap_queue_ap_read(dap
, AP_REG_BD0
| (address
& 0xC), value
);
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
204 int mem_ap_read_atomic_u32(struct adiv5_dap
*dap
, uint32_t address
,
209 retval
= mem_ap_read_u32(dap
, address
, value
);
210 if (retval
!= ERROR_OK
)
217 * Asynchronous (queued) write of a word to memory or a system register.
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
225 * @return ERROR_OK for success. Otherwise a fault code.
227 int mem_ap_write_u32(struct adiv5_dap
*dap
, uint32_t address
,
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
235 retval
= dap_setup_accessport(dap
, CSW_32BIT
| CSW_ADDRINC_OFF
,
236 address
& 0xFFFFFFF0);
237 if (retval
!= ERROR_OK
)
240 return dap_queue_ap_write(dap
, AP_REG_BD0
| (address
& 0xC),
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
255 int mem_ap_write_atomic_u32(struct adiv5_dap
*dap
, uint32_t address
,
258 int retval
= mem_ap_write_u32(dap
, address
, value
);
260 if (retval
!= ERROR_OK
)
266 /*****************************************************************************
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
270 * Write a buffer in target order (little endian) *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap
*dap
, uint8_t *buffer
, int count
, uint32_t address
)
275 int wcount
, blocksize
, writecount
, errorcount
= 0, retval
= ERROR_OK
;
276 uint32_t adr
= address
;
277 uint8_t* pBuffer
= buffer
;
282 /* if we have an unaligned access - reorder data */
285 for (writecount
= 0; writecount
< count
; writecount
++)
289 memcpy(&outvalue
, pBuffer
, sizeof(uint32_t));
291 for (i
= 0; i
< 4; i
++)
293 *((uint8_t*)pBuffer
+ (adr
& 0x3)) = outvalue
;
297 pBuffer
+= sizeof(uint32_t);
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize
= max_tar_block_size(dap
->tar_autoincr_block
, address
);
305 if (wcount
< blocksize
)
308 /* handle unaligned data at 4k boundary */
312 dap_setup_accessport(dap
, CSW_32BIT
| CSW_ADDRINC_SINGLE
, address
);
314 for (writecount
= 0; writecount
< blocksize
; writecount
++)
316 retval
= dap_queue_ap_write(dap
, AP_REG_DRW
,
317 *(uint32_t *) (buffer
+ 4 * writecount
));
318 if (retval
!= ERROR_OK
)
322 if (dap_run(dap
) == ERROR_OK
)
324 wcount
= wcount
- blocksize
;
325 address
= address
+ 4 * blocksize
;
326 buffer
= buffer
+ 4 * blocksize
;
335 LOG_WARNING("Block write error address 0x%" PRIx32
", wcount 0x%x", address
, wcount
);
336 /* REVISIT return the *actual* fault code */
337 return ERROR_JTAG_DEVICE_ERROR
;
344 static int mem_ap_write_buf_packed_u16(struct adiv5_dap
*dap
,
345 uint8_t *buffer
, int count
, uint32_t address
)
347 int retval
= ERROR_OK
;
348 int wcount
, blocksize
, writecount
, i
;
356 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
357 blocksize
= max_tar_block_size(dap
->tar_autoincr_block
, address
);
359 if (wcount
< blocksize
)
362 /* handle unaligned data at 4k boundary */
366 dap_setup_accessport(dap
, CSW_16BIT
| CSW_ADDRINC_PACKED
, address
);
367 writecount
= blocksize
;
371 nbytes
= MIN((writecount
<< 1), 4);
375 if (mem_ap_write_buf_u16(dap
, buffer
,
376 nbytes
, address
) != ERROR_OK
)
378 LOG_WARNING("Block write error address "
379 "0x%" PRIx32
", count 0x%x",
381 return ERROR_JTAG_DEVICE_ERROR
;
384 address
+= nbytes
>> 1;
389 memcpy(&outvalue
, buffer
, sizeof(uint32_t));
391 for (i
= 0; i
< nbytes
; i
++)
393 *((uint8_t*)buffer
+ (address
& 0x3)) = outvalue
;
398 memcpy(&outvalue
, buffer
, sizeof(uint32_t));
399 retval
= dap_queue_ap_write(dap
,
400 AP_REG_DRW
, outvalue
);
401 if (retval
!= ERROR_OK
)
404 if (dap_run(dap
