cortex a8: add missing error handling for cortex_a8_dap_write/read_coreregister_u32()
[openocd/cortex.git] / src / target / cortex_a8.c
blob0f5c74289bd3a872c70160b099328c7ad9a0ea69
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 * *
32 * Cortex-A8(tm) TRM, ARM DDI 0344H *
33 * *
34 ***************************************************************************/
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
39 #include "breakpoints.h"
40 #include "cortex_a8.h"
41 #include "register.h"
42 #include "target_request.h"
43 #include "target_type.h"
44 #include "arm_opcodes.h"
45 #include <helper/time_support.h>
47 static int cortex_a8_poll(struct target *target);
48 static int cortex_a8_debug_entry(struct target *target);
49 static int cortex_a8_restore_context(struct target *target, bool bpwp);
50 static int cortex_a8_set_breakpoint(struct target *target,
51 struct breakpoint *breakpoint, uint8_t matchmode);
52 static int cortex_a8_unset_breakpoint(struct target *target,
53 struct breakpoint *breakpoint);
54 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
55 uint32_t *value, int regnum);
56 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
57 uint32_t value, int regnum);
58 static int cortex_a8_mmu(struct target *target, int *enabled);
59 static int cortex_a8_virt2phys(struct target *target,
60 uint32_t virt, uint32_t *phys);
61 static void cortex_a8_disable_mmu_caches(struct target *target, int mmu,
62 int d_u_cache, int i_cache);
63 static void cortex_a8_enable_mmu_caches(struct target *target, int mmu,
64 int d_u_cache, int i_cache);
65 static uint32_t cortex_a8_get_ttb(struct target *target);
69 * FIXME do topology discovery using the ROM; don't
70 * assume this is an OMAP3. Also, allow for multiple ARMv7-A
71 * cores, with different AP numbering ... don't use a #define
72 * for these numbers, use per-core armv7a state.
74 #define swjdp_memoryap 0
75 #define swjdp_debugap 1
76 #define OMAP3530_DEBUG_BASE 0x54011000
79 * Cortex-A8 Basic debug access, very low level assumes state is saved
81 static int cortex_a8_init_debug_access(struct target *target)
83 struct armv7a_common *armv7a = target_to_armv7a(target);
84 struct adiv5_dap *swjdp = &armv7a->dap;
86 int retval;
87 uint32_t dummy;
89 LOG_DEBUG(" ");
91 /* Unlocking the debug registers for modification */
92 /* The debugport might be uninitialised so try twice */
93 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
94 if (retval != ERROR_OK)
96 /* try again */
97 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
98 if (retval == ERROR_OK)
100 LOG_USER("Locking debug access failed on first, but succeeded on second try.");
103 if (retval != ERROR_OK)
104 return retval;
105 /* Clear Sticky Power Down status Bit in PRSR to enable access to
106 the registers in the Core Power Domain */
107 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
108 if (retval != ERROR_OK)
109 return retval;
111 /* Enabling of instruction execution in debug mode is done in debug_entry code */
113 /* Resync breakpoint registers */
115 /* Since this is likely called from init or reset, update target state information*/
116 retval = cortex_a8_poll(target);
118 return retval;
121 /* To reduce needless round-trips, pass in a pointer to the current
122 * DSCR value. Initialize it to zero if you just need to know the
123 * value on return from this function; or DSCR_INSTR_COMP if you
124 * happen to know that no instruction is pending.
126 static int cortex_a8_exec_opcode(struct target *target,
127 uint32_t opcode, uint32_t *dscr_p)
129 uint32_t dscr;
130 int retval;
131 struct armv7a_common *armv7a = target_to_armv7a(target);
132 struct adiv5_dap *swjdp = &armv7a->dap;
134 dscr = dscr_p ? *dscr_p : 0;
136 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
138 /* Wait for InstrCompl bit to be set */
139 while ((dscr & DSCR_INSTR_COMP) == 0)
141 retval = mem_ap_read_atomic_u32(swjdp,
142 armv7a->debug_base + CPUDBG_DSCR, &dscr);
143 if (retval != ERROR_OK)
145 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
146 return retval;
150 retval = mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
151 if (retval != ERROR_OK)
152 return retval;
156 retval = mem_ap_read_atomic_u32(swjdp,
157 armv7a->debug_base + CPUDBG_DSCR, &dscr);
158 if (retval != ERROR_OK)
160 LOG_ERROR("Could not read DSCR register");
161 return retval;
164 while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
166 if (dscr_p)
167 *dscr_p = dscr;
169 return retval;
172 /**************************************************************************
173 Read core register with very few exec_opcode, fast but needs work_area.
174 This can cause problems with MMU active.
175 **************************************************************************/
176 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
177 uint32_t * regfile)
179 int retval = ERROR_OK;
180 struct armv7a_common *armv7a = target_to_armv7a(target);
181 struct adiv5_dap *swjdp = &armv7a->dap;
183 retval = cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
184 if (retval != ERROR_OK)
185 return retval;
186 retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
187 if (retval != ERROR_OK)
188 return retval;
189 retval = cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
190 if (retval != ERROR_OK)
191 return retval;
193 dap_ap_select(swjdp, swjdp_memoryap);
194 mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
195 dap_ap_select(swjdp, swjdp_debugap);
197 return retval;
200 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
201 uint32_t *value, int regnum)
203 int retval = ERROR_OK;
204 uint8_t reg = regnum&0xFF;
205 uint32_t dscr = 0;
206 struct armv7a_common *armv7a = target_to_armv7a(target);
207 struct adiv5_dap *swjdp = &armv7a->dap;
209 if (reg > 17)
210 return retval;
212 if (reg < 15)
214 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
215 retval = cortex_a8_exec_opcode(target,
216 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
217 &dscr);
218 if (retval != ERROR_OK)
219 return retval;
221 else if (reg == 15)
223 /* "MOV r0, r15"; then move r0 to DCCTX */
224 retval = cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
225 if (retval != ERROR_OK)
226 return retval;
227 retval = cortex_a8_exec_opcode(target,
228 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
229 &dscr);
230 if (retval != ERROR_OK)
231 return retval;
233 else
235 /* "MRS r0, CPSR" or "MRS r0, SPSR"
236 * then move r0 to DCCTX
238 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
239 if (retval != ERROR_OK)
240 return retval;
241 retval = cortex_a8_exec_opcode(target,
242 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
243 &dscr);
244 if (retval != ERROR_OK)
245 return retval;
248 /* Wait for DTRRXfull then read DTRRTX */
249 while ((dscr & DSCR_DTR_TX_FULL) == 0)
251 retval = mem_ap_read_atomic_u32(swjdp,
252 armv7a->debug_base + CPUDBG_DSCR, &dscr);
253 if (retval != ERROR_OK)
254 return retval;
257 retval = mem_ap_read_atomic_u32(swjdp,
258 armv7a->debug_base + CPUDBG_DTRTX, value);
259 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
261 return retval;
264 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
265 uint32_t value, int regnum)
267 int retval = ERROR_OK;
268 uint8_t Rd = regnum&0xFF;
269 uint32_t dscr;
270 struct armv7a_common *armv7a = target_to_armv7a(target);
271 struct adiv5_dap *swjdp = &armv7a->dap;
273 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
275 /* Check that DCCRX is not full */
276 retval = mem_ap_read_atomic_u32(swjdp,
