jtag: remove jtag_get_end_state()'s that should be unecessary
[openocd/cortex.git] / src / jtag / zy1000 / zy1000.c
blob9b8b48043dae52d088bbe5cecd7255728517ea37
1 /***************************************************************************
2 * Copyright (C) 2007-2010 by Øyvind Harboe *
3 * *
4 * This program is free software; you can redistribute it and/or modify *
5 * it under the terms of the GNU General Public License as published by *
6 * the Free Software Foundation; either version 2 of the License, or *
7 * (at your option) any later version. *
8 * *
9 * This program is distributed in the hope that it will be useful, *
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12 * GNU General Public License for more details. *
13 * *
14 * You should have received a copy of the GNU General Public License *
15 * along with this program; if not, write to the *
16 * Free Software Foundation, Inc., *
17 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
18 ***************************************************************************/
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
22 * The zy1000 is a standalone debugger that has a web interface and
23 * requires no drivers on the developer host as all communication
24 * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25 * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26 * accelerate the JTAG commands, while offering *very* low latency
27 * between OpenOCD and the FPGA registers.
29 * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30 * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31 * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
33 * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34 * revb is using ARM7 + Xilinx.
36 * See Zylin web pages or contact Zylin for more information.
38 * The reason this code is in OpenOCD rather than OpenOCD linked with the
39 * ZY1000 code is that OpenOCD is the long road towards getting
40 * libopenocd into place. libopenocd will support both low performance,
41 * low latency systems(embedded) and high performance high latency
42 * systems(PCs).
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include "zy1000_version.h"
53 #include <cyg/hal/hal_io.h> // low level i/o
54 #include <cyg/hal/hal_diag.h>
56 #include <time.h>
58 #ifdef CYGPKG_HAL_NIOS2
59 #include <cyg/hal/io.h>
60 #include <cyg/firmwareutil/firmwareutil.h>
61 #endif
63 #define ZYLIN_VERSION GIT_ZY1000_VERSION
64 #define ZYLIN_DATE __DATE__
65 #define ZYLIN_TIME __TIME__
66 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
67 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
70 static int zy1000_khz(int khz, int *jtag_speed)
72 if (khz == 0)
74 *jtag_speed = 0;
76 else
78 *jtag_speed = 64000/khz;
80 return ERROR_OK;
83 static int zy1000_speed_div(int speed, int *khz)
85 if (speed == 0)
87 *khz = 0;
89 else
91 *khz = 64000/speed;
94 return ERROR_OK;
97 static bool readPowerDropout(void)
99 cyg_uint32 state;
100 // sample and clear power dropout
101 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
102 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
103 bool powerDropout;
104 powerDropout = (state & 0x80) != 0;
105 return powerDropout;
109 static bool readSRST(void)
111 cyg_uint32 state;
112 // sample and clear SRST sensing
113 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
114 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
115 bool srstAsserted;
116 srstAsserted = (state & 0x40) != 0;
117 return srstAsserted;
120 static int zy1000_srst_asserted(int *srst_asserted)
122 *srst_asserted = readSRST();
123 return ERROR_OK;
126 static int zy1000_power_dropout(int *dropout)
128 *dropout = readPowerDropout();
129 return ERROR_OK;
132 void zy1000_reset(int trst, int srst)
134 LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
136 /* flush the JTAG FIFO. Not flushing the queue before messing with
137 * reset has such interesting bugs as causing hard to reproduce
138 * RCLK bugs as RCLK will stop responding when TRST is asserted
140 waitIdle();
142 if (!srst)
144 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
146 else
148 /* Danger!!! if clk != 0 when in
149 * idle in TAP_IDLE, reset halt on str912 will fail.
151 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
154 if (!trst)
156 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
158 else
160 /* assert reset */
161 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
164 if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
166 /* we're now in the RESET state until trst is deasserted */
167 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
168 } else
170 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
171 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
174 /* wait for srst to float back up */
175 if (!srst)
177 int i;
178 for (i = 0; i < 1000; i++)
180 // We don't want to sense our own reset, so we clear here.
181 // There is of course a timing hole where we could loose
182 // a "real" reset.