) != ERROR_OK
)
406 LOG_WARNING("Block write error address "
407 "0x%" PRIx32
", count 0x%x",
409 /* REVISIT return *actual* fault code */
410 return ERROR_JTAG_DEVICE_ERROR
;
414 buffer
+= nbytes
>> 1;
415 writecount
-= nbytes
>> 1;
417 } while (writecount
);
424 int mem_ap_write_buf_u16(struct adiv5_dap
*dap
, uint8_t *buffer
, int count
, uint32_t address
)
426 int retval
= ERROR_OK
;
429 return mem_ap_write_buf_packed_u16(dap
, buffer
, count
, address
);
433 dap_setup_accessport(dap
, CSW_16BIT
| CSW_ADDRINC_SINGLE
, address
);
435 memcpy(&svalue
, buffer
, sizeof(uint16_t));
436 uint32_t outvalue
= (uint32_t)svalue
<< 8 * (address
& 0x3);
437 retval
= dap_queue_ap_write(dap
, AP_REG_DRW
, outvalue
);
438 if (retval
!= ERROR_OK
)
441 retval
= dap_run(dap
);
442 if (retval
!= ERROR_OK
)
453 static int mem_ap_write_buf_packed_u8(struct adiv5_dap
*dap
,
454 uint8_t *buffer
, int count
, uint32_t address
)
456 int retval
= ERROR_OK
;
457 int wcount
, blocksize
, writecount
, i
;
465 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
466 blocksize
= max_tar_block_size(dap
->tar_autoincr_block
, address
);
468 if (wcount
< blocksize
)
471 dap_setup_accessport(dap
, CSW_8BIT
| CSW_ADDRINC_PACKED
, address
);
472 writecount
= blocksize
;
476 nbytes
= MIN(writecount
, 4);
480 if (mem_ap_write_buf_u8(dap
, buffer
, nbytes
, address
) != ERROR_OK
)
482 LOG_WARNING("Block write error address "
483 "0x%" PRIx32
", count 0x%x",
485 return ERROR_JTAG_DEVICE_ERROR
;
493 memcpy(&outvalue
, buffer
, sizeof(uint32_t));
495 for (i
= 0; i
< nbytes
; i
++)
497 *((uint8_t*)buffer
+ (address
& 0x3)) = outvalue
;
502 memcpy(&outvalue
, buffer
, sizeof(uint32_t));
503 retval
= dap_queue_ap_write(dap
,
504 AP_REG_DRW
, outvalue
);
505 if (retval
!= ERROR_OK
)
508 if (dap_run(dap
) != ERROR_OK
)
510 LOG_WARNING("Block write error address "
511 "0x%" PRIx32
", count 0x%x",
513 /* REVISIT return *actual* fault code */
514 return ERROR_JTAG_DEVICE_ERROR
;
519 writecount
-= nbytes
;
521 } while (writecount
);
528 int mem_ap_write_buf_u8(struct adiv5_dap
*dap
, uint8_t *buffer
, int count
, uint32_t address
)
530 int retval
= ERROR_OK
;
533 return mem_ap_write_buf_packed_u8(dap
, buffer
, count
, address
);
537 dap_setup_accessport(dap
, CSW_8BIT
| CSW_ADDRINC_SINGLE
, address
);
538 uint32_t outvalue
= (uint32_t)*buffer
<< 8 * (address
& 0x3);
539 retval
= dap_queue_ap_write(dap
, AP_REG_DRW
, outvalue
);
540 if (retval
!= ERROR_OK
)
543 retval
= dap_run(dap
);
544 if (retval
!= ERROR_OK
)
555 /* FIXME don't import ... this is a temporary workaround for the
556 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
558 extern int adi_jtag_dp_scan(struct adiv5_dap
*dap
,
559 uint8_t instr
, uint8_t reg_addr
, uint8_t RnW
,
560 uint8_t *outvalue
, uint8_t *invalue
, uint8_t *ack
);
563 * Synchronously read a block of 32-bit words into a buffer
564 * @param dap The DAP connected to the MEM-AP.
565 * @param buffer where the words will be stored (in host byte order).
566 * @param count How many words to read.
567 * @param address Memory address from which to read words; all the
568 * words must be readable by the currently selected MEM-AP.
570 int mem_ap_read_buf_u32(struct adiv5_dap
*dap
, uint8_t *buffer
,
571 int count
, uint32_t address
)
573 int wcount
, blocksize
, readcount
, errorcount
= 0, retval
= ERROR_OK
;
574 uint32_t adr
= address
;
575 uint8_t* pBuffer
= buffer
;
582 /* Adjust to read blocks within boundaries aligned to the
583 * TAR autoincrement size (at least 2^10). Autoincrement
584 * mode avoids an extra per-word roundtrip to update TAR.
