1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2008 by Hongtao Zheng *
14 * Copyright (C) 2009 by David Brownell *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
30 ***************************************************************************/
35 #include "breakpoints.h"
36 #include "embeddedice.h"
37 #include "target_request.h"
39 #include <helper/time_support.h>
40 #include "arm_simulator.h"
41 #include "arm_semihosting.h"
42 #include "algorithm.h"
49 * Hold common code supporting the ARM7 and ARM9 core generations.
51 * While the ARM core implementations evolved substantially during these
52 * two generations, they look quite similar from the JTAG perspective.
53 * Both have similar debug facilities, based on the same two scan chains
54 * providing access to the core and to an EmbeddedICE module. Both can
55 * support similar ETM and ETB modules, for tracing. And both expose
56 * what could be viewed as "ARM Classic", with multiple processor modes,
57 * shadowed registers, and support for the Thumb instruction set.
59 * Processor differences include things like presence or absence of MMU
60 * and cache, pipeline sizes, use of a modified Harvard Architecure
61 * (with separate instruction and data busses from the CPU), support
62 * for cpu clock gating during idle, and more.
65 static int arm7_9_debug_entry(struct target
*target
);
68 * Clear watchpoints for an ARM7/9 target.
70 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71 * @return JTAG error status after executing queue
73 static int arm7_9_clear_watchpoints(struct arm7_9_common
*arm7_9
)
76 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
77 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
78 arm7_9
->sw_breakpoint_count
= 0;
79 arm7_9
->sw_breakpoints_added
= 0;
81 arm7_9
->wp1_used
= arm7_9
->wp1_used_default
;
82 arm7_9
->wp_available
= arm7_9
->wp_available_max
;
84 return jtag_execute_queue();
88 * Assign a watchpoint to one of the two available hardware comparators in an
89 * ARM7 or ARM9 target.
91 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
94 static void arm7_9_assign_wp(struct arm7_9_common
*arm7_9
, struct breakpoint
*breakpoint
)
96 if (!arm7_9
->wp0_used
)
100 arm7_9
->wp_available
--;
102 else if (!arm7_9
->wp1_used
)
104 arm7_9
->wp1_used
= 1;
106 arm7_9
->wp_available
--;
110 LOG_ERROR("BUG: no hardware comparator available");
112 LOG_DEBUG("BPID: %d (0x%08" PRIx32
") using hw wp: %d",
113 breakpoint
->unique_id
,
119 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
121 * @param arm7_9 Pointer to common struct for ARM7/9 targets
122 * @return Error codes if there is a problem finding a watchpoint or the result
123 * of executing the JTAG queue
125 static int arm7_9_set_software_breakpoints(struct arm7_9_common
*arm7_9
)
127 if (arm7_9
->sw_breakpoints_added
)
131 if (arm7_9
->wp_available
< 1)
133 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
134 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
136 arm7_9
->wp_available
--;
138 /* pick a breakpoint unit */
139 if (!arm7_9
->wp0_used
)
141 arm7_9
->sw_breakpoints_added
= 1;
142 arm7_9
->wp0_used
= 3;
143 } else if (!arm7_9
->wp1_used
)
145 arm7_9
->sw_breakpoints_added
= 2;
146 arm7_9
->wp1_used
= 3;
150 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
154 if (arm7_9
->sw_breakpoints_added
== 1)
156 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], arm7_9
->arm_bkpt
);
157 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0x0);
158 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffffu
);
159 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
160 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
162 else if (arm7_9
->sw_breakpoints_added
== 2)
164 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], arm7_9
->arm_bkpt
);
165 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0x0);
166 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0xffffffffu
);
167 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
168 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
172 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
175 LOG_DEBUG("SW BP using hw wp: %d",
176 arm7_9
->sw_breakpoints_added
);
178 return jtag_execute_queue();
182 * Setup the common pieces for an ARM7/9 target after reset or on startup.
184 * @param target Pointer to an ARM7/9 target to setup
185 * @return Result of clearing the watchpoints on the target
187 int arm7_9_setup(struct target
*target
)
189 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
191 return arm7_9_clear_watchpoints(arm7_9
);
195 * Set either a hardware or software breakpoint on an ARM7/9 target. The
196 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
197 * might have erased the values in Embedded ICE.
199 * @param target Pointer to the target device to set the breakpoints on
200 * @param breakpoint Pointer to the breakpoint to be set
201 * @return For hardware breakpoints, this is the result of executing the JTAG
202 * queue. For software breakpoints, this will be the status of the
203 * required memory reads and writes
205 int arm7_9_set_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
207 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
208 int retval
= ERROR_OK
;
210 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
", Type: %d" ,
211 breakpoint
->unique_id
,
215 if (target
->state
!= TARGET_HALTED
)
217 LOG_WARNING("target not halted");
218 return ERROR_TARGET_NOT_HALTED
;
221 if (breakpoint
->type
== BKPT_HARD
)
223 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
224 uint32_t mask
= (breakpoint
->length
== 4) ? 0x3u
: 0x1u
;
226 /* reassign a hw breakpoint */
227 if (breakpoint
->set
== 0)
229 arm7_9_assign_wp(arm7_9
, breakpoint
);
232 if (breakpoint
->set
== 1)
234 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], breakpoint
->address
);
235 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
236 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffffu
);
237 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
238 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
240 else if (breakpoint
->set
== 2)
242 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], breakpoint
->address
);
243 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
244 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffffu
);
245 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
246 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
250 LOG_ERROR("BUG: no hardware comparator available");
254 retval
= jtag_execute_queue();
256 else if (breakpoint
->type
== BKPT_SOFT
)
258 /* did we already set this breakpoint? */
262 if (breakpoint
->length
== 4)
264 uint32_t verify
= 0xffffffff;
265 /* keep the original instruction in target endianness */
266 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
270 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
271 if ((retval
= target_write_u32(target
, breakpoint
->address
, arm7_9
->arm_bkpt
)) != ERROR_OK
)
276 if ((retval
= target_read_u32(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
280 if (verify
!= arm7_9
->arm_bkpt
)
282 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
288 uint16_t verify
= 0xffff;
289 /* keep the original instruction in target endianness */
290 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
294 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
295 if ((retval
= target_write_u16(target
, breakpoint
->address
, arm7_9
->thumb_bkpt
)) != ERROR_OK
)
300 if ((retval
= target_read_u16(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
304 if (verify
!= arm7_9
->thumb_bkpt
)
306 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
311 if ((retval
= arm7_9_set_software_breakpoints(arm7_9
)) != ERROR_OK
)
314 arm7_9
->sw_breakpoint_count
++;
323 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
324 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
325 * will be updated. Otherwise, the software breakpoint will be restored to its
326 * original instruction if it hasn't already been modified.
328 * @param target Pointer to ARM7/9 target to unset the breakpoint from
329 * @param breakpoint Pointer to breakpoint to be unset
330 * @return For hardware breakpoints, this is the result of executing the JTAG
331 * queue. For software breakpoints, this will be the status of the
332 * required memory reads and writes
334 int arm7_9_unset_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
336 int retval
= ERROR_OK
;
337 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
339 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
,
340 breakpoint
->unique_id
,
341 breakpoint
->address
);
343 if (!breakpoint
->set
)
345 LOG_WARNING("breakpoint not set");
349 if (breakpoint
->type
== BKPT_HARD
)
351 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
352 breakpoint
->unique_id
,
354 if (breakpoint
->set
== 1)
356 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
357 arm7_9
->wp0_used
= 0;
358 arm7_9
->wp_available
++;
360 else if (breakpoint
->set
== 2)
362 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
363 arm7_9
->wp1_used
= 0;
364 arm7_9
->wp_available
++;
366 retval
= jtag_execute_queue();
371 /* restore original instruction (kept in target endianness) */
372 if (breakpoint
->length
== 4)
374 uint32_t current_instr
;
375 /* check that user program as not modified breakpoint instruction */
376 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
380 if (current_instr
== arm7_9
->arm_bkpt
)
381 if ((retval
= target_write_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
388 uint16_t current_instr
;
389 /* check that user program as not modified breakpoint instruction */
390 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
394 if (current_instr
== arm7_9
->thumb_bkpt
)
395 if ((retval
= target_write_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
401 if (--arm7_9
->sw_breakpoint_count
==0)
403 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
404 if (arm7_9
->sw_breakpoints_added
== 1)
406 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0);
408 else if (arm7_9
->sw_breakpoints_added
== 2)
410 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0);
421 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
422 * dangling breakpoints and that the desired breakpoint can be added.