277 armv7a->debug_base + CPUDBG_DSCR, &dscr);
278 if (retval != ERROR_OK)
279 return retval;
280 if (dscr & DSCR_DTR_RX_FULL)
282 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
283 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
284 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
285 &dscr);
286 if (retval != ERROR_OK)
287 return retval;
290 if (Rd > 17)
291 return retval;
293 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
294 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
295 retval = mem_ap_write_u32(swjdp,
296 armv7a->debug_base + CPUDBG_DTRRX, value);
297 if (retval != ERROR_OK)
298 return retval;
300 if (Rd < 15)
302 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
303 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
304 &dscr);
305 if (retval != ERROR_OK)
306 return retval;
308 else if (Rd == 15)
310 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
311 * then "mov r15, r0"
313 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
314 &dscr);
315 if (retval != ERROR_OK)
316 return retval;
317 retval = cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
318 if (retval != ERROR_OK)
319 return retval;
321 else
323 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
324 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
326 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
327 &dscr);
328 if (retval != ERROR_OK)
329 return retval;
330 retval = cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
331 &dscr);
332 if (retval != ERROR_OK)
333 return retval;
335 /* "Prefetch flush" after modifying execution status in CPSR */
336 if (Rd == 16)
338 retval = cortex_a8_exec_opcode(target,
339 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
340 &dscr);
341 if (retval != ERROR_OK)
342 return retval;
346 return retval;
349 /* Write to memory mapped registers directly with no cache or mmu handling */
350 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
352 int retval;
353 struct armv7a_common *armv7a = target_to_armv7a(target);
354 struct adiv5_dap *swjdp = &armv7a->dap;
356 retval = mem_ap_write_atomic_u32(swjdp, address, value);
358 return retval;
362 * Cortex-A8 implementation of Debug Programmer's Model
364 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
365 * so there's no need to poll for it before executing an instruction.
367 * NOTE that in several of these cases the "stall" mode might be useful.
368 * It'd let us queue a few operations together... prepare/finish might
369 * be the places to enable/disable that mode.
372 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
374 return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
377 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
379 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
380 return mem_ap_write_u32(&a8->armv7a_common.dap,
381 a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
384 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
385 uint32_t *dscr_p)
387 struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
388 uint32_t dscr = DSCR_INSTR_COMP;
389 int retval;
391 if (dscr_p)
392 dscr = *dscr_p;
394 /* Wait for DTRRXfull */
395 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
396 retval = mem_ap_read_atomic_u32(swjdp,
397 a8->armv7a_common.debug_base + CPUDBG_DSCR,
398 &dscr);
399 if (retval != ERROR_OK)
400 return retval;
403 retval = mem_ap_read_atomic_u32(swjdp,
404 a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
405 if (retval != ERROR_OK)
406 return retval;
407 //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
409 if (dscr_p)
410 *dscr_p = dscr;
412 return retval;
415 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
417 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
418 struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
419 uint32_t dscr;
420 int retval;
422 /* set up invariant: INSTR_COMP is set after ever DPM operation */
423 long long then = timeval_ms();
424 for (;;)
426 retval = mem_ap_read_atomic_u32(swjdp,
427 a8->armv7a_common.debug_base + CPUDBG_DSCR,
428 &dscr);
429 if (retval != ERROR_OK)
430 return retval;
431 if ((dscr & DSCR_INSTR_COMP) != 0)
432 break;
433 if (timeval_ms() > then + 1000)
435 LOG_ERROR("Timeout waiting for dpm prepare");
436 return ERROR_FAIL;
440 /* this "should never happen" ... */
441 if (dscr & DSCR_DTR_RX_FULL) {
442 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
443 /* Clear DCCRX */
444 retval = cortex_a8_exec_opcode(
445 a8->armv7a_common.armv4_5_common.target,
446 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
447 &dscr);
448 if (retval != ERROR_OK)
449 return retval;
452 return retval;
455 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
457 /* REVISIT what could be done here? */
458 return ERROR_OK;
461 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
462 uint32_t opcode, uint32_t data)
464 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
465 int retval;
466 uint32_t dscr = DSCR_INSTR_COMP;
468 retval = cortex_a8_write_dcc(a8, data);
470 return cortex_a8_exec_opcode(
471 a8->armv7a_common.armv4_5_common.target,
472 opcode,
473 &dscr);
476 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
477 uint32_t opcode, uint32_t data)
479 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
480 uint32_t dscr = DSCR_INSTR_COMP;
481 int retval;
483 retval = cortex_a8_write_dcc(a8, data);
485 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
486 retval = cortex_a8_exec_opcode(
487 a8->armv7a_common.armv4_5_common.target,
488 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
489 &dscr);
490 if (retval != ERROR_OK)
491 return retval;
493 /* then the opcode, taking data from R0 */
494 retval = cortex_a8_exec_opcode(
495 a8->armv7a_common.armv4_5_common.target,
496 opcode,
497 &dscr);
499 return retval;
502 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
504 struct target *target = dpm->arm->target;
505 uint32_t dscr = DSCR_INSTR_COMP;
507 /* "Prefetch flush" after modifying execution status in CPSR */
508 return cortex_a8_exec_opcode(target,
509 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
510 &dscr);
513 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
514 uint32_t opcode, uint32_t *data)
516 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
517 int retval;
518 uint32_t dscr = DSCR_INSTR_COMP;
520 /* the opcode, writing data to DCC */
521 retval = cortex_a8_exec_opcode(
522 a8->armv7a_common.armv4_5_common.target,
523 opcode,
524 &dscr);
525 if (retval != ERROR_OK)
526 return retval;
528 return cortex_a8_read_dcc(a8, data, &dscr);
532 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
533 uint32_t opcode, uint32_t *data)
535 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
536 uint32_t dscr = DSCR_INSTR_COMP;
537 int retval;
539 /* the opcode, writing data to R0 */
540 retval = cortex_a8_exec_opcode(
541 a8->armv7a_common.armv4_5_common.target,
542 opcode,
543 &dscr);
544 if (retval != ERROR_OK)
545 return retval;
547 /* write R0 to DCC */
548 retval = cortex_a8_exec_opcode(
549 a8->armv7a_common.armv4_5_common.target,
550 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
551 &dscr);
552 if (retval != ERROR_OK)
553 return retval;
555 return cortex_a8_read_dcc(a8, data, &dscr);
558 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
559 uint32_t addr, uint32_t control)
561 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
562 uint32_t vr = a8->armv7a_common.debug_base;
563 uint32_t cr = a8->armv7a_common.debug_base;
564 int retval;
566 switch (index_t) {