586 blocksize
= max_tar_block_size(dap
->tar_autoincr_block
,
588 if (wcount
< blocksize
)
591 /* handle unaligned data at 4k boundary */
595 dap_setup_accessport(dap
, CSW_32BIT
| CSW_ADDRINC_SINGLE
,
598 /* FIXME remove these three calls to adi_jtag_dp_scan(),
599 * so this routine becomes transport-neutral. Be careful
600 * not to cause performance problems with JTAG; would it
601 * suffice to loop over dap_queue_ap_read(), or would that
602 * be slower when JTAG is the chosen transport?
605 /* Scan out first read */
606 adi_jtag_dp_scan(dap
, JTAG_DP_APACC
, AP_REG_DRW
,
607 DPAP_READ
, 0, NULL
, NULL
);
608 for (readcount
= 0; readcount
< blocksize
- 1; readcount
++)
610 /* Scan out next read; scan in posted value for the
611 * previous one. Assumes read is acked "OK/FAULT",
612 * and CTRL_STAT says that meant "OK".
614 adi_jtag_dp_scan(dap
, JTAG_DP_APACC
, AP_REG_DRW
,
615 DPAP_READ
, 0, buffer
+ 4 * readcount
,
619 /* Scan in last posted value; RDBUFF has no other effect,
620 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
622 adi_jtag_dp_scan(dap
, JTAG_DP_DPACC
, DP_RDBUFF
,
623 DPAP_READ
, 0, buffer
+ 4 * readcount
,
625 if (dap_run(dap
) == ERROR_OK
)
627 wcount
= wcount
- blocksize
;
628 address
+= 4 * blocksize
;
629 buffer
+= 4 * blocksize
;
638 LOG_WARNING("Block read error address 0x%" PRIx32
639 ", count 0x%x", address
, count
);
640 /* REVISIT return the *actual* fault code */
641 return ERROR_JTAG_DEVICE_ERROR
;
645 /* if we have an unaligned access - reorder data */
648 for (readcount
= 0; readcount
< count
; readcount
++)
652 memcpy(&data
, pBuffer
, sizeof(uint32_t));
654 for (i
= 0; i
< 4; i
++)
656 *((uint8_t*)pBuffer
) =
657 (data
>> 8 * (adr
& 0x3));
667 static int mem_ap_read_buf_packed_u16(struct adiv5_dap
*dap
,
668 uint8_t *buffer
, int count
, uint32_t address
)
671 int retval
= ERROR_OK
;
672 int wcount
, blocksize
, readcount
, i
;
680 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
681 blocksize
= max_tar_block_size(dap
->tar_autoincr_block
, address
);
682 if (wcount
< blocksize
)
685 dap_setup_accessport(dap
, CSW_16BIT
| CSW_ADDRINC_PACKED
, address
);
687 /* handle unaligned data at 4k boundary */
690 readcount
= blocksize
;
694 retval
= dap_queue_ap_read(dap
, AP_REG_DRW
, &invalue
);
695 if (dap_run(dap
) != ERROR_OK
)
697 LOG_WARNING("Block read error address 0x%" PRIx32
", count 0x%x", address
, count
);
698 /* REVISIT return the *actual* fault code */
699 return ERROR_JTAG_DEVICE_ERROR
;
702 nbytes
= MIN((readcount
<< 1), 4);
704 for (i
= 0; i
< nbytes
; i
++)
706 *((uint8_t*)buffer
) = (invalue
>> 8 * (address
& 0x3));
711 readcount
-= (nbytes
>> 1);
720 * Synchronously read a block of 16-bit halfwords into a buffer
721 * @param dap The DAP connected to the MEM-AP.
722 * @param buffer where the halfwords will be stored (in host byte order).
723 * @param count How many halfwords to read.
724 * @param address Memory address from which to read words; all the
725 * words must be readable by the currently selected MEM-AP.
727 int mem_ap_read_buf_u16(struct adiv5_dap
*dap
, uint8_t *buffer
,
728 int count
, uint32_t address
)
731 int retval
= ERROR_OK
;
734 return mem_ap_read_buf_packed_u16(dap
, buffer
, count
, address
);
738 dap_setup_accessport(dap
, CSW_16BIT
| CSW_ADDRINC_SINGLE
, address
);
739 retval
= dap_queue_ap_read(dap
, AP_REG_DRW
, &invalue
);
740 if (retval
!= ERROR_OK
)
743 retval
= dap_run(dap
);
744 if (retval
!= ERROR_OK
)
749 for (i
= 0; i
< 2; i
++)
751 *((uint8_t*)buffer
) = (invalue
>> 8 * (address
& 0x3));
758 uint16_t svalue
= (invalue
>> 8 * (address
& 0x3));
759 memcpy(buffer
, &svalue
, sizeof(uint16_t));
769 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
770 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
772 * The solution is to arrange for a large out/in scan in this loop and
773 * and convert data afterwards.