424 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
425 * @param breakpoint Pointer to the breakpoint to be added
426 * @return An error status if there is a problem adding the breakpoint or the
427 * result of setting the breakpoint
429 int arm7_9_add_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
431 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
433 if (arm7_9
->breakpoint_count
== 0)
435 /* make sure we don't have any dangling breakpoints. This is vital upon
436 * GDB connect/disconnect
438 arm7_9_clear_watchpoints(arm7_9
);
441 if ((breakpoint
->type
== BKPT_HARD
) && (arm7_9
->wp_available
< 1))
443 LOG_INFO("no watchpoint unit available for hardware breakpoint");
444 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
447 if ((breakpoint
->length
!= 2) && (breakpoint
->length
!= 4))
449 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
450 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
453 if (breakpoint
->type
== BKPT_HARD
)
455 arm7_9_assign_wp(arm7_9
, breakpoint
);
458 arm7_9
->breakpoint_count
++;
460 return arm7_9_set_breakpoint(target
, breakpoint
);
464 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
465 * dangling breakpoints and updates available watchpoints if it is a hardware
468 * @param target Pointer to the target to have a breakpoint removed
469 * @param breakpoint Pointer to the breakpoint to be removed
470 * @return Error status if there was a problem unsetting the breakpoint or the
471 * watchpoints could not be cleared
473 int arm7_9_remove_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
475 int retval
= ERROR_OK
;
476 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
478 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
483 if (breakpoint
->type
== BKPT_HARD
)
484 arm7_9
->wp_available
++;
486 arm7_9
->breakpoint_count
--;
487 if (arm7_9
->breakpoint_count
== 0)
489 /* make sure we don't have any dangling breakpoints */
490 if ((retval
= arm7_9_clear_watchpoints(arm7_9
)) != ERROR_OK
)
500 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
501 * considered a bug to call this function when there are no available watchpoint
504 * @param target Pointer to an ARM7/9 target to set a watchpoint on
505 * @param watchpoint Pointer to the watchpoint to be set
506 * @return Error status if watchpoint set fails or the result of executing the
509 int arm7_9_set_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
511 int retval
= ERROR_OK
;
512 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
516 mask
= watchpoint
->length
- 1;
518 if (target
->state
!= TARGET_HALTED
)
520 LOG_WARNING("target not halted");
521 return ERROR_TARGET_NOT_HALTED
;
524 if (watchpoint
->rw
== WPT_ACCESS
)
529 if (!arm7_9
->wp0_used
)
531 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], watchpoint
->address
);
532 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
533 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], watchpoint
->mask
);
534 if (watchpoint
->mask
!= 0xffffffffu
)
535 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], watchpoint
->value
);
536 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
537 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
539 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
544 arm7_9
->wp0_used
= 2;
546 else if (!arm7_9
->wp1_used
)
548 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], watchpoint
->address
);
549 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
550 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], watchpoint
->mask
);
551 if (watchpoint
->mask
!= 0xffffffffu
)
552 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], watchpoint
->value
);
553 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
554 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
556 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
561 arm7_9
->wp1_used
= 2;
565 LOG_ERROR("BUG: no hardware comparator available");
573 * Unset an existing watchpoint and clear the used watchpoint unit.
575 * @param target Pointer to the target to have the watchpoint removed
576 * @param watchpoint Pointer to the watchpoint to be removed
577 * @return Error status while trying to unset the watchpoint or the result of
578 * executing the JTAG queue
580 int arm7_9_unset_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
582 int retval
= ERROR_OK
;
583 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
585 if (target
->state
!= TARGET_HALTED
)
587 LOG_WARNING("target not halted");
588 return ERROR_TARGET_NOT_HALTED
;
591 if (!watchpoint
->set
)
593 LOG_WARNING("breakpoint not set");
597 if (watchpoint
->set
== 1)
599 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
600 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
604 arm7_9
->wp0_used
= 0;
606 else if (watchpoint
->set
== 2)
608 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
609 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
613 arm7_9
->wp1_used
= 0;
621 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
622 * available, an error response is returned.
624 * @param target Pointer to the ARM7/9 target to add a watchpoint to
625 * @param watchpoint Pointer to the watchpoint to be added
626 * @return Error status while trying to add the watchpoint
628 int arm7_9_add_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
630 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
632 if (arm7_9
->wp_available
< 1)
634 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
637 if ((watchpoint
->length
!= 1) && (watchpoint
->length
!= 2) && (watchpoint
->length
!= 4))
639 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
642 arm7_9
->wp_available
--;
648 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
649 * the used watchpoint unit will be reopened.
651 * @param target Pointer to the target to remove a watchpoint from
652 * @param watchpoint Pointer to the watchpoint to be removed
653 * @return Result of trying to unset the watchpoint
655 int arm7_9_remove_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
657 int retval
= ERROR_OK
;
658 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
662 if ((retval
= arm7_9_unset_watchpoint(target
, watchpoint
)) != ERROR_OK
)
668 arm7_9
->wp_available
++;
674 * Restarts the target by sending a RESTART instruction and moving the JTAG
675 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
676 * asserted by the processor.
678 * @param target Pointer to target to issue commands to
679 * @return Error status if there is a timeout or a problem while executing the
682 int arm7_9_execute_sys_speed(struct target
*target
)
685 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
686 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
687 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
689 /* set RESTART instruction */
690 jtag_set_end_state(TAP_IDLE
);
691 if (arm7_9
->need_bypass_before_restart
) {
692 arm7_9
->need_bypass_before_restart
= 0;
693 arm_jtag_set_instr(jtag_info
, 0xf, NULL
, TAP_IDLE
);
695 arm_jtag_set_instr(jtag_info
, 0x4, NULL
, TAP_IDLE
);
697 long long then
= timeval_ms();
699 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
701 /* read debug status register */
702 embeddedice_read_reg(dbg_stat
);
703 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
705 if ((buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
706 && (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_SYSCOMP
, 1)))
708 if (debug_level
>= 3)
718 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32
"", buf_get_u32(dbg_stat
->value
, 0, dbg_stat
->size
));
719 return ERROR_TARGET_TIMEOUT
;
726 * Restarts the target by sending a RESTART instruction and moving the JTAG
727 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
728 * waiting until they are.
730 * @param target Pointer to the target to issue commands to
731 * @return Always ERROR_OK
733 int arm7_9_execute_fast_sys_speed(struct target
*target
)
736 static uint8_t check_value
[4], check_mask
[4];
738 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
739 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
740 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
742 /* set RESTART instruction */
743 jtag_set_end_state(TAP_IDLE
);
744 if (arm7_9
->need_bypass_before_restart
) {
745 arm7_9
->need_bypass_before_restart
= 0;
746 arm_jtag_set_instr(jtag_info
, 0xf, NULL
, TAP_IDLE
);
748 arm_jtag_set_instr(jtag_info
, 0x4, NULL
, TAP_IDLE
);
752 /* check for DBGACK and SYSCOMP set (others don't care) */
754 /* NB! These are constants that must be available until after next jtag_execute() and
755 * we evaluate the values upon first execution in lieu of setting up these constants
756 * during early setup.
758 buf_set_u32(check_value
, 0, 32, 0x9);
759 buf_set_u32(check_mask
, 0, 32, 0x9);
763 /* read debug status register */
764 embeddedice_read_reg_w_check(dbg_stat
, check_value
, check_mask
);
770 * Get some data from the ARM7/9 target.
772 * @param target Pointer to the ARM7/9 target to read data from
773 * @param size The number of 32bit words to be read
774 * @param buffer Pointer to the buffer that will hold the data
775 * @return The result of receiving data from the Embedded ICE unit
777 int arm7_9_target_request_data(struct target
*target
, uint32_t size
, uint8_t *buffer
)
779 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
780 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
782 int retval
= ERROR_OK
;
785 data
= malloc(size
* (sizeof(uint32_t)));
787 retval
= embeddedice_receive(jtag_info
, data
, size
);
789 /* return the 32-bit ints in the 8-bit array */
790 for (i
= 0; i
< size
; i
++)
792 h_u32_to_le(buffer
+ (i
* 4), data
[i
]);
801 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
802 * target is running and the DCC control register has the W bit high, this will
803 * execute the request on the target.