567 case 0 ... 15: /* breakpoints */
568 vr += CPUDBG_BVR_BASE;
569 cr += CPUDBG_BCR_BASE;
570 break;
571 case 16 ... 31: /* watchpoints */
572 vr += CPUDBG_WVR_BASE;
573 cr += CPUDBG_WCR_BASE;
574 index_t -= 16;
575 break;
576 default:
577 return ERROR_FAIL;
579 vr += 4 * index_t;
580 cr += 4 * index_t;
582 LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
583 (unsigned) vr, (unsigned) cr);
585 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
586 vr, addr);
587 if (retval != ERROR_OK)
588 return retval;
589 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
590 cr, control);
591 return retval;
594 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
596 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
597 uint32_t cr;
599 switch (index_t) {
600 case 0 ... 15:
601 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
602 break;
603 case 16 ... 31:
604 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
605 index_t -= 16;
606 break;
607 default:
608 return ERROR_FAIL;
610 cr += 4 * index_t;
612 LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
614 /* clear control register */
615 return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
618 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
620 struct arm_dpm *dpm = &a8->armv7a_common.dpm;
621 int retval;
623 dpm->arm = &a8->armv7a_common.armv4_5_common;
624 dpm->didr = didr;
626 dpm->prepare = cortex_a8_dpm_prepare;
627 dpm->finish = cortex_a8_dpm_finish;
629 dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
630 dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
631 dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
633 dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
634 dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
636 dpm->bpwp_enable = cortex_a8_bpwp_enable;
637 dpm->bpwp_disable = cortex_a8_bpwp_disable;
639 retval = arm_dpm_setup(dpm);
640 if (retval == ERROR_OK)
641 retval = arm_dpm_initialize(dpm);
643 return retval;
648 * Cortex-A8 Run control
651 static int cortex_a8_poll(struct target *target)
653 int retval = ERROR_OK;
654 uint32_t dscr;
655 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
656 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
657 struct adiv5_dap *swjdp = &armv7a->dap;
658 enum target_state prev_target_state = target->state;
659 uint8_t saved_apsel = dap_ap_get_select(swjdp);
661 dap_ap_select(swjdp, swjdp_debugap);
662 retval = mem_ap_read_atomic_u32(swjdp,
663 armv7a->debug_base + CPUDBG_DSCR, &dscr);
664 if (retval != ERROR_OK)
666 dap_ap_select(swjdp, saved_apsel);
667 return retval;
669 cortex_a8->cpudbg_dscr = dscr;
671 if ((dscr & 0x3) == 0x3)
673 if (prev_target_state != TARGET_HALTED)
675 /* We have a halting debug event */
676 LOG_DEBUG("Target halted");
677 target->state = TARGET_HALTED;
678 if ((prev_target_state == TARGET_RUNNING)
679 || (prev_target_state == TARGET_RESET))
681 retval = cortex_a8_debug_entry(target);
682 if (retval != ERROR_OK)
683 return retval;
685 target_call_event_callbacks(target,
686 TARGET_EVENT_HALTED);
688 if (prev_target_state == TARGET_DEBUG_RUNNING)
690 LOG_DEBUG(" ");
692 retval = cortex_a8_debug_entry(target);
693 if (retval != ERROR_OK)
694 return retval;
696 target_call_event_callbacks(target,
697 TARGET_EVENT_DEBUG_HALTED);
701 else if ((dscr & 0x3) == 0x2)
703 target->state = TARGET_RUNNING;
705 else
707 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
708 target->state = TARGET_UNKNOWN;
711 dap_ap_select(swjdp, saved_apsel);
713 return retval;
716 static int cortex_a8_halt(struct target *target)
718 int retval = ERROR_OK;
719 uint32_t dscr;
720 struct armv7a_common *armv7a = target_to_armv7a(target);
721 struct adiv5_dap *swjdp = &armv7a->dap;
722 uint8_t saved_apsel = dap_ap_get_select(swjdp);
723 dap_ap_select(swjdp, swjdp_debugap);
726 * Tell the core to be halted by writing DRCR with 0x1
727 * and then wait for the core to be halted.
729 retval = mem_ap_write_atomic_u32(swjdp,
730 armv7a->debug_base + CPUDBG_DRCR, 0x1);
731 if (retval != ERROR_OK)
732 goto out;
735 * enter halting debug mode
737 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
738 if (retval != ERROR_OK)
739 goto out;
741 retval = mem_ap_write_atomic_u32(swjdp,
742 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
743 if (retval != ERROR_OK)
744 goto out;
746 long long then = timeval_ms();
747 for (;;)
749 retval = mem_ap_read_atomic_u32(swjdp,
750 armv7a->debug_base + CPUDBG_DSCR, &dscr);
751 if (retval != ERROR_OK)
752 goto out;
753 if ((dscr & DSCR_CORE_HALTED) != 0)
755 break;
757 if (timeval_ms() > then + 1000)
759 LOG_ERROR("Timeout waiting for halt");
760 return ERROR_FAIL;
764 target->debug_reason = DBG_REASON_DBGRQ;
766 out:
767 dap_ap_select(swjdp, saved_apsel);
768 return retval;
771 static int cortex_a8_resume(struct target *target, int current,
772 uint32_t address, int handle_breakpoints, int debug_execution)
774 struct armv7a_common *armv7a = target_to_armv7a(target);
775 struct arm *armv4_5 = &armv7a->armv4_5_common;
776 struct adiv5_dap *swjdp = &armv7a->dap;
777 int retval;
779 // struct breakpoint *breakpoint = NULL;
780 uint32_t resume_pc, dscr;
782 uint8_t saved_apsel = dap_ap_get_select(swjdp);
783 dap_ap_select(swjdp, swjdp_debugap);
785 if (!debug_execution)
786 target_free_all_working_areas(target);
788 #if 0
789 if (debug_execution)
791 /* Disable interrupts */
792 /* We disable interrupts in the PRIMASK register instead of
793 * masking with C_MASKINTS,
794 * This is probably the same issue as Cortex-M3 Errata 377493:
795 * C_MASKINTS in parallel with disabled interrupts can cause
796 * local faults to not be taken. */
797 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
798 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
799 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
801 /* Make sure we are in Thumb mode */
802 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
803 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
804 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
805 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
807 #endif
809 /* current = 1: continue on current pc, otherwise continue at <address> */
810 resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
811 if (!current)
812 resume_pc = address;
814 /* Make sure that the Armv7 gdb thumb fixups does not
815 * kill the return address
817 switch (armv4_5->core_state)
819 case ARM_STATE_ARM:
820 resume_pc &= 0xFFFFFFFC;
821 break;
822 case ARM_STATE_THUMB:
823 case ARM_STATE_THUMB_EE:
824 /* When the return address is loaded into PC
825 * bit 0 must be 1 to stay in Thumb state
827 resume_pc |= 0x1;
828 break;
829 case ARM_STATE_JAZELLE:
830 LOG_ERROR("How do I resume into Jazelle state??");
831 return ERROR_FAIL;
833 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
834 buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
835 armv4_5->pc->dirty = 1;
836 armv4_5->pc->valid = 1;
838 cortex_a8_restore_context(target, handle_breakpoints);
840 #if 0
841 /* the front-end may request us not to handle breakpoints */
842 if (handle_breakpoints)
844 /* Single step past breakpoint at current address */
845 if ((breakpoint = breakpoint_find(target, resume_pc)))
847 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
848 cortex_m3_unset_breakpoint(target, breakpoint);
849 cortex_m3_single_step_core(target);
850 cortex_m3_set_breakpoint(target, breakpoint);
854 #endif
855 /* Restart core and wait for it to be started
856 * NOTE: this clears DSCR_ITR_EN and other bits.