775 static int mem_ap_read_buf_packed_u8(struct adiv5_dap
*dap
,
776 uint8_t *buffer
, int count
, uint32_t address
)
779 int retval
= ERROR_OK
;
780 int wcount
, blocksize
, readcount
, i
;
788 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
789 blocksize
= max_tar_block_size(dap
->tar_autoincr_block
, address
);
791 if (wcount
< blocksize
)
794 dap_setup_accessport(dap
, CSW_8BIT
| CSW_ADDRINC_PACKED
, address
);
795 readcount
= blocksize
;
799 retval
= dap_queue_ap_read(dap
, AP_REG_DRW
, &invalue
);
800 if (dap_run(dap
) != ERROR_OK
)
802 LOG_WARNING("Block read error address 0x%" PRIx32
", count 0x%x", address
, count
);
803 /* REVISIT return the *actual* fault code */
804 return ERROR_JTAG_DEVICE_ERROR
;
807 nbytes
= MIN(readcount
, 4);
809 for (i
= 0; i
< nbytes
; i
++)
811 *((uint8_t*)buffer
) = (invalue
>> 8 * (address
& 0x3));
825 * Synchronously read a block of bytes into a buffer
826 * @param dap The DAP connected to the MEM-AP.
827 * @param buffer where the bytes will be stored.
828 * @param count How many bytes to read.
829 * @param address Memory address from which to read data; all the
830 * data must be readable by the currently selected MEM-AP.
832 int mem_ap_read_buf_u8(struct adiv5_dap
*dap
, uint8_t *buffer
,
833 int count
, uint32_t address
)
836 int retval
= ERROR_OK
;
839 return mem_ap_read_buf_packed_u8(dap
, buffer
, count
, address
);
843 dap_setup_accessport(dap
, CSW_8BIT
| CSW_ADDRINC_SINGLE
, address
);
844 retval
= dap_queue_ap_read(dap
, AP_REG_DRW
, &invalue
);
845 retval
= dap_run(dap
);
846 if (retval
!= ERROR_OK
)
849 *((uint8_t*)buffer
) = (invalue
>> 8 * (address
& 0x3));
858 /*--------------------------------------------------------------------------*/
861 /* FIXME don't import ... just initialize as
862 * part of DAP transport setup
864 extern const struct dap_ops jtag_dp_ops
;
866 /*--------------------------------------------------------------------------*/
869 * Initialize a DAP. This sets up the power domains, prepares the DP
870 * for further use, and arranges to use AP #0 for all AP operations
871 * until dap_ap-select() changes that policy.
873 * @param dap The DAP being initialized.
875 * @todo Rename this. We also need an initialization scheme which account
876 * for SWD transports not just JTAG; that will need to address differences
877 * in layering. (JTAG is useful without any debug target; but not SWD.)
878 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
880 int ahbap_debugport_init(struct adiv5_dap
*dap
)
882 uint32_t idreg
, romaddr
, dummy
;
889 /* JTAG-DP or SWJ-DP, in JTAG mode */
890 dap
->ops
= &jtag_dp_ops
;
892 /* Default MEM-AP setup.
894 * REVISIT AP #0 may be an inappropriate default for this.
895 * Should we probe, or take a hint from the caller?
896 * Presumably we can ignore the possibility of multiple APs.