805 * @param priv Void pointer expected to be a struct target pointer
806 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
807 * from the Embedded ICE unit
809 int arm7_9_handle_target_request(void *priv
)
811 int retval
= ERROR_OK
;
812 struct target
*target
= priv
;
813 if (!target_was_examined(target
))
815 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
816 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
817 struct reg
*dcc_control
= &arm7_9
->eice_cache
->reg_list
[EICE_COMMS_CTRL
];
819 if (!target
->dbg_msg_enabled
)
822 if (target
->state
== TARGET_RUNNING
)
824 /* read DCC control register */
825 embeddedice_read_reg(dcc_control
);
826 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
832 if (buf_get_u32(dcc_control
->value
, 1, 1) == 1)
836 if ((retval
= embeddedice_receive(jtag_info
, &request
, 1)) != ERROR_OK
)
840 if ((retval
= target_request(target
, request
)) != ERROR_OK
)
851 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
852 * is manipulated to the right halted state based on its current state. This is
856 * <tr><th > State</th><th > Action</th></tr>
857 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
858 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
859 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
860 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
863 * If the target does not end up in the halted state, a warning is produced. If
864 * DBGACK is cleared, then the target is expected to either be running or
867 * @param target Pointer to the ARM7/9 target to poll
868 * @return ERROR_OK or an error status if a command fails
870 int arm7_9_poll(struct target
*target
)
873 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
874 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
876 /* read debug status register */
877 embeddedice_read_reg(dbg_stat
);
878 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
883 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
885 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
886 if (target
->state
== TARGET_UNKNOWN
)
888 /* Starting OpenOCD with target in debug-halt */
889 target
->state
= TARGET_RUNNING
;
890 LOG_DEBUG("DBGACK already set during server startup.");
892 if ((target
->state
== TARGET_RUNNING
) || (target
->state
== TARGET_RESET
))
894 target
->state
= TARGET_HALTED
;
896 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
899 if (arm_semihosting(target
, &retval
) != 0)
902 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
907 if (target
->state
== TARGET_DEBUG_RUNNING
)
909 target
->state
= TARGET_HALTED
;
910 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
913 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_HALTED
)) != ERROR_OK
)
918 if (target
->state
!= TARGET_HALTED
)
920 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target
->state
);
925 if (target
->state
!= TARGET_DEBUG_RUNNING
)
926 target
->state
= TARGET_RUNNING
;
933 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
934 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
935 * affected) completely stop the JTAG clock while the core is held in reset
936 * (SRST). It isn't possible to program the halt condition once reset is
937 * asserted, hence a hook that allows the target to set up its reset-halt
938 * condition is setup prior to asserting reset.
940 * @param target Pointer to an ARM7/9 target to assert reset on
941 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
943 int arm7_9_assert_reset(struct target
*target
)
945 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
946 enum reset_types jtag_reset_config
= jtag_get_reset_config();
947 bool use_event
= false;
949 LOG_DEBUG("target->state: %s",
950 target_state_name(target
));
952 if (target_has_event_action(target
, TARGET_EVENT_RESET_ASSERT
))
954 else if (!(jtag_reset_config
& RESET_HAS_SRST
)) {
955 LOG_ERROR("%s: how to reset?", target_name(target
));
959 /* At this point trst has been asserted/deasserted once. We would
960 * like to program EmbeddedICE while SRST is asserted, instead of
961 * depending on SRST to leave that module alone. However, many CPUs
962 * gate the JTAG clock while SRST is asserted; or JTAG may need
963 * clock stability guarantees (adaptive clocking might help).
965 * So we assume JTAG access during SRST is off the menu unless it's
966 * been specifically enabled.
968 bool srst_asserted
= false;
971 && !(jtag_reset_config
& RESET_SRST_PULLS_TRST
)
972 && (jtag_reset_config
& RESET_SRST_NO_GATING
))
974 jtag_add_reset(0, 1);
975 srst_asserted
= true;
978 if (target
->reset_halt
)
981 * For targets that don't support communication while SRST is
982 * asserted, we need to set up the reset vector catch first.
984 * When we use TRST+SRST and that's equivalent to a power-up
985 * reset, these settings may well be reset anyway; so setting
986 * them here won't matter.
988 if (arm7_9
->has_vector_catch
)
990 /* program vector catch register to catch reset */
991 embeddedice_write_reg(&arm7_9
->eice_cache
992 ->reg_list
[EICE_VEC_CATCH
], 0x1);
994 /* extra runtest added as issues were found with
995 * certain ARM9 cores (maybe more) - AT91SAM9260
998 jtag_add_runtest(1, TAP_IDLE
);
1002 /* program watchpoint unit to match on reset vector
1005 embeddedice_write_reg(&arm7_9
->eice_cache
1006 ->reg_list
[EICE_W0_ADDR_VALUE
], 0x0);
1007 embeddedice_write_reg(&arm7_9
->eice_cache
1008 ->reg_list
[EICE_W0_ADDR_MASK
], 0x3);
1009 embeddedice_write_reg(&arm7_9
->eice_cache
1010 ->reg_list
[EICE_W0_DATA_MASK
],
1012 embeddedice_write_reg(&arm7_9
->eice_cache
1013 ->reg_list
[EICE_W0_CONTROL_VALUE
],
1014 EICE_W_CTRL_ENABLE
);
1015 embeddedice_write_reg(&arm7_9
->eice_cache
1016 ->reg_list
[EICE_W0_CONTROL_MASK
],
1017 ~EICE_W_CTRL_nOPC
& 0xff);
1022 target_handle_event(target
, TARGET_EVENT_RESET_ASSERT
);
1024 /* If we use SRST ... we'd like to issue just SRST, but the
1025 * board or chip may be set up so we have to assert TRST as
1026 * well. On some chips that combination is equivalent to a
1027 * power-up reset, and generally clobbers EICE state.
1029 if (jtag_reset_config
& RESET_SRST_PULLS_TRST
)
1030 jtag_add_reset(1, 1);
1031 else if (!srst_asserted
)
1032 jtag_add_reset(0, 1);
1033 jtag_add_sleep(50000);
1036 target
->state
= TARGET_RESET
;
1037 register_cache_invalidate(arm7_9
->armv4_5_common
.core_cache
);
1039 /* REVISIT why isn't standard debug entry logic sufficient?? */
1040 if (target
->reset_halt
1041 && (!(jtag_reset_config
& RESET_SRST_PULLS_TRST
)
1044 /* debug entry was prepared above */
1045 target
->debug_reason
= DBG_REASON_DBGRQ
;
1052 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1053 * and the target is being reset into a halt, a warning will be triggered
1054 * because it is not possible to reset into a halted mode in this case. The
1055 * target is halted using the target's functions.
1057 * @param target Pointer to the target to have the reset deasserted
1058 * @return ERROR_OK or an error from polling or halting the target
1060 int arm7_9_deassert_reset(struct target
*target
)
1062 int retval
= ERROR_OK
;
1063 LOG_DEBUG("target->state: %s",
1064 target_state_name(target
));
1066 /* deassert reset lines */
1067 jtag_add_reset(0, 0);
1069 enum reset_types jtag_reset_config
= jtag_get_reset_config();
1070 if (target
->reset_halt
&& (jtag_reset_config
& RESET_SRST_PULLS_TRST
) != 0)
1072 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1073 /* set up embedded ice registers again */
1074 if ((retval
= target_examine_one(target
)) != ERROR_OK
)
1077 if ((retval
= target_poll(target
)) != ERROR_OK
)
1082 if ((retval
= target_halt(target
)) != ERROR_OK
)
1092 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1093 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1094 * vector catch was used, it is restored. Otherwise, the control value is
1095 * restored and the watchpoint unit is restored if it was in use.
1097 * @param target Pointer to the ARM7/9 target to have halt cleared
1098 * @return Always ERROR_OK
1100 int arm7_9_clear_halt(struct target
*target
)
1102 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1103 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1105 /* we used DBGRQ only if we didn't come out of reset */
1106 if (!arm7_9
->debug_entry_from_reset
&& arm7_9
->use_dbgrq
)
1108 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1110 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1111 embeddedice_store_reg(dbg_ctrl
);
1115 if (arm7_9
->debug_entry_from_reset
&& arm7_9
->has_vector_catch
)
1117 /* if we came out of reset, and vector catch is supported, we used
1118 * vector catch to enter debug state
1119 * restore the register in that case
1121 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
]);
1125 /* restore registers if watchpoint unit 0 was in use
1127 if (arm7_9
->wp0_used
)
1129 if (arm7_9
->debug_entry_from_reset
)
1131 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
]);
1133 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1134 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1135 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
1137 /* control value always has to be restored, as it was either disabled,
1138 * or enabled with possibly different bits
1140 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1148 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1149 * and then there is a wait until the processor shows the halt. This wait can
1150 * timeout and results in an error being returned. The software reset involves
1151 * clearing the halt, updating the debug control register, changing to ARM mode,
1152 * reset of the program counter, and reset of all of the registers.