183 if (!readSRST())
184 break;
186 /* wait 1ms */
187 alive_sleep(1);
190 if (i == 1000)
192 LOG_USER("SRST didn't deassert after %dms", i);
193 } else if (i > 1)
195 LOG_USER("SRST took %dms to deassert", i);
200 int zy1000_speed(int speed)
202 /* flush JTAG master FIFO before setting speed */
203 waitIdle();
205 if (speed == 0)
207 /*0 means RCLK*/
208 speed = 0;
209 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
210 LOG_DEBUG("jtag_speed using RCLK");
212 else
214 if (speed > 8190 || speed < 2)
216 LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
217 return ERROR_INVALID_ARGUMENTS;
220 LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
221 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
222 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
224 return ERROR_OK;
227 static bool savePower;
230 static void setPower(bool power)
232 savePower = power;
233 if (power)
235 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
236 } else
238 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
242 COMMAND_HANDLER(handle_power_command)
244 switch (CMD_ARGC)
246 case 1: {
247 bool enable;
248 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
249 setPower(enable);
250 // fall through
252 case 0:
253 LOG_INFO("Target power %s", savePower ? "on" : "off");
254 break;
255 default:
256 return ERROR_INVALID_ARGUMENTS;
259 return ERROR_OK;
263 /* Give TELNET a way to find out what version this is */
264 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
266 if ((argc < 1) || (argc > 3))
267 return JIM_ERR;
268 const char *version_str = NULL;
270 if (argc == 1)
272 version_str = ZYLIN_OPENOCD_VERSION;
273 } else
275 const char *str = Jim_GetString(argv[1], NULL);
276 const char *str2 = NULL;
277 if (argc > 2)
278 str2 = Jim_GetString(argv[2], NULL);
279 if (strcmp("openocd", str) == 0)
281 version_str = ZYLIN_OPENOCD;
283 else if (strcmp("zy1000", str) == 0)
285 version_str = ZYLIN_VERSION;
287 else if (strcmp("date", str) == 0)
289 version_str = ZYLIN_DATE;
291 else if (strcmp("time", str) == 0)
293 version_str = ZYLIN_TIME;
295 else if (strcmp("pcb", str) == 0)
297 #ifdef CYGPKG_HAL_NIOS2
298 version_str="c";
299 #else
300 version_str="b";
301 #endif
303 #ifdef CYGPKG_HAL_NIOS2
304 else if (strcmp("fpga", str) == 0)
307 /* return a list of 32 bit integers to describe the expected
308 * and actual FPGA
310 static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
311 cyg_uint32 id, timestamp;
312 HAL_READ_UINT32(SYSID_BASE, id);
313 HAL_READ_UINT32(SYSID_BASE+4, timestamp);
314 sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
315 version_str = fpga_id;
316 if ((argc>2) && (strcmp("time", str2) == 0))
318 time_t last_mod = timestamp;
319 char * t = ctime (&last_mod) ;
320 t[strlen(t)-1] = 0;
321 version_str = t;
324 #endif
326 else
328 return JIM_ERR;
332 Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
334 return JIM_OK;
338 #ifdef CYGPKG_HAL_NIOS2
341 struct info_forward
343 void *data;
344 struct cyg_upgrade_info *upgraded_file;
347 static void report_info(void *data, const char * format, va_list args)
349 char *s = alloc_vprintf(format, args);
350 LOG_USER_N("%s", s);
351 free(s);
354 struct cyg_upgrade_info firmware_info =
356 (cyg_uint8 *)0x84000000,
357 "/ram/firmware.phi",
358 "Firmware",
359 0x0300000,
360 0x1f00000 -
361 0x0300000,
362 "ZylinNiosFirmware\n",
363 report_info,
366 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
368 if (argc != 2)
369 return JIM_ERR;
371 int length;
372 const char *str = Jim_GetString(argv[1], &length);
374 /* */
375 int tmpFile;
376 if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
378 return JIM_ERR;
380 bool success;
381 success = write(tmpFile, str, length) == length;
382 close(tmpFile);
383 if (!success)
384 return JIM_ERR;
386 if (!cyg_firmware_upgrade(NULL, firmware_info))
387 return JIM_ERR;
389 return JIM_OK;
391 #endif
393 static int
394 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
395 int argc,
396 Jim_Obj * const *argv)
398 if (argc != 1)
400 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
401 return JIM_ERR;
404 cyg_uint32 status;
405 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, status);
407 Jim_SetResult(interp, Jim_NewIntObj(interp, (status&0x80) != 0));
409 return JIM_OK;
415 int zy1000_init(void)
417 LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
419 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
421 setPower(true); // on by default
424 /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
425 zy1000_reset(0, 0);
426 zy1000_speed(jtag_get_speed());
428 return ERROR_OK;
431 int zy1000_quit(void)
434 return ERROR_OK;
439 int interface_jtag_execute_queue(void)
441 cyg_uint32 empty;
443 waitIdle();
444 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
445 /* clear JTAG error register */
446 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
448 if ((empty&0x400) != 0)
450 LOG_WARNING("RCLK timeout");
451 /* the error is informative only as we don't want to break the firmware if there
452 * is a false positive.