858 * REVISIT: for single stepping, we probably want to
859 * disable IRQs by default, with optional override...
861 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
862 if (retval != ERROR_OK)
863 return retval;
865 long long then = timeval_ms();
866 for (;;)
868 retval = mem_ap_read_atomic_u32(swjdp,
869 armv7a->debug_base + CPUDBG_DSCR, &dscr);
870 if (retval != ERROR_OK)
871 return retval;
872 if ((dscr & DSCR_CORE_RESTARTED) != 0)
873 break;
874 if (timeval_ms() > then + 1000)
876 LOG_ERROR("Timeout waiting for resume");
877 return ERROR_FAIL;
881 target->debug_reason = DBG_REASON_NOTHALTED;
882 target->state = TARGET_RUNNING;
884 /* registers are now invalid */
885 register_cache_invalidate(armv4_5->core_cache);
887 if (!debug_execution)
889 target->state = TARGET_RUNNING;
890 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
891 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
893 else
895 target->state = TARGET_DEBUG_RUNNING;
896 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
897 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
900 dap_ap_select(swjdp, saved_apsel);
902 return ERROR_OK;
905 static int cortex_a8_debug_entry(struct target *target)
907 int i;
908 uint32_t regfile[16], cpsr, dscr;
909 int retval = ERROR_OK;
910 struct working_area *regfile_working_area = NULL;
911 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
912 struct armv7a_common *armv7a = target_to_armv7a(target);
913 struct arm *armv4_5 = &armv7a->armv4_5_common;
914 struct adiv5_dap *swjdp = &armv7a->dap;
915 struct reg *reg;
917 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
919 /* REVISIT surely we should not re-read DSCR !! */
920 retval = mem_ap_read_atomic_u32(swjdp,
921 armv7a->debug_base + CPUDBG_DSCR, &dscr);
922 if (retval != ERROR_OK)
923 return retval;
925 /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
926 * imprecise data aborts get discarded by issuing a Data
927 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
930 /* Enable the ITR execution once we are in debug mode */
931 dscr |= DSCR_ITR_EN;
932 retval = mem_ap_write_atomic_u32(swjdp,
933 armv7a->debug_base + CPUDBG_DSCR, dscr);
934 if (retval != ERROR_OK)
935 return retval;
937 /* Examine debug reason */
938 arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
940 /* save address of instruction that triggered the watchpoint? */
941 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
942 uint32_t wfar;
944 retval = mem_ap_read_atomic_u32(swjdp,
945 armv7a->debug_base + CPUDBG_WFAR,
946 &wfar);
947 if (retval != ERROR_OK)
948 return retval;
949 arm_dpm_report_wfar(&armv7a->dpm, wfar);
952 /* REVISIT fast_reg_read is never set ... */
954 /* Examine target state and mode */
955 if (cortex_a8->fast_reg_read)
956 target_alloc_working_area(target, 64, &regfile_working_area);
958 /* First load register acessible through core debug port*/
959 if (!regfile_working_area)
961 retval = arm_dpm_read_current_registers(&armv7a->dpm);
963 else
965 dap_ap_select(swjdp, swjdp_memoryap);
966 cortex_a8_read_regs_through_mem(target,
967 regfile_working_area->address, regfile);
968 dap_ap_select(swjdp, swjdp_memoryap);
969 target_free_working_area(target, regfile_working_area);
971 /* read Current PSR */
972 retval = cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
973 if (retval != ERROR_OK)
974 return retval;
975 dap_ap_select(swjdp, swjdp_debugap);
976 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
978 arm_set_cpsr(armv4_5, cpsr);
980 /* update cache */
981 for (i = 0; i <= ARM_PC; i++)
983 reg = arm_reg_current(armv4_5, i);
985 buf_set_u32(reg->value, 0, 32, regfile[i]);
986 reg->valid = 1;
987 reg->dirty = 0;
990 /* Fixup PC Resume Address */
991 if (cpsr & (1 << 5))
993 // T bit set for Thumb or ThumbEE state
994 regfile[ARM_PC] -= 4;
996 else
998 // ARM state
999 regfile[ARM_PC] -= 8;
1002 reg = armv4_5->pc;
1003 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1004 reg->dirty = reg->valid;
1007 #if 0
1008 /* TODO, Move this */
1009 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1010 cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1011 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1013 cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1014 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1016 cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1017 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1018 #endif
1020 /* Are we in an exception handler */
1021 // armv4_5->exception_number = 0;
1022 if (armv7a->post_debug_entry)
1023 armv7a->post_debug_entry(target);
1025 return retval;
1028 static void cortex_a8_post_debug_entry(struct target *target)
1030 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1031 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1032 int retval;
1034 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1035 retval = armv7a->armv4_5_common.mrc(target, 15,
1036 0, 0, /* op1, op2 */
1037 1, 0, /* CRn, CRm */
1038 &cortex_a8->cp15_control_reg);
1039 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
1041 if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
1043 uint32_t cache_type_reg;
1045 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
1046 retval = armv7a->armv4_5_common.mrc(target, 15,
1047 0, 1, /* op1, op2 */
1048 0, 0, /* CRn, CRm */
1049 &cache_type_reg);
1050 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
1052 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
1053 armv4_5_identify_cache(cache_type_reg,
1054 &armv7a->armv4_5_mmu.armv4_5_cache);
1057 armv7a->armv4_5_mmu.mmu_enabled =
1058 (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
1059 armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
1060 (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
1061 armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
1062 (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
1067 static int cortex_a8_step(struct target *target, int current, uint32_t address,
1068 int handle_breakpoints)
1070 struct armv7a_common *armv7a = target_to_armv7a(target);
1071 struct arm *armv4_5 = &armv7a->armv4_5_common;
1072 struct breakpoint *breakpoint = NULL;
1073 struct breakpoint stepbreakpoint;
1074 struct reg *r;
1075 int retval;
1077 int timeout = 100;
1079 if (target->state != TARGET_HALTED)
1081 LOG_WARNING("target not halted");
1082 return ERROR_TARGET_NOT_HALTED;
1085 /* current = 1: continue on current pc, otherwise continue at <address> */
1086 r = armv4_5->pc;
1087 if (!current)
1089 buf_set_u32(r->value, 0, 32, address);
1091 else
1093 address = buf_get_u32(r->value, 0, 32);
1096 /* The front-end may request us not to handle breakpoints.