899 dap_ap_select(dap
, 0);
901 /* DP initialization */
903 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &dummy
);
904 if (retval
!= ERROR_OK
)
907 retval
= dap_queue_dp_write(dap
, DP_CTRL_STAT
, SSTICKYERR
);
908 if (retval
!= ERROR_OK
)
911 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &dummy
);
912 if (retval
!= ERROR_OK
)
915 dap
->dp_ctrl_stat
= CDBGPWRUPREQ
| CSYSPWRUPREQ
;
916 retval
= dap_queue_dp_write(dap
, DP_CTRL_STAT
, dap
->dp_ctrl_stat
);
917 if (retval
!= ERROR_OK
)
920 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &ctrlstat
);
921 if (retval
!= ERROR_OK
)
923 if ((retval
= dap_run(dap
)) != ERROR_OK
)
926 /* Check that we have debug power domains activated */
927 while (!(ctrlstat
& CDBGPWRUPACK
) && (cnt
++ < 10))
929 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
930 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &ctrlstat
);
931 if (retval
!= ERROR_OK
)
933 if ((retval
= dap_run(dap
)) != ERROR_OK
)
938 while (!(ctrlstat
& CSYSPWRUPACK
) && (cnt
++ < 10))
940 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
941 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &ctrlstat
);
942 if (retval
!= ERROR_OK
)
944 if ((retval
= dap_run(dap
)) != ERROR_OK
)
949 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &dummy
);
950 if (retval
!= ERROR_OK
)
952 /* With debug power on we can activate OVERRUN checking */
953 dap
->dp_ctrl_stat
= CDBGPWRUPREQ
| CSYSPWRUPREQ
| CORUNDETECT
;
954 retval
= dap_queue_dp_write(dap
, DP_CTRL_STAT
, dap
->dp_ctrl_stat
);
955 if (retval
!= ERROR_OK
)
957 retval
= dap_queue_dp_read(dap
, DP_CTRL_STAT
, &dummy
);
958 if (retval
!= ERROR_OK
)
962 * REVISIT this isn't actually *initializing* anything in an AP,
963 * and doesn't care if it's a MEM-AP at all (much less AHB-AP).
964 * Should it? If the ROM address is valid, is this the right
965 * place to scan the table and do any topology detection?
967 retval
= dap_queue_ap_read(dap
, AP_REG_IDR
, &idreg
);
968 retval
= dap_queue_ap_read(dap
, AP_REG_BASE
, &romaddr
);
970 LOG_DEBUG("MEM-AP #%" PRId32
" ID Register 0x%" PRIx32
971 ", Debug ROM Address 0x%" PRIx32
,
972 dap
->apsel
, idreg
, romaddr
);
977 /* CID interpretation -- see ARM IHI 0029B section 3
978 * and ARM IHI 0031A table 13-3.
980 static const char *class_description
[16] ={
981 "Reserved", "ROM table", "Reserved", "Reserved",
982 "Reserved", "Reserved", "Reserved", "Reserved",
983 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
984 "Reserved", "OptimoDE DESS",
985 "Generic IP component", "PrimeCell or System component"
989 is_dap_cid_ok(uint32_t cid3
, uint32_t cid2
, uint32_t cid1
, uint32_t cid0
)
991 return cid3
== 0xb1 && cid2
== 0x05
992 && ((cid1
& 0x0f) == 0) && cid0
== 0x0d;
995 static int dap_info_command(struct command_context
*cmd_ctx
,
996 struct adiv5_dap
*dap
, int apsel
)
999 uint32_t dbgbase
, apid
;
1000 int romtable_present
= 0;
1004 /* AP address is in bits 31:24 of DP_SELECT */
1006 return ERROR_INVALID_ARGUMENTS
;
1008 apselold
= dap
->apsel
;
1009 dap_ap_select(dap
, apsel
);
1010 retval
= dap_queue_ap_read(dap
, AP_REG_BASE
, &dbgbase
);
1011 retval
= dap_queue_ap_read(dap
, AP_REG_IDR
, &apid
);
1012 retval
= dap_run(dap
);
1013 if (retval
!= ERROR_OK
)
1016 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1017 mem_ap
= ((apid
&0x10000) && ((apid
&0x0F) != 0));
1018 command_print(cmd_ctx
, "AP ID register 0x%8.8" PRIx32
, apid
);
1024 command_print(cmd_ctx
, "\tType is JTAG-AP");
1027 command_print(cmd_ctx
, "\tType is MEM-AP AHB");
1030 command_print(cmd_ctx
, "\tType is MEM-AP APB");
1033 command_print(cmd_ctx
, "\tUnknown AP type");
1037 /* NOTE: a MEM-AP may have a single CoreSight component that's
1038 * not a ROM table ... or have no such components at all.