1154 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1155 * @return Error status if any of the commands fail, otherwise ERROR_OK
1157 int arm7_9_soft_reset_halt(struct target
*target
)
1159 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1160 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1161 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1162 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1166 /* FIX!!! replace some of this code with tcl commands
1168 * halt # the halt command is synchronous
1169 * armv4_5 core_state arm
1173 if ((retval
= target_halt(target
)) != ERROR_OK
)
1176 long long then
= timeval_ms();
1178 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
1180 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1) != 0)
1182 embeddedice_read_reg(dbg_stat
);
1183 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1185 if (debug_level
>= 3)
1195 LOG_ERROR("Failed to halt CPU after 1 sec");
1196 return ERROR_TARGET_TIMEOUT
;
1198 target
->state
= TARGET_HALTED
;
1200 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1201 * ensure that DBGRQ is cleared
1203 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1204 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1205 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1206 embeddedice_store_reg(dbg_ctrl
);
1208 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1213 /* if the target is in Thumb state, change to ARM state */
1214 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1216 uint32_t r0_thumb
, pc_thumb
;
1217 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1218 /* Entered debug from Thumb mode */
1219 armv4_5
->core_state
= ARM_STATE_THUMB
;
1220 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1223 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1225 /* all register content is now invalid */
1226 register_cache_invalidate(armv4_5
->core_cache
);
1228 /* SVC, ARM state, IRQ and FIQ disabled */
1231 cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 32);
1234 arm_set_cpsr(armv4_5
, cpsr
);
1235 armv4_5
->cpsr
->dirty
= 1;
1237 /* start fetching from 0x0 */
1238 buf_set_u32(armv4_5
->pc
->value
, 0, 32, 0x0);
1239 armv4_5
->pc
->dirty
= 1;
1240 armv4_5
->pc
->valid
= 1;
1242 /* reset registers */
1243 for (i
= 0; i
<= 14; i
++)
1245 struct reg
*r
= arm_reg_current(armv4_5
, i
);
1247 buf_set_u32(r
->value
, 0, 32, 0xffffffff);
1252 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
1261 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1262 * line or by programming a watchpoint to trigger on any address. It is
1263 * considered a bug to call this function while the target is in the
1264 * TARGET_RESET state.
1266 * @param target Pointer to the ARM7/9 target to be halted
1267 * @return Always ERROR_OK
1269 int arm7_9_halt(struct target
*target
)
1271 if (target
->state
== TARGET_RESET
)
1273 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1277 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1278 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1280 LOG_DEBUG("target->state: %s",
1281 target_state_name(target
));
1283 if (target
->state
== TARGET_HALTED
)
1285 LOG_DEBUG("target was already halted");
1289 if (target
->state
== TARGET_UNKNOWN
)
1291 LOG_WARNING("target was in unknown state when halt was requested");
1294 if (arm7_9
->use_dbgrq
)
1296 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1298 if (arm7_9
->set_special_dbgrq
) {
1299 arm7_9
->set_special_dbgrq(target
);
1301 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 1);
1302 embeddedice_store_reg(dbg_ctrl
);
1307 /* program watchpoint unit to match on any address
1309 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1310 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1311 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1312 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1315 target
->debug_reason
= DBG_REASON_DBGRQ
;
1321 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1322 * ARM. The JTAG queue is then executed and the reason for debug entry is
1323 * examined. Once done, the target is verified to be halted and the processor
1324 * is forced into ARM mode. The core registers are saved for the current core
1325 * mode and the program counter (register 15) is updated as needed. The core
1326 * registers and CPSR and SPSR are saved for restoration later.
1328 * @param target Pointer to target that is entering debug mode
1329 * @return Error code if anything fails, otherwise ERROR_OK
1331 static int arm7_9_debug_entry(struct target
*target
)
1334 uint32_t context
[16];
1335 uint32_t* context_p
[16];
1336 uint32_t r0_thumb
, pc_thumb
;
1337 uint32_t cpsr
, cpsr_mask
= 0;
1339 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1340 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1341 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1342 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1344 #ifdef _DEBUG_ARM7_9_
1348 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1349 * ensure that DBGRQ is cleared
1351 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1352 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1353 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1354 embeddedice_store_reg(dbg_ctrl
);
1356 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1361 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1366 if ((retval
= arm7_9
->examine_debug_reason(target
)) != ERROR_OK
)
1370 if (target
->state
!= TARGET_HALTED
)
1372 LOG_WARNING("target not halted");
1373 return ERROR_TARGET_NOT_HALTED
;
1376 /* if the target is in Thumb state, change to ARM state */
1377 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1379 LOG_DEBUG("target entered debug from Thumb state");
1380 /* Entered debug from Thumb mode */
1381 armv4_5
->core_state
= ARM_STATE_THUMB
;
1383 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1384 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1385 ", pc_thumb: 0x%8.8" PRIx32
, r0_thumb
, pc_thumb
);
1386 } else if (buf_get_u32(dbg_stat
->value
, 5, 1)) {
1387 /* \todo Get some vaguely correct handling of Jazelle, if
1388 * anyone ever uses it and full info becomes available.
1389 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1390 * B.7.3 for the reverse. That'd be the bare minimum...
1392 LOG_DEBUG("target entered debug from Jazelle state");
1393 armv4_5
->core_state
= ARM_STATE_JAZELLE
;
1394 cpsr_mask
= 1 << 24;
1395 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1397 LOG_DEBUG("target entered debug from ARM state");
1398 /* Entered debug from ARM mode */
1399 armv4_5
->core_state
= ARM_STATE_ARM
;
1402 for (i
= 0; i
< 16; i
++)
1403 context_p
[i
] = &context
[i
];
1404 /* save core registers (r0 - r15 of current core mode) */
1405 arm7_9
->read_core_regs(target
, 0xffff, context_p
);
1407 arm7_9
->read_xpsr(target
, &cpsr
, 0);
1409 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1412 /* Sync our CPSR copy with J or T bits EICE reported, but
1413 * which we then erased by putting the core into ARM mode.
1415 arm_set_cpsr(armv4_5
, cpsr
| cpsr_mask
);
1417 if (!is_arm_mode(armv4_5
->core_mode
))
1419 target
->state
= TARGET_UNKNOWN
;
1420 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1421 return ERROR_TARGET_FAILURE
;
1424 LOG_DEBUG("target entered debug state in %s mode",
1425 arm_mode_name(armv4_5
->core_mode
));
1427 if (armv4_5
->core_state
== ARM_STATE_THUMB
)
1429 LOG_DEBUG("thumb state, applying fixups");
1430 context
[0] = r0_thumb
;
1431 context
[15] = pc_thumb
;
1432 } else if (armv4_5
->core_state
== ARM_STATE_ARM
)
1434 /* adjust value stored by STM */
1435 context
[15] -= 3 * 4;
1438 if ((target
->debug_reason
!= DBG_REASON_DBGRQ
) || (!arm7_9
->use_dbgrq
))
1439 context
[15] -= 3 * ((armv4_5
->core_state
== ARM_STATE_ARM
) ? 4 : 2);
1441 context
[15] -= arm7_9
->dbgreq_adjust_pc
* ((armv4_5
->core_state
== ARM_STATE_ARM
) ? 4 : 2);
1443 for (i
= 0; i
<= 15; i
++)
1445 struct reg
*r
= arm_reg_current(armv4_5
, i
);
1447 LOG_DEBUG("r%i: 0x%8.8" PRIx32
"", i
, context
[i
]);
1449 buf_set_u32(r
->value
, 0, 32, context
[i
]);
1450 /* r0 and r15 (pc) have to be restored later */
1451 r
->dirty
= (i
== 0) || (i
== 15);
1455 LOG_DEBUG("entered debug state at PC 0x%" PRIx32
"", context
[15]);
1457 /* exceptions other than USR & SYS have a saved program status register */
1458 if (armv4_5
->spsr
) {
1460 arm7_9
->read_xpsr(target
, &spsr
, 1);
1461 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1465 buf_set_u32(armv4_5
->spsr
->value
, 0, 32, spsr
);
1466 armv4_5
->spsr
->dirty
= 0;
1467 armv4_5
->spsr
->valid
= 1;
1470 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1473 if (arm7_9
->post_debug_entry
)
1474 arm7_9
->post_debug_entry(target
);
1480 * Validate the full context for an ARM7/9 target in all processor modes. If
1481 * there are any invalid registers for the target, they will all be read. This
1484 * @param target Pointer to the ARM7/9 target to capture the full context from
1485 * @return Error if the target is not halted, has an invalid core mode, or if
1486 * the JTAG queue fails to execute
1488 int arm7_9_full_context(struct target
*target
)
1492 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1493 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1497 if (target
->state
!= TARGET_HALTED
)
1499 LOG_WARNING("target not halted");
1500 return ERROR_TARGET_NOT_HALTED
;
1503 if (!is_arm_mode(armv4_5
->core_mode
))
1506 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1507 * SYS shares registers with User, so we don't touch SYS
1509 for (i
= 0; i
< 6; i
++)
1512 uint32_t* reg_p
[16];
1516 /* check if there are invalid registers in the current mode
1518 for (j
= 0; j
<= 16; j
++)
1520 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1528 /* change processor mode (and mask T bit) */
1529 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
1531 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1533 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1535 for (j
= 0; j
< 15; j
++)
1537 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1539 reg_p
[j
] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).value
;
1541 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
= 1;
1542 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).dirty
= 0;
1546 /* if only the PSR is invalid, mask is all zeroes */
1548 arm7_9
->read_core_regs(target
, mask
, reg_p
);
1550 /* check if the PSR has to be read */
1551 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
== 0)
1553 arm7_9
->read_xpsr(target
, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).value
, 1);
1554 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
= 1;
1555 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).dirty
= 0;
1560 /* restore processor mode (mask T bit) */
1561 arm7_9
->write_xpsr_im8(target
,
1562 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & ~0x20,
1565 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1573 * Restore the processor context on an ARM7/9 target. The full processor
1574 * context is analyzed to see if any of the registers are dirty on this end, but
1575 * have a valid new value. If this is the case, the processor is changed to the
1576 * appropriate mode and the new register values are written out to the
1577 * processor. If there happens to be a dirty register with an invalid value, an
1578 * error will be logged.