1097 * But since Cortex-A8 uses breakpoint for single step,
1098 * we MUST handle breakpoints.
1100 handle_breakpoints = 1;
1101 if (handle_breakpoints) {
1102 breakpoint = breakpoint_find(target, address);
1103 if (breakpoint)
1104 cortex_a8_unset_breakpoint(target, breakpoint);
1107 /* Setup single step breakpoint */
1108 stepbreakpoint.address = address;
1109 stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
1110 ? 2 : 4;
1111 stepbreakpoint.type = BKPT_HARD;
1112 stepbreakpoint.set = 0;
1114 /* Break on IVA mismatch */
1115 cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
1117 target->debug_reason = DBG_REASON_SINGLESTEP;
1119 retval = cortex_a8_resume(target, 1, address, 0, 0);
1120 if (retval != ERROR_OK)
1121 return retval;
1123 while (target->state != TARGET_HALTED)
1125 retval = cortex_a8_poll(target);
1126 if (retval != ERROR_OK)
1127 return retval;
1128 if (--timeout == 0)
1130 LOG_ERROR("timeout waiting for target halt");
1131 return ERROR_FAIL;
1135 cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1136 if (timeout > 0)
1137 target->debug_reason = DBG_REASON_BREAKPOINT;
1139 if (breakpoint)
1140 cortex_a8_set_breakpoint(target, breakpoint, 0);
1142 if (target->state != TARGET_HALTED)
1143 LOG_DEBUG("target stepped");
1145 return ERROR_OK;
1148 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1150 struct armv7a_common *armv7a = target_to_armv7a(target);
1152 LOG_DEBUG(" ");
1154 if (armv7a->pre_restore_context)
1155 armv7a->pre_restore_context(target);
1157 arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1159 return ERROR_OK;
1164 * Cortex-A8 Breakpoint and watchpoint functions
1167 /* Setup hardware Breakpoint Register Pair */
1168 static int cortex_a8_set_breakpoint(struct target *target,
1169 struct breakpoint *breakpoint, uint8_t matchmode)
1171 int retval;
1172 int brp_i=0;
1173 uint32_t control;
1174 uint8_t byte_addr_select = 0x0F;
1175 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1176 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1177 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1179 if (breakpoint->set)
1181 LOG_WARNING("breakpoint already set");
1182 return ERROR_OK;
1185 if (breakpoint->type == BKPT_HARD)
1187 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1188 brp_i++ ;
1189 if (brp_i >= cortex_a8->brp_num)
1191 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1192 return ERROR_FAIL;
1194 breakpoint->set = brp_i + 1;
1195 if (breakpoint->length == 2)
1197 byte_addr_select = (3 << (breakpoint->address & 0x02));
1199 control = ((matchmode & 0x7) << 20)
1200 | (byte_addr_select << 5)
1201 | (3 << 1) | 1;
1202 brp_list[brp_i].used = 1;
1203 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1204 brp_list[brp_i].control = control;
1205 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1206 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1207 brp_list[brp_i].value);
1208 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1209 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1210 brp_list[brp_i].control);
1211 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1212 brp_list[brp_i].control,
1213 brp_list[brp_i].value);
1215 else if (breakpoint->type == BKPT_SOFT)
1217 uint8_t code[4];
1218 if (breakpoint->length == 2)
1220 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1222 else
1224 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1226 retval = target->type->read_memory(target,
1227 breakpoint->address & 0xFFFFFFFE,
1228 breakpoint->length, 1,
1229 breakpoint->orig_instr);
1230 if (retval != ERROR_OK)
1231 return retval;
1232 retval = target->type->write_memory(target,
1233 breakpoint->address & 0xFFFFFFFE,
1234 breakpoint->length, 1, code);
1235 if (retval != ERROR_OK)
1236 return retval;
1237 breakpoint->set = 0x11; /* Any nice value but 0 */
1240 return ERROR_OK;
1243 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1245 int retval;
1246 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1247 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1248 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1250 if (!breakpoint->set)
1252 LOG_WARNING("breakpoint not set");
1253 return ERROR_OK;
1256 if (breakpoint->type == BKPT_HARD)
1258 int brp_i = breakpoint->set - 1;
1259 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1261 LOG_DEBUG("Invalid BRP number in breakpoint");
1262 return ERROR_OK;
1264 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1265 brp_list[brp_i].control, brp_list[brp_i].value);
1266 brp_list[brp_i].used = 0;
1267 brp_list[brp_i].value = 0;
1268 brp_list[brp_i].control = 0;
1269 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1270 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1271 brp_list[brp_i].control);
1272 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1273 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1274 brp_list[brp_i].value);
1276 else
1278 /* restore original instruction (kept in target endianness) */
1279 if (breakpoint->length == 4)
1281 retval = target->type->write_memory(target,
1282 breakpoint->address & 0xFFFFFFFE,
1283 4, 1, breakpoint->orig_instr);
1284 if (retval != ERROR_OK)
1285 return retval;
1287 else
1289 retval = target->type->write_memory(target,
1290 breakpoint->address & 0xFFFFFFFE,
1291 2, 1, breakpoint->orig_instr);
1292 if (retval != ERROR_OK)
1293 return retval;
1296 breakpoint->set = 0;
1298 return ERROR_OK;
1301 static int cortex_a8_add_breakpoint(struct target *target,
1302 struct breakpoint *breakpoint)
1304 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1306 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1308 LOG_INFO("no hardware breakpoint available");
1309 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1312 if (breakpoint->type == BKPT_HARD)
1313 cortex_a8->brp_num_available--;
1314 cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1316 return ERROR_OK;
1319 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1321 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1323 #if 0
1324 /* It is perfectly possible to remove breakpoints while the target is running */
1325 if (target->state != TARGET_HALTED)
1327 LOG_WARNING("target not halted");
1328 return ERROR_TARGET_NOT_HALTED;
1330 #endif
1332 if (breakpoint->set)
1334 cortex_a8_unset_breakpoint(target, breakpoint);
1335 if (breakpoint->type == BKPT_HARD)
1336 cortex_a8->brp_num_available++ ;
1340 return ERROR_OK;
1346 * Cortex-A8 Reset functions
1349 static int cortex_a8_assert_reset(struct target *target)
1351 struct armv7a_common *armv7a = target_to_armv7a(target);
1353 LOG_DEBUG(" ");
1355 /* FIXME when halt is requested, make it work somehow... */
1357 /* Issue some kind of warm reset. */
1358 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1359 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1360 } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1361 /* REVISIT handle "pulls" cases, if there's
1362 * hardware that needs them to work.