1041 command_print(cmd_ctx
, "AP BASE 0x%8.8" PRIx32
,
1046 command_print(cmd_ctx
, "No AP found at this apsel 0x%x", apsel
);
1049 romtable_present
= ((mem_ap
) && (dbgbase
!= 0xFFFFFFFF));
1050 if (romtable_present
)
1052 uint32_t cid0
,cid1
,cid2
,cid3
,memtype
,romentry
;
1053 uint16_t entry_offset
;
1055 /* bit 16 of apid indicates a memory access port */
1057 command_print(cmd_ctx
, "\tValid ROM table present");
1059 command_print(cmd_ctx
, "\tROM table in legacy format");
1061 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1062 mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFF0, &cid0
);
1063 mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFF4, &cid1
);
1064 mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFF8, &cid2
);
1065 mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFFC, &cid3
);
1066 mem_ap_read_u32(dap
, (dbgbase
&0xFFFFF000) | 0xFCC, &memtype
);
1067 retval
= dap_run(dap
);
1068 if (retval
!= ERROR_OK
)
1071 if (!is_dap_cid_ok(cid3
, cid2
, cid1
, cid0
))
1072 command_print(cmd_ctx
, "\tCID3 0x%2.2" PRIx32
1073 ", CID2 0x%2.2" PRIx32
1074 ", CID1 0x%2.2" PRIx32
1075 ", CID0 0x%2.2" PRIx32
,
1076 cid3
, cid2
, cid1
, cid0
);
1078 command_print(cmd_ctx
, "\tMEMTYPE system memory present on bus");
1080 command_print(cmd_ctx
, "\tMEMTYPE System memory not present. "
1081 "Dedicated debug bus.");
1083 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1087 mem_ap_read_atomic_u32(dap
, (dbgbase
&0xFFFFF000) | entry_offset
, &romentry
);
1088 command_print(cmd_ctx
, "\tROMTABLE[0x%x] = 0x%" PRIx32
"",entry_offset
,romentry
);
1091 uint32_t c_cid0
, c_cid1
, c_cid2
, c_cid3
;
1092 uint32_t c_pid0
, c_pid1
, c_pid2
, c_pid3
, c_pid4
;
1093 uint32_t component_start
, component_base
;
1097 component_base
= (uint32_t)((dbgbase
& 0xFFFFF000)
1098 + (int)(romentry
& 0xFFFFF000));
1099 mem_ap_read_atomic_u32(dap
,
1100 (component_base
& 0xFFFFF000) | 0xFE0, &c_pid0
);
1101 mem_ap_read_atomic_u32(dap
,
1102 (component_base
& 0xFFFFF000) | 0xFE4, &c_pid1
);
1103 mem_ap_read_atomic_u32(dap
,
1104 (component_base
& 0xFFFFF000) | 0xFE8, &c_pid2
);
1105 mem_ap_read_atomic_u32(dap
,
1106 (component_base
& 0xFFFFF000) | 0xFEC, &c_pid3
);
1107 mem_ap_read_atomic_u32(dap
,
1108 (component_base
& 0xFFFFF000) | 0xFD0, &c_pid4
);
1109 mem_ap_read_atomic_u32(dap
,
1110 (component_base
& 0xFFFFF000) | 0xFF0, &c_cid0
);
1111 mem_ap_read_atomic_u32(dap
,
1112 (component_base
& 0xFFFFF000) | 0xFF4, &c_cid1
);
1113 mem_ap_read_atomic_u32(dap
,
1114 (component_base
& 0xFFFFF000) | 0xFF8, &c_cid2
);
1115 mem_ap_read_atomic_u32(dap
,
1116 (component_base
& 0xFFFFF000) | 0xFFC, &c_cid3
);
1117 component_start
= component_base
- 0x1000*(c_pid4
>> 4);
1119 command_print(cmd_ctx
, "\t\tComponent base address 0x%" PRIx32
1120 ", start address 0x%" PRIx32
,
1121 component_base
, component_start
);
1122 command_print(cmd_ctx
, "\t\tComponent class is 0x%x, %s",
1123 (int) (c_cid1
>> 4) & 0xf,
1124 /* See ARM IHI 0029B Table 3-3 */
1125 class_description
[(c_cid1
>> 4) & 0xf]);
1127 /* CoreSight component? */
1128 if (((c_cid1
>> 4) & 0x0f) == 9) {
1131 char *major
= "Reserved", *subtype
= "Reserved";
1133 mem_ap_read_atomic_u32(dap
,
1134 (component_base
& 0xfffff000) | 0xfcc,
1136 minor
= (devtype
>> 4) & 0x0f;
1137 switch (devtype
& 0x0f) {
1139 major
= "Miscellaneous";
1145 subtype
= "Validation component";
1150 major
= "Trace Sink";
1164 major
= "Trace Link";
1170 subtype
= "Funnel, router";
1176 subtype
= "FIFO, buffer";
1181 major
= "Trace Source";
1187 subtype
= "Processor";
1193 subtype
= "Engine/Coprocessor";
1201 major
= "Debug Control";
1207 subtype
= "Trigger Matrix";
1210 subtype
= "Debug Auth";
1215 major
= "Debug Logic";
1221 subtype
= "Processor";
1227 subtype
= "Engine/Coprocessor";
1232 command_print(cmd_ctx
, "\t\tType is 0x%2.2x, %s, %s",
1233 (unsigned) (devtype
& 0xff),
1235 /* REVISIT also show 0xfc8 DevId */
1238 if (!is_dap_cid_ok(cid3
, cid2
, cid1
, cid0
))
1239 command_print(cmd_ctx
, "\t\tCID3 0x%2.2" PRIx32
1240 ", CID2 0x%2.2" PRIx32
1241 ", CID1 0x%2.2" PRIx32
1242 ", CID0 0x%2.2" PRIx32
,
1243 c_cid3
, c_cid2
, c_cid1
, c_cid0
);
1244 command_print(cmd_ctx
, "\t\tPeripheral ID[4..0] = hex "
1245 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1247 (int) c_pid3
, (int) c_pid2
,
1248 (int) c_pid1
, (int) c_pid0
);
1250 /* Part number interpretations are from Cortex
1251 * core specs, the CoreSight components TRM
1252 * (ARM DDI 0314H), and ETM specs; also from
1253 * chip observation (e.g. TI SDTI).