1580 * @param target Pointer to the ARM7/9 target to have its context restored
1581 * @return Error status if the target is not halted or the core mode in the
1582 * armv4_5 struct is invalid.
1584 int arm7_9_restore_context(struct target
*target
)
1586 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1587 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1589 struct arm_reg
*reg_arch_info
;
1590 enum arm_mode current_mode
= armv4_5
->core_mode
;
1597 if (target
->state
!= TARGET_HALTED
)
1599 LOG_WARNING("target not halted");
1600 return ERROR_TARGET_NOT_HALTED
;
1603 if (arm7_9
->pre_restore_context
)
1604 arm7_9
->pre_restore_context(target
);
1606 if (!is_arm_mode(armv4_5
->core_mode
))
1609 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1610 * SYS shares registers with User, so we don't touch SYS
1612 for (i
= 0; i
< 6; i
++)
1614 LOG_DEBUG("examining %s mode",
1615 arm_mode_name(armv4_5
->core_mode
));
1618 /* check if there are dirty registers in the current mode
1620 for (j
= 0; j
<= 16; j
++)
1622 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
);
1623 reg_arch_info
= reg
->arch_info
;
1624 if (reg
->dirty
== 1)
1626 if (reg
->valid
== 1)
1629 LOG_DEBUG("examining dirty reg: %s", reg
->name
);
1630 if ((reg_arch_info
->mode
!= ARM_MODE_ANY
)
1631 && (reg_arch_info
->mode
!= current_mode
)
1632 && !((reg_arch_info
->mode
== ARM_MODE_USR
) && (armv4_5
->core_mode
== ARM_MODE_SYS
))
1633 && !((reg_arch_info
->mode
== ARM_MODE_SYS
) && (armv4_5
->core_mode
== ARM_MODE_USR
)))
1636 LOG_DEBUG("require mode change");
1641 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg
->name
);
1648 uint32_t mask
= 0x0;
1656 /* change processor mode (mask T bit) */
1657 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
,
1659 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1661 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1662 current_mode
= armv4_5_number_to_mode(i
);
1665 for (j
= 0; j
<= 14; j
++)
1667 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
);
1668 reg_arch_info
= reg
->arch_info
;
1671 if (reg
->dirty
== 1)
1673 regs
[j
] = buf_get_u32(reg
->value
, 0, 32);
1678 LOG_DEBUG("writing register %i mode %s "
1679 "with value 0x%8.8" PRIx32
, j
,
1680 arm_mode_name(armv4_5
->core_mode
),
1687 arm7_9
->write_core_regs(target
, mask
, regs
);
1690 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16);
1691 reg_arch_info
= reg
->arch_info
;
1692 if ((reg
->dirty
) && (reg_arch_info
->mode
!= ARM_MODE_ANY
))
1694 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32
"", i
, buf_get_u32(reg
->value
, 0, 32));
1695 arm7_9
->write_xpsr(target
, buf_get_u32(reg
->value
, 0, 32), 1);
1700 if (!armv4_5
->cpsr
->dirty
&& (armv4_5
->core_mode
!= current_mode
))
1702 /* restore processor mode (mask T bit) */
1705 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & 0xE0;
1706 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1708 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr
));
1709 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1711 else if (armv4_5
->cpsr
->dirty
)
1713 /* CPSR has been changed, full restore necessary (mask T bit) */
1714 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32
,
1715 buf_get_u32(armv4_5
->cpsr
->value
, 0, 32));
1716 arm7_9
->write_xpsr(target
,
1717 buf_get_u32(armv4_5
->cpsr
->value
, 0, 32)
1719 armv4_5
->cpsr
->dirty
= 0;
1720 armv4_5
->cpsr
->valid
= 1;
1724 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32
,
1725 buf_get_u32(armv4_5
->pc
->value
, 0, 32));
1726 arm7_9
->write_pc(target
, buf_get_u32(armv4_5
->pc
->value
, 0, 32));
1727 armv4_5
->pc
->dirty
= 0;
1733 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1734 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1737 * @param target Pointer to the ARM7/9 target to be restarted
1738 * @return Result of executing the JTAG queue
1740 int arm7_9_restart_core(struct target
*target
)
1742 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1743 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
1745 /* set RESTART instruction */
1746 jtag_set_end_state(TAP_IDLE
);
1747 if (arm7_9
->need_bypass_before_restart
) {
1748 arm7_9
->need_bypass_before_restart
= 0;
1749 arm_jtag_set_instr(jtag_info
, 0xf, NULL
, TAP_IDLE
);
1751 arm_jtag_set_instr(jtag_info
, 0x4, NULL
, TAP_IDLE
);
1753 jtag_add_runtest(1, TAP_IDLE
);
1754 return jtag_execute_queue();
1758 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1759 * iterated through and are set on the target if they aren't already set.
1761 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1763 void arm7_9_enable_watchpoints(struct target
*target
)
1765 struct watchpoint
*watchpoint
= target
->watchpoints
;
1769 if (watchpoint
->set
== 0)
1770 arm7_9_set_watchpoint(target
, watchpoint
);
1771 watchpoint
= watchpoint
->next
;
1776 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1777 * iterated through and are set on the target.