1364 jtag_add_reset(0, 1);
1365 } else {
1366 LOG_ERROR("%s: how to reset?", target_name(target));
1367 return ERROR_FAIL;
1370 /* registers are now invalid */
1371 register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1373 target->state = TARGET_RESET;
1375 return ERROR_OK;
1378 static int cortex_a8_deassert_reset(struct target *target)
1380 int retval;
1382 LOG_DEBUG(" ");
1384 /* be certain SRST is off */
1385 jtag_add_reset(0, 0);
1387 retval = cortex_a8_poll(target);
1388 if (retval != ERROR_OK)
1389 return retval;
1391 if (target->reset_halt) {
1392 if (target->state != TARGET_HALTED) {
1393 LOG_WARNING("%s: ran after reset and before halt ...",
1394 target_name(target));
1395 if ((retval = target_halt(target)) != ERROR_OK)
1396 return retval;
1400 return ERROR_OK;
1404 * Cortex-A8 Memory access
1406 * This is same Cortex M3 but we must also use the correct
1407 * ap number for every access.
1410 static int cortex_a8_read_phys_memory(struct target *target,
1411 uint32_t address, uint32_t size,
1412 uint32_t count, uint8_t *buffer)
1414 struct armv7a_common *armv7a = target_to_armv7a(target);
1415 struct adiv5_dap *swjdp = &armv7a->dap;
1416 int retval = ERROR_INVALID_ARGUMENTS;
1418 /* cortex_a8 handles unaligned memory access */
1420 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1421 LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address, size, count);
1422 if (count && buffer) {
1423 switch (size) {
1424 case 4:
1425 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1426 break;
1427 case 2:
1428 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1429 break;
1430 case 1:
1431 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1432 break;
1436 return retval;
1439 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1440 uint32_t size, uint32_t count, uint8_t *buffer)
1442 int enabled = 0;
1443 uint32_t virt, phys;
1444 int retval;
1446 /* cortex_a8 handles unaligned memory access */
1448 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1449 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address, size, count);
1450 retval = cortex_a8_mmu(target, &enabled);
1451 if (retval != ERROR_OK)
1452 return retval;
1454 if(enabled)
1456 virt = address;
1457 cortex_a8_virt2phys(target, virt, &phys);
1458 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1459 address = phys;
1462 return cortex_a8_read_phys_memory(target, address, size, count, buffer);
1465 static int cortex_a8_write_phys_memory(struct target *target,
1466 uint32_t address, uint32_t size,
1467 uint32_t count, uint8_t *buffer)
1469 struct armv7a_common *armv7a = target_to_armv7a(target);
1470 struct adiv5_dap *swjdp = &armv7a->dap;
1471 int retval = ERROR_INVALID_ARGUMENTS;
1473 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1475 LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address, size, count);
1476 if (count && buffer) {
1477 switch (size) {
1478 case 4:
1479 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1480 break;
1481 case 2:
1482 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1483 break;
1484 case 1:
1485 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1486 break;
1490 /* REVISIT this op is generic ARMv7-A/R stuff */
1491 if (retval == ERROR_OK && target->state == TARGET_HALTED)
1493 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1495 retval = dpm->prepare(dpm);
1496 if (retval != ERROR_OK)
1497 return retval;
1499 /* The Cache handling will NOT work with MMU active, the
1500 * wrong addresses will be invalidated!
1502 * For both ICache and DCache, walk all cache lines in the
1503 * address range. Cortex-A8 has fixed 64 byte line length.
1505 * REVISIT per ARMv7, these may trigger watchpoints ...
1508 /* invalidate I-Cache */
1509 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1511 /* ICIMVAU - Invalidate Cache single entry
1512 * with MVA to PoU
1513 * MCR p15, 0, r0, c7, c5, 1
1515 for (uint32_t cacheline = address;
1516 cacheline < address + size * count;
1517 cacheline += 64) {
1518 retval = dpm->instr_write_data_r0(dpm,
1519 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1520 cacheline);
1524 /* invalidate D-Cache */
1525 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1527 /* DCIMVAC - Invalidate data Cache line
1528 * with MVA to PoC
1529 * MCR p15, 0, r0, c7, c6, 1
1531 for (uint32_t cacheline = address;
1532 cacheline < address + size * count;
1533 cacheline += 64) {
1534 retval = dpm->instr_write_data_r0(dpm,
1535 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1536 cacheline);
1540 /* (void) */ dpm->finish(dpm);
1543 return retval;
1546 static int cortex_a8_write_memory(struct target *target, uint32_t address,
1547 uint32_t size, uint32_t count, uint8_t *buffer)
1549 int enabled = 0;
1550 uint32_t virt, phys;
1551 int retval;
1553 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1555 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
1556 retval = cortex_a8_mmu(target, &enabled);
1557 if (retval != ERROR_OK)
1558 return retval;
1559 if(enabled)
1561 virt = address;
1562 cortex_a8_virt2phys(target, virt, &phys);
1563 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1564 address = phys;
1567 return cortex_a8_write_phys_memory(target, address, size,
1568 count, buffer);
1571 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1572 uint32_t count, uint8_t *buffer)
1574 return cortex_a8_write_memory(target, address, 4, count, buffer);
1578 static int cortex_a8_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1580 #if 0
1581 u16 dcrdr;
1583 mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1584 *ctrl = (uint8_t)dcrdr;
1585 *value = (uint8_t)(dcrdr >> 8);
1587 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1589 /* write ack back to software dcc register
1590 * signify we have read data */
1591 if (dcrdr & (1 << 0))
1593 dcrdr = 0;
1594 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1596 #endif
1597 return ERROR_OK;
1601 static int cortex_a8_handle_target_request(void *priv)
1603 struct target *target = priv;
1604 struct armv7a_common *armv7a = target_to_armv7a(target);
1605 struct adiv5_dap *swjdp = &armv7a->dap;
1607 if (!target_was_examined(target))
1608 return ERROR_OK;
1609 if (!target->dbg_msg_enabled)
1610 return ERROR_OK;
1612 if (target->state == TARGET_RUNNING)
1614 uint8_t data = 0;
1615 uint8_t ctrl = 0;
1617 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1619 /* check if we have data */