454 // return ERROR_FAIL;
456 return ERROR_OK;
463 static cyg_uint32 getShiftValue(void)
465 cyg_uint32 value;
466 waitIdle();
467 ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
468 VERBOSE(LOG_INFO("getShiftValue %08x", value));
469 return value;
471 #if 0
472 static cyg_uint32 getShiftValueFlip(void)
474 cyg_uint32 value;
475 waitIdle();
476 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x18, value);
477 VERBOSE(LOG_INFO("getShiftValue %08x (flipped)", value));
478 return value;
480 #endif
482 #if 0
483 static void shiftValueInnerFlip(const tap_state_t state, const tap_state_t endState, int repeat, cyg_uint32 value)
485 VERBOSE(LOG_INFO("shiftValueInner %s %s %d %08x (flipped)", tap_state_name(state), tap_state_name(endState), repeat, value));
486 cyg_uint32 a,b;
487 a = state;
488 b = endState;
489 ZY1000_POKE(ZY1000_JTAG_BASE + 0xc, value);
490 ZY1000_POKE(ZY1000_JTAG_BASE + 0x8, (1 << 15) | (repeat << 8) | (a << 4) | b);
491 VERBOSE(getShiftValueFlip());
493 #endif
495 static void gotoEndState(tap_state_t end_state)
497 setCurrentState(end_state);
500 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, int pause)
502 int i;
503 int j;
504 int k;
506 for (i = 0; i < num_fields; i++)
508 cyg_uint32 value;
510 uint8_t *inBuffer = NULL;
513 // figure out where to store the input data
514 int num_bits = fields[i].num_bits;
515 if (fields[i].in_value != NULL)
517 inBuffer = fields[i].in_value;
520 // here we shuffle N bits out/in
521 j = 0;
522 while (j < num_bits)
524 tap_state_t pause_state;
525 int l;
526 k = num_bits-j;
527 pause_state = (shiftState == TAP_DRSHIFT)?TAP_DRSHIFT:TAP_IRSHIFT;
528 if (k > 32)
530 k = 32;
531 /* we have more to shift out */
532 } else if (pause&&(i == num_fields-1))
534 /* this was the last to shift out this time */
535 pause_state = (shiftState==TAP_DRSHIFT)?TAP_DRPAUSE:TAP_IRPAUSE;
538 // we have (num_bits + 7)/8 bytes of bits to toggle out.
539 // bits are pushed out LSB to MSB
540 value = 0;
541 if (fields[i].out_value != NULL)
543 for (l = 0; l < k; l += 8)
545 value|=fields[i].out_value[(j + l)/8]<<l;
548 /* mask away unused bits for easier debugging */
549 if (k < 32)
551 value&=~(((uint32_t)0xffffffff) << k);
552 } else
554 /* Shifting by >= 32 is not defined by the C standard
555 * and will in fact shift by &0x1f bits on nios */
558 shiftValueInner(shiftState, pause_state, k, value);
560 if (inBuffer != NULL)
562 // data in, LSB to MSB
563 value = getShiftValue();
564 // we're shifting in data to MSB, shift data to be aligned for returning the value
565 value >>= 32-k;
567 for (l = 0; l < k; l += 8)
569 inBuffer[(j + l)/8]=(value >> l)&0xff;
572 j += k;
577 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
579 int scan_size = 0;
580 struct jtag_tap *tap, *nextTap;
582 for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
584 nextTap = jtag_tap_next_enabled(tap);
585 bool pause = (nextTap==NULL);
586 scan_size = tap->ir_length;
588 /* search the list */
589 if (tap == active)
591 scanFields(1, fields, TAP_IRSHIFT, pause);
592 /* update device information */
593 buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
595 tap->bypass = 0;
596 } else
598 /* if a device isn't listed, set it to BYPASS */
599 assert(scan_size <= 32);
600 shiftValueInner(TAP_IRSHIFT, pause?TAP_IRPAUSE:TAP_IRSHIFT, scan_size, 0xffffffff);
602 tap->bypass = 1;
605 gotoEndState(state);
607 return ERROR_OK;
614 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
616 struct scan_field field;
617 field.num_bits = num_bits;
618 field.out_value = out_bits;
619 field.in_value = in_bits;
621 scanFields(1, &field, TAP_IRSHIFT, 1);
622 gotoEndState(state);
624 return ERROR_OK;
627 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
629 struct jtag_tap *tap, *nextTap;
630 for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
632 nextTap = jtag_tap_next_enabled(tap);
633 bool pause = (nextTap==NULL);
635 /* Find a range of fields to write to this tap */
636 if (tap == active)
638 assert(!tap->bypass);
640 scanFields(num_fields, fields, TAP_DRSHIFT, pause);
641 } else
643 /* Shift out a 0 for disabled tap's */
644 assert(tap->bypass);