1779 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1781 void arm7_9_enable_breakpoints(struct target
*target
)
1783 struct breakpoint
*breakpoint
= target
->breakpoints
;
1785 /* set any pending breakpoints */
1788 arm7_9_set_breakpoint(target
, breakpoint
);
1789 breakpoint
= breakpoint
->next
;
1793 int arm7_9_resume(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
1795 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1796 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1797 struct breakpoint
*breakpoint
= target
->breakpoints
;
1798 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1799 int err
, retval
= ERROR_OK
;
1803 if (target
->state
!= TARGET_HALTED
)
1805 LOG_WARNING("target not halted");
1806 return ERROR_TARGET_NOT_HALTED
;
1809 if (!debug_execution
)
1811 target_free_all_working_areas(target
);
1814 /* current = 1: continue on current pc, otherwise continue at <address> */
1816 buf_set_u32(armv4_5
->pc
->value
, 0, 32, address
);
1818 uint32_t current_pc
;
1819 current_pc
= buf_get_u32(armv4_5
->pc
->value
, 0, 32);
1821 /* the front-end may request us not to handle breakpoints */
1822 if (handle_breakpoints
)
1824 breakpoint
= breakpoint_find(target
,
1825 buf_get_u32(armv4_5
->pc
->value
, 0, 32));
1826 if (breakpoint
!= NULL
)
1828 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32
" (id: %d)", breakpoint
->address
, breakpoint
->unique_id
);
1829 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1834 /* calculate PC of next instruction */
1836 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
1838 uint32_t current_opcode
;
1839 target_read_u32(target
, current_pc
, ¤t_opcode
);
1840 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
1844 LOG_DEBUG("enable single-step");
1845 arm7_9
->enable_single_step(target
, next_pc
);
1847 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1849 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1854 if (armv4_5
->core_state
== ARM_STATE_ARM
)
1855 arm7_9
->branch_resume(target
);
1856 else if (armv4_5
->core_state
== ARM_STATE_THUMB
)
1858 arm7_9
->branch_resume_thumb(target
);
1862 LOG_ERROR("unhandled core state");
1866 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1867 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1868 err
= arm7_9_execute_sys_speed(target
);
1870 LOG_DEBUG("disable single-step");
1871 arm7_9
->disable_single_step(target
);
1873 if (err
!= ERROR_OK
)
1875 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1879 target
->state
= TARGET_UNKNOWN
;
1883 arm7_9_debug_entry(target
);
1884 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32
,
1885 buf_get_u32(armv4_5
->pc
->value
, 0, 32));
1887 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32
"", breakpoint
->address
);
1888 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1895 /* enable any pending breakpoints and watchpoints */
1896 arm7_9_enable_breakpoints(target
);
1897 arm7_9_enable_watchpoints(target
);
1899 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1904 if (armv4_5
->core_state
== ARM_STATE_ARM
)
1906 arm7_9
->branch_resume(target
);
1908 else if (armv4_5
->core_state
== ARM_STATE_THUMB
)
1910 arm7_9
->branch_resume_thumb(target
);
1914 LOG_ERROR("unhandled core state");
1918 /* deassert DBGACK and INTDIS */
1919 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1920 /* INTDIS only when we really resume, not during debug execution */
1921 if (!debug_execution
)
1922 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 0);
1923 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1925 if ((retval
= arm7_9_restart_core(target
)) != ERROR_OK
)
1930 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1932 if (!debug_execution
)
1934 /* registers are now invalid */
1935 register_cache_invalidate(armv4_5
->core_cache
);
1936 target
->state
= TARGET_RUNNING
;
1937 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
1944 target
->state
= TARGET_DEBUG_RUNNING
;
1945 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
)) != ERROR_OK
)
1951 LOG_DEBUG("target resumed");
1956 void arm7_9_enable_eice_step(struct target
*target
, uint32_t next_pc
)
1958 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1959 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
1960 uint32_t current_pc
;
1961 current_pc
= buf_get_u32(armv4_5
->pc
->value
, 0, 32);
1963 if (next_pc
!= current_pc
)
1965 /* setup an inverse breakpoint on the current PC
1966 * - comparator 1 matches the current address
1967 * - rangeout from comparator 1 is connected to comparator 0 rangein
1968 * - comparator 0 matches any address, as long as rangein is low */
1969 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1970 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1971 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1972 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~(EICE_W_CTRL_RANGE
| EICE_W_CTRL_nOPC
) & 0xff);
1973 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], current_pc
);
1974 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1975 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1976 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
1977 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1981 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1982 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1983 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
1984 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff);
1985 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], next_pc
);
1986 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1987 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1988 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1989 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1993 void arm7_9_disable_eice_step(struct target
*target
)
1995 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1997 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1998 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1999 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
2000 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
2001 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
]);
2002 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
]);
2003 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
]);
2004 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
]);
2005 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
]);
2008 int arm7_9_step(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
)
2010 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2011 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2012 struct breakpoint
*breakpoint
= NULL
;
2015 if (target
->state
!= TARGET_HALTED
)
2017 LOG_WARNING("target not halted");
2018 return ERROR_TARGET_NOT_HALTED
;
2021 /* current = 1: continue on current pc, otherwise continue at <address> */
2023 buf_set_u32(armv4_5
->pc
->value
, 0, 32, address
);
2025 uint32_t current_pc
= buf_get_u32(armv4_5
->pc
->value
, 0, 32);
2027 /* the front-end may request us not to handle breakpoints */
2028 if (handle_breakpoints
)
2029 breakpoint
= breakpoint_find(target
, current_pc
);
2030 if (breakpoint
!= NULL
) {
2031 retval
= arm7_9_unset_breakpoint(target
, breakpoint
);
2032 if (retval
!= ERROR_OK
)
2036 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
2038 /* calculate PC of next instruction */
2040 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
2042 uint32_t current_opcode
;
2043 target_read_u32(target
, current_pc
, ¤t_opcode
);
2044 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
2048 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
2053 arm7_9
->enable_single_step(target
, next_pc
);
2055 if (armv4_5
->core_state
== ARM_STATE_ARM
)
2057 arm7_9
->branch_resume(target
);
2059 else if (armv4_5
->core_state
== ARM_STATE_THUMB
)
2061 arm7_9
->branch_resume_thumb(target
);
2065 LOG_ERROR("unhandled core state");
2069 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
2074 err
= arm7_9_execute_sys_speed(target
);
2075 arm7_9
->disable_single_step(target
);
2077 /* registers are now invalid */
2078 register_cache_invalidate(armv4_5
->core_cache
);
2080 if (err
!= ERROR_OK
)
2082 target
->state
= TARGET_UNKNOWN
;
2084 arm7_9_debug_entry(target
);
2085 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
2089 LOG_DEBUG("target stepped");
2093 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
2101 static int arm7_9_read_core_reg(struct target
*target
, struct reg
*r
,
2102 int num
, enum arm_mode mode
)
2104 uint32_t* reg_p
[16];
2107 struct arm_reg
*areg
= r
->arch_info
;
2108 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2109 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2111 if (!is_arm_mode(armv4_5
->core_mode
))
2113 if ((num
< 0) || (num
> 16))
2114 return ERROR_INVALID_ARGUMENTS
;
2116 if ((mode
!= ARM_MODE_ANY
)
2117 && (mode
!= armv4_5
->core_mode
)
2118 && (areg
->mode
!= ARM_MODE_ANY
))
2122 /* change processor mode (mask T bit) */
2123 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & 0xE0;
2126 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2129 if ((num
>= 0) && (num
<= 15))
2131 /* read a normal core register */
2132 reg_p
[num
] = &value
;
2134 arm7_9
->read_core_regs(target
, 1 << num
, reg_p
);
2138 /* read a program status register
2139 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2141 arm7_9
->read_xpsr(target
, &value
, areg
->mode
!= ARM_MODE_ANY
);
2144 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2151 buf_set_u32(r
->value
, 0, 32, value
);
2153 if ((mode
!= ARM_MODE_ANY
)
2154 && (mode
!= armv4_5
->core_mode
)
2155 && (areg
->mode
!= ARM_MODE_ANY
)) {
2156 /* restore processor mode (mask T bit) */
2157 arm7_9
->write_xpsr_im8(target
,
2158 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2165 static int arm7_9_write_core_reg(struct target
*target
, struct reg
*r
,
2166 int num
, enum arm_mode mode
, uint32_t value
)
2169 struct arm_reg
*areg
= r
->arch_info
;
2170 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2171 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2173 if (!is_arm_mode(armv4_5
->core_mode
))
2175 if ((num
< 0) || (num
> 16))
2176 return ERROR_INVALID_ARGUMENTS
;
2178 if ((mode
!= ARM_MODE_ANY
)
2179 && (mode
!= armv4_5
->core_mode
)
2180 && (areg
->mode
!= ARM_MODE_ANY
)) {
2183 /* change processor mode (mask T bit) */
2184 tmp_cpsr
= buf_get_u32(armv4_5
->cpsr
->value
, 0, 8) & 0xE0;
2187 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2190 if ((num
>= 0) && (num
<= 15))
2192 /* write a normal core register */
2195 arm7_9
->write_core_regs(target
, 1 << num
, reg
);
2199 /* write a program status register
2200 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2202 int spsr
= (areg
->mode
!= ARM_MODE_ANY
);
2204 /* if we're writing the CPSR, mask the T bit */
2208 arm7_9
->write_xpsr(target
, value
, spsr
);
2214 if ((mode
!= ARM_MODE_ANY
)
2215 && (mode
!= armv4_5
->core_mode
)
2216 && (areg
->mode
!= ARM_MODE_ANY
)) {
2217 /* restore processor mode (mask T bit) */
2218 arm7_9
->write_xpsr_im8(target
,
2219 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2223 return jtag_execute_queue();
2226 int arm7_9_read_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
2228 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2229 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2231 uint32_t num_accesses