1620 if (ctrl & (1 << 0))
1622 uint32_t request;
1624 /* we assume target is quick enough */
1625 request = data;
1626 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1627 request |= (data << 8);
1628 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1629 request |= (data << 16);
1630 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1631 request |= (data << 24);
1632 target_request(target, request);
1636 return ERROR_OK;
1640 * Cortex-A8 target information and configuration
1643 static int cortex_a8_examine_first(struct target *target)
1645 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1646 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1647 struct adiv5_dap *swjdp = &armv7a->dap;
1648 int i;
1649 int retval = ERROR_OK;
1650 uint32_t didr, ctypr, ttypr, cpuid;
1652 /* stop assuming this is an OMAP! */
1653 LOG_DEBUG("TODO - autoconfigure");
1655 /* Here we shall insert a proper ROM Table scan */
1656 armv7a->debug_base = OMAP3530_DEBUG_BASE;
1658 /* We do one extra read to ensure DAP is configured,
1659 * we call ahbap_debugport_init(swjdp) instead
1661 retval = ahbap_debugport_init(swjdp);
1662 if (retval != ERROR_OK)
1663 return retval;
1665 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1666 if (retval != ERROR_OK)
1667 return retval;
1669 if ((retval = mem_ap_read_atomic_u32(swjdp,
1670 armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1672 LOG_DEBUG("Examine %s failed", "CPUID");
1673 return retval;
1676 if ((retval = mem_ap_read_atomic_u32(swjdp,
1677 armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1679 LOG_DEBUG("Examine %s failed", "CTYPR");
1680 return retval;
1683 if ((retval = mem_ap_read_atomic_u32(swjdp,
1684 armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1686 LOG_DEBUG("Examine %s failed", "TTYPR");
1687 return retval;
1690 if ((retval = mem_ap_read_atomic_u32(swjdp,
1691 armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1693 LOG_DEBUG("Examine %s failed", "DIDR");
1694 return retval;
1697 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1698 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1699 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1700 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1702 armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1703 retval = cortex_a8_dpm_setup(cortex_a8, didr);
1704 if (retval != ERROR_OK)
1705 return retval;
1707 /* Setup Breakpoint Register Pairs */
1708 cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1709 cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1710 cortex_a8->brp_num_available = cortex_a8->brp_num;
1711 cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1712 // cortex_a8->brb_enabled = ????;
1713 for (i = 0; i < cortex_a8->brp_num; i++)
1715 cortex_a8->brp_list[i].used = 0;
1716 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1717 cortex_a8->brp_list[i].type = BRP_NORMAL;
1718 else
1719 cortex_a8->brp_list[i].type = BRP_CONTEXT;
1720 cortex_a8->brp_list[i].value = 0;
1721 cortex_a8->brp_list[i].control = 0;
1722 cortex_a8->brp_list[i].BRPn = i;
1725 LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
1727 target_set_examined(target);
1728 return ERROR_OK;
1731 static int cortex_a8_examine(struct target *target)
1733 int retval = ERROR_OK;
1735 /* don't re-probe hardware after each reset */
1736 if (!target_was_examined(target))
1737 retval = cortex_a8_examine_first(target);
1739 /* Configure core debug access */
1740 if (retval == ERROR_OK)
1741 retval = cortex_a8_init_debug_access(target);
1743 return retval;
1747 * Cortex-A8 target creation and initialization
1750 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1751 struct target *target)
1753 /* examine_first() does a bunch of this */
1754 return ERROR_OK;
1757 static int cortex_a8_init_arch_info(struct target *target,
1758 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1760 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1761 struct arm *armv4_5 = &armv7a->armv4_5_common;
1762 struct adiv5_dap *dap = &armv7a->dap;
1764 armv7a->armv4_5_common.dap = dap;
1766 /* Setup struct cortex_a8_common */
1767 cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1768 armv4_5->arch_info = armv7a;
1770 /* prepare JTAG information for the new target */
1771 cortex_a8->jtag_info.tap = tap;
1772 cortex_a8->jtag_info.scann_size = 4;
1774 /* Leave (only) generic DAP stuff for debugport_init() */
1775 dap->jtag_info = &cortex_a8->jtag_info;
1776 dap->memaccess_tck = 80;
1778 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1779 dap->tar_autoincr_block = (1 << 10);
1781 cortex_a8->fast_reg_read = 0;
1783 /* Set default value */
1784 cortex_a8->current_address_mode = ARM_MODE_ANY;
1786 /* register arch-specific functions */
1787 armv7a->examine_debug_reason = NULL;
1789 armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1791 armv7a->pre_restore_context = NULL;
1792 armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1793 armv7a->armv4_5_mmu.get_ttb = cortex_a8_get_ttb;
1794 armv7a->armv4_5_mmu.read_memory = cortex_a8_read_phys_memory;
1795 armv7a->armv4_5_mmu.write_memory = cortex_a8_write_phys_memory;
1796 armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a8_disable_mmu_caches;
1797 armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a8_enable_mmu_caches;
1798 armv7a->armv4_5_mmu.has_tiny_pages = 1;
1799 armv7a->armv4_5_mmu.mmu_enabled = 0;
1802 // arm7_9->handle_target_request = cortex_a8_handle_target_request;
1804 /* REVISIT v7a setup should be in a v7a-specific routine */
1805 arm_init_arch_info(target, armv4_5);
1806 armv7a->common_magic = ARMV7_COMMON_MAGIC;
1808 target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1810 return ERROR_OK;
1813 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1815 struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1817 cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1819 return ERROR_OK;
1822 static uint32_t cortex_a8_get_ttb(struct target *target)
1824 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1825 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1826 uint32_t ttb = 0, retval = ERROR_OK;
1828 /* current_address_mode is set inside cortex_a8_virt2phys()
1829 where we can determine if address belongs to user or kernel */
1830 if(cortex_a8->current_address_mode == ARM_MODE_SVC)