645 shiftValueInner(TAP_DRSHIFT, pause?TAP_DRPAUSE:TAP_DRSHIFT, 1, 0);
648 gotoEndState(state);
649 return ERROR_OK;
652 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
654 struct scan_field field;
655 field.num_bits = num_bits;
656 field.out_value = out_bits;
657 field.in_value = in_bits;
659 scanFields(1, &field, TAP_DRSHIFT, 1);
660 gotoEndState(state);
661 return ERROR_OK;
664 int interface_jtag_add_tlr()
666 setCurrentState(TAP_RESET);
667 return ERROR_OK;
671 int interface_jtag_add_reset(int req_trst, int req_srst)
673 zy1000_reset(req_trst, req_srst);
674 return ERROR_OK;
677 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
679 /* num_cycles can be 0 */
680 setCurrentState(clockstate);
682 /* execute num_cycles, 32 at the time. */
683 int i;
684 for (i = 0; i < num_cycles; i += 32)
686 int num;
687 num = 32;
688 if (num_cycles-i < num)
690 num = num_cycles-i;
692 shiftValueInner(clockstate, clockstate, num, 0);
695 #if !TEST_MANUAL()
696 /* finish in end_state */
697 setCurrentState(state);
698 #else
699 tap_state_t t = TAP_IDLE;
700 /* test manual drive code on any target */
701 int tms;
702 uint8_t tms_scan = tap_get_tms_path(t, state);
703 int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
705 for (i = 0; i < tms_count; i++)
707 tms = (tms_scan >> i) & 1;
708 waitIdle();
709 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
711 waitIdle();
712 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
713 #endif
715 return ERROR_OK;
718 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
720 return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
723 int interface_jtag_add_clocks(int num_cycles)
725 return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
728 int interface_jtag_add_sleep(uint32_t us)
730 jtag_sleep(us);
731 return ERROR_OK;
734 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
736 /*wait for the fifo to be empty*/
737 waitIdle();
739 for (unsigned i = 0; i < num_bits; i++)
741 int tms;
743 if (((seq[i/8] >> (i % 8)) & 1) == 0)
745 tms = 0;
747 else
749 tms = 1;
752 waitIdle();
753 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
756 waitIdle();
757 if (state != TAP_INVALID)
759 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
760 } else
762 /* this would be normal if we are switching to SWD mode */
764 return ERROR_OK;
767 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
769 int state_count;
770 int tms = 0;
772 state_count = 0;
774 tap_state_t cur_state = cmd_queue_cur_state;
776 uint8_t seq[16];
777 memset(seq, 0, sizeof(seq));
778 assert(num_states < (sizeof(seq) * 8));
780 while (num_states)
782 if (tap_state_transition(cur_state, false) == path[state_count])
784 tms = 0;
786 else if (tap_state_transition(cur_state, true) == path[state_count])
788 tms = 1;
790 else
792 LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
793 exit(-1);
796 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
798 cur_state = path[state_count];
799 state_count++;
800 num_states--;
803 return interface_add_tms_seq(state_count, seq, cur_state);
806 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
808 /* bypass bits before and after */
809 int pre_bits = 0;
810 int post_bits = 0;
812 bool found = false;
813 struct jtag_tap *cur_tap, *nextTap;
814 for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
816 nextTap = jtag_tap_next_enabled(cur_tap);
817 if (cur_tap == tap)
819 found = true;
820 } else
822 if (found)
824 post_bits++;
825 } else
827 pre_bits++;
831 *pre = pre_bits;
832 *post = post_bits;
835 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
838 int pre_bits;
839 int post_bits;
840 jtag_pre_post_bits(tap, &pre_bits, &post_bits);
842 if (pre_bits + post_bits + 6 > 32)
844 int i;
845 for (i = 0; i < count; i++)
847 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
848 buffer += 4;
850 } else
852 tap_state_t end_state = TAP_IDLE;
853 tap_state_t shift_end_state;
854 if (post_bits == 0)
855 shift_end_state = end_state;
857 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
858 int i;
859 for (i = 0; i < count - 1; i++)
861 /* Fewer pokes means we get to use the FIFO more efficiently */