1255 part_num
= c_pid0
& 0xff;
1256 part_num
|= (c_pid1
& 0x0f) << 8;
1259 type
= "Cortex-M3 NVIC";
1260 full
= "(Interrupt Controller)";
1263 type
= "Cortex-M3 ITM";
1264 full
= "(Instrumentation Trace Module)";
1267 type
= "Cortex-M3 DWT";
1268 full
= "(Data Watchpoint and Trace)";
1271 type
= "Cortex-M3 FBP";
1272 full
= "(Flash Patch and Breakpoint)";
1275 type
= "CoreSight ETM11";
1276 full
= "(Embedded Trace)";
1278 // case 0x113: what?
1279 case 0x120: /* from OMAP3 memmap */
1281 full
= "(System Debug Trace Interface)";
1283 case 0x343: /* from OMAP3 memmap */
1288 type
= "Coresight CTI";
1289 full
= "(Cross Trigger)";
1292 type
= "Coresight ETB";
1293 full
= "(Trace Buffer)";
1296 type
= "Coresight CSTF";
1297 full
= "(Trace Funnel)";
1300 type
= "CoreSight ETM9";
1301 full
= "(Embedded Trace)";
1304 type
= "Coresight TPIU";
1305 full
= "(Trace Port Interface Unit)";
1308 type
= "Cortex-A8 ETM";
1309 full
= "(Embedded Trace)";
1312 type
= "Cortex-A8 CTI";
1313 full
= "(Cross Trigger)";
1316 type
= "Cortex-M3 TPIU";
1317 full
= "(Trace Port Interface Unit)";
1320 type
= "Cortex-M3 ETM";
1321 full
= "(Embedded Trace)";
1324 type
= "Cortex-A8 Debug";
1325 full
= "(Debug Unit)";
1328 type
= "-*- unrecognized -*-";
1332 command_print(cmd_ctx
, "\t\tPart is %s %s",
1338 command_print(cmd_ctx
, "\t\tComponent not present");
1340 command_print(cmd_ctx
, "\t\tEnd of ROM table");
1343 } while (romentry
> 0);
1347 command_print(cmd_ctx
, "\tNo ROM table present");
1349 dap_ap_select(dap
, apselold
);
1354 COMMAND_HANDLER(handle_dap_info_command
)
1356 struct target
*target
= get_current_target(CMD_CTX
);
1357 struct arm
*arm
= target_to_arm(target
);
1358 struct adiv5_dap
*dap
= arm
->dap
;
1366 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], apsel
);
1369 return ERROR_COMMAND_SYNTAX_ERROR
;
1372 return dap_info_command(CMD_CTX
, dap
, apsel
);
1375 COMMAND_HANDLER(dap_baseaddr_command
)
1377 struct target
*target
= get_current_target(CMD_CTX
);
1378 struct arm
*arm
= target_to_arm(target
);
1379 struct adiv5_dap
*dap
= arm
->dap
;
1381 uint32_t apsel
, apselsave
, baseaddr
;
1384 apselsave
= dap
->apsel
;
1390 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], apsel
);
1391 /* AP address is in bits 31:24 of DP_SELECT */
1393 return ERROR_INVALID_ARGUMENTS
;
1396 return ERROR_COMMAND_SYNTAX_ERROR
;
1399 if (apselsave
!= apsel
)
1400 dap_ap_select(dap
, apsel
);
1402 /* NOTE: assumes we're talking to a MEM-AP, which
1403 * has a base address. There are other kinds of AP,
1404 * though they're not common for now. This should
1405 * use the ID register to verify it's a MEM-AP.