1832 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1833 retval = armv7a->armv4_5_common.mrc(target, 15,
1834 0, 1, /* op1, op2 */
1835 2, 0, /* CRn, CRm */
1836 &ttb);
1838 else if(cortex_a8->current_address_mode == ARM_MODE_USR)
1840 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1841 retval = armv7a->armv4_5_common.mrc(target, 15,
1842 0, 0, /* op1, op2 */
1843 2, 0, /* CRn, CRm */
1844 &ttb);
1846 /* we don't know whose address is: user or kernel
1847 we assume that if we are in kernel mode then
1848 address belongs to kernel else if in user mode
1849 - to user */
1850 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
1852 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1853 retval = armv7a->armv4_5_common.mrc(target, 15,
1854 0, 1, /* op1, op2 */
1855 2, 0, /* CRn, CRm */
1856 &ttb);
1858 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
1860 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1861 retval = armv7a->armv4_5_common.mrc(target, 15,
1862 0, 0, /* op1, op2 */
1863 2, 0, /* CRn, CRm */
1864 &ttb);
1866 /* finally we don't know whose ttb to use: user or kernel */
1867 else
1868 LOG_ERROR("Don't know how to get ttb for current mode!!!");
1870 ttb &= 0xffffc000;
1872 return ttb;
1875 static void cortex_a8_disable_mmu_caches(struct target *target, int mmu,
1876 int d_u_cache, int i_cache)
1878 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1879 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1880 uint32_t cp15_control;
1882 /* read cp15 control register */
1883 armv7a->armv4_5_common.mrc(target, 15,
1884 0, 0, /* op1, op2 */
1885 1, 0, /* CRn, CRm */
1886 &cp15_control);
1889 if (mmu)
1890 cp15_control &= ~0x1U;
1892 if (d_u_cache)
1893 cp15_control &= ~0x4U;
1895 if (i_cache)
1896 cp15_control &= ~0x1000U;
1898 armv7a->armv4_5_common.mcr(target, 15,
1899 0, 0, /* op1, op2 */
1900 1, 0, /* CRn, CRm */
1901 cp15_control);
1904 static void cortex_a8_enable_mmu_caches(struct target *target, int mmu,
1905 int d_u_cache, int i_cache)
1907 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1908 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1909 uint32_t cp15_control;
1911 /* read cp15 control register */
1912 armv7a->armv4_5_common.mrc(target, 15,
1913 0, 0, /* op1, op2 */
1914 1, 0, /* CRn, CRm */
1915 &cp15_control);
1917 if (mmu)
1918 cp15_control |= 0x1U;
1920 if (d_u_cache)
1921 cp15_control |= 0x4U;
1923 if (i_cache)
1924 cp15_control |= 0x1000U;
1926 armv7a->armv4_5_common.mcr(target, 15,
1927 0, 0, /* op1, op2 */
1928 1, 0, /* CRn, CRm */
1929 cp15_control);
1933 static int cortex_a8_mmu(struct target *target, int *enabled)
1935 if (target->state != TARGET_HALTED) {
1936 LOG_ERROR("%s: target not halted", __func__);
1937 return ERROR_TARGET_INVALID;
1940 *enabled = target_to_cortex_a8(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
1941 return ERROR_OK;
1944 static int cortex_a8_virt2phys(struct target *target,
1945 uint32_t virt, uint32_t *phys)
1947 uint32_t cb;
1948 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1949 // struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1950 struct armv7a_common *armv7a = target_to_armv7a(target);
1952 /* We assume that virtual address is separated
1953 between user and kernel in Linux style:
1954 0x00000000-0xbfffffff - User space
1955 0xc0000000-0xffffffff - Kernel space */
1956 if( virt < 0xc0000000 ) /* Linux user space */
1957 cortex_a8->current_address_mode = ARM_MODE_USR;
1958 else /* Linux kernel */
1959 cortex_a8->current_address_mode = ARM_MODE_SVC;
1960 uint32_t ret;
1961 int retval = armv4_5_mmu_translate_va(target,
1962 &armv7a->armv4_5_mmu, virt, &cb, &ret);
1963 if (retval != ERROR_OK)
1964 return retval;
1965 /* Reset the flag. We don't want someone else to use it by error */
1966 cortex_a8->current_address_mode = ARM_MODE_ANY;
1968 *phys = ret;
1969 return ERROR_OK;
1972 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1974 struct target *target = get_current_target(CMD_CTX);
1975 struct armv7a_common *armv7a = target_to_armv7a(target);
1977 return armv4_5_handle_cache_info_command(CMD_CTX,
1978 &armv7a->armv4_5_mmu.armv4_5_cache);
1982 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1984 struct target *target = get_current_target(CMD_CTX);
1985 if (!target_was_examined(target))
1987 LOG_ERROR("target not examined yet");
1988 return ERROR_FAIL;
1991 return cortex_a8_init_debug_access(target);
1994 static const struct command_registration cortex_a8_exec_command_handlers[] = {
1996 .name = "cache_info",
1997 .handler = cortex_a8_handle_cache_info_command,
1998 .mode = COMMAND_EXEC,
1999 .help = "display information about target caches",
2002 .name = "dbginit",
2003 .handler = cortex_a8_handle_dbginit_command,
2004 .mode = COMMAND_EXEC,
2005 .help = "Initialize core debug",
2007 COMMAND_REGISTRATION_DONE
2009 static const struct command_registration cortex_a8_command_handlers[] = {
2011 .chain = arm_command_handlers,
2014 .chain = armv7a_command_handlers,
2017 .name = "cortex_a8",
2018 .mode = COMMAND_ANY,
2019 .help = "Cortex-A8 command group",
2020 .chain = cortex_a8_exec_command_handlers,
2022 COMMAND_REGISTRATION_DONE
2025 struct target_type cortexa8_target = {
2026 .name = "cortex_a8",
2028 .poll = cortex_a8_poll,
2029 .arch_state = armv7a_arch_state,
2031 .target_request_data = NULL,
2033 .halt = cortex_a8_halt,
2034 .resume = cortex_a8_resume,
2035 .step = cortex_a8_step,
2037 .assert_reset = cortex_a8_assert_reset,
2038 .deassert_reset = cortex_a8_deassert_reset,
2039 .soft_reset_halt = NULL,
2041 /* REVISIT allow exporting VFP3 registers ... */
2042 .get_gdb_reg_list = arm_get_gdb_reg_list,
2044 .read_memory = cortex_a8_read_memory,
2045 .write_memory = cortex_a8_write_memory,
2046 .bulk_write_memory = cortex_a8_bulk_write_memory,
2048 .checksum_memory = arm_checksum_memory,
2049 .blank_check_memory = arm_blank_check_memory,
2051 .run_algorithm = armv4_5_run_algorithm,
2053 .add_breakpoint = cortex_a8_add_breakpoint,
2054 .remove_breakpoint = cortex_a8_remove_breakpoint,
2055 .add_watchpoint = NULL,
2056 .remove_watchpoint = NULL,
2058 .commands = cortex_a8_command_handlers,
2059 .target_create = cortex_a8_target_create,
2060 .init_target = cortex_a8_init_target,
2061 .examine = cortex_a8_examine,
2063 .read_phys_memory = cortex_a8_read_phys_memory,
2064 .write_phys_memory = cortex_a8_write_phys_memory,
2065 .mmu = cortex_a8_mmu,
2066 .virt2phys = cortex_a8_virt2phys,