= 0;
2232 int thisrun_accesses
;
2238 LOG_DEBUG("address: 0x%8.8" PRIx32
", size: 0x%8.8" PRIx32
", count: 0x%8.8" PRIx32
"", address
, size
, count
);
2240 if (target
->state
!= TARGET_HALTED
)
2242 LOG_WARNING("target not halted");
2243 return ERROR_TARGET_NOT_HALTED
;
2246 /* sanitize arguments */
2247 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2248 return ERROR_INVALID_ARGUMENTS
;
2250 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2251 return ERROR_TARGET_UNALIGNED_ACCESS
;
2253 /* load the base register with the address of the first word */
2255 arm7_9
->write_core_regs(target
, 0x1, reg
);
2262 while (num_accesses
< count
)
2265 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2266 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2268 if (last_reg
<= thisrun_accesses
)
2269 last_reg
= thisrun_accesses
;
2271 arm7_9
->load_word_regs(target
, reg_list
);
2273 /* fast memory reads are only safe when the target is running
2274 * from a sufficiently high clock (32 kHz is usually too slow)
2276 if (arm7_9
->fast_memory_access
)
2277 retval
= arm7_9_execute_fast_sys_speed(target
);
2279 retval
= arm7_9_execute_sys_speed(target
);
2280 if (retval
!= ERROR_OK
)
2283 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 4);
2285 /* advance buffer, count number of accesses */
2286 buffer
+= thisrun_accesses
* 4;
2287 num_accesses
+= thisrun_accesses
;
2289 if ((j
++%1024) == 0)
2296 while (num_accesses
< count
)
2299 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2300 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2302 for (i
= 1; i
<= thisrun_accesses
; i
++)
2306 arm7_9
->load_hword_reg(target
, i
);
2307 /* fast memory reads are only safe when the target is running
2308 * from a sufficiently high clock (32 kHz is usually too slow)
2310 if (arm7_9
->fast_memory_access
)
2311 retval
= arm7_9_execute_fast_sys_speed(target
);
2313 retval
= arm7_9_execute_sys_speed(target
);
2314 if (retval
!= ERROR_OK
)
2321 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 2);
2323 /* advance buffer, count number of accesses */
2324 buffer
+= thisrun_accesses
* 2;
2325 num_accesses
+= thisrun_accesses
;
2327 if ((j
++%1024) == 0)
2334 while (num_accesses
< count
)
2337 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2338 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2340 for (i
= 1; i
<= thisrun_accesses
; i
++)
2344 arm7_9
->load_byte_reg(target
, i
);
2345 /* fast memory reads are only safe when the target is running
2346 * from a sufficiently high clock (32 kHz is usually too slow)
2348 if (arm7_9
->fast_memory_access
)
2349 retval
= arm7_9_execute_fast_sys_speed(target
);
2351 retval
= arm7_9_execute_sys_speed(target
);
2352 if (retval
!= ERROR_OK
)
2358 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 1);
2360 /* advance buffer, count number of accesses */
2361 buffer
+= thisrun_accesses
* 1;
2362 num_accesses
+= thisrun_accesses
;
2364 if ((j
++%1024) == 0)
2372 if (!is_arm_mode(armv4_5
->core_mode
))
2375 for (i
= 0; i
<= last_reg
; i
++) {
2376 struct reg
*r
= arm_reg_current(armv4_5
, i
);
2378 r
->dirty
= r
->valid
;
2381 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2382 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2384 LOG_ERROR("JTAG error while reading cpsr");
2385 return ERROR_TARGET_DATA_ABORT
;
2388 if (((cpsr
& 0x1f) == ARM_MODE_ABT
) && (armv4_5
->core_mode
!= ARM_MODE_ABT
))
2390 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2392 arm7_9
->write_xpsr_im8(target
,
2393 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2396 return ERROR_TARGET_DATA_ABORT
;
2402 int arm7_9_write_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
2404 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2405 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2406 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
2409 uint32_t num_accesses
= 0;
2410 int thisrun_accesses
;
2416 #ifdef _DEBUG_ARM7_9_
2417 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address
, size
, count
);
2420 if (target
->state
!= TARGET_HALTED
)
2422 LOG_WARNING("target not halted");
2423 return ERROR_TARGET_NOT_HALTED
;
2426 /* sanitize arguments */
2427 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2428 return ERROR_INVALID_ARGUMENTS
;
2430 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2431 return ERROR_TARGET_UNALIGNED_ACCESS
;
2433 /* load the base register with the address of the first word */
2435 arm7_9
->write_core_regs(target
, 0x1, reg
);
2437 /* Clear DBGACK, to make sure memory fetches work as expected */
2438 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
2439 embeddedice_store_reg(dbg_ctrl
);
2444 while (num_accesses
< count
)
2447 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2448 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2450 for (i
= 1; i
<= thisrun_accesses
; i
++)
2454 reg
[i
] = target_buffer_get_u32(target
, buffer
);
2458 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2460 arm7_9
->store_word_regs(target
, reg_list
);
2462 /* fast memory writes are only safe when the target is running
2463 * from a sufficiently high clock (32 kHz is usually too slow)
2465 if (arm7_9
->fast_memory_access
)
2466 retval
= arm7_9_execute_fast_sys_speed(target
);
2468 retval
= arm7_9_execute_sys_speed(target
);
2469 if (retval
!= ERROR_OK
)
2474 num_accesses
+= thisrun_accesses
;
2478 while (num_accesses
< count
)
2481 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2482 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2484 for (i
= 1; i
<= thisrun_accesses
; i
++)
2488 reg
[i
] = target_buffer_get_u16(target
, buffer
) & 0xffff;
2492 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2494 for (i
= 1; i
<= thisrun_accesses
; i
++)
2496 arm7_9
->store_hword_reg(target
, i
);
2498 /* fast memory writes are only safe when the target is running
2499 * from a sufficiently high clock (32 kHz is usually too slow)
2501 if (arm7_9
->fast_memory_access
)
2502 retval
= arm7_9_execute_fast_sys_speed(target
);
2504 retval
= arm7_9_execute_sys_speed(target
);
2505 if (retval
!= ERROR_OK
)
2511 num_accesses
+= thisrun_accesses
;
2515 while (num_accesses
< count
)
2518 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2519 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2521 for (i
= 1; i
<= thisrun_accesses
; i
++)
2525 reg
[i
] = *buffer
++ & 0xff;
2528 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2530 for (i
= 1; i
<= thisrun_accesses
; i
++)
2532 arm7_9
->store_byte_reg(target
, i
);
2533 /* fast memory writes are only safe when the target is running
2534 * from a sufficiently high clock (32 kHz is usually too slow)
2536 if (arm7_9
->fast_memory_access
)
2537 retval
= arm7_9_execute_fast_sys_speed(target
);
2539 retval
= arm7_9_execute_sys_speed(target
);
2540 if (retval
!= ERROR_OK
)
2547 num_accesses
+= thisrun_accesses
;
2553 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
2554 embeddedice_store_reg(dbg_ctrl
);
2556 if (!is_arm_mode(armv4_5
->core_mode
))
2559 for (i
= 0; i
<= last_reg
; i
++) {
2560 struct reg
*r
= arm_reg_current(armv4_5
, i
);
2562 r
->dirty
= r
->valid
;
2565 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2566 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2568 LOG_ERROR("JTAG error while reading cpsr");
2569 return ERROR_TARGET_DATA_ABORT
;
2572 if (((cpsr
& 0x1f) == ARM_MODE_ABT
) && (armv4_5
->core_mode
!= ARM_MODE_ABT
))
2574 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2576 arm7_9
->write_xpsr_im8(target
,
2577 buf_get_u32(armv4_5
->cpsr
->value
, 0, 8)
2580 return ERROR_TARGET_DATA_ABORT
;
2586 static int dcc_count
;
2587 static uint8_t *dcc_buffer
;
2589 static int arm7_9_dcc_completion(struct target
*target
, uint32_t exit_point
, int timeout_ms
, void *arch_info
)
2591 int retval
= ERROR_OK
;
2592 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2594 if ((retval
= target_wait_state(target
, TARGET_DEBUG_RUNNING
, 500)) != ERROR_OK
)
2597 int little
= target
->endianness
== TARGET_LITTLE_ENDIAN
;
2598 int count
= dcc_count
;
2599 uint8_t *buffer
= dcc_buffer
;
2602 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2603 * core function repeated. */
2604 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2607 struct embeddedice_reg
*ice_reg
= arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
].arch_info
;
2608 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
2609 struct jtag_tap
*tap
;
2610 tap
= ice_reg
->jtag_info
->tap
;
2612 embeddedice_write_dcc(tap
, reg_addr
, buffer
, little
, count
-2);
2613 buffer
+= (count
-2)*4;
2615 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2619 for (i
= 0; i
< count
; i
++)
2621 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2626 if ((retval
= target_halt(target
))!= ERROR_OK
)
2630 return target_wait_state(target
, TARGET_HALTED
, 500);
2633 static const uint32_t dcc_code
[] =
2635 /* r0 == input, points to memory buffer
2639 /* spin until DCC control (c0) reports data arrived */
2640 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2641 0xe3110001, /* tst r1, #1 */
2642 0x0afffffc, /* bne w */
2644 /* read word from DCC (c1), write to memory */
2645 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2646 0xe4801004, /* str r1, [r0], #4 */
2649 0xeafffff9 /* b w */
2652 int arm7_9_bulk_write_memory(struct target
*target
, uint32_t address
, uint32_t count
, uint8_t *buffer
)
2655 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2658 if (!arm7_9
->dcc_downloads
)
2659 return target_write_memory(target
, address
, 4, count
, buffer
);
2661 /* regrab previously allocated working_area, or allocate a new one */
2662 if (!arm7_9
->dcc_working_area
)
2664 uint8_t dcc_code_buf
[6 * 4];
2666 /* make sure we have a working area */
2667 if (target_alloc_working_area(target
, 24, &arm7_9
->dcc_working_area
) != ERROR_OK
)
2669 LOG_INFO("no working area available, falling back to memory writes");
2670 return target_write_memory(target
, address
, 4, count
, buffer
);
2673 /* copy target instructions to target endianness */
2674 for (i
= 0; i
< 6; i
++)
2676 target_buffer_set_u32(target
, dcc_code_buf
+ i
*4, dcc_code
[i
]);
2679 /* write DCC code to working area */
2680 if ((retval
= target_write_memory(target
, arm7_9
->dcc_working_area
->address
, 4, 6, dcc_code_buf
)) != ERROR_OK
)
2686 struct arm_algorithm armv4_5_info
;
2687 struct reg_param reg_params
[1];
2689 armv4_5_info
.common_magic
= ARM_COMMON_MAGIC
;
2690 armv4_5_info
.core_mode
= ARM_MODE_SVC
;
2691 armv4_5_info
.core_state
= ARM_STATE_ARM
;
2693 init_reg_param(®_params
[0], "r0", 32, PARAM_IN_OUT
);
2695 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2698 dcc_buffer
= buffer
;
2699 retval
= armv4_5_run_algorithm_inner(target
, 0, NULL
, 1, reg_params
,
2700 arm7_9
->dcc_working_area
->address
,
2701 arm7_9
->dcc_working_area
->address
+ 6*4,
2702 20*1000, &armv4_5_info
, arm7_9_dcc_completion
);
2704 if (retval
== ERROR_OK
)
2706 uint32_t endaddress
= buf_get_u32(reg_params
[0].value
, 0, 32);
2707 if (endaddress
!= (address
+ count
*4))
2709 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32
" got 0x%0" PRIx32
"", (address
+ count
*4), endaddress
);
2710 retval
= ERROR_FAIL
;
2714 destroy_reg_param(®_params
[0]);
2720 * Perform per-target setup that requires JTAG access.