862 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
863 shiftValueInner(TAP_DRSHIFT, shift_end_state, 6 + post_bits + pre_bits, (reg_addr | (1 << 5)));
864 buffer += 4;
866 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
867 shiftValueInner(TAP_DRSHIFT, shift_end_state, 6, reg_addr | (1 << 5));
868 shiftValueInner(shift_end_state, end_state, post_bits, 0);
874 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
876 #if 0
877 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count);
878 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
879 #else
880 static const int bits[] = {32, 2};
881 uint32_t values[] = {0, 0};
883 /* FIX!!!!!! the target_write_memory() API started this nasty problem
884 * with unaligned uint32_t * pointers... */
885 const uint8_t *t = (const uint8_t *)data;
888 /* bypass bits before and after */
889 int pre_bits;
890 int post_bits;
891 jtag_pre_post_bits(tap, &pre_bits, &post_bits);
893 bool found = false;
894 struct jtag_tap *cur_tap, *nextTap;
895 for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
897 nextTap = jtag_tap_next_enabled(cur_tap);
898 if (cur_tap == tap)
900 found = true;
901 } else
903 if (found)
905 post_bits++;
906 } else
908 pre_bits++;
913 post_bits+=2;
916 while (--count > 0)
918 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
920 uint32_t value;
921 value = *t++;
922 value |= (*t++<<8);
923 value |= (*t++<<16);
924 value |= (*t++<<24);
926 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
927 /* minimum 2 bits */
928 shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
930 #if 1
931 /* copy & paste from arm11_dbgtap.c */
932 //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
934 waitIdle();
935 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
936 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
937 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
938 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
939 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
940 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
941 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
942 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
943 /* we don't have to wait for the queue to empty here. waitIdle(); */
944 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
945 #else
946 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
948 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
951 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
952 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
953 #endif
956 values[0] = *t++;
957 values[0] |= (*t++<<8);
958 values[0] |= (*t++<<16);
959 values[0] |= (*t++<<24);
961 /* This will happen on the last iteration updating the current tap state
962 * so we don't have to track it during the common code path */
963 jtag_add_dr_out(tap,
965 bits,
966 values,
967 TAP_IDLE);
969 return jtag_execute_queue();
970 #endif
974 static const struct command_registration zy1000_commands[] = {
976 .name = "power",
977 .handler = handle_power_command,
978 .mode = COMMAND_ANY,
979 .help = "Turn power switch to target on/off. "
980 "With no arguments, prints status.",
981 .usage = "('on'|'off)",
984 .name = "zy1000_version",
985 .mode = COMMAND_ANY,
986 .jim_handler = jim_zy1000_version,
987 .help = "Print version info for zy1000.",
988 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
991 .name = "powerstatus",
992 .mode = COMMAND_ANY,
993 .jim_handler = zylinjtag_Jim_Command_powerstatus,
994 .help = "Returns power status of target",
996 #ifdef CYGPKG_HAL_NIOS2
998 .name = "updatezy1000firmware",
999 .mode = COMMAND_ANY,
1000 .jim_handler = jim_zy1000_writefirmware,
1001 .help = "writes firmware to flash",
1002 /* .usage = "some_string", */
1004 #endif
1005 COMMAND_REGISTRATION_DONE
1010 struct jtag_interface zy1000_interface =
1012 .name = "ZY1000",
1013 .supported = DEBUG_CAP_TMS_SEQ,
1014 .execute_queue = NULL,
1015 .speed = zy1000_speed,
1016 .commands = zy1000_commands,
1017 .init = zy1000_init,
1018 .quit = zy1000_quit,
1019 .khz = zy1000_khz,
1020 .speed_div = zy1000_speed_div,
1021 .power_dropout = zy1000_power_dropout,
1022 .srst_asserted = zy1000_srst_asserted,