1407 retval
= dap_queue_ap_read(dap
, AP_REG_BASE
, &baseaddr
);
1408 retval
= dap_run(dap
);
1409 if (retval
!= ERROR_OK
)
1412 command_print(CMD_CTX
, "0x%8.8" PRIx32
, baseaddr
);
1414 if (apselsave
!= apsel
)
1415 dap_ap_select(dap
, apselsave
);
1420 COMMAND_HANDLER(dap_memaccess_command
)
1422 struct target
*target
= get_current_target(CMD_CTX
);
1423 struct arm
*arm
= target_to_arm(target
);
1424 struct adiv5_dap
*dap
= arm
->dap
;
1426 uint32_t memaccess_tck
;
1430 memaccess_tck
= dap
->memaccess_tck
;
1433 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], memaccess_tck
);
1436 return ERROR_COMMAND_SYNTAX_ERROR
;
1438 dap
->memaccess_tck
= memaccess_tck
;
1440 command_print(CMD_CTX
, "memory bus access delay set to %" PRIi32
" tck",
1441 dap
->memaccess_tck
);
1446 COMMAND_HANDLER(dap_apsel_command
)
1448 struct target
*target
= get_current_target(CMD_CTX
);
1449 struct arm
*arm
= target_to_arm(target
);
1450 struct adiv5_dap
*dap
= arm
->dap
;
1452 uint32_t apsel
, apid
;
1460 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], apsel
);
1461 /* AP address is in bits 31:24 of DP_SELECT */
1463 return ERROR_INVALID_ARGUMENTS
;
1466 return ERROR_COMMAND_SYNTAX_ERROR
;
1469 dap_ap_select(dap
, apsel
);
1470 retval
= dap_queue_ap_read(dap
, AP_REG_IDR
, &apid
);
1471 retval
= dap_run(dap
);
1472 if (retval
!= ERROR_OK
)
1475 command_print(CMD_CTX
, "ap %" PRIi32
" selected, identification register 0x%8.8" PRIx32
,
1481 COMMAND_HANDLER(dap_apid_command
)
1483 struct target
*target
= get_current_target(CMD_CTX
);
1484 struct arm
*arm
= target_to_arm(target
);
1485 struct adiv5_dap
*dap
= arm
->dap
;
1487 uint32_t apsel
, apselsave
, apid
;
1490 apselsave
= dap
->apsel
;
1496 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], apsel
);
1497 /* AP address is in bits 31:24 of DP_SELECT */
1499 return ERROR_INVALID_ARGUMENTS
;
1502 return ERROR_COMMAND_SYNTAX_ERROR
;
1505 if (apselsave
!= apsel
)
1506 dap_ap_select(dap
, apsel
);
1508 retval
= dap_queue_ap_read(dap
, AP_REG_IDR
, &apid
);
1509 retval
= dap_run(dap
);
1510 if (retval
!= ERROR_OK
)
1513 command_print(CMD_CTX
, "0x%8.8" PRIx32
, apid
);
1514 if (apselsave
!= apsel
)
1515 dap_ap_select(dap
, apselsave
);
1520 static const struct command_registration dap_commands
[] = {
1523 .handler
= handle_dap_info_command
,
1524 .mode
= COMMAND_EXEC
,
1525 .help
= "display ROM table for MEM-AP "
1526 "(default currently selected AP)",
1527 .usage
= "[ap_num]",
1531 .handler
= dap_apsel_command
,
1532 .mode
= COMMAND_EXEC
,
1533 .help
= "Set the currently selected AP (default 0) "
1534 "and display the result",
1535 .usage
= "[ap_num]",
1539 .handler
= dap_apid_command
,
1540 .mode
= COMMAND_EXEC
,
1541 .help
= "return ID register from AP "
1542 "(default currently selected AP)",
1543 .usage
= "[ap_num]",
1547 .handler
= dap_baseaddr_command
,
1548 .mode
= COMMAND_EXEC
,
1549 .help
= "return debug base address from MEM-AP "
1550 "(default currently selected AP)",
1551 .usage
= "[ap_num]",
1554 .name
= "memaccess",
1555 .handler
= dap_memaccess_command
,
1556 .mode
= COMMAND_EXEC
,
1557 .help
= "set/get number of extra tck for MEM-AP memory "
1558 "bus access [0-255]",
1559 .usage
= "[cycles]",
1561 COMMAND_REGISTRATION_DONE
1564 const struct command_registration dap_command_handlers
[] = {
1567 .mode
= COMMAND_EXEC
,
1568 .help
= "DAP command group",
1569 .chain
= dap_commands
,
1571 COMMAND_REGISTRATION_DONE