2722 int arm7_9_examine(struct target
*target
)
2724 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2727 if (!target_was_examined(target
)) {
2728 struct reg_cache
*t
, **cache_p
;
2730 t
= embeddedice_build_reg_cache(target
, arm7_9
);
2734 cache_p
= register_get_last_cache_p(&target
->reg_cache
);
2736 arm7_9
->eice_cache
= (*cache_p
);
2738 if (arm7_9
->armv4_5_common
.etm
)
2739 (*cache_p
)->next
= etm_build_reg_cache(target
,
2741 arm7_9
->armv4_5_common
.etm
);
2743 target_set_examined(target
);
2746 retval
= embeddedice_setup(target
);
2747 if (retval
== ERROR_OK
)
2748 retval
= arm7_9_setup(target
);
2749 if (retval
== ERROR_OK
&& arm7_9
->armv4_5_common
.etm
)
2750 retval
= etm_setup(target
);
2755 int arm7_9_check_reset(struct target
*target
)
2757 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2759 if (get_target_reset_nag() && !arm7_9
->dcc_downloads
)
2761 LOG_WARNING("NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2764 if (get_target_reset_nag() && (target
->working_area_size
== 0))
2766 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2769 if (get_target_reset_nag() && !arm7_9
->fast_memory_access
)
2771 LOG_WARNING("NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2777 COMMAND_HANDLER(handle_arm7_9_dbgrq_command
)
2779 struct target
*target
= get_current_target(CMD_CTX
);
2780 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2782 if (!is_arm7_9(arm7_9
))
2784 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2785 return ERROR_TARGET_INVALID
;
2789 COMMAND_PARSE_ENABLE(CMD_ARGV
[0],arm7_9
->use_dbgrq
);
2791 command_print(CMD_CTX
, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9
->use_dbgrq
) ? "enabled" : "disabled");
2796 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command
)
2798 struct target
*target
= get_current_target(CMD_CTX
);
2799 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2801 if (!is_arm7_9(arm7_9
))
2803 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2804 return ERROR_TARGET_INVALID
;
2808 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->fast_memory_access
);
2810 command_print(CMD_CTX
, "fast memory access is %s", (arm7_9
->fast_memory_access
) ? "enabled" : "disabled");
2815 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command
)
2817 struct target
*target
= get_current_target(CMD_CTX
);
2818 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2820 if (!is_arm7_9(arm7_9
))
2822 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2823 return ERROR_TARGET_INVALID
;
2827 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->dcc_downloads
);
2829 command_print(CMD_CTX
, "dcc downloads are %s", (arm7_9
->dcc_downloads
) ? "enabled" : "disabled");
2834 int arm7_9_setup_semihosting(struct target
*target
, int enable
)
2836 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2838 if (!is_arm7_9(arm7_9
))
2840 LOG_USER("current target isn't an ARM7/ARM9 target");
2841 return ERROR_TARGET_INVALID
;
2844 if (arm7_9
->has_vector_catch
) {
2845 struct reg
*vector_catch
= &arm7_9
->eice_cache
2846 ->reg_list
[EICE_VEC_CATCH
];
2848 if (!vector_catch
->valid
)
2849 embeddedice_read_reg(vector_catch
);
2850 buf_set_u32(vector_catch
->value
, 2, 1, enable
);
2851 embeddedice_store_reg(vector_catch
);
2853 /* TODO: allow optional high vectors and/or BKPT_HARD */
2855 breakpoint_add(target
, 8, 4, BKPT_SOFT
);
2857 breakpoint_remove(target
, 8);
2863 int arm7_9_init_arch_info(struct target
*target
, struct arm7_9_common
*arm7_9
)
2865 int retval
= ERROR_OK
;
2866 struct arm
*armv4_5
= &arm7_9
->armv4_5_common
;
2868 arm7_9
->common_magic
= ARM7_9_COMMON_MAGIC
;
2870 if ((retval
= arm_jtag_setup_connection(&arm7_9
->jtag_info
)) != ERROR_OK
)
2873 /* caller must have allocated via calloc(), so everything's zeroed */
2875 arm7_9
->wp_available_max
= 2;
2877 arm7_9
->fast_memory_access
= false;
2878 arm7_9
->dcc_downloads
= false;
2880 armv4_5
->arch_info
= arm7_9
;
2881 armv4_5
->read_core_reg
= arm7_9_read_core_reg
;
2882 armv4_5
->write_core_reg
= arm7_9_write_core_reg
;
2883 armv4_5
->full_context
= arm7_9_full_context
;
2884 armv4_5
->setup_semihosting
= arm7_9_setup_semihosting
;
2886 retval
= arm_init_arch_info(target
, armv4_5
);
2887 if (retval
!= ERROR_OK
)
2890 return target_register_timer_callback(arm7_9_handle_target_request
,
2894 static const struct command_registration arm7_9_any_command_handlers
[] = {
2897 .handler
= handle_arm7_9_dbgrq_command
,
2898 .mode
= COMMAND_ANY
,
2899 .usage
= "['enable'|'disable']",
2900 .help
= "use EmbeddedICE dbgrq instead of breakpoint "
2901 "for target halt requests",
2904 "fast_memory_access",
2905 .handler
= handle_arm7_9_fast_memory_access_command
,
2906 .mode
= COMMAND_ANY
,
2907 .usage
= "['enable'|'disable']",
2908 .help
= "use fast memory accesses instead of slower "
2909 "but potentially safer accesses",
2913 .handler
= handle_arm7_9_dcc_downloads_command
,
2914 .mode
= COMMAND_ANY
,
2915 .usage
= "['enable'|'disable']",
2916 .help
= "use DCC downloads for larger memory writes",
2918 COMMAND_REGISTRATION_DONE
2920 const struct command_registration arm7_9_command_handlers
[] = {
2922 .chain
= arm_command_handlers
,
2925 .chain
= etm_command_handlers
,
2929 .mode
= COMMAND_ANY
,
2930 .help
= "arm7/9 specific commands",
2931 .chain
= arm7_9_any_command_handlers
,
2933 COMMAND_REGISTRATION_DONE